|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved. | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include "av1/common/av1_common_int.h" | 
|  | #include "av1/common/cfl.h" | 
|  | #include "av1/common/common_data.h" | 
|  |  | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params) { | 
|  | assert(block_size_wide[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE); | 
|  | assert(block_size_high[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE); | 
|  |  | 
|  | memset(&cfl->recon_buf_q3, 0, sizeof(cfl->recon_buf_q3)); | 
|  | memset(&cfl->ac_buf_q3, 0, sizeof(cfl->ac_buf_q3)); | 
|  | cfl->subsampling_x = seq_params->subsampling_x; | 
|  | cfl->subsampling_y = seq_params->subsampling_y; | 
|  | cfl->are_parameters_computed = 0; | 
|  | cfl->store_y = 0; | 
|  | // The DC_PRED cache is disabled by default and is only enabled in | 
|  | // cfl_rd_pick_alpha | 
|  | clear_cfl_dc_pred_cache_flags(cfl); | 
|  | } | 
|  |  | 
|  | void cfl_store_dc_pred(MACROBLOCKD *const xd, const uint8_t *input, | 
|  | CFL_PRED_TYPE pred_plane, int width) { | 
|  | assert(pred_plane < CFL_PRED_PLANES); | 
|  | assert(width <= CFL_BUF_LINE); | 
|  |  | 
|  | if (is_cur_buf_hbd(xd)) { | 
|  | uint16_t *const input_16 = CONVERT_TO_SHORTPTR(input); | 
|  | memcpy(xd->cfl.dc_pred_cache[pred_plane], input_16, width << 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | memcpy(xd->cfl.dc_pred_cache[pred_plane], input, width); | 
|  | } | 
|  |  | 
|  | static void cfl_load_dc_pred_lbd(const int16_t *dc_pred_cache, uint8_t *dst, | 
|  | int dst_stride, int width, int height) { | 
|  | for (int j = 0; j < height; j++) { | 
|  | memcpy(dst, dc_pred_cache, width); | 
|  | dst += dst_stride; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cfl_load_dc_pred_hbd(const int16_t *dc_pred_cache, uint16_t *dst, | 
|  | int dst_stride, int width, int height) { | 
|  | const size_t num_bytes = width << 1; | 
|  | for (int j = 0; j < height; j++) { | 
|  | memcpy(dst, dc_pred_cache, num_bytes); | 
|  | dst += dst_stride; | 
|  | } | 
|  | } | 
|  | void cfl_load_dc_pred(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, | 
|  | TX_SIZE tx_size, CFL_PRED_TYPE pred_plane) { | 
|  | const int width = tx_size_wide[tx_size]; | 
|  | const int height = tx_size_high[tx_size]; | 
|  | assert(pred_plane < CFL_PRED_PLANES); | 
|  | assert(width <= CFL_BUF_LINE); | 
|  | assert(height <= CFL_BUF_LINE); | 
|  | if (is_cur_buf_hbd(xd)) { | 
|  | uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst); | 
|  | cfl_load_dc_pred_hbd(xd->cfl.dc_pred_cache[pred_plane], dst_16, dst_stride, | 
|  | width, height); | 
|  | return; | 
|  | } | 
|  | cfl_load_dc_pred_lbd(xd->cfl.dc_pred_cache[pred_plane], dst, dst_stride, | 
|  | width, height); | 
|  | } | 
|  |  | 
|  | // Due to frame boundary issues, it is possible that the total area covered by | 
|  | // chroma exceeds that of luma. When this happens, we fill the missing pixels by | 
|  | // repeating the last columns and/or rows. | 
|  | static inline void cfl_pad(CFL_CTX *cfl, int width, int height) { | 
|  | const int diff_width = width - cfl->buf_width; | 
|  | const int diff_height = height - cfl->buf_height; | 
|  |  | 
|  | if (diff_width > 0) { | 
|  | const int min_height = height - diff_height; | 
