| /* |
| * Copyright (c) 2025, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AV1_COMMON_SELFGUIDED_HWY_H_ |
| #define AV1_COMMON_SELFGUIDED_HWY_H_ |
| |
| #include "av1/common/restoration.h" |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| #include "third_party/highway/hwy/highway.h" |
| |
| HWY_BEFORE_NAMESPACE(); |
| |
| namespace { |
| namespace HWY_NAMESPACE { |
| |
| namespace hn = hwy::HWY_NAMESPACE; |
| |
| template <int NumBlocks> |
| struct ScanTraits {}; |
| |
| template <> |
| struct ScanTraits<1> { |
| template <typename D> |
| HWY_ATTR HWY_INLINE static hn::VFromD<D> AddBlocks(D int32_tag, |
| hn::VFromD<D> v) { |
| (void)int32_tag; |
| return v; |
| } |
| }; |
| |
| template <> |
| struct ScanTraits<2> { |
| template <typename D> |
| HWY_ATTR HWY_INLINE static hn::VFromD<D> AddBlocks(D int32_tag, |
| hn::VFromD<D> v) { |
| constexpr hn::Half<D> half_tag; |
| const int32_t s = hn::ExtractLane(v, 3); |
| const auto s01 = hn::Set(half_tag, s); |
| const auto s02 = hn::InsertBlock<1>(hn::Zero(int32_tag), s01); |
| return hn::Add(v, s02); |
| } |
| }; |
| |
| template <> |
| struct ScanTraits<4> { |
| template <typename D> |
| HWY_ATTR HWY_INLINE static hn::VFromD<D> AddBlocks(D int32_tag, |
| hn::VFromD<D> v) { |
| HWY_ALIGN static const int32_t kA[] = { |
| 0, 0, 0, 0, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, |
| }; |
| HWY_ALIGN static const int32_t kB[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 23, 23, 23, 23, 23, 23, 23, 23, |
| }; |
| HWY_ALIGN static const int32_t kC[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 27, 27, 27, |
| }; |
| const auto a = hn::SetTableIndices(int32_tag, kA); |
| const auto b = hn::SetTableIndices(int32_tag, kB); |
| const auto c = hn::SetTableIndices(int32_tag, kC); |
| const auto s01 = |
| hn::TwoTablesLookupLanes(int32_tag, hn::Zero(int32_tag), v, a); |
| const auto s02 = |
| hn::TwoTablesLookupLanes(int32_tag, hn::Zero(int32_tag), v, b); |
| const auto s03 = |
| hn::TwoTablesLookupLanes(int32_tag, hn::Zero(int32_tag), v, c); |
| v = hn::Add(v, s01); |
| v = hn::Add(v, s02); |
| v = hn::Add(v, s03); |
| return v; |
| } |
| }; |
| |
| // Compute the scan of a register holding 32-bit integers. If the register holds |
| // x0..x7 then the scan will hold x0, x0+x1, x0+x1+x2, ..., x0+x1+...+x7 |
| // |
| // For the AVX2 example below, let [...] represent a 128-bit block, and let a, |
| // ..., h be 32-bit integers (assumed small enough to be able to add them |
| // without overflow). |
| // |
| // Use -> as shorthand for summing, i.e. h->a = h + g + f + e + d + c + b + a. |
| // |
| // x = [h g f e][d c b a] |
| // x01 = [g f e 0][c b a 0] |
| // x02 = [g+h f+g e+f e][c+d b+c a+b a] |
| // x03 = [e+f e 0 0][a+b a 0 0] |
| // x04 = [e->h e->g e->f e][a->d a->c a->b a] |
| // s = a->d |
| // s01 = [a->d a->d a->d a->d] |
| // s02 = [a->d a->d a->d a->d][0 0 0 0] |
| // ret = [a->h a->g a->f a->e][a->d a->c a->b a] |
| template <typename D> |
| HWY_ATTR HWY_INLINE hn::VFromD<D> Scan32(D int32_tag, hn::VFromD<D> x) { |
| const auto x01 = hn::ShiftLeftBytes<4>(x); |
| const auto x02 = hn::Add(x, x01); |
| const auto x03 = hn::ShiftLeftBytes<8>(x02); |
| const auto x04 = hn::Add(x02, x03); |
| return ScanTraits<int32_tag.MaxBlocks()>::AddBlocks(int32_tag, x04); |
| } |
| |
| // Compute two integral images from src. B sums elements; A sums their |
| // squares. The images are offset by one pixel, so will have width and height |
| // equal to width + 1, height + 1 and the first row and column will be zero. |
| // |
