| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved. | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <limits.h> | 
 | #include <float.h> | 
 | #include <math.h> | 
 | #include <stdbool.h> | 
 | #include <stdio.h> | 
 |  | 
 | #include "config/aom_config.h" | 
 | #include "config/aom_dsp_rtcd.h" | 
 | #include "config/av1_rtcd.h" | 
 |  | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_dsp/binary_codes_writer.h" | 
 | #include "aom_ports/mem.h" | 
 | #include "aom_ports/aom_timer.h" | 
 | #include "aom_util/aom_pthread.h" | 
 | #if CONFIG_MISMATCH_DEBUG | 
 | #include "aom_util/debug_util.h" | 
 | #endif  // CONFIG_MISMATCH_DEBUG | 
 |  | 
 | #include "av1/common/cfl.h" | 
 | #include "av1/common/common.h" | 
 | #include "av1/common/common_data.h" | 
 | #include "av1/common/entropy.h" | 
 | #include "av1/common/entropymode.h" | 
 | #include "av1/common/idct.h" | 
 | #include "av1/common/mv.h" | 
 | #include "av1/common/mvref_common.h" | 
 | #include "av1/common/pred_common.h" | 
 | #include "av1/common/quant_common.h" | 
 | #include "av1/common/reconintra.h" | 
 | #include "av1/common/reconinter.h" | 
 | #include "av1/common/seg_common.h" | 
 | #include "av1/common/tile_common.h" | 
 | #include "av1/common/warped_motion.h" | 
 |  | 
 | #include "av1/encoder/allintra_vis.h" | 
 | #include "av1/encoder/aq_complexity.h" | 
 | #include "av1/encoder/aq_cyclicrefresh.h" | 
 | #include "av1/encoder/aq_variance.h" | 
 | #include "av1/encoder/av1_quantize.h" | 
 | #include "av1/encoder/global_motion_facade.h" | 
 | #include "av1/encoder/encodeframe.h" | 
 | #include "av1/encoder/encodeframe_utils.h" | 
 | #include "av1/encoder/encodemb.h" | 
 | #include "av1/encoder/encodemv.h" | 
 | #include "av1/encoder/encodetxb.h" | 
 | #include "av1/encoder/ethread.h" | 
 | #include "av1/encoder/extend.h" | 
 | #include "av1/encoder/intra_mode_search_utils.h" | 
 | #include "av1/encoder/ml.h" | 
 | #include "av1/encoder/motion_search_facade.h" | 
 | #include "av1/encoder/partition_strategy.h" | 
 | #if !CONFIG_REALTIME_ONLY | 
 | #include "av1/encoder/partition_model_weights.h" | 
 | #endif | 
 | #include "av1/encoder/partition_search.h" | 
 | #include "av1/encoder/rd.h" | 
 | #include "av1/encoder/rdopt.h" | 
 | #include "av1/encoder/reconinter_enc.h" | 
 | #include "av1/encoder/segmentation.h" | 
 | #include "av1/encoder/tokenize.h" | 
 | #include "av1/encoder/tpl_model.h" | 
 | #include "av1/encoder/var_based_part.h" | 
 |  | 
 | #if CONFIG_TUNE_VMAF | 
 | #include "av1/encoder/tune_vmaf.h" | 
 | #endif | 
 |  | 
 | /*!\cond */ | 
 | // This is used as a reference when computing the source variance for the | 
 | //  purposes of activity masking. | 
 | // Eventually this should be replaced by custom no-reference routines, | 
 | //  which will be faster. | 
 | static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = { | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128 | 
 | }; | 
 |  | 
 | #if CONFIG_AV1_HIGHBITDEPTH | 
 | static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = { | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
 |   128, 128, 128, 128, 128, 128, 128, 128 | 
 | }; | 
 |  | 
 | static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = { | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
 |   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 | 
 | }; | 
 |  | 
 | static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = { | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
 |   128 * 16, 128 * 16 | 
 | }; | 
 | #endif  // CONFIG_AV1_HIGHBITDEPTH | 
 | /*!\endcond */ | 
 |  | 
 | // For the given bit depth, returns a constant array used to assist the | 
 | // calculation of source block variance, which will then be used to decide | 
 | // adaptive quantizers. | 
 | static const uint8_t *get_var_offs(int use_hbd, int bd) { | 
 | #if CONFIG_AV1_HIGHBITDEPTH | 
 |   if (use_hbd) { | 
 |     assert(bd == 8 || bd == 10 || bd == 12); | 
 |     const int off_index = (bd - 8) >> 1; | 
 |     static const uint16_t *high_var_offs[3] = { AV1_HIGH_VAR_OFFS_8, | 
 |                                                 AV1_HIGH_VAR_OFFS_10, | 
 |                                                 AV1_HIGH_VAR_OFFS_12 }; | 
 |     return CONVERT_TO_BYTEPTR(high_var_offs[off_index]); | 
 |   } | 
 | #else | 
 |   (void)use_hbd; | 
 |   (void)bd; | 
 |   assert(!use_hbd); | 
 | #endif | 
 |   assert(bd == 8); | 
 |   return AV1_VAR_OFFS; | 
 | } | 
 |  | 
 | void av1_init_rtc_counters(MACROBLOCK *const x) { | 
 |   av1_init_cyclic_refresh_counters(x); | 
 |   x->cnt_zeromv = 0; | 
 |   x->sb_col_scroll = 0; | 
 |   x->sb_row_scroll = 0; | 
 | } | 
 |  | 
 | void av1_accumulate_rtc_counters(AV1_COMP *cpi, const MACROBLOCK *const x) { | 
 |   if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) | 
 |     av1_accumulate_cyclic_refresh_counters(cpi->cyclic_refresh, x); | 
 |   cpi->rc.cnt_zeromv += x->cnt_zeromv; | 
 |   cpi->rc.num_col_blscroll_last_tl0 += x->sb_col_scroll; | 
 |   cpi->rc.num_row_blscroll_last_tl0 += x->sb_row_scroll; | 
 | } | 
 |  | 
 | unsigned int av1_get_perpixel_variance(const AV1_COMP *cpi, | 
 |                                        const MACROBLOCKD *xd, | 
 |                                        const struct buf_2d *ref, | 
 |                                        BLOCK_SIZE bsize, int plane, | 
 |                                        int use_hbd) { | 
 |   const int subsampling_x = xd->plane[plane].subsampling_x; | 
 |   const int subsampling_y = xd->plane[plane].subsampling_y; | 
 |   const BLOCK_SIZE plane_bsize = | 
 |       get_plane_block_size(bsize, subsampling_x, subsampling_y); | 
 |   unsigned int sse; | 
 |   const unsigned int var = cpi->ppi->fn_ptr[plane_bsize].vf( | 
 |       ref->buf, ref->stride, get_var_offs(use_hbd, xd->bd), 0, &sse); | 
 |   return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[plane_bsize]); | 
 | } | 
 |  | 
 | unsigned int av1_get_perpixel_variance_facade(const AV1_COMP *cpi, | 
 |                                               const MACROBLOCKD *xd, | 
 |                                               const struct buf_2d *ref, | 
 |                                               BLOCK_SIZE bsize, int plane) { | 
 |   const int use_hbd = is_cur_buf_hbd(xd); | 
 |   return av1_get_perpixel_variance(cpi, xd, ref, bsize, plane, use_hbd); | 
 | } | 
 |  | 
 | void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, | 
 |                           int mi_row, int mi_col, const int num_planes, | 
 |                           BLOCK_SIZE bsize) { | 
 |   // Set current frame pointer. | 
 |   x->e_mbd.cur_buf = src; | 
 |  | 
 |   // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet | 
 |   // the static analysis warnings. | 
 |   for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) { | 
 |     const int is_uv = i > 0; | 
 |     setup_pred_plane( | 
 |         &x->plane[i].src, bsize, src->buffers[i], src->crop_widths[is_uv], | 
 |         src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, NULL, | 
 |         x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y); | 
 |   } | 
 | } | 
 |  | 
 | #if !CONFIG_REALTIME_ONLY | 
 | /*!\brief Assigns different quantization parameters to each superblock | 
 |  * based on statistics relevant to the selected delta-q mode (variance). | 
 |  * This is the non-rd version. | 
 |  * | 
 |  * \param[in]     cpi         Top level encoder instance structure | 
 |  * \param[in,out] td          Thread data structure | 
 |  * \param[in,out] x           Superblock level data for this block. | 
 |  * \param[in]     tile_info   Tile information / identification | 
 |  * \param[in]     mi_row      Block row (in "MI_SIZE" units) index | 
 |  * \param[in]     mi_col      Block column (in "MI_SIZE" units) index | 
 |  * \param[out]    num_planes  Number of image planes (e.g. Y,U,V) | 
 |  * | 
 |  * \remark No return value but updates superblock and thread data | 
 |  * related to the q / q delta to be used. | 
 |  */ | 
 | static inline void setup_delta_q_nonrd(AV1_COMP *const cpi, ThreadData *td, | 
 |                                        MACROBLOCK *const x, | 
 |                                        const TileInfo *const tile_info, | 
 |                                        int mi_row, int mi_col, int num_planes) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
 |   assert(delta_q_info->delta_q_present_flag); | 
 |  | 
 |   const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
 |   av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size); | 
 |  | 
 |   const int delta_q_res = delta_q_info->delta_q_res; | 
 |   int current_qindex = cm->quant_params.base_qindex; | 
 |  | 
 |   if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_VARIANCE_BOOST) { | 
 |     current_qindex = av1_get_sbq_variance_boost(cpi, x); | 
 |   } | 
 |  | 
 |   x->rdmult_cur_qindex = current_qindex; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   current_qindex = av1_adjust_q_from_delta_q_res( | 
 |       delta_q_res, xd->current_base_qindex, current_qindex); | 
 |  | 
 |   x->delta_qindex = current_qindex - cm->quant_params.base_qindex; | 
 |   x->rdmult_delta_qindex = x->delta_qindex; | 
 |  | 
 |   av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); | 
 |   xd->mi[0]->current_qindex = current_qindex; | 
 |   av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 0); | 
 |  | 
 |   // keep track of any non-zero delta-q used | 
 |   td->deltaq_used |= (x->delta_qindex != 0); | 
 | } | 
 |  | 
 | /*!\brief Assigns different quantization parameters to each superblock | 
 |  * based on statistics relevant to the selected delta-q mode (TPL weight, | 
 |  * variance, HDR, etc). | 
 |  * | 
 |  * \ingroup tpl_modelling | 
 |  * | 
 |  * \param[in]     cpi         Top level encoder instance structure | 
 |  * \param[in,out] td          Thread data structure | 
 |  * \param[in,out] x           Superblock level data for this block. | 
 |  * \param[in]     tile_info   Tile information / identification | 
 |  * \param[in]     mi_row      Block row (in "MI_SIZE" units) index | 
 |  * \param[in]     mi_col      Block column (in "MI_SIZE" units) index | 
 |  * \param[out]    num_planes  Number of image planes (e.g. Y,U,V) | 
 |  * | 
 |  * \remark No return value but updates superblock and thread data | 
 |  * related to the q / q delta to be used. | 
 |  */ | 
 | static inline void setup_delta_q(AV1_COMP *const cpi, ThreadData *td, | 