|  | uint16_t *recon_buf_q3 = cfl->recon_buf_q3 + (width - diff_width); | 
|  | for (int j = 0; j < min_height; j++) { | 
|  | const uint16_t last_pixel = recon_buf_q3[-1]; | 
|  | assert(recon_buf_q3 + diff_width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE); | 
|  | for (int i = 0; i < diff_width; i++) { | 
|  | recon_buf_q3[i] = last_pixel; | 
|  | } | 
|  | recon_buf_q3 += CFL_BUF_LINE; | 
|  | } | 
|  | cfl->buf_width = width; | 
|  | } | 
|  | if (diff_height > 0) { | 
|  | uint16_t *recon_buf_q3 = | 
|  | cfl->recon_buf_q3 + ((height - diff_height) * CFL_BUF_LINE); | 
|  | for (int j = 0; j < diff_height; j++) { | 
|  | const uint16_t *last_row_q3 = recon_buf_q3 - CFL_BUF_LINE; | 
|  | assert(recon_buf_q3 + width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE); | 
|  | for (int i = 0; i < width; i++) { | 
|  | recon_buf_q3[i] = last_row_q3[i]; | 
|  | } | 
|  | recon_buf_q3 += CFL_BUF_LINE; | 
|  | } | 
|  | cfl->buf_height = height; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void subtract_average_c(const uint16_t *src, int16_t *dst, int width, | 
|  | int height, int round_offset, int num_pel_log2) { | 
|  | int sum = round_offset; | 
|  | const uint16_t *recon = src; | 
|  | for (int j = 0; j < height; j++) { | 
|  | for (int i = 0; i < width; i++) { | 
|  | sum += recon[i]; | 
|  | } | 
|  | recon += CFL_BUF_LINE; | 
|  | } | 
|  | const int avg = sum >> num_pel_log2; | 
|  | for (int j = 0; j < height; j++) { | 
|  | for (int i = 0; i < width; i++) { | 
|  | dst[i] = src[i] - avg; | 
|  | } | 
|  | src += CFL_BUF_LINE; | 
|  | dst += CFL_BUF_LINE; | 
|  | } | 
|  | } | 
|  |  | 
|  | CFL_SUB_AVG_FN(c) | 
|  |  | 
|  | static inline int cfl_idx_to_alpha(uint8_t alpha_idx, int8_t joint_sign, | 
|  | CFL_PRED_TYPE pred_type) { | 
|  | const int alpha_sign = (pred_type == CFL_PRED_U) ? CFL_SIGN_U(joint_sign) | 
|  | : CFL_SIGN_V(joint_sign); | 
|  | if (alpha_sign == CFL_SIGN_ZERO) return 0; | 
|  | const int abs_alpha_q3 = | 
|  | (pred_type == CFL_PRED_U) ? CFL_IDX_U(alpha_idx) : CFL_IDX_V(alpha_idx); | 
|  | return (alpha_sign == CFL_SIGN_POS) ? abs_alpha_q3 + 1 : -abs_alpha_q3 - 1; | 
|  | } | 
|  |  | 
|  | static inline void cfl_predict_lbd_c(const int16_t *ac_buf_q3, uint8_t *dst, | 
|  | int dst_stride, int alpha_q3, int width, | 
|  | int height) { | 
|  | for (int j = 0; j < height; j++) { | 
|  | for (int i = 0; i < width; i++) { | 
|  | dst[i] = clip_pixel(get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i]); | 
|  | } | 
|  | dst += dst_stride; | 
|  | ac_buf_q3 += CFL_BUF_LINE; | 
|  | } | 
|  | } | 
|  |  | 
|  | CFL_PREDICT_FN(c, lbd) | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | static inline void cfl_predict_hbd_c(const int16_t *ac_buf_q3, uint16_t *dst, | 
|  | int dst_stride, int alpha_q3, | 
|  | int bit_depth, int width, int height) { | 
|  | for (int j = 0; j < height; j++) { | 
|  | for (int i = 0; i < width; i++) { | 
|  | dst[i] = clip_pixel_highbd( | 
|  | get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i], bit_depth); | 
|  | } | 
|  | dst += dst_stride; | 
|  | ac_buf_q3 += CFL_BUF_LINE; | 
|  | } | 
|  | } | 
|  |  | 
|  | CFL_PREDICT_FN(c, hbd) | 
|  | #endif | 
|  |  | 
|  | static void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) { | 
