| /* |
| * Copyright (c) 2023, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <arm_neon.h> |
| |
| #include "aom_dsp/arm/aom_neon_sve_bridge.h" |
| #include "warp_plane_neon.h" |
| |
| DECLARE_ALIGNED(16, static const uint8_t, usdot_permute_idx[48]) = { |
| 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, |
| 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, |
| 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, kMatMul6PermuteTbl[32]) = { |
| // clang-format off |
| 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9, |
| 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 |
| // clang-format on |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, kMatMul8PermuteTbl[32]) = { |
| // clang-format off |
| 1, 2, 3, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9, 10, |
| 5, 6, 7, 8, 9, 10, 11, 12, 7, 8, 9, 10, 11, 12, 13, 14 |
| // clang-format on |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, kTblIdx0_3[16]) = { |
| 0, -1, -1, -1, 1, -1, -1, -1, 2, -1, -1, -1, 3, -1, -1, -1, |
| }; |
| |
| static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in, |
| int sx, int alpha) { |
| // Only put the constant in every other lane to avoid double-counting when |
| // performing the pairwise add later. |
| const int32x4_t add_const = |
| vreinterpretq_s32_u64(vdupq_n_u64(1 << (8 + FILTER_BITS - 1))); |
| |
| // Loading the 8 filter taps |
| int16x8_t f[4]; |
| load_filters_4(f, sx, alpha); |
| |
| int8x16_t f01_u8 = vcombine_s8(vmovn_s16(f[0]), vmovn_s16(f[1])); |
| int8x16_t f23_u8 = vcombine_s8(vmovn_s16(f[2]), vmovn_s16(f[3])); |
| |
| uint8x8_t in0 = vget_low_u8(in); |
| uint8x8_t in1 = vget_low_u8(vextq_u8(in, in, 1)); |
| uint8x8_t in2 = vget_low_u8(vextq_u8(in, in, 2)); |
| uint8x8_t in3 = vget_low_u8(vextq_u8(in, in, 3)); |
| |
| int32x4_t m01 = vusdotq_s32(add_const, vcombine_u8(in0, in1), f01_u8); |
| int32x4_t m23 = vusdotq_s32(add_const, vcombine_u8(in2, in3), f23_u8); |
| |
| int32x4_t m0123 = vpaddq_s32(m01, m23); |
| |
| uint16x8_t res = |
| vcombine_u16(vqrshrun_n_s32(m0123, ROUND0_BITS), vdup_n_u16(0)); |
| return vreinterpretq_s16_u16(res); |
| } |
| |
| static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in, |
| int sx, int alpha) { |
| // Only put the constant in every other lane to avoid double-counting when |
| // performing the pairwise add later. |
| const int32x4_t add_const = |
| vreinterpretq_s32_u64(vdupq_n_u64(1 << (8 + FILTER_BITS - 1))); |
| |
| // Loading the 8 filter taps |
| int16x8_t f[8]; |
| load_filters_8(f, sx, alpha); |
| |
| int8x16_t f01_u8 = vcombine_s8(vmovn_s16(f[0]), vmovn_s16(f[1])); |
| int8x16_t f23_u8 = vcombine_s8(vmovn_s16(f[2]), vmovn_s16(f[3])); |
| int8x16_t f45_u8 = vcombine_s8(vmovn_s16(f[4]), vmovn_s16(f[5])); |
| int8x16_t f67_u8 = vcombine_s8(vmovn_s16(f[6]), vmovn_s16(f[7])); |
| |
| uint8x8_t in0 = vget_low_u8(in); |
| uint8x8_t in1 = vget_low_u8(vextq_u8(in, in, 1)); |
| uint8x8_t in2 = vget_low_u8(vextq_u8(in, in, 2)); |
| uint8x8_t in3 = vget_low_u8(vextq_u8(in, in, 3)); |
| uint8x8_t in4 = vget_low_u8(vextq_u8(in, in, 4)); |
| uint8x8_t in5 = vget_low_u8(vextq_u8(in, in, 5)); |
| uint8x8_t in6 = vget_low_u8(vextq_u8(in, in, 6)); |
| uint8x8_t in7 = vget_low_u8(vextq_u8(in, in, 7)); |
| |