| // A+1 and B+1 should be aligned to 32 bytes. buf_stride should be a multiple |
| // of 8. |
| template <typename T, typename D> |
| HWY_ATTR HWY_INLINE void IntegralImages(D int32_tag, const T *HWY_RESTRICT src, |
| int src_stride, int width, int height, |
| int32_t *HWY_RESTRICT A, |
| int32_t *HWY_RESTRICT B, |
| int buf_stride) { |
| constexpr hn::Rebind<T, D> uint_tag; |
| constexpr hn::Repartition<int16_t, D> int16_tag; |
| // Write out the zero top row |
| hwy::ZeroBytes(A, 4 * (width + 8)); |
| hwy::ZeroBytes(B, 4 * (width + 8)); |
| |
| for (int i = 0; i < height; ++i) { |
| // Zero the left column. |
| A[(i + 1) * buf_stride] = B[(i + 1) * buf_stride] = 0; |
| |
| // ldiff is the difference H - D where H is the output sample immediately |
| // to the left and D is the output sample above it. These are scalars, |
| // replicated across the eight lanes. |
| auto ldiff1 = hn::Zero(int32_tag); |
| auto ldiff2 = hn::Zero(int32_tag); |
| for (int j = 0; j < width; j += hn::MaxLanes(int32_tag)) { |
| const int ABj = 1 + j; |
| |
| const auto above1 = hn::Load(int32_tag, B + ABj + i * buf_stride); |
| const auto above2 = hn::Load(int32_tag, A + ABj + i * buf_stride); |
| |
| const auto x1 = hn::PromoteTo( |
| int32_tag, hn::LoadU(uint_tag, src + j + i * src_stride)); |
| const auto x2 = hn::WidenMulPairwiseAdd( |
| int32_tag, hn::BitCast(int16_tag, x1), hn::BitCast(int16_tag, x1)); |
| |
| const auto sc1 = Scan32(int32_tag, x1); |
| const auto sc2 = Scan32(int32_tag, x2); |
| |
| const auto row1 = hn::Add(hn::Add(sc1, above1), ldiff1); |
| const auto row2 = hn::Add(hn::Add(sc2, above2), ldiff2); |
| |
| hn::Store(row1, int32_tag, B + ABj + (i + 1) * buf_stride); |
| hn::Store(row2, int32_tag, A + ABj + (i + 1) * buf_stride); |
| |
| // Calculate the new H - D. |
| ldiff1 = hn::Set(int32_tag, hn::ExtractLane(hn::Sub(row1, above1), |
| hn::MaxLanes(int32_tag) - 1)); |
| ldiff2 = hn::Set(int32_tag, hn::ExtractLane(hn::Sub(row2, above2), |
| hn::MaxLanes(int32_tag) - 1)); |
| } |
| } |
| } |
| |
| template <typename D> |
| HWY_ATTR HWY_INLINE hn::VFromD<D> BoxSumFromII(D int32_tag, |
| const int32_t *HWY_RESTRICT ii, |
| int stride, int r) { |
| const auto tl = hn::LoadU(int32_tag, ii - (r + 1) - (r + 1) * stride); |
| const auto tr = hn::LoadU(int32_tag, ii + (r + 0) - (r + 1) * stride); |
| const auto bl = hn::LoadU(int32_tag, ii - (r + 1) + r * stride); |
| const auto br = hn::LoadU(int32_tag, ii + (r + 0) + r * stride); |
| const auto u = hn::Sub(tr, tl); |
| const auto v = hn::Sub(br, bl); |
| return hn::Sub(v, u); |
| } |
| |
| template <typename D> |
| HWY_ATTR HWY_INLINE hn::VFromD<D> RoundForShift(D int32_tag, |
| unsigned int shift) { |
| return hn::Set(int32_tag, (1 << shift) >> 1); |
| } |
| |
| template <typename D> |
| HWY_ATTR HWY_INLINE hn::VFromD<D> ComputeP(D int32_tag, hn::VFromD<D> sum1, |
| hn::VFromD<D> sum2, int bit_depth, |
| int n) { |
| constexpr hn::Repartition<int16_t, D> int16_tag; |
| if (bit_depth > 8) { |
| const auto rounding_a = RoundForShift(int32_tag, 2 * (bit_depth - 8)); |
| const auto rounding_b = RoundForShift(int32_tag, bit_depth - 8); |
| const auto a = |
| hn::ShiftRightSame(hn::Add(sum2, rounding_a), 2 * (bit_depth - 8)); |
| const auto b = hn::ShiftRightSame(hn::Add(sum1, rounding_b), bit_depth - 8); |
| // b < 2^14, so we can use a 16-bit madd rather than a 32-bit |
| // mullo to square it |
| const auto b_16 = hn::BitCast(int16_tag, b); |
| const auto bb = hn::WidenMulPairwiseAdd(int32_tag, b_16, b_16); |
| const auto an = hn::Max(hn::Mul(a, hn::Set(int32_tag, n)), bb); |