 |                                  MACROBLOCK *const x, | 
 |                                  const TileInfo *const tile_info, int mi_row, | 
 |                                  int mi_col, int num_planes) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
 |   const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
 |   assert(delta_q_info->delta_q_present_flag); | 
 |  | 
 |   const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
 |   av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size); | 
 |  | 
 |   const int delta_q_res = delta_q_info->delta_q_res; | 
 |   int current_qindex = cm->quant_params.base_qindex; | 
 |   if (cpi->use_ducky_encode && cpi->ducky_encode_info.frame_info.qp_mode == | 
 |                                    DUCKY_ENCODE_FRAME_MODE_QINDEX) { | 
 |     const int sb_row = mi_row >> cm->seq_params->mib_size_log2; | 
 |     const int sb_col = mi_col >> cm->seq_params->mib_size_log2; | 
 |     const int sb_cols = | 
 |         CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2); | 
 |     const int sb_index = sb_row * sb_cols + sb_col; | 
 |     current_qindex = | 
 |         cpi->ducky_encode_info.frame_info.superblock_encode_qindex[sb_index]; | 
 |   } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL) { | 
 |     if (DELTA_Q_PERCEPTUAL_MODULATION == 1) { | 
 |       const int block_wavelet_energy_level = | 
 |           av1_block_wavelet_energy_level(cpi, x, sb_size); | 
 |       x->sb_energy_level = block_wavelet_energy_level; | 
 |       current_qindex = av1_compute_q_from_energy_level_deltaq_mode( | 
 |           cpi, block_wavelet_energy_level); | 
 |     } else { | 
 |       const int block_var_level = av1_log_block_var(cpi, x, sb_size); | 
 |       x->sb_energy_level = block_var_level; | 
 |       current_qindex = | 
 |           av1_compute_q_from_energy_level_deltaq_mode(cpi, block_var_level); | 
 |     } | 
 |   } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_OBJECTIVE && | 
 |              cpi->oxcf.algo_cfg.enable_tpl_model) { | 
 |     // Setup deltaq based on tpl stats | 
 |     current_qindex = | 
 |         av1_get_q_for_deltaq_objective(cpi, td, NULL, sb_size, mi_row, mi_col); | 
 |   } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL_AI) { | 
 |     current_qindex = av1_get_sbq_perceptual_ai(cpi, sb_size, mi_row, mi_col); | 
 |   } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_USER_RATING_BASED) { | 
 |     current_qindex = av1_get_sbq_user_rating_based(cpi, mi_row, mi_col); | 
 |   } else if (cpi->oxcf.q_cfg.enable_hdr_deltaq) { | 
 |     current_qindex = av1_get_q_for_hdr(cpi, x, sb_size, mi_row, mi_col); | 
 |   } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_VARIANCE_BOOST) { | 
 |     current_qindex = av1_get_sbq_variance_boost(cpi, x); | 
 |   } | 
 |  | 
 |   x->rdmult_cur_qindex = current_qindex; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const int adjusted_qindex = av1_adjust_q_from_delta_q_res( | 
 |       delta_q_res, xd->current_base_qindex, current_qindex); | 
 |   if (cpi->use_ducky_encode) { | 
 |     assert(adjusted_qindex == current_qindex); | 
 |   } | 
 |   current_qindex = adjusted_qindex; | 
 |  | 
 |   x->delta_qindex = current_qindex - cm->quant_params.base_qindex; | 
 |   x->rdmult_delta_qindex = x->delta_qindex; | 
 |  | 
 |   av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); | 
 |   xd->mi[0]->current_qindex = current_qindex; | 
 |   av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 0); | 
 |  | 
 |   // keep track of any non-zero delta-q used | 
 |   td->deltaq_used |= (x->delta_qindex != 0); | 
 |  | 
 |   if (cpi->oxcf.tool_cfg.enable_deltalf_mode) { | 
 |     const int delta_lf_res = delta_q_info->delta_lf_res; | 
 |     const int lfmask = ~(delta_lf_res - 1); | 
 |     const int delta_lf_from_base = | 
 |         ((x->delta_qindex / 4 + delta_lf_res / 2) & lfmask); | 
 |     const int8_t delta_lf = | 
 |         (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); | 
 |     const int frame_lf_count = | 
 |         av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
 |     const int mib_size = cm->seq_params->mib_size; | 
 |  | 
 |     // pre-set the delta lf for loop filter. Note that this value is set | 
 |     // before mi is assigned for each block in current superblock | 
 |     for (int j = 0; j < AOMMIN(mib_size, mi_params->mi_rows - mi_row); j++) { | 
 |       for (int k = 0; k < AOMMIN(mib_size, mi_params->mi_cols - mi_col); k++) { | 
 |         const int grid_idx = get_mi_grid_idx(mi_params, mi_row + j, mi_col + k); | 
 |         mi_params->mi_alloc[grid_idx].delta_lf_from_base = delta_lf; | 
 |         for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { | 
 |           mi_params->mi_alloc[grid_idx].delta_lf[lf_id] = delta_lf; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void init_ref_frame_space(AV1_COMP *cpi, ThreadData *td, int mi_row, | 
 |                                  int mi_col) { | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   const GF_GROUP *const gf_group = &cpi->ppi->gf_group; | 
 |   const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
 |   MACROBLOCK *x = &td->mb; | 
 |   const int frame_idx = cpi->gf_frame_index; | 
 |   TplParams *const tpl_data = &cpi->ppi->tpl_data; | 
 |   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; | 
 |  | 
 |   av1_zero(x->tpl_keep_ref_frame); | 
 |  | 
 |   if (!av1_tpl_stats_ready(tpl_data, frame_idx)) return; | 
 |   if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return; | 
 |   if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return; | 
 |  | 
 |   const int is_overlay = | 
 |       cpi->ppi->gf_group.update_type[frame_idx] == OVERLAY_UPDATE; | 
 |   if (is_overlay) { | 
 |     memset(x->tpl_keep_ref_frame, 1, sizeof(x->tpl_keep_ref_frame)); | 
 |     return; | 
 |   } | 
 |  | 
 |   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx]; | 
 |   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; | 
 |   const int tpl_stride = tpl_frame->stride; | 
 |   int64_t inter_cost[INTER_REFS_PER_FRAME] = { 0 }; | 
 |   const int step = 1 << block_mis_log2; | 
 |   const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
 |  | 
 |   const int mi_row_end = | 
 |       AOMMIN(mi_size_high[sb_size] + mi_row, mi_params->mi_rows); | 
 |   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); | 
 |   const int mi_col_sr = | 
 |       coded_to_superres_mi(mi_col, cm->superres_scale_denominator); | 
 |   const int mi_col_end_sr = | 
 |       AOMMIN(coded_to_superres_mi(mi_col + mi_size_wide[sb_size], | 
 |                                   cm->superres_scale_denominator), | 
 |              mi_cols_sr); | 
 |   const int row_step = step; | 
 |   const int col_step_sr = | 
 |       coded_to_superres_mi(step, cm->superres_scale_denominator); | 
 |   for (int row = mi_row; row < mi_row_end; row += row_step) { | 
 |     for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { | 
 |       const TplDepStats *this_stats = | 
 |           &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; | 
 |       int64_t tpl_pred_error[INTER_REFS_PER_FRAME] = { 0 }; | 
 |       // Find the winner ref frame idx for the current block | 
 |       int64_t best_inter_cost = this_stats->pred_error[0]; | 
 |       int best_rf_idx = 0; | 
 |       for (int idx = 1; idx < INTER_REFS_PER_FRAME; ++idx) { | 
 |         if ((this_stats->pred_error[idx] < best_inter_cost) && | 
 |             (this_stats->pred_error[idx] != 0)) { | 
 |           best_inter_cost = this_stats->pred_error[idx]; | 
 |           best_rf_idx = idx; | 
 |         } | 
 |       } | 
 |       // tpl_pred_error is the pred_error reduction of best_ref w.r.t. | 
 |       // LAST_FRAME. | 
 |       tpl_pred_error[best_rf_idx] = this_stats->pred_error[best_rf_idx] - | 
 |                                     this_stats->pred_error[LAST_FRAME - 1]; | 
 |  | 
 |       for (int rf_idx = 1; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) | 
 |         inter_cost[rf_idx] += tpl_pred_error[rf_idx]; | 
 |     } | 
 |   } | 
 |  | 
 |   int rank_index[INTER_REFS_PER_FRAME - 1]; | 
 |   for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) { | 
 |     rank_index[idx] = idx + 1; | 
 |     for (int i = idx; i > 0; --i) { | 
 |       if (inter_cost[rank_index[i - 1]] > inter_cost[rank_index[i]]) { | 
 |         const int tmp = rank_index[i - 1]; | 
 |         rank_index[i - 1] = rank_index[i]; | 
 |         rank_index[i] = tmp; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   x->tpl_keep_ref_frame[INTRA_FRAME] = 1; | 
 |   x->tpl_keep_ref_frame[LAST_FRAME] = 1; | 
 |  | 
 |   int cutoff_ref = 0; | 
 |   for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) { | 
 |     x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 1; | 
 |     if (idx > 2) { | 
 |       if (!cutoff_ref) { | 
 |         // If the predictive coding gains are smaller than the previous more | 
 |         // relevant frame over certain amount, discard this frame and all the | 
 |         // frames afterwards. | 
 |         if (llabs(inter_cost[rank_index[idx]]) < | 
 |                 llabs(inter_cost[rank_index[idx - 1]]) / 8 || | 
 |             inter_cost[rank_index[idx]] == 0) | 
 |           cutoff_ref = 1; | 
 |       } | 
 |  | 
 |       if (cutoff_ref) x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 0; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static inline void adjust_rdmult_tpl_model(AV1_COMP *cpi, MACROBLOCK *x, | 
 |                                            int mi_row, int mi_col) { | 
 |   const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size; | 
 |   const int orig_rdmult = cpi->rd.RDMULT; | 
 |  | 
 |   assert(IMPLIES(cpi->ppi->gf_group.size > 0, | 
 |                  cpi->gf_frame_index < cpi->ppi->gf_group.size)); | 
 |   const int gf_group_index = cpi->gf_frame_index; | 
 |   if (cpi->oxcf.algo_cfg.enable_tpl_model && cpi->oxcf.q_cfg.aq_mode == NO_AQ && | 
 |       cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q && gf_group_index > 0 && | 
 |       cpi->ppi->gf_group.update_type[gf_group_index] == ARF_UPDATE) { | 
 |     const int dr = | 
 |         av1_get_rdmult_delta(cpi, sb_size, mi_row, mi_col, orig_rdmult); | 
 |     x->rdmult = dr; | 
 |   } | 
 | } | 
 | #endif  // !CONFIG_REALTIME_ONLY | 
 |  | 
 | #if CONFIG_RT_ML_PARTITIONING | 