| int32x4_t m01 = vusdotq_s32(add_const, vcombine_u8(in0, in1), f01_u8); |
| int32x4_t m23 = vusdotq_s32(add_const, vcombine_u8(in2, in3), f23_u8); |
| int32x4_t m45 = vusdotq_s32(add_const, vcombine_u8(in4, in5), f45_u8); |
| int32x4_t m67 = vusdotq_s32(add_const, vcombine_u8(in6, in7), f67_u8); |
| |
| int32x4_t m0123 = vpaddq_s32(m01, m23); |
| int32x4_t m4567 = vpaddq_s32(m45, m67); |
| |
| uint16x8_t res = vcombine_u16(vqrshrun_n_s32(m0123, ROUND0_BITS), |
| vqrshrun_n_s32(m4567, ROUND0_BITS)); |
| return vreinterpretq_s16_u16(res); |
| } |
| |
| static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f1_6tap_beta0( |
| const uint8x16_t in, const int8x16_t filter, const uint8x16_t perm_tbl) { |
| const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1)); |
| |
| // Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| const uint8x16_t perm_samples = vqtbl1q_u8(in, perm_tbl); |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum = vusmmlaq_s32(add_const, perm_samples, filter); |
| |
| uint16x8_t res = |
| vcombine_u16(vqrshrun_n_s32(sum, ROUND0_BITS), vdup_n_u16(0)); |
| |
| return vreinterpretq_s16_u16(res); |
| } |
| |
| static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f1_8tap_beta0( |
| const uint8x16_t in, const int8x16_t filter, const int32x4_t f0, |
| const uint8x16_t perm_tbl, const uint8x16_t tbl_idx0_3) { |
| const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1)); |
| |
| // Permute samples ready for matrix multiply. |
| // { 1, 2, 3, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9, 10 } |
| const uint8x16_t perm_samples = vqtbl1q_u8(in, perm_tbl); |
| // Get samples 0..3 to apply tap 0 after matrix multiply. |
| const int32x4_t samples_0_3 = |
| vreinterpretq_s32_u8(vqtbl1q_u8(in, tbl_idx0_3)); |
| |
| // Calculate partial 7-tap convolution. |
| int32x4_t sum = vusmmlaq_s32(add_const, perm_samples, filter); |
| // Apply tap 0 and accumulate. |
| sum = vmlaq_s32(sum, samples_0_3, f0); |
| |
| uint16x8_t res = |
| vcombine_u16(vqrshrun_n_s32(sum, ROUND0_BITS), vdup_n_u16(0)); |
| |
| return vreinterpretq_s16_u16(res); |
| } |
| |
| static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in, |
| int sx) { |
| const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1)); |
| |
| int16x8_t f_s16 = vld1q_s16(av1_warped_filter[sx >> WARPEDDIFF_PREC_BITS]); |
| int8x16_t f_s8 = vcombine_s8(vmovn_s16(f_s16), vmovn_s16(f_s16)); |
| |
| uint8x16_t perm0 = vld1q_u8(&usdot_permute_idx[0]); |
| uint8x16_t perm1 = vld1q_u8(&usdot_permute_idx[16]); |
| |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| uint8x16_t in_0123 = vqtbl1q_u8(in, perm0); |
| uint8x16_t in_4567 = vqtbl1q_u8(in, perm1); |
| |
| int32x4_t m0123 = vusdotq_laneq_s32(add_const, in_0123, f_s8, 0); |
| m0123 = vusdotq_laneq_s32(m0123, in_4567, f_s8, 1); |
| |
| uint16x8_t res = |
| vcombine_u16(vqrshrun_n_s32(m0123, ROUND0_BITS), vdup_n_u16(0)); |
| return vreinterpretq_s16_u16(res); |
| } |
| |
| static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f1_6tap_beta0( |
| const uint8x16_t in, const int8x16_t filter, const uint8x16x2_t perm_tbl) { |
| const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1)); |
| |
| // Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| // { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 } |