| return hn::Sub(an, bb); |
| } |
| const auto sum1_16 = hn::BitCast(int16_tag, sum1); |
| const auto bb = hn::WidenMulPairwiseAdd(int32_tag, sum1_16, sum1_16); |
| const auto an = hn::Mul(sum2, hn::Set(int32_tag, n)); |
| return hn::Sub(an, bb); |
| } |
| |
| // Calculate 8 values of the "cross sum" starting at buf. This is a 3x3 filter |
| // where the outer four corners have weight 3 and all other pixels have weight |
| // 4. |
| // |
| // Pixels are indexed as follows: |
| // xtl xt xtr |
| // xl x xr |
| // xbl xb xbr |
| // |
| // buf points to x |
| // |
| // fours = xl + xt + xr + xb + x |
| // threes = xtl + xtr + xbr + xbl |
| // cross_sum = 4 * fours + 3 * threes |
| // = 4 * (fours + threes) - threes |
| // = (fours + threes) << 2 - threes |
| template <typename D> |
| HWY_ATTR HWY_INLINE hn::VFromD<D> CrossSum(D int32_tag, |
| const int32_t *HWY_RESTRICT buf, |
| int stride) { |
| const auto xtl = hn::LoadU(int32_tag, buf - 1 - stride); |
| const auto xt = hn::LoadU(int32_tag, buf - stride); |
| const auto xtr = hn::LoadU(int32_tag, buf + 1 - stride); |
| const auto xl = hn::LoadU(int32_tag, buf - 1); |
| const auto x = hn::LoadU(int32_tag, buf); |
| const auto xr = hn::LoadU(int32_tag, buf + 1); |
| const auto xbl = hn::LoadU(int32_tag, buf - 1 + stride); |
| const auto xb = hn::LoadU(int32_tag, buf + stride); |
| const auto xbr = hn::LoadU(int32_tag, buf + 1 + stride); |
| |
| const auto fours = hn::Add(xl, hn::Add(xt, hn::Add(xr, hn::Add(xb, x)))); |
| const auto threes = hn::Add(xtl, hn::Add(xtr, hn::Add(xbr, xbl))); |
| |
| return hn::Sub(hn::ShiftLeft<2>(hn::Add(fours, threes)), threes); |
| } |
| |
| // The final filter for self-guided restoration. Computes a weighted average |
| // across A, B with "cross sums" (see CrossSum implementation above). |
| template <typename DL> |
| HWY_ATTR HWY_INLINE void FinalFilter( |
| DL int32_tag, int32_t *HWY_RESTRICT dst, int dst_stride, |
| const int32_t *HWY_RESTRICT A, const int32_t *HWY_RESTRICT B, |
| int buf_stride, const void *HWY_RESTRICT dgd8, int dgd_stride, int width, |
| int height, int highbd) { |
| constexpr hn::Repartition<uint8_t, hn::Half<DL>> uint8_half_tag; |
| constexpr hn::Repartition<int16_t, DL> int16_tag; |
| constexpr int nb = 5; |
| constexpr int kShift = SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS; |
| const auto rounding = RoundForShift(int32_tag, kShift); |
| const uint8_t *HWY_RESTRICT dgd_real = |
| highbd ? reinterpret_cast<const uint8_t *>(CONVERT_TO_SHORTPTR(dgd8)) |
| : reinterpret_cast<const uint8_t *>(dgd8); |
| |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; j += hn::MaxLanes(int32_tag)) { |
| const auto a = CrossSum(int32_tag, A + i * buf_stride + j, buf_stride); |
| const auto b = CrossSum(int32_tag, B + i * buf_stride + j, buf_stride); |
| |
| const auto raw = hn::LoadU(uint8_half_tag, |
| dgd_real + ((i * dgd_stride + j) << highbd)); |
| const auto src = |
| highbd ? hn::PromoteTo( |
| int32_tag, |
| hn::BitCast( |
| hn::Repartition<int16_t, decltype(uint8_half_tag)>(), |
| raw)) |
| : hn::PromoteTo(int32_tag, hn::LowerHalf(raw)); |
| |
| auto v = |
| hn::Add(hn::WidenMulPairwiseAdd(int32_tag, hn::BitCast(int16_tag, a), |
| hn::BitCast(int16_tag, src)), |
| b); |
| auto w = hn::ShiftRight<kShift>(hn::Add(v, rounding)); |
| |
| hn::StoreU(w, int32_tag, dst + i * dst_stride + j); |
| } |
| } |
| } |
| |
| // Assumes that C, D are integral images for the original buffer which has been |
| // extended to have a padding of SGRPROJ_BORDER_VERT/SGRPROJ_BORDER_HORZ pixels |