|  | CFL_CTX *const cfl = &xd->cfl; | 
|  | // Do not call cfl_compute_parameters multiple time on the same values. | 
|  | assert(cfl->are_parameters_computed == 0); | 
|  |  | 
|  | cfl_pad(cfl, tx_size_wide[tx_size], tx_size_high[tx_size]); | 
|  | cfl_get_subtract_average_fn(tx_size)(cfl->recon_buf_q3, cfl->ac_buf_q3); | 
|  | cfl->are_parameters_computed = 1; | 
|  | } | 
|  |  | 
|  | void av1_cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride, | 
|  | TX_SIZE tx_size, int plane) { | 
|  | CFL_CTX *const cfl = &xd->cfl; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | assert(is_cfl_allowed(xd)); | 
|  |  | 
|  | if (!cfl->are_parameters_computed) cfl_compute_parameters(xd, tx_size); | 
|  |  | 
|  | const int alpha_q3 = | 
|  | cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1); | 
|  | assert((tx_size_high[tx_size] - 1) * CFL_BUF_LINE + tx_size_wide[tx_size] <= | 
|  | CFL_BUF_SQUARE); | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | if (is_cur_buf_hbd(xd)) { | 
|  | uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst); | 
|  | cfl_get_predict_hbd_fn(tx_size)(cfl->ac_buf_q3, dst_16, dst_stride, | 
|  | alpha_q3, xd->bd); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | cfl_get_predict_lbd_fn(tx_size)(cfl->ac_buf_q3, dst, dst_stride, alpha_q3); | 
|  | } | 
|  |  | 
|  | static void cfl_luma_subsampling_420_lbd_c(const uint8_t *input, | 
|  | int input_stride, | 
|  | uint16_t *output_q3, int width, | 
|  | int height) { | 
|  | for (int j = 0; j < height; j += 2) { | 
|  | for (int i = 0; i < width; i += 2) { | 
|  | const int bot = i + input_stride; | 
|  | output_q3[i >> 1] = | 
|  | (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1; | 
|  | } | 
|  | input += input_stride << 1; | 
|  | output_q3 += CFL_BUF_LINE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cfl_luma_subsampling_422_lbd_c(const uint8_t *input, | 
|  | int input_stride, | 
|  | uint16_t *output_q3, int width, | 
|  | int height) { | 
|  | assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); | 
|  | for (int j = 0; j < height; j++) { | 
|  | for (int i = 0; i < width; i += 2) { | 
|  | output_q3[i >> 1] = (input[i] + input[i + 1]) << 2; | 
|  | } | 
|  | input += input_stride; | 
|  | output_q3 += CFL_BUF_LINE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cfl_luma_subsampling_444_lbd_c(const uint8_t *input, | 
|  | int input_stride, | 
|  | uint16_t *output_q3, int width, | 
|  | int height) { | 
|  | assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); | 
|  | for (int j = 0; j < height; j++) { | 
|  | for (int i = 0; i < width; i++) { | 
|  | output_q3[i] = input[i] << 3; | 
|  | } | 
|  | input += input_stride; | 
|  | output_q3 += CFL_BUF_LINE; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | static void cfl_luma_subsampling_420_hbd_c(const uint16_t *input, | 
|  | int input_stride, | 
|  | uint16_t *output_q3, int width, | 
|  | int height) { | 
|  | for (int j = 0; j < height; j += 2) { | 
|  | for (int i = 0; i < width; i += 2) { | 
|  | const int bot = i + input_stride; | 
|  | output_q3[i >> 1] = | 
|  | (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1; | 
|  | } | 
|  | input += input_stride << 1; | 