| uint8x16_t perm_samples[2] = { vqtbl1q_u8(in, perm_tbl.val[0]), |
| vqtbl1q_u8(in, perm_tbl.val[1]) }; |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum0123 = vusmmlaq_s32(add_const, perm_samples[0], filter); |
| int32x4_t sum4567 = vusmmlaq_s32(add_const, perm_samples[1], filter); |
| |
| uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0123, ROUND0_BITS), |
| vqrshrun_n_s32(sum4567, ROUND0_BITS)); |
| |
| return vreinterpretq_s16_u16(res); |
| } |
| |
| static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f1_8tap_beta0( |
| const uint8x16_t in, const int8x16_t filter, const int16x4_t f0, |
| const uint8x16x2_t perm_tbl) { |
| const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1)); |
| |
| // Permute samples ready for matrix multiply. |
| // { 1, 2, 3, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9, 10 } |
| // { 5, 6, 7, 8, 9, 10, 11, 12, 7, 8, 9, 10, 11, 12, 13, 14 } |
| uint8x16_t perm_samples[2] = { vqtbl1q_u8(in, perm_tbl.val[0]), |
| vqtbl1q_u8(in, perm_tbl.val[1]) }; |
| // Get samples 0..7 to apply tap 0 after matrix multiply. |
| int16x8_t samples_0_7 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(in))); |
| |
| // Calculate partial 7-tap convolution. |
| int32x4_t sum0123 = vusmmlaq_s32(add_const, perm_samples[0], filter); |
| int32x4_t sum4567 = vusmmlaq_s32(add_const, perm_samples[1], filter); |
| // Apply tap 0 and accumulate. |
| sum0123 = vmlal_s16(sum0123, vget_low_s16(samples_0_7), f0); |
| sum4567 = vmlal_s16(sum4567, vget_high_s16(samples_0_7), f0); |
| |
| uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0123, ROUND0_BITS), |
| vqrshrun_n_s32(sum4567, ROUND0_BITS)); |
| |
| return vreinterpretq_s16_u16(res); |
| } |
| |
| static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in, |
| int sx) { |
| const int32x4_t add_const = vdupq_n_s32(1 << (8 + FILTER_BITS - 1)); |
| |
| int16x8_t f_s16 = vld1q_s16(av1_warped_filter[sx >> WARPEDDIFF_PREC_BITS]); |
| int8x16_t f_s8 = vcombine_s8(vmovn_s16(f_s16), vmovn_s16(f_s16)); |
| |
| uint8x16_t perm0 = vld1q_u8(&usdot_permute_idx[0]); |
| uint8x16_t perm1 = vld1q_u8(&usdot_permute_idx[16]); |
| uint8x16_t perm2 = vld1q_u8(&usdot_permute_idx[32]); |
| |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } |
| uint8x16_t in_0123 = vqtbl1q_u8(in, perm0); |
| uint8x16_t in_4567 = vqtbl1q_u8(in, perm1); |
| uint8x16_t in_89ab = vqtbl1q_u8(in, perm2); |
| |
| int32x4_t m0123 = vusdotq_laneq_s32(add_const, in_0123, f_s8, 0); |
| m0123 = vusdotq_laneq_s32(m0123, in_4567, f_s8, 1); |
| |
| int32x4_t m4567 = vusdotq_laneq_s32(add_const, in_4567, f_s8, 0); |
| m4567 = vusdotq_laneq_s32(m4567, in_89ab, f_s8, 1); |
| |
| uint16x8_t res = vcombine_u16(vqrshrun_n_s32(m0123, ROUND0_BITS), |
| vqrshrun_n_s32(m4567, ROUND0_BITS)); |
| return vreinterpretq_s16_u16(res); |
| } |
| |
| static AOM_FORCE_INLINE void vertical_filter_4x1_f4(const int16x8_t *src, |
| int32x4_t *res, int sy, |
| int gamma) { |
| int16x8_t s0, s1, s2, s3; |
| transpose_elems_s16_4x8( |
| vget_low_s16(src[0]), vget_low_s16(src[1]), vget_low_s16(src[2]), |
| vget_low_s16(src[3]), vget_low_s16(src[4]), vget_low_s16(src[5]), |
| vget_low_s16(src[6]), vget_low_s16(src[7]), &s0, &s1, &s2, &s3); |
| |