 | // Get a prediction(stored in x->est_pred) for the whole superblock. | 
 | static void get_estimated_pred(AV1_COMP *cpi, const TileInfo *const tile, | 
 |                                MACROBLOCK *x, int mi_row, int mi_col) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const int is_key_frame = frame_is_intra_only(cm); | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |  | 
 |   // TODO(kyslov) Extend to 128x128 | 
 |   assert(cm->seq_params->sb_size == BLOCK_64X64); | 
 |  | 
 |   av1_set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64); | 
 |  | 
 |   if (!is_key_frame) { | 
 |     MB_MODE_INFO *mi = xd->mi[0]; | 
 |     const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); | 
 |  | 
 |     assert(yv12 != NULL); | 
 |  | 
 |     av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, | 
 |                          get_ref_scale_factors(cm, LAST_FRAME), 1); | 
 |     mi->ref_frame[0] = LAST_FRAME; | 
 |     mi->ref_frame[1] = NONE; | 
 |     mi->bsize = BLOCK_64X64; | 
 |     mi->mv[0].as_int = 0; | 
 |     mi->interp_filters = av1_broadcast_interp_filter(BILINEAR); | 
 |  | 
 |     set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); | 
 |  | 
 |     xd->plane[0].dst.buf = x->est_pred; | 
 |     xd->plane[0].dst.stride = 64; | 
 |     av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); | 
 |   } else { | 
 | #if CONFIG_AV1_HIGHBITDEPTH | 
 |     switch (xd->bd) { | 
 |       case 8: memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); break; | 
 |       case 10: | 
 |         memset(x->est_pred, 128 * 4, 64 * 64 * sizeof(x->est_pred[0])); | 
 |         break; | 
 |       case 12: | 
 |         memset(x->est_pred, 128 * 16, 64 * 64 * sizeof(x->est_pred[0])); | 
 |         break; | 
 |     } | 
 | #else | 
 |     memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); | 
 | #endif  // CONFIG_VP9_HIGHBITDEPTH | 
 |   } | 
 | } | 
 | #endif  // CONFIG_RT_ML_PARTITIONING | 
 |  | 
 | #define AVG_CDF_WEIGHT_LEFT 3 | 
 | #define AVG_CDF_WEIGHT_TOP_RIGHT 1 | 
 |  | 
 | /*!\brief Encode a superblock (minimal RD search involved) | 
 |  * | 
 |  * \ingroup partition_search | 
 |  * Encodes the superblock by a pre-determined partition pattern, only minor | 
 |  * rd-based searches are allowed to adjust the initial pattern. It is only used | 
 |  * by realtime encoding. | 
 |  */ | 
 | static inline void encode_nonrd_sb(AV1_COMP *cpi, ThreadData *td, | 
 |                                    TileDataEnc *tile_data, TokenExtra **tp, | 
 |                                    const int mi_row, const int mi_col, | 
 |                                    const int seg_skip) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCK *const x = &td->mb; | 
 |   const SPEED_FEATURES *const sf = &cpi->sf; | 
 |   const TileInfo *const tile_info = &tile_data->tile_info; | 
 |   MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + | 
 |                       get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); | 
 |   const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
 |   PC_TREE *const pc_root = td->pc_root; | 
 |  | 
 | #if !CONFIG_REALTIME_ONLY | 
 |   if (cm->delta_q_info.delta_q_present_flag) { | 
 |     const int num_planes = av1_num_planes(cm); | 
 |  | 
 |     setup_delta_q_nonrd(cpi, td, x, tile_info, mi_row, mi_col, num_planes); | 
 |   } | 
 | #endif | 
 | #if CONFIG_RT_ML_PARTITIONING | 
 |   if (sf->part_sf.partition_search_type == ML_BASED_PARTITION) { | 
 |     RD_STATS dummy_rdc; | 
 |     get_estimated_pred(cpi, tile_info, x, mi_row, mi_col); | 
 |     av1_nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, | 
 |                              BLOCK_64X64, &dummy_rdc, 1, INT64_MAX, pc_root); | 
 |     return; | 
 |   } | 
 | #endif | 
 |   // Set the partition | 
 |   if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip || | 
 |       (sf->rt_sf.use_fast_fixed_part && x->sb_force_fixed_part == 1 && | 
 |        (!frame_is_intra_only(cm) && | 
 |         (!cpi->ppi->use_svc || | 
 |          !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)))) { | 
 |     // set a fixed-size partition | 
 |     av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); | 
 |     BLOCK_SIZE bsize_select = sf->part_sf.fixed_partition_size; | 
 |     if (sf->rt_sf.use_fast_fixed_part && | 
 |         x->content_state_sb.source_sad_nonrd < kLowSad) { | 
 |       bsize_select = cm->seq_params->sb_size; | 
 |     } | 
 |     if (cpi->sf.rt_sf.skip_encoding_non_reference_slide_change && | 
 |         cpi->rc.high_source_sad && cpi->ppi->rtc_ref.non_reference_frame) { | 
 |       bsize_select = cm->seq_params->sb_size; | 
 |       x->force_zeromv_skip_for_sb = 1; | 
 |     } | 
 |     const BLOCK_SIZE bsize = seg_skip ? sb_size : bsize_select; | 
 |     if (x->content_state_sb.source_sad_nonrd > kZeroSad) | 
 |       x->force_color_check_block_level = 1; | 
 |     av1_set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); | 
 |   } else if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) { | 
 |     // set a variance-based partition | 
 |     av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); | 
 |     av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col); | 
 |   } | 
 |   assert(sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip || | 
 |          sf->part_sf.partition_search_type == VAR_BASED_PARTITION); | 
 |   set_cb_offsets(td->mb.cb_offset, 0, 0); | 
 |  | 
 |   // Initialize the flag to skip cdef to 1. | 
 |   if (sf->rt_sf.skip_cdef_sb) { | 
 |     const int block64_in_sb = (sb_size == BLOCK_128X128) ? 2 : 1; | 
 |     // If 128x128 block is used, we need to set the flag for all 4 64x64 sub | 
 |     // "blocks". | 
 |     for (int r = 0; r < block64_in_sb; ++r) { | 
 |       for (int c = 0; c < block64_in_sb; ++c) { | 
 |         const int idx_in_sb = | 
 |             r * MI_SIZE_64X64 * cm->mi_params.mi_stride + c * MI_SIZE_64X64; | 
 |         if (mi[idx_in_sb]) mi[idx_in_sb]->cdef_strength = 1; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 | #if CONFIG_COLLECT_COMPONENT_TIMING | 
 |   start_timing(cpi, nonrd_use_partition_time); | 
 | #endif | 
 |   av1_nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, | 
 |                           pc_root); | 
 | #if CONFIG_COLLECT_COMPONENT_TIMING | 
 |   end_timing(cpi, nonrd_use_partition_time); | 
 | #endif | 
 | } | 
 |  | 
 | // This function initializes the stats for encode_rd_sb. | 
 | static inline void init_encode_rd_sb(AV1_COMP *cpi, ThreadData *td, | 
 |                                      const TileDataEnc *tile_data, | 
 |                                      SIMPLE_MOTION_DATA_TREE *sms_root, | 
 |                                      RD_STATS *rd_cost, int mi_row, int mi_col, | 
 |                                      int gather_tpl_data) { | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   const TileInfo *tile_info = &tile_data->tile_info; | 
 |   MACROBLOCK *x = &td->mb; | 
 |  | 
 |   const SPEED_FEATURES *sf = &cpi->sf; | 
 |   const int use_simple_motion_search = | 
 |       (sf->part_sf.simple_motion_search_split || | 
 |        sf->part_sf.simple_motion_search_prune_rect || | 
 |        sf->part_sf.simple_motion_search_early_term_none || | 
 |        sf->part_sf.ml_early_term_after_part_split_level) && | 
 |       !frame_is_intra_only(cm); | 
 |   if (use_simple_motion_search) { | 
 |     av1_init_simple_motion_search_mvs_for_sb(cpi, tile_info, x, sms_root, | 
 |                                              mi_row, mi_col); | 
 |   } | 
 |  | 
 | #if !CONFIG_REALTIME_ONLY | 
 |   if (!(has_no_stats_stage(cpi) && cpi->oxcf.mode == REALTIME && | 
 |         cpi->oxcf.gf_cfg.lag_in_frames == 0)) { | 
 |     init_ref_frame_space(cpi, td, mi_row, mi_col); | 
 |     x->sb_energy_level = 0; | 
 |     x->part_search_info.cnn_output_valid = 0; | 
 |     if (gather_tpl_data) { | 
 |       if (cm->delta_q_info.delta_q_present_flag) { | 
 |         const int num_planes = av1_num_planes(cm); | 
 |         const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
 |         setup_delta_q(cpi, td, x, tile_info, mi_row, mi_col, num_planes); | 
 |         av1_tpl_rdmult_setup_sb(cpi, x, sb_size, mi_row, mi_col); | 
 |       } | 
 |  | 
 |       // TODO(jingning): revisit this function. | 
 |       if (cpi->oxcf.algo_cfg.enable_tpl_model && (0)) { | 
 |         adjust_rdmult_tpl_model(cpi, x, mi_row, mi_col); | 
 |       } | 
 |     } | 
 |   } | 
 | #else | 
 |   (void)tile_info; | 
 |   (void)mi_row; | 
 |   (void)mi_col; | 
 |   (void)gather_tpl_data; | 
 | #endif | 
 |  | 
 |   x->reuse_inter_pred = false; | 
 |   x->txfm_search_params.mode_eval_type = DEFAULT_EVAL; | 
 |   reset_mb_rd_record(x->txfm_search_info.mb_rd_record); | 
 |   av1_zero(x->picked_ref_frames_mask); | 
 |   av1_invalid_rd_stats(rd_cost); | 
 | } | 
 |  | 
 | #if !CONFIG_REALTIME_ONLY | 
 | static void sb_qp_sweep_init_quantizers(AV1_COMP *cpi, ThreadData *td, | 
 |                                         const TileDataEnc *tile_data, | 
 |                                         SIMPLE_MOTION_DATA_TREE *sms_tree, | 
 |                                         RD_STATS *rd_cost, int mi_row, | 
 |                                         int mi_col, int delta_qp_ofs) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCK *const x = &td->mb; | 
 |   const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
 |   const TileInfo *tile_info = &tile_data->tile_info; | 
 |   const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
 |   const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
 |   assert(delta_q_info->delta_q_present_flag); | 
 |   const int delta_q_res = delta_q_info->delta_q_res; | 
 |  | 
 |   const SPEED_FEATURES *sf = &cpi->sf; | 
 |   const int use_simple_motion_search = | 
 |       (sf->part_sf.simple_motion_search_split || | 
 |        sf->part_sf.simple_motion_search_prune_rect || | 
 |        sf->part_sf.simple_motion_search_early_term_none || | 
 |        sf->part_sf.ml_early_term_after_part_split_level) && | 
 |       !frame_is_intra_only(cm); | 
 |   if (use_simple_motion_search) { | 
 |     av1_init_simple_motion_search_mvs_for_sb(cpi, tile_info, x, sms_tree, | 
 |                                              mi_row, mi_col); | 
 |   } | 
 |  | 
 |   int current_qindex = x->rdmult_cur_qindex + delta_qp_ofs; | 
 |  | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   current_qindex = av1_adjust_q_from_delta_q_res( | 