| // on the sides. A, B, C, D point at logical position (0, 0). |
| template <int Step, typename DL> |
| HWY_ATTR HWY_INLINE void CalcAB(DL int32_tag, int32_t *HWY_RESTRICT A, |
| int32_t *HWY_RESTRICT B, |
| const int32_t *HWY_RESTRICT C, |
| const int32_t *HWY_RESTRICT D, int width, |
| int height, int buf_stride, int bit_depth, |
| int sgr_params_idx, int radius_idx) { |
| constexpr hn::Repartition<int16_t, DL> int16_tag; |
| constexpr hn::Repartition<uint32_t, DL> uint32_tag; |
| const sgr_params_type *HWY_RESTRICT const params = |
| &av1_sgr_params[sgr_params_idx]; |
| const int r = params->r[radius_idx]; |
| const int n = (2 * r + 1) * (2 * r + 1); |
| const auto s = hn::Set(int32_tag, params->s[radius_idx]); |
| // one_over_n[n-1] is 2^12/n, so easily fits in an int16 |
| const auto one_over_n = |
| hn::BitCast(int16_tag, hn::Set(int32_tag, av1_one_by_x[n - 1])); |
| |
| const auto rnd_z = RoundForShift(int32_tag, SGRPROJ_MTABLE_BITS); |
| const auto rnd_res = RoundForShift(int32_tag, SGRPROJ_RECIP_BITS); |
| |
| // Set up masks |
| const int max_lanes = static_cast<int>(hn::MaxLanes(int32_tag)); |
| HWY_ALIGN hn::Mask<decltype(int32_tag)> mask[max_lanes]; |
| for (int idx = 0; idx < max_lanes; idx++) { |
| mask[idx] = hn::FirstN(int32_tag, idx); |
| } |
| |
| for (int i = -1; i < height + 1; i += Step) { |
| for (int j = -1; j < width + 1; j += max_lanes) { |
| const int32_t *HWY_RESTRICT Cij = C + i * buf_stride + j; |
| const int32_t *HWY_RESTRICT Dij = D + i * buf_stride + j; |
| |
| auto sum1 = BoxSumFromII(int32_tag, Dij, buf_stride, r); |
| auto sum2 = BoxSumFromII(int32_tag, Cij, buf_stride, r); |
| |
| // When width + 2 isn't a multiple of 8, sum1 and sum2 will contain |
| // some uninitialised data in their upper words. We use a mask to |
| // ensure that these bits are set to 0. |
| int idx = AOMMIN(max_lanes, width + 1 - j); |
| assert(idx >= 1); |
| |
| if (idx < max_lanes) { |
| sum1 = hn::IfThenElseZero(mask[idx], sum1); |
| sum2 = hn::IfThenElseZero(mask[idx], sum2); |
| } |
| |
| const auto p = ComputeP(int32_tag, sum1, sum2, bit_depth, n); |
| |
| const auto z = hn::BitCast( |
| int32_tag, hn::Min(hn::ShiftRight<SGRPROJ_MTABLE_BITS>(hn::BitCast( |
| uint32_tag, hn::MulAdd(p, s, rnd_z))), |
| hn::Set(uint32_tag, 255))); |
| |
| const auto a_res = hn::GatherIndex(int32_tag, av1_x_by_xplus1, z); |
| |
| hn::StoreU(a_res, int32_tag, A + i * buf_stride + j); |
| |
| const auto a_complement = hn::Sub(hn::Set(int32_tag, SGRPROJ_SGR), a_res); |
| |
| // sum1 might have lanes greater than 2^15, so we can't use madd to do |
| // multiplication involving sum1. However, a_complement and one_over_n |
| // are both less than 256, so we can multiply them first. |
| const auto a_comp_over_n = hn::WidenMulPairwiseAdd( |
| int32_tag, hn::BitCast(int16_tag, a_complement), one_over_n); |
| const auto b_int = hn::Mul(a_comp_over_n, sum1); |
| const auto b_res = |
| hn::ShiftRight<SGRPROJ_RECIP_BITS>(hn::Add(b_int, rnd_res)); |
| |
| hn::StoreU(b_res, int32_tag, B + i * buf_stride + j); |
| } |
| } |
| } |
| |
| // Calculate 8 values of the "cross sum" starting at buf. |
| // |
| // Pixels are indexed like this: |
| // xtl xt xtr |
| // - buf - |
| // xbl xb xbr |
| // |
| // Pixels are weighted like this: |
| // 5 6 5 |
| // 0 0 0 |
| // 5 6 5 |
| // |
| // fives = xtl + xtr + xbl + xbr |
| // sixes = xt + xb |
| // cross_sum = 6 * sixes + 5 * fives |
| // = 5 * (fives + sixes) - sixes |
| // = (fives + sixes) << 2 + (fives + sixes) + sixes |
| template <typename D> |