| int16x8_t f[4]; |
| load_filters_4(f, sy, gamma); |
| |
| int64x2_t m0 = aom_sdotq_s16(vdupq_n_s64(0), s0, f[0]); |
| int64x2_t m1 = aom_sdotq_s16(vdupq_n_s64(0), s1, f[1]); |
| int64x2_t m2 = aom_sdotq_s16(vdupq_n_s64(0), s2, f[2]); |
| int64x2_t m3 = aom_sdotq_s16(vdupq_n_s64(0), s3, f[3]); |
| |
| int64x2_t m01 = vpaddq_s64(m0, m1); |
| int64x2_t m23 = vpaddq_s64(m2, m3); |
| |
| *res = vcombine_s32(vmovn_s64(m01), vmovn_s64(m23)); |
| } |
| |
| static AOM_FORCE_INLINE void vertical_filter_8x1_f8(const int16x8_t *src, |
| int32x4_t *res_low, |
| int32x4_t *res_high, int sy, |
| int gamma) { |
| int16x8_t s0 = src[0]; |
| int16x8_t s1 = src[1]; |
| int16x8_t s2 = src[2]; |
| int16x8_t s3 = src[3]; |
| int16x8_t s4 = src[4]; |
| int16x8_t s5 = src[5]; |
| int16x8_t s6 = src[6]; |
| int16x8_t s7 = src[7]; |
| transpose_elems_inplace_s16_8x8(&s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); |
| |
| int16x8_t f[8]; |
| load_filters_8(f, sy, gamma); |
| |
| int64x2_t m0 = aom_sdotq_s16(vdupq_n_s64(0), s0, f[0]); |
| int64x2_t m1 = aom_sdotq_s16(vdupq_n_s64(0), s1, f[1]); |
| int64x2_t m2 = aom_sdotq_s16(vdupq_n_s64(0), s2, f[2]); |
| int64x2_t m3 = aom_sdotq_s16(vdupq_n_s64(0), s3, f[3]); |
| int64x2_t m4 = aom_sdotq_s16(vdupq_n_s64(0), s4, f[4]); |
| int64x2_t m5 = aom_sdotq_s16(vdupq_n_s64(0), s5, f[5]); |
| int64x2_t m6 = aom_sdotq_s16(vdupq_n_s64(0), s6, f[6]); |
| int64x2_t m7 = aom_sdotq_s16(vdupq_n_s64(0), s7, f[7]); |
| |
| int64x2_t m01 = vpaddq_s64(m0, m1); |
| int64x2_t m23 = vpaddq_s64(m2, m3); |
| int64x2_t m45 = vpaddq_s64(m4, m5); |
| int64x2_t m67 = vpaddq_s64(m6, m7); |
| |
| *res_low = vcombine_s32(vmovn_s64(m01), vmovn_s64(m23)); |
| *res_high = vcombine_s32(vmovn_s64(m45), vmovn_s64(m67)); |
| } |
| |
| static AOM_FORCE_INLINE void warp_affine_horizontal_sve( |
| const uint8_t *ref, int width, int height, int stride, int p_width, |
| int p_height, int16_t alpha, int16_t beta, const int64_t x4, |
| const int64_t y4, const int i, int16x8_t tmp[]) { |
| const int height_limit = AOMMIN(8, p_height - i) + 7; |
| |
| int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS); |
| int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS); |
| |
| int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
| sx4 += alpha * (-4) + beta * (-4) + (1 << (WARPEDDIFF_PREC_BITS - 1)) + |
| (WARPEDPIXEL_PREC_SHIFTS << WARPEDDIFF_PREC_BITS); |
| sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); |
| |
| if (warp_affine_special_case(ref, ix4, iy4, width, height, stride, |
| height_limit, tmp)) { |
| return; |
| } |
| |
| static const uint8_t kIotaArr[] = { 0, 1, 2, 3, 4, 5, 6, 7, |
| 8, 9, 10, 11, 12, 13, 14, 15 }; |
| const uint8x16_t indx = vld1q_u8(kIotaArr); |
| |
| const int out_of_boundary_left = -(ix4 - 6); |
| const int out_of_boundary_right = (ix4 + 8) - width; |
| |
| if (p_width == 4) { |
| if (beta == 0) { |
| if (alpha == 0) { |
| int16_t *f_ptr = |
| (int16_t *)(av1_warped_filter + (sx4 >> WARPEDDIFF_PREC_BITS)); |
| int16x8_t f_s16 = vld1q_s16(f_ptr); |
| const int8x8_t x_filter = vmovn_s16(f_s16); |
| if ((f_ptr[0] | f_ptr[1]) == 0) { |
| uint8x16_t perm_tbl = vld1q_u8(kMatMul6PermuteTbl); |
| // Offset the permutation table to match filter layout. |
| perm_tbl = vaddq_u8(perm_tbl, vdupq_n_u8(2)); |