 |       delta_q_res, xd->current_base_qindex, current_qindex); | 
 |  | 
 |   x->delta_qindex = current_qindex - cm->quant_params.base_qindex; | 
 |  | 
 |   av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); | 
 |   xd->mi[0]->current_qindex = current_qindex; | 
 |   av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 0); | 
 |  | 
 |   // keep track of any non-zero delta-q used | 
 |   td->deltaq_used |= (x->delta_qindex != 0); | 
 |  | 
 |   if (cpi->oxcf.tool_cfg.enable_deltalf_mode) { | 
 |     const int delta_lf_res = delta_q_info->delta_lf_res; | 
 |     const int lfmask = ~(delta_lf_res - 1); | 
 |     const int delta_lf_from_base = | 
 |         ((x->delta_qindex / 4 + delta_lf_res / 2) & lfmask); | 
 |     const int8_t delta_lf = | 
 |         (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); | 
 |     const int frame_lf_count = | 
 |         av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
 |     const int mib_size = cm->seq_params->mib_size; | 
 |  | 
 |     // pre-set the delta lf for loop filter. Note that this value is set | 
 |     // before mi is assigned for each block in current superblock | 
 |     for (int j = 0; j < AOMMIN(mib_size, mi_params->mi_rows - mi_row); j++) { | 
 |       for (int k = 0; k < AOMMIN(mib_size, mi_params->mi_cols - mi_col); k++) { | 
 |         const int grid_idx = get_mi_grid_idx(mi_params, mi_row + j, mi_col + k); | 
 |         mi_params->mi_alloc[grid_idx].delta_lf_from_base = delta_lf; | 
 |         for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { | 
 |           mi_params->mi_alloc[grid_idx].delta_lf[lf_id] = delta_lf; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   x->reuse_inter_pred = false; | 
 |   x->txfm_search_params.mode_eval_type = DEFAULT_EVAL; | 
 |   reset_mb_rd_record(x->txfm_search_info.mb_rd_record); | 
 |   av1_zero(x->picked_ref_frames_mask); | 
 |   av1_invalid_rd_stats(rd_cost); | 
 | } | 
 |  | 
 | static int sb_qp_sweep(AV1_COMP *const cpi, ThreadData *td, | 
 |                        TileDataEnc *tile_data, TokenExtra **tp, int mi_row, | 
 |                        int mi_col, BLOCK_SIZE bsize, | 
 |                        SIMPLE_MOTION_DATA_TREE *sms_tree, | 
 |                        SB_FIRST_PASS_STATS *sb_org_stats) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCK *const x = &td->mb; | 
 |   RD_STATS rdc_winner, cur_rdc; | 
 |   av1_invalid_rd_stats(&rdc_winner); | 
 |  | 
 |   int best_qindex = td->mb.rdmult_delta_qindex; | 
 |   const int start = cm->current_frame.frame_type == KEY_FRAME ? -20 : -12; | 
 |   const int end = cm->current_frame.frame_type == KEY_FRAME ? 20 : 12; | 
 |   const int step = cm->delta_q_info.delta_q_res; | 
 |  | 
 |   for (int sweep_qp_delta = start; sweep_qp_delta <= end; | 
 |        sweep_qp_delta += step) { | 
 |     sb_qp_sweep_init_quantizers(cpi, td, tile_data, sms_tree, &cur_rdc, mi_row, | 
 |                                 mi_col, sweep_qp_delta); | 
 |  | 
 |     const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); | 
 |     const int backup_current_qindex = | 
 |         cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; | 
 |  | 
 |     av1_reset_mbmi(&cm->mi_params, bsize, mi_row, mi_col); | 
 |     av1_restore_sb_state(sb_org_stats, cpi, td, tile_data, mi_row, mi_col); | 
 |     cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = backup_current_qindex; | 
 |  | 
 |     td->pc_root = av1_alloc_pc_tree_node(bsize); | 
 |     if (!td->pc_root) | 
 |       aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, | 
 |                          "Failed to allocate PC_TREE"); | 
 |     av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, | 
 |                           &cur_rdc, cur_rdc, td->pc_root, sms_tree, NULL, | 
 |                           SB_DRY_PASS, NULL); | 
 |  | 
 |     if ((rdc_winner.rdcost > cur_rdc.rdcost) || | 
 |         (abs(sweep_qp_delta) < abs(best_qindex - x->rdmult_delta_qindex) && | 
 |          rdc_winner.rdcost == cur_rdc.rdcost)) { | 
 |       rdc_winner = cur_rdc; | 
 |       best_qindex = x->rdmult_delta_qindex + sweep_qp_delta; | 
 |     } | 
 |   } | 
 |  | 
 |   return best_qindex; | 
 | } | 
 | #endif  //! CONFIG_REALTIME_ONLY | 
 |  | 
 | /*!\brief Encode a superblock (RD-search-based) | 
 |  * | 
 |  * \ingroup partition_search | 
 |  * Conducts partition search for a superblock, based on rate-distortion costs, | 
 |  * from scratch or adjusting from a pre-calculated partition pattern. | 
 |  */ | 
 | static inline void encode_rd_sb(AV1_COMP *cpi, ThreadData *td, | 
 |                                 TileDataEnc *tile_data, TokenExtra **tp, | 
 |                                 const int mi_row, const int mi_col, | 
 |                                 const int seg_skip) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCK *const x = &td->mb; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const SPEED_FEATURES *const sf = &cpi->sf; | 
 |   const TileInfo *const tile_info = &tile_data->tile_info; | 
 |   MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + | 
 |                       get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); | 
 |   const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   int dummy_rate; | 
 |   int64_t dummy_dist; | 
 |   RD_STATS dummy_rdc; | 
 |   SIMPLE_MOTION_DATA_TREE *const sms_root = td->sms_root; | 
 |  | 
 | #if CONFIG_REALTIME_ONLY | 
 |   (void)seg_skip; | 
 | #endif  // CONFIG_REALTIME_ONLY | 
 |  | 
 |   init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row, mi_col, | 
 |                     1); | 
 |  | 
 |   // Encode the superblock | 
 |   if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) { | 
 |     // partition search starting from a variance-based partition | 
 |     av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); | 
 |     av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col); | 
 |  | 
 | #if CONFIG_COLLECT_COMPONENT_TIMING | 
 |     start_timing(cpi, rd_use_partition_time); | 
 | #endif | 
 |     td->pc_root = av1_alloc_pc_tree_node(sb_size); | 
 |     if (!td->pc_root) | 
 |       aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
 |                          "Failed to allocate PC_TREE"); | 
 |     av1_rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, | 
 |                          &dummy_rate, &dummy_dist, 1, td->pc_root); | 
 |     av1_free_pc_tree_recursive(td->pc_root, num_planes, 0, 0, | 
 |                                sf->part_sf.partition_search_type); | 
 |     td->pc_root = NULL; | 
 | #if CONFIG_COLLECT_COMPONENT_TIMING | 
 |     end_timing(cpi, rd_use_partition_time); | 
 | #endif | 
 |   } | 
 | #if !CONFIG_REALTIME_ONLY | 
 |   else if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip) { | 
 |     // partition search by adjusting a fixed-size partition | 
 |     av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); | 
 |     const BLOCK_SIZE bsize = | 
 |         seg_skip ? sb_size : sf->part_sf.fixed_partition_size; | 
 |     av1_set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); | 
 |     td->pc_root = av1_alloc_pc_tree_node(sb_size); | 
 |     if (!td->pc_root) | 
 |       aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
 |                          "Failed to allocate PC_TREE"); | 
 |     av1_rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, | 
 |                          &dummy_rate, &dummy_dist, 1, td->pc_root); | 
 |     av1_free_pc_tree_recursive(td->pc_root, num_planes, 0, 0, | 
 |                                sf->part_sf.partition_search_type); | 
 |     td->pc_root = NULL; | 
 |   } else { | 
 |     // The most exhaustive recursive partition search | 
 |     SuperBlockEnc *sb_enc = &x->sb_enc; | 
 |     // No stats for overlay frames. Exclude key frame. | 
 |     av1_get_tpl_stats_sb(cpi, sb_size, mi_row, mi_col, sb_enc); | 
 |  | 
 |     // Reset the tree for simple motion search data | 
 |     av1_reset_simple_motion_tree_partition(sms_root, sb_size); | 
 |  | 
 | #if CONFIG_COLLECT_COMPONENT_TIMING | 
 |     start_timing(cpi, rd_pick_partition_time); | 
 | #endif | 
 |  | 
 |     // Estimate the maximum square partition block size, which will be used | 
 |     // as the starting block size for partitioning the sb | 
 |     set_max_min_partition_size(sb_enc, cpi, x, sf, sb_size, mi_row, mi_col); | 
 |  | 
 |     // The superblock can be searched only once, or twice consecutively for | 
 |     // better quality. Note that the meaning of passes here is different from | 
 |     // the general concept of 1-pass/2-pass encoders. | 
 |     const int num_passes = | 
 |         cpi->oxcf.unit_test_cfg.sb_multipass_unit_test ? 2 : 1; | 
 |  | 
 |     if (cpi->oxcf.sb_qp_sweep && | 
 |         !(has_no_stats_stage(cpi) && cpi->oxcf.mode == REALTIME && | 
 |           cpi->oxcf.gf_cfg.lag_in_frames == 0) && | 
 |         cm->delta_q_info.delta_q_present_flag) { | 
 |       AOM_CHECK_MEM_ERROR( | 
 |           x->e_mbd.error_info, td->mb.sb_stats_cache, | 
 |           (SB_FIRST_PASS_STATS *)aom_malloc(sizeof(*td->mb.sb_stats_cache))); | 
 |       av1_backup_sb_state(td->mb.sb_stats_cache, cpi, td, tile_data, mi_row, | 
 |                           mi_col); | 
 |       assert(x->rdmult_delta_qindex == x->delta_qindex); | 
 |  | 
 |       const int best_qp_diff = | 
 |           sb_qp_sweep(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, sms_root, | 
 |                       td->mb.sb_stats_cache) - | 
 |           x->rdmult_delta_qindex; | 
 |  | 
 |       sb_qp_sweep_init_quantizers(cpi, td, tile_data, sms_root, &dummy_rdc, | 
 |                                   mi_row, mi_col, best_qp_diff); | 
 |  | 
 |       const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); | 
 |       const int backup_current_qindex = | 
 |           cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; | 
 |  | 
 |       av1_reset_mbmi(&cm->mi_params, sb_size, mi_row, mi_col); | 
 |       av1_restore_sb_state(td->mb.sb_stats_cache, cpi, td, tile_data, mi_row, | 
 |                            mi_col); | 
 |  | 
 |       cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = | 
 |           backup_current_qindex; | 
 |       aom_free(td->mb.sb_stats_cache); | 
 |       td->mb.sb_stats_cache = NULL; | 
 |     } | 
 |     if (num_passes == 1) { | 
 | #if CONFIG_PARTITION_SEARCH_ORDER | 
 |       if (cpi->ext_part_controller.ready && !frame_is_intra_only(cm)) { | 