| HWY_ATTR HWY_INLINE hn::VFromD<D> CrossSumFastEvenRow( |
| D int32_tag, const int32_t *HWY_RESTRICT buf, int stride) { |
| const auto xtl = hn::LoadU(int32_tag, buf - 1 - stride); |
| const auto xt = hn::LoadU(int32_tag, buf - stride); |
| const auto xtr = hn::LoadU(int32_tag, buf + 1 - stride); |
| const auto xbl = hn::LoadU(int32_tag, buf - 1 + stride); |
| const auto xb = hn::LoadU(int32_tag, buf + stride); |
| const auto xbr = hn::LoadU(int32_tag, buf + 1 + stride); |
| |
| const auto fives = hn::Add(xtl, hn::Add(xtr, hn::Add(xbr, xbl))); |
| const auto sixes = hn::Add(xt, xb); |
| const auto fives_plus_sixes = hn::Add(fives, sixes); |
| |
| return hn::Add(hn::Add(hn::ShiftLeft<2>(fives_plus_sixes), fives_plus_sixes), |
| sixes); |
| } |
| |
| // Calculate 8 values of the "cross sum" starting at buf. |
| // |
| // Pixels are indexed like this: |
| // xl x xr |
| // |
| // Pixels are weighted like this: |
| // 5 6 5 |
| // |
| // buf points to x |
| // |
| // fives = xl + xr |
| // sixes = x |
| // cross_sum = 5 * fives + 6 * sixes |
| // = 4 * (fives + sixes) + (fives + sixes) + sixes |
| // = (fives + sixes) << 2 + (fives + sixes) + sixes |
| template <typename D> |
| HWY_ATTR HWY_INLINE hn::VFromD<D> CrossSumFastOddRow( |
| D int32_tag, const int32_t *HWY_RESTRICT buf) { |
| const auto xl = hn::LoadU(int32_tag, buf - 1); |
| const auto x = hn::LoadU(int32_tag, buf); |
| const auto xr = hn::LoadU(int32_tag, buf + 1); |
| |
| const auto fives = hn::Add(xl, xr); |
| const auto sixes = x; |
| |
| const auto fives_plus_sixes = hn::Add(fives, sixes); |
| |
| return hn::Add(hn::Add(hn::ShiftLeft<2>(fives_plus_sixes), fives_plus_sixes), |
| sixes); |
| } |
| |
| // The final filter for the self-guided restoration. Computes a |
| // weighted average across A, B with "cross sums" (see cross_sum_... |
| // implementations above). |
| template <typename DL> |
| HWY_ATTR HWY_INLINE void FinalFilterFast( |
| DL int32_tag, int32_t *HWY_RESTRICT dst, int dst_stride, |
| const int32_t *HWY_RESTRICT A, const int32_t *HWY_RESTRICT B, |
| int buf_stride, const void *HWY_RESTRICT dgd8, int dgd_stride, int width, |
| int height, int highbd) { |
| constexpr hn::Repartition<uint8_t, hn::Half<DL>> uint8_half_tag; |
| constexpr hn::Repartition<int16_t, DL> int16_tag; |
| constexpr int nb0 = 5; |
| constexpr int nb1 = 4; |
| constexpr int kShift0 = SGRPROJ_SGR_BITS + nb0 - SGRPROJ_RST_BITS; |
| constexpr int kShift1 = SGRPROJ_SGR_BITS + nb1 - SGRPROJ_RST_BITS; |
| |
| const auto rounding0 = RoundForShift(int32_tag, kShift0); |
| const auto rounding1 = RoundForShift(int32_tag, kShift1); |
| |
| const uint8_t *HWY_RESTRICT dgd_real = |
| highbd ? reinterpret_cast<const uint8_t *>(CONVERT_TO_SHORTPTR(dgd8)) |
| : reinterpret_cast<const uint8_t *>(dgd8); |
| |
| for (int i = 0; i < height; ++i) { |
| if (!(i & 1)) { // even row |
| for (int j = 0; j < width; j += hn::MaxLanes(int32_tag)) { |
| const auto a = |
| CrossSumFastEvenRow(int32_tag, A + i * buf_stride + j, buf_stride); |
| const auto b = |
| CrossSumFastEvenRow(int32_tag, B + i * buf_stride + j, buf_stride); |
| |
| const auto raw = hn::LoadU(uint8_half_tag, |
| dgd_real + ((i * dgd_stride + j) << highbd)); |
| const auto src = |
| highbd |
| ? hn::PromoteTo( |
| int32_tag, |
| hn::BitCast( |
| hn::Repartition<int16_t, decltype(uint8_half_tag)>(), |
| raw)) |
| : hn::PromoteTo(int32_tag, hn::LowerHalf(raw)); |
| |
| auto v = hn::Add( |
| hn::WidenMulPairwiseAdd(int32_tag, hn::BitCast(int16_tag, a), |
| hn::BitCast(int16_tag, src)), |
| b); |