|  | output_q3 += CFL_BUF_LINE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cfl_luma_subsampling_422_hbd_c(const uint16_t *input, | 
|  | int input_stride, | 
|  | uint16_t *output_q3, int width, | 
|  | int height) { | 
|  | assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); | 
|  | for (int j = 0; j < height; j++) { | 
|  | for (int i = 0; i < width; i += 2) { | 
|  | output_q3[i >> 1] = (input[i] + input[i + 1]) << 2; | 
|  | } | 
|  | input += input_stride; | 
|  | output_q3 += CFL_BUF_LINE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cfl_luma_subsampling_444_hbd_c(const uint16_t *input, | 
|  | int input_stride, | 
|  | uint16_t *output_q3, int width, | 
|  | int height) { | 
|  | assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE); | 
|  | for (int j = 0; j < height; j++) { | 
|  | for (int i = 0; i < width; i++) { | 
|  | output_q3[i] = input[i] << 3; | 
|  | } | 
|  | input += input_stride; | 
|  | output_q3 += CFL_BUF_LINE; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | CFL_GET_SUBSAMPLE_FUNCTION(c) | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | static inline cfl_subsample_hbd_fn cfl_subsampling_hbd(TX_SIZE tx_size, | 
|  | int sub_x, int sub_y) { | 
|  | if (sub_x == 1) { | 
|  | if (sub_y == 1) { | 
|  | return cfl_get_luma_subsampling_420_hbd(tx_size); | 
|  | } | 
|  | return cfl_get_luma_subsampling_422_hbd(tx_size); | 
|  | } | 
|  | return cfl_get_luma_subsampling_444_hbd(tx_size); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline cfl_subsample_lbd_fn cfl_subsampling_lbd(TX_SIZE tx_size, | 
|  | int sub_x, int sub_y) { | 
|  | if (sub_x == 1) { | 
|  | if (sub_y == 1) { | 
|  | return cfl_get_luma_subsampling_420_lbd(tx_size); | 
|  | } | 
|  | return cfl_get_luma_subsampling_422_lbd(tx_size); | 
|  | } | 
|  | return cfl_get_luma_subsampling_444_lbd(tx_size); | 
|  | } | 
|  |  | 
|  | static void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, | 
|  | int row, int col, TX_SIZE tx_size, int use_hbd) { | 
|  | const int width = tx_size_wide[tx_size]; | 
|  | const int height = tx_size_high[tx_size]; | 
|  | const int tx_off_log2 = MI_SIZE_LOG2; | 
|  | const int sub_x = cfl->subsampling_x; | 
|  | const int sub_y = cfl->subsampling_y; | 
|  | const int store_row = row << (tx_off_log2 - sub_y); | 
|  | const int store_col = col << (tx_off_log2 - sub_x); | 
|  | const int store_height = height >> sub_y; | 
|  | const int store_width = width >> sub_x; | 
|  |  | 
|  | // Invalidate current parameters | 
|  | cfl->are_parameters_computed = 0; | 
|  |  | 
|  | // Store the surface of the pixel buffer that was written to, this way we | 
|  | // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the | 
|  | // frame boundary) | 
|  | if (col == 0 && row == 0) { | 
|  | cfl->buf_width = store_width; | 
|  | cfl->buf_height = store_height; | 
|  | } else { | 
|  | cfl->buf_width = OD_MAXI(store_col + store_width, cfl->buf_width); | 
|  | cfl->buf_height = OD_MAXI(store_row + store_height, cfl->buf_height); | 
|  | } | 
|  |  | 
|  | // Check that we will remain inside the pixel buffer. | 
|  | assert(store_row + store_height <= CFL_BUF_LINE); | 
|  | assert(store_col + store_width <= CFL_BUF_LINE); | 
|  |  | 
|  | // Store the input into the CfL pixel buffer | 
|  | uint16_t *recon_buf_q3 = | 