 |         av1_reset_part_sf(&cpi->sf.part_sf); | 
 |         av1_reset_sf_for_ext_part(cpi); | 
 |         RD_STATS this_rdc; | 
 |         av1_rd_partition_search(cpi, td, tile_data, tp, sms_root, mi_row, | 
 |                                 mi_col, sb_size, &this_rdc); | 
 |       } else { | 
 |         td->pc_root = av1_alloc_pc_tree_node(sb_size); | 
 |         if (!td->pc_root) | 
 |           aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
 |                              "Failed to allocate PC_TREE"); | 
 |         av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, | 
 |                               &dummy_rdc, dummy_rdc, td->pc_root, sms_root, | 
 |                               NULL, SB_SINGLE_PASS, NULL); | 
 |       } | 
 | #else | 
 |       td->pc_root = av1_alloc_pc_tree_node(sb_size); | 
 |       if (!td->pc_root) | 
 |         aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
 |                            "Failed to allocate PC_TREE"); | 
 |       av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, | 
 |                             &dummy_rdc, dummy_rdc, td->pc_root, sms_root, NULL, | 
 |                             SB_SINGLE_PASS, NULL); | 
 | #endif  // CONFIG_PARTITION_SEARCH_ORDER | 
 |     } else { | 
 |       // First pass | 
 |       AOM_CHECK_MEM_ERROR( | 
 |           x->e_mbd.error_info, td->mb.sb_fp_stats, | 
 |           (SB_FIRST_PASS_STATS *)aom_malloc(sizeof(*td->mb.sb_fp_stats))); | 
 |       av1_backup_sb_state(td->mb.sb_fp_stats, cpi, td, tile_data, mi_row, | 
 |                           mi_col); | 
 |       td->pc_root = av1_alloc_pc_tree_node(sb_size); | 
 |       if (!td->pc_root) | 
 |         aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
 |                            "Failed to allocate PC_TREE"); | 
 |       av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, | 
 |                             &dummy_rdc, dummy_rdc, td->pc_root, sms_root, NULL, | 
 |                             SB_DRY_PASS, NULL); | 
 |  | 
 |       // Second pass | 
 |       init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row, | 
 |                         mi_col, 0); | 
 |       av1_reset_mbmi(&cm->mi_params, sb_size, mi_row, mi_col); | 
 |       av1_reset_simple_motion_tree_partition(sms_root, sb_size); | 
 |  | 
 |       av1_restore_sb_state(td->mb.sb_fp_stats, cpi, td, tile_data, mi_row, | 
 |                            mi_col); | 
 |  | 
 |       td->pc_root = av1_alloc_pc_tree_node(sb_size); | 
 |       if (!td->pc_root) | 
 |         aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
 |                            "Failed to allocate PC_TREE"); | 
 |       av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, | 
 |                             &dummy_rdc, dummy_rdc, td->pc_root, sms_root, NULL, | 
 |                             SB_WET_PASS, NULL); | 
 |       aom_free(td->mb.sb_fp_stats); | 
 |       td->mb.sb_fp_stats = NULL; | 
 |     } | 
 |  | 
 |     // Reset to 0 so that it wouldn't be used elsewhere mistakenly. | 
 |     sb_enc->tpl_data_count = 0; | 
 | #if CONFIG_COLLECT_COMPONENT_TIMING | 
 |     end_timing(cpi, rd_pick_partition_time); | 
 | #endif | 
 |   } | 
 | #endif  // !CONFIG_REALTIME_ONLY | 
 |  | 
 |   // Update the inter rd model | 
 |   // TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile. | 
 |   if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 && | 
 |       cm->tiles.cols == 1 && cm->tiles.rows == 1) { | 
 |     av1_inter_mode_data_fit(tile_data, x->rdmult); | 
 |   } | 
 | } | 
 |  | 
 | // Check if the cost update of symbols mode, coeff and dv are tile or off. | 
 | static inline int is_mode_coeff_dv_upd_freq_tile_or_off( | 
 |     const AV1_COMP *const cpi) { | 
 |   const INTER_MODE_SPEED_FEATURES *const inter_sf = &cpi->sf.inter_sf; | 
 |  | 
 |   return (inter_sf->coeff_cost_upd_level <= INTERNAL_COST_UPD_TILE && | 
 |           inter_sf->mode_cost_upd_level <= INTERNAL_COST_UPD_TILE && | 
 |           cpi->sf.intra_sf.dv_cost_upd_level <= INTERNAL_COST_UPD_TILE); | 
 | } | 
 |  | 
 | // When row-mt is enabled and cost update frequencies are set to off/tile, | 
 | // processing of current SB can start even before processing of top-right SB | 
 | // is finished. This function checks if it is sufficient to wait for top SB | 
 | // to finish processing before current SB starts processing. | 
 | static inline int delay_wait_for_top_right_sb(const AV1_COMP *const cpi) { | 
 |   const MODE mode = cpi->oxcf.mode; | 
 |   if (mode == GOOD) return 0; | 
 |  | 
 |   if (mode == ALLINTRA) | 
 |     return is_mode_coeff_dv_upd_freq_tile_or_off(cpi); | 
 |   else if (mode == REALTIME) | 
 |     return (is_mode_coeff_dv_upd_freq_tile_or_off(cpi) && | 
 |             cpi->sf.inter_sf.mv_cost_upd_level <= INTERNAL_COST_UPD_TILE); | 
 |   else | 
 |     return 0; | 
 | } | 
 |  | 
 | /*!\brief Calculate source SAD at superblock level using 64x64 block source SAD | 
 |  * | 
 |  * \ingroup partition_search | 
 |  * \callgraph | 
 |  * \callergraph | 
 |  */ | 
 | static inline uint64_t get_sb_source_sad(const AV1_COMP *cpi, int mi_row, | 
 |                                          int mi_col) { | 
 |   if (cpi->src_sad_blk_64x64 == NULL) return UINT64_MAX; | 
 |  | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   const int blk_64x64_in_mis = (cm->seq_params->sb_size == BLOCK_128X128) | 
 |                                    ? (cm->seq_params->mib_size >> 1) | 
 |                                    : cm->seq_params->mib_size; | 
 |   const int num_blk_64x64_cols = | 
 |       (cm->mi_params.mi_cols + blk_64x64_in_mis - 1) / blk_64x64_in_mis; | 
 |   const int num_blk_64x64_rows = | 
 |       (cm->mi_params.mi_rows + blk_64x64_in_mis - 1) / blk_64x64_in_mis; | 
 |   const int blk_64x64_col_index = mi_col / blk_64x64_in_mis; | 
 |   const int blk_64x64_row_index = mi_row / blk_64x64_in_mis; | 
 |   uint64_t curr_sb_sad = UINT64_MAX; | 
 |   // Avoid the border as sad_blk_64x64 may not be set for the border | 
 |   // in the scene detection. | 
 |   if ((blk_64x64_row_index >= num_blk_64x64_rows - 1) || | 
 |       (blk_64x64_col_index >= num_blk_64x64_cols - 1)) { | 
 |     return curr_sb_sad; | 
 |   } | 
 |   const uint64_t *const src_sad_blk_64x64_data = | 
 |       &cpi->src_sad_blk_64x64[blk_64x64_col_index + | 
 |                               blk_64x64_row_index * num_blk_64x64_cols]; | 
 |   if (cm->seq_params->sb_size == BLOCK_128X128) { | 
 |     // Calculate SB source SAD by accumulating source SAD of 64x64 blocks in the | 
 |     // superblock | 
 |     curr_sb_sad = src_sad_blk_64x64_data[0] + src_sad_blk_64x64_data[1] + | 
 |                   src_sad_blk_64x64_data[num_blk_64x64_cols] + | 
 |                   src_sad_blk_64x64_data[num_blk_64x64_cols + 1]; | 
 |   } else if (cm->seq_params->sb_size == BLOCK_64X64) { | 
 |     curr_sb_sad = src_sad_blk_64x64_data[0]; | 
 |   } | 
 |   return curr_sb_sad; | 
 | } | 
 |  | 
 | /*!\brief Determine whether grading content can be skipped based on sad stat | 
 |  * | 
 |  * \ingroup partition_search | 
 |  * \callgraph | 
 |  * \callergraph | 
 |  */ | 
 | static inline bool is_calc_src_content_needed(AV1_COMP *cpi, | 
 |                                               MACROBLOCK *const x, int mi_row, | 
 |                                               int mi_col) { | 
 |   if (cpi->svc.spatial_layer_id < cpi->svc.number_spatial_layers - 1) | 
 |     return true; | 
 |   const uint64_t curr_sb_sad = get_sb_source_sad(cpi, mi_row, mi_col); | 
 |   if (curr_sb_sad == UINT64_MAX) return true; | 
 |   if (curr_sb_sad == 0) { | 
 |     x->content_state_sb.source_sad_nonrd = kZeroSad; | 
 |     return false; | 
 |   } | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   bool do_calc_src_content = true; | 
 |  | 
 |   if (cpi->oxcf.speed < 9) return do_calc_src_content; | 
 |  | 
 |   // TODO(yunqing): Tune/validate the thresholds for 128x128 SB size. | 
 |   if (AOMMIN(cm->width, cm->height) < 360) { | 
 |     // Derive Average 64x64 block source SAD from SB source SAD | 
 |     const uint64_t avg_64x64_blk_sad = | 
 |         (cm->seq_params->sb_size == BLOCK_128X128) ? ((curr_sb_sad + 2) >> 2) | 
 |                                                    : curr_sb_sad; | 
 |  | 
 |     // The threshold is determined based on kLowSad and kHighSad threshold and | 
 |     // test results. | 
 |     uint64_t thresh_low = 15000; | 
 |     uint64_t thresh_high = 40000; | 
 |  | 
 |     if (cpi->sf.rt_sf.increase_source_sad_thresh) { | 
 |       thresh_low = thresh_low << 1; | 
 |       thresh_high = thresh_high << 1; | 
 |     } | 
 |  | 
 |     if (avg_64x64_blk_sad > thresh_low && avg_64x64_blk_sad < thresh_high) { | 
 |       do_calc_src_content = false; | 
 |       // Note: set x->content_state_sb.source_sad_rd as well if this is extended | 
 |       // to RTC rd path. | 
 |       x->content_state_sb.source_sad_nonrd = kMedSad; | 
 |     } | 
 |   } | 
 |  | 
 |   return do_calc_src_content; | 
 | } | 
 |  | 
 | /*!\brief Determine whether grading content is needed based on sf and frame stat | 
 |  * | 
 |  * \ingroup partition_search | 
 |  * \callgraph | 
 |  * \callergraph | 
 |  */ | 
 | // TODO(any): consolidate sfs to make interface cleaner | 
 | static inline void grade_source_content_sb(AV1_COMP *cpi, MACROBLOCK *const x, | 
 |                                            TileDataEnc *tile_data, int mi_row, | 
 |                                            int mi_col) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   if (cm->current_frame.frame_type == KEY_FRAME || | 
 |       (cpi->ppi->use_svc && | 
 |        cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)) { | 
 |     assert(x->content_state_sb.source_sad_nonrd == kMedSad); | 
 |     assert(x->content_state_sb.source_sad_rd == kMedSad); | 
 |     return; | 
 |   } | 
 |   bool calc_src_content = false; | 
 |  | 
 |   if (cpi->sf.rt_sf.source_metrics_sb_nonrd) { | 
 |     if (!cpi->sf.rt_sf.check_scene_detection || cpi->rc.frame_source_sad > 0) { | 
 |       calc_src_content = is_calc_src_content_needed(cpi, x, mi_row, mi_col); | 
 |     } else { | 
 |       x->content_state_sb.source_sad_nonrd = kZeroSad; | 
 |     } | 
 |   } else if ((cpi->sf.rt_sf.var_part_based_on_qidx >= 1) && | 
 |              (cm->width * cm->height <= 352 * 288)) { | 
 |     if (cpi->rc.frame_source_sad > 0) | 
 |       calc_src_content = true; | 