| auto w = hn::ShiftRight<kShift0>(hn::Add(v, rounding0)); |
| |
| hn::StoreU(w, int32_tag, dst + i * dst_stride + j); |
| } |
| } else { // odd row |
| for (int j = 0; j < width; j += hn::MaxLanes(int32_tag)) { |
| const auto a = CrossSumFastOddRow(int32_tag, A + i * buf_stride + j); |
| const auto b = CrossSumFastOddRow(int32_tag, B + i * buf_stride + j); |
| |
| const auto raw = hn::LoadU(uint8_half_tag, |
| dgd_real + ((i * dgd_stride + j) << highbd)); |
| const auto src = |
| highbd |
| ? hn::PromoteTo( |
| int32_tag, |
| hn::BitCast( |
| hn::Repartition<int16_t, decltype(uint8_half_tag)>(), |
| raw)) |
| : hn::PromoteTo(int32_tag, hn::LowerHalf(raw)); |
| |
| auto v = hn::Add( |
| hn::WidenMulPairwiseAdd(int32_tag, hn::BitCast(int16_tag, a), |
| hn::BitCast(int16_tag, src)), |
| b); |
| auto w = hn::ShiftRight<kShift1>(hn::Add(v, rounding1)); |
| |
| hn::StoreU(w, int32_tag, dst + i * dst_stride + j); |
| } |
| } |
| } |
| } |
| |
| HWY_ATTR HWY_INLINE int SelfGuidedRestoration( |
| const uint8_t *dgd8, int width, int height, int dgd_stride, |
| int32_t *HWY_RESTRICT flt0, int32_t *HWY_RESTRICT flt1, int flt_stride, |
| int sgr_params_idx, int bit_depth, int highbd) { |
| constexpr hn::ScalableTag<int32_t> int32_tag; |
| constexpr int kAlignment32Log2 = hwy::CeilLog2(hn::MaxLanes(int32_tag)); |
| // The ALIGN_POWER_OF_TWO macro here ensures that column 1 of Atl, Btl, Ctl |
| // and Dtl is vector aligned. |
| const int buf_elts = |
| ALIGN_POWER_OF_TWO(RESTORATION_PROC_UNIT_PELS, kAlignment32Log2); |
| |
| int32_t *buf = reinterpret_cast<int32_t *>( |
| aom_memalign(4 << kAlignment32Log2, 4 * sizeof(*buf) * buf_elts)); |
| if (!buf) { |
| return -1; |
| } |
| |
| const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; |
| const int height_ext = height + 2 * SGRPROJ_BORDER_VERT; |
| |
| // Adjusting the stride of A and B here appears to avoid bad cache effects, |
| // leading to a significant speed improvement. |
| // We also align the stride to a multiple of the vector size for efficiency. |
| int buf_stride = |
| ALIGN_POWER_OF_TWO(width_ext + (2 << kAlignment32Log2), kAlignment32Log2); |
| |
| // The "tl" pointers point at the top-left of the initialised data for the |
| // array. |
| int32_t *Atl = buf + 0 * buf_elts + (1 << kAlignment32Log2) - 1; |
| int32_t *Btl = buf + 1 * buf_elts + (1 << kAlignment32Log2) - 1; |
| int32_t *Ctl = buf + 2 * buf_elts + (1 << kAlignment32Log2) - 1; |
| int32_t *Dtl = buf + 3 * buf_elts + (1 << kAlignment32Log2) - 1; |
| |
| // The "0" pointers are (- SGRPROJ_BORDER_VERT, -SGRPROJ_BORDER_HORZ). Note |
| // there's a zero row and column in A, B (integral images), so we move down |
| // and right one for them. |
| const int buf_diag_border = |
| SGRPROJ_BORDER_HORZ + buf_stride * SGRPROJ_BORDER_VERT; |
| |
| int32_t *A0 = Atl + 1 + buf_stride; |
| int32_t *B0 = Btl + 1 + buf_stride; |
| int32_t *C0 = Ctl + 1 + buf_stride; |
| int32_t *D0 = Dtl + 1 + buf_stride; |
| |
| // Finally, A, B, C, D point at position (0, 0). |
| int32_t *A = A0 + buf_diag_border; |
| int32_t *B = B0 + buf_diag_border; |
| int32_t *C = C0 + buf_diag_border; |
| int32_t *D = D0 + buf_diag_border; |
| |
| const int dgd_diag_border = |
| SGRPROJ_BORDER_HORZ + dgd_stride * SGRPROJ_BORDER_VERT; |
| const uint8_t *dgd0 = dgd8 - dgd_diag_border; |
| |
| // Generate integral images from the input. C will contain sums of squares; D |
| // will contain just sums |
| if (highbd) { |
| IntegralImages(int32_tag, CONVERT_TO_SHORTPTR(dgd0), dgd_stride, width_ext, |
| height_ext, Ctl, Dtl, buf_stride); |
| } else { |