| // Stagger filter for use with the matrix multiply instructions. |
| // { f2, f3, f4, f5, f6, f7, 0, 0, 0, f2, f3, f4, f5, f6, f7, 0 } |
| const int8x16_t filter = vcombine_s8(vext_s8(x_filter, x_filter, 2), |
| vext_s8(x_filter, x_filter, 1)); |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f1_6tap_beta0, filter, |
| perm_tbl); |
| } else if ((f_ptr[0] | f_ptr[7]) == 0) { |
| uint8x16_t perm_tbl = vld1q_u8(kMatMul6PermuteTbl); |
| // Offset the permutation table to match filter layout. |
| perm_tbl = vaddq_u8(perm_tbl, vdupq_n_u8(1)); |
| // Stagger filter for use with the matrix multiply instructions. |
| // { f1, f2, f3, f4, f5, f6, 0, 0, 0, f1, f2, f3, f4, f5, f6, 0 } |
| const int8x16_t filter = |
| vcombine_s8(vext_s8(x_filter, x_filter, 1), x_filter); |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f1_6tap_beta0, filter, |
| perm_tbl); |
| } else if ((f_ptr[6] | f_ptr[7]) == 0) { |
| const uint8x16_t perm_tbl = vld1q_u8(kMatMul6PermuteTbl); |
| // Stagger filter for use with the matrix multiply instructions. |
| // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } |
| const int8x16_t filter = |
| vcombine_s8(x_filter, vext_s8(x_filter, x_filter, 7)); |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f1_6tap_beta0, filter, |
| perm_tbl); |
| } else { |
| const uint8x16_t perm_tbl = vld1q_u8(kMatMul8PermuteTbl); |
| const uint8x16_t tbl_idx0_3 = vld1q_u8(kTblIdx0_3); |
| |
| // Stagger filter for use with the matrix multiply |
| // instructions. |
| // { f1, f2, f3, f4, f5, f6, f7, 0, 0, f1, f2, f3, f4, f5, f6, f7 } |
| const int8x16_t filter = vcombine_s8( |
| vext_s8(x_filter, vdup_n_s8(0), 1), vset_lane_s8(0, x_filter, 0)); |
| const int32x4_t f0 = vdupq_n_s32(f_ptr[0]); |
| |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f1_8tap_beta0, filter, |
| f0, perm_tbl, tbl_idx0_3); |
| } |
| } else { |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f4, sx4, alpha); |
| } |
| } else { |
| if (alpha == 0) { |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f1, |
| (sx4 + beta * (k - 3))); |
| } else { |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f4, (sx4 + beta * (k - 3)), |
| alpha); |
| } |
| } |
| } else { |
| if (beta == 0) { |
| if (alpha == 0) { |
| int16_t *f_ptr = |
| (int16_t *)(av1_warped_filter + (sx4 >> WARPEDDIFF_PREC_BITS)); |
| int16x8_t f_s16 = vld1q_s16(f_ptr); |
| const int8x8_t x_filter = vmovn_s16(f_s16); |
| if ((f_ptr[0] | f_ptr[1]) == 0) { |
| uint8x16x2_t perm_tbl = vld1q_u8_x2(kMatMul6PermuteTbl); |
| // Offset the permutation table to match filter layout. |
| perm_tbl.val[0] = vaddq_u8(perm_tbl.val[0], vdupq_n_u8(2)); |
| perm_tbl.val[1] = vaddq_u8(perm_tbl.val[1], vdupq_n_u8(2)); |
| // Stagger filter for use with the matrix multiply instructions. |
| // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } |
| const int8x16_t filter = vcombine_s8(vext_s8(x_filter, x_filter, 2), |
| vext_s8(x_filter, x_filter, 1)); |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f1_6tap_beta0, filter, |
| perm_tbl); |
| } else if ((f_ptr[0] | f_ptr[7]) == 0) { |
| uint8x16x2_t perm_tbl = vld1q_u8_x2(kMatMul6PermuteTbl); |
| // Offset the permutation table to match filter layout. |
| perm_tbl.val[0] = vaddq_u8(perm_tbl.val[0], vdupq_n_u8(1)); |