 |     else | 
 |       x->content_state_sb.source_sad_rd = kZeroSad; | 
 |   } | 
 |   if (calc_src_content) | 
 |     av1_source_content_sb(cpi, x, tile_data, mi_row, mi_col); | 
 | } | 
 |  | 
 | /*!\brief Encode a superblock row by breaking it into superblocks | 
 |  * | 
 |  * \ingroup partition_search | 
 |  * \callgraph | 
 |  * \callergraph | 
 |  * Do partition and mode search for an sb row: one row of superblocks filling up | 
 |  * the width of the current tile. | 
 |  */ | 
 | static inline void encode_sb_row(AV1_COMP *cpi, ThreadData *td, | 
 |                                  TileDataEnc *tile_data, int mi_row, | 
 |                                  TokenExtra **tp) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const TileInfo *const tile_info = &tile_data->tile_info; | 
 |   MultiThreadInfo *const mt_info = &cpi->mt_info; | 
 |   AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; | 
 |   AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync; | 
 |   bool row_mt_enabled = mt_info->row_mt_enabled; | 
 |   MACROBLOCK *const x = &td->mb; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); | 
 |   const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
 |   const int mib_size = cm->seq_params->mib_size; | 
 |   const int mib_size_log2 = cm->seq_params->mib_size_log2; | 
 |   const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2; | 
 |   const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode; | 
 |  | 
 | #if CONFIG_COLLECT_COMPONENT_TIMING | 
 |   start_timing(cpi, encode_sb_row_time); | 
 | #endif | 
 |  | 
 |   // Initialize the left context for the new SB row | 
 |   av1_zero_left_context(xd); | 
 |  | 
 |   // Reset delta for quantizer and loof filters at the beginning of every tile | 
 |   if (mi_row == tile_info->mi_row_start || row_mt_enabled) { | 
 |     if (cm->delta_q_info.delta_q_present_flag) | 
 |       xd->current_base_qindex = cm->quant_params.base_qindex; | 
 |     if (cm->delta_q_info.delta_lf_present_flag) { | 
 |       av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); | 
 |     } | 
 |   } | 
 |  | 
 |   reset_thresh_freq_fact(x); | 
 |  | 
 |   // Code each SB in the row | 
 |   for (int mi_col = tile_info->mi_col_start, sb_col_in_tile = 0; | 
 |        mi_col < tile_info->mi_col_end; mi_col += mib_size, sb_col_in_tile++) { | 
 |     // In realtime/allintra mode and when frequency of cost updates is off/tile, | 
 |     // wait for the top superblock to finish encoding. Otherwise, wait for the | 
 |     // top-right superblock to finish encoding. | 
 |     enc_row_mt->sync_read_ptr( | 
 |         row_mt_sync, sb_row, sb_col_in_tile - delay_wait_for_top_right_sb(cpi)); | 
 |  | 
 | #if CONFIG_MULTITHREAD | 
 |     if (row_mt_enabled) { | 
 |       pthread_mutex_lock(enc_row_mt->mutex_); | 
 |       const bool row_mt_exit = enc_row_mt->row_mt_exit; | 
 |       pthread_mutex_unlock(enc_row_mt->mutex_); | 
 |       // Exit in case any worker has encountered an error. | 
 |       if (row_mt_exit) return; | 
 |     } | 
 | #endif | 
 |  | 
 |     const int update_cdf = tile_data->allow_update_cdf && row_mt_enabled; | 
 |     if (update_cdf && (tile_info->mi_row_start != mi_row)) { | 
 |       if ((tile_info->mi_col_start == mi_col)) { | 
 |         // restore frame context at the 1st column sb | 
 |         *xd->tile_ctx = *x->row_ctx; | 
 |       } else { | 
 |         // update context | 
 |         int wt_left = AVG_CDF_WEIGHT_LEFT; | 
 |         int wt_tr = AVG_CDF_WEIGHT_TOP_RIGHT; | 
 |         if (tile_info->mi_col_end > (mi_col + mib_size)) | 
 |           av1_avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile, | 
 |                               wt_left, wt_tr); | 
 |         else | 
 |           av1_avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile - 1, | 
 |                               wt_left, wt_tr); | 
 |       } | 
 |     } | 
 |  | 
 |     // Update the rate cost tables for some symbols | 
 |     av1_set_cost_upd_freq(cpi, td, tile_info, mi_row, mi_col); | 
 |  | 
 |     // Reset color coding related parameters | 
 |     av1_zero(x->color_sensitivity_sb); | 
 |     av1_zero(x->color_sensitivity_sb_g); | 
 |     av1_zero(x->color_sensitivity_sb_alt); | 
 |     av1_zero(x->color_sensitivity); | 
 |     x->content_state_sb.source_sad_nonrd = kMedSad; | 
 |     x->content_state_sb.source_sad_rd = kMedSad; | 
 |     x->content_state_sb.lighting_change = 0; | 
 |     x->content_state_sb.low_sumdiff = 0; | 
 |     x->force_zeromv_skip_for_sb = 0; | 
 |     x->sb_me_block = 0; | 
 |     x->sb_me_partition = 0; | 
 |     x->sb_me_mv.as_int = 0; | 
 |     x->sb_force_fixed_part = 1; | 
 |     x->color_palette_thresh = 64; | 
 |     x->force_color_check_block_level = 0; | 
 |     x->nonrd_prune_ref_frame_search = | 
 |         cpi->sf.rt_sf.nonrd_prune_ref_frame_search; | 
 |  | 
 |     if (cpi->oxcf.mode == ALLINTRA) { | 
 |       x->intra_sb_rdmult_modifier = 128; | 
 |     } | 
 |  | 
 |     xd->cur_frame_force_integer_mv = cm->features.cur_frame_force_integer_mv; | 
 |     x->source_variance = UINT_MAX; | 
 |     td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col); | 
 |  | 
 |     // Get segment id and skip flag | 
 |     const struct segmentation *const seg = &cm->seg; | 
 |     int seg_skip = 0; | 
 |     if (seg->enabled) { | 
 |       const uint8_t *const map = | 
 |           seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; | 
 |       const uint8_t segment_id = | 
 |           map ? get_segment_id(&cm->mi_params, map, sb_size, mi_row, mi_col) | 
 |               : 0; | 
 |       seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); | 
 |     } | 
 |  | 
 |     produce_gradients_for_sb(cpi, x, sb_size, mi_row, mi_col); | 
 |  | 
 |     init_src_var_info_of_4x4_sub_blocks(cpi, x->src_var_info_of_4x4_sub_blocks, | 
 |                                         sb_size); | 
 |  | 
 |     // Grade the temporal variation of the sb, the grade will be used to decide | 
 |     // fast mode search strategy for coding blocks | 
 |     if (!seg_skip) grade_source_content_sb(cpi, x, tile_data, mi_row, mi_col); | 
 |  | 
 |     // encode the superblock | 
 |     if (use_nonrd_mode) { | 
 |       encode_nonrd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip); | 
 |     } else { | 
 |       encode_rd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip); | 
 |     } | 
 |  | 
 |     // Update the top-right context in row_mt coding | 
 |     if (update_cdf && (tile_info->mi_row_end > (mi_row + mib_size))) { | 
 |       if (sb_cols_in_tile == 1) | 
 |         x->row_ctx[0] = *xd->tile_ctx; | 
 |       else if (sb_col_in_tile >= 1) | 
 |         x->row_ctx[sb_col_in_tile - 1] = *xd->tile_ctx; | 
 |     } | 
 |     enc_row_mt->sync_write_ptr(row_mt_sync, sb_row, sb_col_in_tile, | 
 |                                sb_cols_in_tile); | 
 |   } | 
 |  | 
 | #if CONFIG_COLLECT_COMPONENT_TIMING | 
 |   end_timing(cpi, encode_sb_row_time); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void init_encode_frame_mb_context(AV1_COMP *cpi) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   MACROBLOCK *const x = &cpi->td.mb; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |  | 
 |   // Copy data over into macro block data structures. | 
 |   av1_setup_src_planes(x, cpi->source, 0, 0, num_planes, | 
 |                        cm->seq_params->sb_size); | 
 |  | 
 |   av1_setup_block_planes(xd, cm->seq_params->subsampling_x, | 
 |                          cm->seq_params->subsampling_y, num_planes); | 
 | } | 
 |  | 
 | void av1_alloc_tile_data(AV1_COMP *cpi) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; | 
 |   const int tile_cols = cm->tiles.cols; | 
 |   const int tile_rows = cm->tiles.rows; | 
 |  | 
 |   av1_row_mt_mem_dealloc(cpi); | 
 |  | 
 |   aom_free(cpi->tile_data); | 
 |   cpi->allocated_tiles = 0; | 
 |   enc_row_mt->allocated_tile_cols = 0; | 
 |   enc_row_mt->allocated_tile_rows = 0; | 
 |  | 
 |   CHECK_MEM_ERROR( | 
 |       cm, cpi->tile_data, | 
 |       aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data))); | 
 |  | 
 |   cpi->allocated_tiles = tile_cols * tile_rows; | 
 |   enc_row_mt->allocated_tile_cols = tile_cols; | 
 |   enc_row_mt->allocated_tile_rows = tile_rows; | 
 |   for (int tile_row = 0; tile_row < tile_rows; ++tile_row) { | 
 |     for (int tile_col = 0; tile_col < tile_cols; ++tile_col) { | 
 |       const int tile_index = tile_row * tile_cols + tile_col; | 
 |       TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; | 
 |       av1_zero(this_tile->row_mt_sync); | 
 |       this_tile->row_ctx = NULL; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void av1_init_tile_data(AV1_COMP *cpi) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   const int tile_cols = cm->tiles.cols; | 
 |   const int tile_rows = cm->tiles.rows; | 
 |   int tile_col, tile_row; | 
 |   TokenInfo *const token_info = &cpi->token_info; | 
 |   TokenExtra *pre_tok = token_info->tile_tok[0][0]; | 
 |   TokenList *tplist = token_info->tplist[0][0]; | 
 |   unsigned int tile_tok = 0; | 
 |   int tplist_count = 0; | 
 |  | 
 |   if (!is_stat_generation_stage(cpi) && | 
 |       cm->features.allow_screen_content_tools) { | 
 |     // Number of tokens for which token info needs to be allocated. | 
 |     unsigned int tokens_required = | 
 |         get_token_alloc(cm->mi_params.mb_rows, cm->mi_params.mb_cols, | 
 |                         MAX_SB_SIZE_LOG2, num_planes); | 
 |     // Allocate/reallocate memory for token related info if the number of tokens | 
 |     // required is more than the number of tokens already allocated. This could | 
 |     // occur in case of the following: | 
 |     // 1) If the memory is not yet allocated | 
 |     // 2) If the frame dimensions have changed | 
 |     const bool realloc_tokens = tokens_required > token_info->tokens_allocated; | 
 |     if (realloc_tokens) { | 
 |       free_token_info(token_info); | 
 |       alloc_token_info(cm, token_info, tokens_required); | 
 |       pre_tok = token_info->tile_tok[0][0]; | 
 |       tplist = token_info->tplist[0][0]; | 
 |     } | 
 |   } | 
 |  | 
 |   for (tile_row = 0; tile_row < tile_rows; ++tile_row) { | 
 |     for (tile_col = 0; tile_col < tile_cols; ++tile_col) { | 
 |       TileDataEnc *const tile_data = | 
 |           &cpi->tile_data[tile_row * tile_cols + tile_col]; | 
 |       TileInfo *const tile_info = &tile_data->tile_info; | 