| IntegralImages(int32_tag, dgd0, dgd_stride, width_ext, height_ext, Ctl, Dtl, |
| buf_stride); |
| } |
| |
| const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx]; |
| // Write to flt0 and flt1 |
| // If params->r == 0 we skip the corresponding filter. We only allow one of |
| // the radii to be 0, as having both equal to 0 would be equivalent to |
| // skipping SGR entirely. |
| assert(!(params->r[0] == 0 && params->r[1] == 0)); |
| assert(params->r[0] < AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ)); |
| assert(params->r[1] < AOMMIN(SGRPROJ_BORDER_VERT, SGRPROJ_BORDER_HORZ)); |
| |
| if (params->r[0] > 0) { |
| CalcAB<2>(int32_tag, A, B, C, D, width, height, buf_stride, bit_depth, |
| sgr_params_idx, 0); |
| FinalFilterFast(int32_tag, flt0, flt_stride, A, B, buf_stride, dgd8, |
| dgd_stride, width, height, highbd); |
| } |
| |
| if (params->r[1] > 0) { |
| CalcAB<1>(int32_tag, A, B, C, D, width, height, buf_stride, bit_depth, |
| sgr_params_idx, 1); |
| FinalFilter(int32_tag, flt1, flt_stride, A, B, buf_stride, dgd8, dgd_stride, |
| width, height, highbd); |
| } |
| aom_free(buf); |
| return 0; |
| } |
| |
| HWY_ATTR HWY_INLINE int ApplySelfGuidedRestoration( |
| const uint8_t *HWY_RESTRICT dat8, int width, int height, int stride, |
| int eps, const int *HWY_RESTRICT xqd, uint8_t *HWY_RESTRICT dst8, |
| int dst_stride, int32_t *HWY_RESTRICT tmpbuf, int bit_depth, int highbd) { |
| constexpr hn::CappedTag<int32_t, 16> int32_tag; |
| constexpr size_t kBatchSize = hn::MaxLanes(int32_tag) * 2; |
| int32_t *flt0 = tmpbuf; |
| int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; |
| assert(width * height <= RESTORATION_UNITPELS_MAX); |
| #if HWY_TARGET == HWY_SSE4 |
| const int ret = av1_selfguided_restoration_sse4_1( |
| dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd); |
| #elif HWY_TARGET == HWY_AVX2 |
| const int ret = av1_selfguided_restoration_avx2( |
| dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd); |
| #elif HWY_TARGET <= HWY_AVX3 |
| const int ret = av1_selfguided_restoration_avx512( |
| dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd); |
| #else |
| #error "HWY_TARGET is not supported." |
| const int ret = -1; |
| #endif |
| if (ret != 0) { |
| return ret; |
| } |
| const sgr_params_type *const params = &av1_sgr_params[eps]; |
| int xq[2]; |
| av1_decode_xq(xqd, xq, params); |
| |
| auto xq0 = hn::Set(int32_tag, xq[0]); |
| auto xq1 = hn::Set(int32_tag, xq[1]); |
| |
| for (int i = 0; i < height; ++i) { |
| // Calculate output in batches of pixels |
| for (int j = 0; j < width; j += kBatchSize) { |
| const int k = i * width + j; |
| const int m = i * dst_stride + j; |
| |
| const uint8_t *dat8ij = dat8 + i * stride + j; |
| auto ep_0 = hn::Undefined(int32_tag); |
| auto ep_1 = hn::Undefined(int32_tag); |
| if (highbd) { |
| constexpr hn::Repartition<uint16_t, hn::Half<decltype(int32_tag)>> |
| uint16_tag; |
| const auto src_0 = hn::LoadU(uint16_tag, CONVERT_TO_SHORTPTR(dat8ij)); |
| const auto src_1 = hn::LoadU( |
| uint16_tag, CONVERT_TO_SHORTPTR(dat8ij) + hn::MaxLanes(int32_tag)); |
| ep_0 = hn::PromoteTo(int32_tag, src_0); |
| ep_1 = hn::PromoteTo(int32_tag, src_1); |
| } else { |
| constexpr hn::Repartition<uint8_t, hn::Half<decltype(int32_tag)>> |
| uint8_tag; |
| const auto src_0 = hn::LoadU(uint8_tag, dat8ij); |
| ep_0 = hn::PromoteLowerTo(int32_tag, src_0); |
| ep_1 = hn::PromoteUpperTo(int32_tag, src_0); |
| } |
| |
| const auto u_0 = hn::ShiftLeft<SGRPROJ_RST_BITS>(ep_0); |
| const auto u_1 = hn::ShiftLeft<SGRPROJ_RST_BITS>(ep_1); |