| perm_tbl.val[1] = vaddq_u8(perm_tbl.val[1], vdupq_n_u8(1)); |
| // Stagger filter for use with the matrix multiply instructions. |
| // { f1, f2, f3, f4, f5, f6, 0, 0, 0, f1, f2, f3, f4, f5, f6, 0 } |
| const int8x16_t filter = |
| vcombine_s8(vext_s8(x_filter, x_filter, 1), x_filter); |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f1_6tap_beta0, filter, |
| perm_tbl); |
| } else if ((f_ptr[6] | f_ptr[7]) == 0) { |
| uint8x16x2_t perm_tbl = vld1q_u8_x2(kMatMul6PermuteTbl); |
| // Stagger filter for use with the matrix multiply instructions. |
| // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } |
| const int8x16_t filter = |
| vcombine_s8(x_filter, vext_s8(x_filter, x_filter, 7)); |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f1_6tap_beta0, filter, |
| perm_tbl); |
| } else { |
| uint8x16x2_t perm_tbl = vld1q_u8_x2(kMatMul8PermuteTbl); |
| // Stagger filter for use with the matrix multiply instructions. |
| // { f1, f2, f3, f4, f5, f6, f7, 0, 0, f1, f2, f3, f4, f5, f6, f7 } |
| const int8x16_t filter = vcombine_s8( |
| vext_s8(x_filter, vdup_n_s8(0), 1), vset_lane_s8(0, x_filter, 0)); |
| |
| const int16x4_t f0 = vdup_n_s16(f_ptr[0]); |
| |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f1_8tap_beta0, filter, |
| f0, perm_tbl); |
| } |
| } else { |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f8, sx4, alpha); |
| } |
| } else { |
| if (alpha == 0) { |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f1, |
| (sx4 + beta * (k - 3))); |
| } else { |
| APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f8, (sx4 + beta * (k - 3)), |
| alpha); |
| } |
| } |
| } |
| } |
| |
| void av1_warp_affine_sve(const int32_t *mat, const uint8_t *ref, int width, |
| int height, int stride, uint8_t *pred, int p_col, |
| int p_row, int p_width, int p_height, int p_stride, |
| int subsampling_x, int subsampling_y, |
| ConvolveParams *conv_params, int16_t alpha, |
| int16_t beta, int16_t gamma, int16_t delta) { |
| const int w0 = conv_params->fwd_offset; |
| const int w1 = conv_params->bck_offset; |
| const int is_compound = conv_params->is_compound; |
| uint16_t *const dst = conv_params->dst; |
| const int dst_stride = conv_params->dst_stride; |
| const int do_average = conv_params->do_average; |
| const int use_dist_wtd_comp_avg = conv_params->use_dist_wtd_comp_avg; |
| |
| assert(IMPLIES(is_compound, dst != NULL)); |
| assert(IMPLIES(do_average, is_compound)); |
| |
| for (int i = 0; i < p_height; i += 8) { |
| for (int j = 0; j < p_width; j += 8) { |
| const int32_t src_x = (p_col + j + 4) << subsampling_x; |
| const int32_t src_y = (p_row + i + 4) << subsampling_y; |
| const int64_t dst_x = |
| (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0]; |
| const int64_t dst_y = |
| (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1]; |
| |
| const int64_t x4 = dst_x >> subsampling_x; |
| const int64_t y4 = dst_y >> subsampling_y; |
| |
| int16x8_t tmp[15]; |
| warp_affine_horizontal_sve(ref, width, height, stride, p_width, p_height, |
| alpha, beta, x4, y4, i, tmp); |
| warp_affine_vertical(pred, p_width, p_height, p_stride, is_compound, dst, |
| dst_stride, do_average, use_dist_wtd_comp_avg, gamma, |
| delta, y4, i, j, tmp, w0, w1); |
| } |
| } |
| } |