 |       av1_tile_init(tile_info, cm, tile_row, tile_col); | 
 |       tile_data->firstpass_top_mv = kZeroMv; | 
 |       tile_data->abs_sum_level = 0; | 
 |  | 
 |       if (is_token_info_allocated(token_info)) { | 
 |         token_info->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; | 
 |         pre_tok = token_info->tile_tok[tile_row][tile_col]; | 
 |         tile_tok = allocated_tokens( | 
 |             tile_info, cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, | 
 |             num_planes); | 
 |         token_info->tplist[tile_row][tile_col] = tplist + tplist_count; | 
 |         tplist = token_info->tplist[tile_row][tile_col]; | 
 |         tplist_count = av1_get_sb_rows_in_tile(cm, tile_info); | 
 |       } | 
 |       tile_data->allow_update_cdf = !cm->tiles.large_scale; | 
 |       tile_data->allow_update_cdf = tile_data->allow_update_cdf && | 
 |                                     !cm->features.disable_cdf_update && | 
 |                                     !delay_wait_for_top_right_sb(cpi); | 
 |       tile_data->tctx = *cm->fc; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Populate the start palette token info prior to encoding an SB row. | 
 | static inline void get_token_start(AV1_COMP *cpi, const TileInfo *tile_info, | 
 |                                    int tile_row, int tile_col, int mi_row, | 
 |                                    TokenExtra **tp) { | 
 |   const TokenInfo *token_info = &cpi->token_info; | 
 |   if (!is_token_info_allocated(token_info)) return; | 
 |  | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   TokenList *const tplist = cpi->token_info.tplist[tile_row][tile_col]; | 
 |   const int sb_row_in_tile = | 
 |       (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2; | 
 |  | 
 |   get_start_tok(cpi, tile_row, tile_col, mi_row, tp, | 
 |                 cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, num_planes); | 
 |   assert(tplist != NULL); | 
 |   tplist[sb_row_in_tile].start = *tp; | 
 | } | 
 |  | 
 | // Populate the token count after encoding an SB row. | 
 | static inline void populate_token_count(AV1_COMP *cpi, | 
 |                                         const TileInfo *tile_info, int tile_row, | 
 |                                         int tile_col, int mi_row, | 
 |                                         TokenExtra *tok) { | 
 |   const TokenInfo *token_info = &cpi->token_info; | 
 |   if (!is_token_info_allocated(token_info)) return; | 
 |  | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   TokenList *const tplist = token_info->tplist[tile_row][tile_col]; | 
 |   const int sb_row_in_tile = | 
 |       (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2; | 
 |   const int tile_mb_cols = | 
 |       (tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2; | 
 |   const int num_mb_rows_in_sb = | 
 |       ((1 << (cm->seq_params->mib_size_log2 + MI_SIZE_LOG2)) + 8) >> 4; | 
 |   tplist[sb_row_in_tile].count = | 
 |       (unsigned int)(tok - tplist[sb_row_in_tile].start); | 
 |  | 
 |   assert((unsigned int)(tok - tplist[sb_row_in_tile].start) <= | 
 |          get_token_alloc(num_mb_rows_in_sb, tile_mb_cols, | 
 |                          cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, | 
 |                          num_planes)); | 
 |  | 
 |   (void)num_planes; | 
 |   (void)tile_mb_cols; | 
 |   (void)num_mb_rows_in_sb; | 
 | } | 
 |  | 
 | /*!\brief Encode a superblock row | 
 |  * | 
 |  * \ingroup partition_search | 
 |  */ | 
 | void av1_encode_sb_row(AV1_COMP *cpi, ThreadData *td, int tile_row, | 
 |                        int tile_col, int mi_row) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const int tile_cols = cm->tiles.cols; | 
 |   TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; | 
 |   const TileInfo *const tile_info = &this_tile->tile_info; | 
 |   TokenExtra *tok = NULL; | 
 |  | 
 |   get_token_start(cpi, tile_info, tile_row, tile_col, mi_row, &tok); | 
 |  | 
 |   encode_sb_row(cpi, td, this_tile, mi_row, &tok); | 
 |  | 
 |   populate_token_count(cpi, tile_info, tile_row, tile_col, mi_row, tok); | 
 | } | 
 |  | 
 | /*!\brief Encode a tile | 
 |  * | 
 |  * \ingroup partition_search | 
 |  */ | 
 | void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row, | 
 |                      int tile_col) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   TileDataEnc *const this_tile = | 
 |       &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; | 
 |   const TileInfo *const tile_info = &this_tile->tile_info; | 
 |  | 
 |   if (!cpi->sf.rt_sf.use_nonrd_pick_mode) av1_inter_mode_data_init(this_tile); | 
 |  | 
 |   av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start, | 
 |                          tile_info->mi_col_end, tile_row); | 
 |   av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, | 
 |                          &td->mb.e_mbd); | 
 |  | 
 | #if !CONFIG_REALTIME_ONLY | 
 |   if (cpi->oxcf.intra_mode_cfg.enable_cfl_intra) | 
 |     cfl_init(&td->mb.e_mbd.cfl, cm->seq_params); | 
 | #endif | 
 |  | 
 |   if (td->mb.txfm_search_info.mb_rd_record != NULL) { | 
 |     av1_crc32c_calculator_init( | 
 |         &td->mb.txfm_search_info.mb_rd_record->crc_calculator); | 
 |   } | 
 |  | 
 |   for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; | 
 |        mi_row += cm->seq_params->mib_size) { | 
 |     av1_encode_sb_row(cpi, td, tile_row, tile_col, mi_row); | 
 |   } | 
 |   this_tile->abs_sum_level = td->abs_sum_level; | 
 | } | 
 |  | 
 | /*!\brief Break one frame into tiles and encode the tiles | 
 |  * | 
 |  * \ingroup partition_search | 
 |  * | 
 |  * \param[in]    cpi    Top-level encoder structure | 
 |  */ | 
 | static inline void encode_tiles(AV1_COMP *cpi) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const int tile_cols = cm->tiles.cols; | 
 |   const int tile_rows = cm->tiles.rows; | 
 |   int tile_col, tile_row; | 
 |  | 
 |   MACROBLOCK *const mb = &cpi->td.mb; | 
 |   assert(IMPLIES(cpi->tile_data == NULL, | 
 |                  cpi->allocated_tiles < tile_cols * tile_rows)); | 
 |   if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi); | 
 |  | 
 |   av1_init_tile_data(cpi); | 
 |   av1_alloc_mb_data(cpi, mb); | 
 |  | 
 |   for (tile_row = 0; tile_row < tile_rows; ++tile_row) { | 
 |     for (tile_col = 0; tile_col < tile_cols; ++tile_col) { | 
 |       TileDataEnc *const this_tile = | 
 |           &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; | 
 |       cpi->td.intrabc_used = 0; | 
 |       cpi->td.deltaq_used = 0; | 
 |       cpi->td.abs_sum_level = 0; | 
 |       cpi->td.rd_counts.seg_tmp_pred_cost[0] = 0; | 
 |       cpi->td.rd_counts.seg_tmp_pred_cost[1] = 0; | 
 |       cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; | 
 |       cpi->td.mb.tile_pb_ctx = &this_tile->tctx; | 
 |       av1_init_rtc_counters(&cpi->td.mb); | 
 |       cpi->td.mb.palette_pixels = 0; | 
 |       av1_encode_tile(cpi, &cpi->td, tile_row, tile_col); | 
 |       if (!frame_is_intra_only(&cpi->common)) | 
 |         av1_accumulate_rtc_counters(cpi, &cpi->td.mb); | 
 |       cpi->palette_pixel_num += cpi->td.mb.palette_pixels; | 
 |       cpi->intrabc_used |= cpi->td.intrabc_used; | 
 |       cpi->deltaq_used |= cpi->td.deltaq_used; | 
 |     } | 
 |   } | 
 |  | 
 |   av1_dealloc_mb_data(mb, av1_num_planes(cm)); | 
 | } | 
 |  | 
 | // Set the relative distance of a reference frame w.r.t. current frame | 
 | static inline void set_rel_frame_dist( | 
 |     const AV1_COMMON *const cm, RefFrameDistanceInfo *const ref_frame_dist_info, | 
 |     const int ref_frame_flags) { | 
 |   MV_REFERENCE_FRAME ref_frame; | 
 |   int min_past_dist = INT32_MAX, min_future_dist = INT32_MAX; | 
 |   ref_frame_dist_info->nearest_past_ref = NONE_FRAME; | 
 |   ref_frame_dist_info->nearest_future_ref = NONE_FRAME; | 
 |   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { | 
 |     ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = 0; | 
 |     if (ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { | 
 |       int dist = av1_encoder_get_relative_dist( | 
 |           cm->cur_frame->ref_display_order_hint[ref_frame - LAST_FRAME], | 
 |           cm->current_frame.display_order_hint); | 
 |       ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = dist; | 
 |       // Get the nearest ref_frame in the past | 
 |       if (abs(dist) < min_past_dist && dist < 0) { | 
 |         ref_frame_dist_info->nearest_past_ref = ref_frame; | 
 |         min_past_dist = abs(dist); | 
 |       } | 
 |       // Get the nearest ref_frame in the future | 
 |       if (dist < min_future_dist && dist > 0) { | 
 |         ref_frame_dist_info->nearest_future_ref = ref_frame; | 
 |         min_future_dist = dist; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static inline int refs_are_one_sided(const AV1_COMMON *cm) { | 
 |   assert(!frame_is_intra_only(cm)); | 
 |  | 
 |   int one_sided_refs = 1; | 
 |   const int cur_display_order_hint = cm->current_frame.display_order_hint; | 
 |   for (int ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) { | 
 |     const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref); | 
 |     if (buf == NULL) continue; | 
 |     if (av1_encoder_get_relative_dist(buf->display_order_hint, | 
 |                                       cur_display_order_hint) > 0) { | 
 |       one_sided_refs = 0;  // bwd reference | 
 |       break; | 
 |     } | 
 |   } | 
 |   return one_sided_refs; | 
 | } | 
 |  | 
 | static inline void get_skip_mode_ref_offsets(const AV1_COMMON *cm, | 
 |                                              int ref_order_hint[2]) { | 
 |   const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info; | 
 |   ref_order_hint[0] = ref_order_hint[1] = 0; | 
 |   if (!skip_mode_info->skip_mode_allowed) return; | 
 |  | 
 |   const RefCntBuffer *const buf_0 = | 
 |       get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_0); | 
 |   const RefCntBuffer *const buf_1 = | 
 |       get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_1); | 
 |   assert(buf_0 != NULL && buf_1 != NULL); | 
 |  | 
 |   ref_order_hint[0] = buf_0->order_hint; | 
 |   ref_order_hint[1] = buf_1->order_hint; | 
 | } | 
 |  | 
 | static int check_skip_mode_enabled(AV1_COMP *const cpi) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |  | 
 |   av1_setup_skip_mode_allowed(cm); | 