| |
| auto v_0 = hn::ShiftLeft<SGRPROJ_PRJ_BITS>(u_0); |
| auto v_1 = hn::ShiftLeft<SGRPROJ_PRJ_BITS>(u_1); |
| |
| if (params->r[0] > 0) { |
| const auto f1_0 = hn::Sub(hn::LoadU(int32_tag, &flt0[k]), u_0); |
| v_0 = hn::Add(v_0, hn::Mul(xq0, f1_0)); |
| |
| const auto f1_1 = hn::Sub( |
| hn::LoadU(int32_tag, &flt0[k + hn::MaxLanes(int32_tag)]), u_1); |
| v_1 = hn::Add(v_1, hn::Mul(xq0, f1_1)); |
| } |
| |
| if (params->r[1] > 0) { |
| const auto f2_0 = hn::Sub(hn::LoadU(int32_tag, &flt1[k]), u_0); |
| v_0 = hn::Add(v_0, hn::Mul(xq1, f2_0)); |
| |
| const auto f2_1 = hn::Sub( |
| hn::LoadU(int32_tag, &flt1[k + hn::MaxLanes(int32_tag)]), u_1); |
| v_1 = hn::Add(v_1, hn::Mul(xq1, f2_1)); |
| } |
| |
| const auto rounding = |
| RoundForShift(int32_tag, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); |
| const auto w_0 = hn::ShiftRight<SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS>( |
| hn::Add(v_0, rounding)); |
| const auto w_1 = hn::ShiftRight<SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS>( |
| hn::Add(v_1, rounding)); |
| |
| if (highbd) { |
| // Pack into 16 bits and clamp to [0, 2^bit_depth) |
| // Note that packing into 16 bits messes up the order of the bits, |
| // so we use a permute function to correct this |
| constexpr hn::Repartition<uint16_t, decltype(int32_tag)> uint16_tag; |
| const auto tmp = hn::OrderedDemote2To(uint16_tag, w_0, w_1); |
| const auto max = hn::Set(uint16_tag, (1 << bit_depth) - 1); |
| const auto res = hn::Min(tmp, max); |
| hn::StoreU(res, uint16_tag, CONVERT_TO_SHORTPTR(dst8 + m)); |
| } else { |
| // Pack into 8 bits and clamp to [0, 256) |
| // Note that each pack messes up the order of the bits, |
| // so we use a permute function to correct this |
| constexpr hn::Repartition<int16_t, decltype(int32_tag)> int16_tag; |
| constexpr hn::Repartition<uint8_t, hn::Half<decltype(int32_tag)>> |
| uint8_tag; |
| const auto tmp = hn::OrderedDemote2To(int16_tag, w_0, w_1); |
| const auto res = hn::DemoteTo(uint8_tag, tmp); |
| hn::StoreU(res, uint8_tag, dst8 + m); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| } // namespace HWY_NAMESPACE |
| } // namespace |
| |
| HWY_AFTER_NAMESPACE(); |
| |
| #define MAKE_SELFGUIDED_RESTORATION(suffix) \ |
| extern "C" int av1_selfguided_restoration_##suffix( \ |
| const uint8_t *dgd8, int width, int height, int dgd_stride, \ |
| int32_t *flt0, int32_t *flt1, int flt_stride, int sgr_params_idx, \ |
| int bit_depth, int highbd); \ |
| HWY_ATTR HWY_NOINLINE int av1_selfguided_restoration_##suffix( \ |
| const uint8_t *dgd8, int width, int height, int dgd_stride, \ |
| int32_t *flt0, int32_t *flt1, int flt_stride, int sgr_params_idx, \ |
| int bit_depth, int highbd) { \ |
| return HWY_NAMESPACE::SelfGuidedRestoration( \ |
| dgd8, width, height, dgd_stride, flt0, flt1, flt_stride, \ |
| sgr_params_idx, bit_depth, highbd); \ |
| } \ |
| extern "C" int av1_apply_selfguided_restoration_##suffix( \ |
| const uint8_t *dat8, int width, int height, int stride, int eps, \ |
| const int *xqd, uint8_t *dst8, int dst_stride, int32_t *tmpbuf, \ |
| int bit_depth, int highbd); \ |
| HWY_ATTR int av1_apply_selfguided_restoration_##suffix( \ |
| const uint8_t *dat8, int width, int height, int stride, int eps, \ |
| const int *xqd, uint8_t *dst8, int dst_stride, int32_t *tmpbuf, \ |
| int bit_depth, int highbd) { \ |
| return HWY_NAMESPACE::ApplySelfGuidedRestoration( \ |
| dat8, width, height, stride, eps, xqd, dst8, dst_stride, tmpbuf, \ |
| bit_depth, highbd); \ |
| } |
| |
| #endif // AV1_COMMON_SELFGUIDED_HWY_H_ |