|  | cfl->recon_buf_q3 + (store_row * CFL_BUF_LINE + store_col); | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | if (use_hbd) { | 
|  | cfl_subsampling_hbd(tx_size, sub_x, sub_y)(CONVERT_TO_SHORTPTR(input), | 
|  | input_stride, recon_buf_q3); | 
|  | } else { | 
|  | cfl_subsampling_lbd(tx_size, sub_x, sub_y)(input, input_stride, | 
|  | recon_buf_q3); | 
|  | } | 
|  | #else | 
|  | (void)use_hbd; | 
|  | cfl_subsampling_lbd(tx_size, sub_x, sub_y)(input, input_stride, recon_buf_q3); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Adjust the row and column of blocks smaller than 8X8, as chroma-referenced | 
|  | // and non-chroma-referenced blocks are stored together in the CfL buffer. | 
|  | static inline void sub8x8_adjust_offset(const CFL_CTX *cfl, int mi_row, | 
|  | int mi_col, int *row_out, | 
|  | int *col_out) { | 
|  | // Increment row index for bottom: 8x4, 16x4 or both bottom 4x4s. | 
|  | if ((mi_row & 0x01) && cfl->subsampling_y) { | 
|  | assert(*row_out == 0); | 
|  | (*row_out)++; | 
|  | } | 
|  |  | 
|  | // Increment col index for right: 4x8, 4x16 or both right 4x4s. | 
|  | if ((mi_col & 0x01) && cfl->subsampling_x) { | 
|  | assert(*col_out == 0); | 
|  | (*col_out)++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size, | 
|  | BLOCK_SIZE bsize) { | 
|  | CFL_CTX *const cfl = &xd->cfl; | 
|  | struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; | 
|  | uint8_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2]; | 
|  |  | 
|  | if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) { | 
|  | // Only dimensions of size 4 can have an odd offset. | 
|  | assert(!((col & 1) && tx_size_wide[tx_size] != 4)); | 
|  | assert(!((row & 1) && tx_size_high[tx_size] != 4)); | 
|  | sub8x8_adjust_offset(cfl, xd->mi_row, xd->mi_col, &row, &col); | 
|  | } | 
|  | cfl_store(cfl, dst, pd->dst.stride, row, col, tx_size, is_cur_buf_hbd(xd)); | 
|  | } | 
|  |  | 
|  | static inline int max_intra_block_width(const MACROBLOCKD *xd, | 
|  | BLOCK_SIZE plane_bsize, int plane, | 
|  | TX_SIZE tx_size) { | 
|  | const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane) | 
|  | << MI_SIZE_LOG2; | 
|  | return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]); | 
|  | } | 
|  |  | 
|  | static inline int max_intra_block_height(const MACROBLOCKD *xd, | 
|  | BLOCK_SIZE plane_bsize, int plane, | 
|  | TX_SIZE tx_size) { | 
|  | const int max_blocks_high = max_block_high(xd, plane_bsize, plane) | 
|  | << MI_SIZE_LOG2; | 
|  | return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]); | 
|  | } | 
|  |  | 
|  | void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size) { | 
|  | CFL_CTX *const cfl = &xd->cfl; | 
|  | struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; | 
|  | int row = 0; | 
|  | int col = 0; | 
|  |  | 
|  | if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) { | 
|  | sub8x8_adjust_offset(cfl, xd->mi_row, xd->mi_col, &row, &col); | 
|  | } | 
|  | const int width = max_intra_block_width(xd, bsize, AOM_PLANE_Y, tx_size); | 
|  | const int height = max_intra_block_height(xd, bsize, AOM_PLANE_Y, tx_size); | 
|  | tx_size = get_tx_size(width, height); | 
|  | cfl_store(cfl, pd->dst.buf, pd->dst.stride, row, col, tx_size, | 
|  | is_cur_buf_hbd(xd)); | 
|  | } |