 |   if (!cm->current_frame.skip_mode_info.skip_mode_allowed) return 0; | 
 |  | 
 |   // Turn off skip mode if the temporal distances of the reference pair to the | 
 |   // current frame are different by more than 1 frame. | 
 |   const int cur_offset = (int)cm->current_frame.order_hint; | 
 |   int ref_offset[2]; | 
 |   get_skip_mode_ref_offsets(cm, ref_offset); | 
 |   const int cur_to_ref0 = get_relative_dist(&cm->seq_params->order_hint_info, | 
 |                                             cur_offset, ref_offset[0]); | 
 |   const int cur_to_ref1 = abs(get_relative_dist( | 
 |       &cm->seq_params->order_hint_info, cur_offset, ref_offset[1])); | 
 |   if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0; | 
 |  | 
 |   // High Latency: Turn off skip mode if all refs are fwd. | 
 |   if (cpi->all_one_sided_refs && cpi->oxcf.gf_cfg.lag_in_frames > 0) return 0; | 
 |  | 
 |   const int ref_frame[2] = { | 
 |     cm->current_frame.skip_mode_info.ref_frame_idx_0 + LAST_FRAME, | 
 |     cm->current_frame.skip_mode_info.ref_frame_idx_1 + LAST_FRAME | 
 |   }; | 
 |   if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame[0]]) || | 
 |       !(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame[1]])) | 
 |     return 0; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static inline void set_default_interp_skip_flags( | 
 |     const AV1_COMMON *cm, InterpSearchFlags *interp_search_flags) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   interp_search_flags->default_interp_skip_flags = | 
 |       (num_planes == 1) ? INTERP_SKIP_LUMA_EVAL_CHROMA | 
 |                         : INTERP_SKIP_LUMA_SKIP_CHROMA; | 
 | } | 
 |  | 
 | static inline void setup_prune_ref_frame_mask(AV1_COMP *cpi) { | 
 |   if ((!cpi->oxcf.ref_frm_cfg.enable_onesided_comp || | 
 |        cpi->sf.inter_sf.disable_onesided_comp) && | 
 |       cpi->all_one_sided_refs) { | 
 |     // Disable all compound references | 
 |     cpi->prune_ref_frame_mask = (1 << MODE_CTX_REF_FRAMES) - (1 << REF_FRAMES); | 
 |   } else if (!cpi->sf.rt_sf.use_nonrd_pick_mode && | 
 |              cpi->sf.inter_sf.selective_ref_frame >= 2) { | 
 |     AV1_COMMON *const cm = &cpi->common; | 
 |     const int cur_frame_display_order_hint = | 
 |         cm->current_frame.display_order_hint; | 
 |     unsigned int *ref_display_order_hint = | 
 |         cm->cur_frame->ref_display_order_hint; | 
 |     const int arf2_dist = av1_encoder_get_relative_dist( | 
 |         ref_display_order_hint[ALTREF2_FRAME - LAST_FRAME], | 
 |         cur_frame_display_order_hint); | 
 |     const int bwd_dist = av1_encoder_get_relative_dist( | 
 |         ref_display_order_hint[BWDREF_FRAME - LAST_FRAME], | 
 |         cur_frame_display_order_hint); | 
 |  | 
 |     for (int ref_idx = REF_FRAMES; ref_idx < MODE_CTX_REF_FRAMES; ++ref_idx) { | 
 |       MV_REFERENCE_FRAME rf[2]; | 
 |       av1_set_ref_frame(rf, ref_idx); | 
 |       if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) || | 
 |           !(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]])) { | 
 |         continue; | 
 |       } | 
 |  | 
 |       if (!cpi->all_one_sided_refs) { | 
 |         int ref_dist[2]; | 
 |         for (int i = 0; i < 2; ++i) { | 
 |           ref_dist[i] = av1_encoder_get_relative_dist( | 
 |               ref_display_order_hint[rf[i] - LAST_FRAME], | 
 |               cur_frame_display_order_hint); | 
 |         } | 
 |  | 
 |         // One-sided compound is used only when all reference frames are | 
 |         // one-sided. | 
 |         if ((ref_dist[0] > 0) == (ref_dist[1] > 0)) { | 
 |           cpi->prune_ref_frame_mask |= 1 << ref_idx; | 
 |         } | 
 |       } | 
 |  | 
 |       if (cpi->sf.inter_sf.selective_ref_frame >= 4 && | 
 |           (rf[0] == ALTREF2_FRAME || rf[1] == ALTREF2_FRAME) && | 
 |           (cpi->ref_frame_flags & av1_ref_frame_flag_list[BWDREF_FRAME])) { | 
 |         // Check if both ALTREF2_FRAME and BWDREF_FRAME are future references. | 
 |         if (arf2_dist > 0 && bwd_dist > 0 && bwd_dist <= arf2_dist) { | 
 |           // Drop ALTREF2_FRAME as a reference if BWDREF_FRAME is a closer | 
 |           // reference to the current frame than ALTREF2_FRAME | 
 |           cpi->prune_ref_frame_mask |= 1 << ref_idx; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static int allow_deltaq_mode(AV1_COMP *cpi) { | 
 | #if !CONFIG_REALTIME_ONLY | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
 |   int sbs_wide = mi_size_wide[sb_size]; | 
 |   int sbs_high = mi_size_high[sb_size]; | 
 |  | 
 |   int64_t delta_rdcost = 0; | 
 |   for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += sbs_high) { | 
 |     for (int mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += sbs_wide) { | 
 |       int64_t this_delta_rdcost = 0; | 
 |       av1_get_q_for_deltaq_objective(cpi, &cpi->td, &this_delta_rdcost, sb_size, | 
 |                                      mi_row, mi_col); | 
 |       delta_rdcost += this_delta_rdcost; | 
 |     } | 
 |   } | 
 |   return delta_rdcost < 0; | 
 | #else | 
 |   (void)cpi; | 
 |   return 1; | 
 | #endif  // !CONFIG_REALTIME_ONLY | 
 | } | 
 |  | 
 | #define FORCE_ZMV_SKIP_128X128_BLK_DIFF 10000 | 
 | #define FORCE_ZMV_SKIP_MAX_PER_PIXEL_DIFF 4 | 
 |  | 
 | // Populates block level thresholds for force zeromv-skip decision | 
 | static void populate_thresh_to_force_zeromv_skip(AV1_COMP *cpi) { | 
 |   if (cpi->sf.rt_sf.part_early_exit_zeromv == 0) return; | 
 |  | 
 |   // Threshold for forcing zeromv-skip decision is as below: | 
 |   // For 128x128 blocks, threshold is 10000 and per pixel threshold is 0.6103. | 
 |   // For 64x64 blocks, threshold is 5000 and per pixel threshold is 1.221 | 
 |   // allowing slightly higher error for smaller blocks. | 
 |   // Per Pixel Threshold of 64x64 block        Area of 64x64 block         1  1 | 
 |   // ------------------------------------=sqrt(---------------------)=sqrt(-)=- | 
 |   // Per Pixel Threshold of 128x128 block      Area of 128x128 block       4  2 | 
 |   // Thus, per pixel thresholds for blocks of size 32x32, 16x16,...  can be | 
 |   // chosen as 2.442, 4.884,.... As the per pixel error tends to be higher for | 
 |   // small blocks, the same is clipped to 4. | 
 |   const unsigned int thresh_exit_128x128_part = FORCE_ZMV_SKIP_128X128_BLK_DIFF; | 
 |   const int num_128x128_pix = | 
 |       block_size_wide[BLOCK_128X128] * block_size_high[BLOCK_128X128]; | 
 |  | 
 |   for (BLOCK_SIZE bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; bsize++) { | 
 |     const int num_block_pix = block_size_wide[bsize] * block_size_high[bsize]; | 
 |  | 
 |     // Calculate the threshold for zeromv-skip decision based on area of the | 
 |     // partition | 
 |     unsigned int thresh_exit_part_blk = | 
 |         (unsigned int)(thresh_exit_128x128_part * | 
 |                            sqrt((double)num_block_pix / num_128x128_pix) + | 
 |                        0.5); | 
 |     thresh_exit_part_blk = AOMMIN( | 
 |         thresh_exit_part_blk, | 
 |         (unsigned int)(FORCE_ZMV_SKIP_MAX_PER_PIXEL_DIFF * num_block_pix)); | 
 |     cpi->zeromv_skip_thresh_exit_part[bsize] = thresh_exit_part_blk; | 
 |   } | 
 | } | 
 |  | 
 | static void free_block_hash_buffers(uint32_t *block_hash_values[2]) { | 
 |   for (int j = 0; j < 2; ++j) { | 
 |     aom_free(block_hash_values[j]); | 
 |   } | 
 | } | 
 |  | 
 | /*!\brief Determines delta_q_res value for Variance Boost modulation. | 
 |  */ | 
 | static int aom_get_variance_boost_delta_q_res(int qindex) { | 
 |   // Signaling delta_q changes across superblocks comes with inherent syntax | 
 |   // element overhead, which adds up to total payload size. This overhead | 
 |   // becomes proportionally bigger the higher the base qindex (i.e. lower | 
 |   // quality, smaller file size), so a balance needs to be struck. | 
 |   // - Smaller delta_q_res: more granular delta_q control, more bits spent | 
 |   // signaling deltas. | 
 |   // - Larger delta_q_res: coarser delta_q control, less bits spent signaling | 
 |   // deltas. | 
 |   // | 
 |   // At the same time, SB qindex fluctuations become larger the higher | 
 |   // the base qindex (between lowest and highest-variance regions): | 
 |   // - For QP 5: up to 8 qindexes | 
 |   // - For QP 60: up to 52 qindexes | 
 |   // | 
 |   // With these factors in mind, it was found that the best strategy that | 
 |   // maximizes quality per bitrate is by having very finely-grained delta_q | 
 |   // values for the lowest picture qindexes (to preserve tiny qindex SB deltas), | 
 |   // and progressively making them coarser as base qindex increases (to reduce | 
 |   // total signaling overhead). | 
 |   int delta_q_res = 1; | 
 |  | 
 |   if (qindex >= 160) { | 
 |     delta_q_res = 8; | 
 |   } else if (qindex >= 120) { | 
 |     delta_q_res = 4; | 
 |   } else if (qindex >= 80) { | 
 |     delta_q_res = 2; | 
 |   } else { | 
 |     delta_q_res = 1; | 
 |   } | 
 |  | 
 |   return delta_q_res; | 
 | } | 
 |  | 
 | #if !CONFIG_REALTIME_ONLY | 
 | static float get_thresh_based_on_q(int qindex, int speed) { | 
 |   const float min_threshold_arr[2] = { 0.06f, 0.09f }; | 
 |   const float max_threshold_arr[2] = { 0.10f, 0.13f }; | 
 |  | 
 |   const float min_thresh = min_threshold_arr[speed >= 3]; | 
 |   const float max_thresh = max_threshold_arr[speed >= 3]; | 
 |   const float thresh = min_thresh + (max_thresh - min_thresh) * | 
 |                                         ((float)MAXQ - (float)qindex) / | 
 |                                         (float)(MAXQ - MINQ); | 
 |   return thresh; | 
 | } | 
 |  | 
 | static int get_mv_err(MV cur_mv, MV ref_mv) { | 
 |   const MV diff = { cur_mv.row - ref_mv.row, cur_mv.col - ref_mv.col }; | 
 |   const MV abs_diff = { abs(diff.row), abs(diff.col) }; | 
 |   const int mv_err = (abs_diff.row + abs_diff.col); | 
 |   return mv_err; | 
 | } | 
 |  | 
 | static void check_mv_err_and_update(MV cur_mv, MV ref_mv, int *best_mv_err) { | 
 |   const int mv_err = get_mv_err(cur_mv, ref_mv); | 
 |   *best_mv_err = AOMMIN(mv_err, *best_mv_err); | 
 | } | 
 |  | 
 | static int is_inside_frame_border(int mi_row, int mi_col, int row_offset, | 
 |                                   int col_offset, int num_mi_rows, | 
 |                                   int num_mi_cols) { | 
 |   if (mi_row + row_offset < 0 || mi_row + row_offset >= num_mi_rows || | 
 |       mi_col + col_offset < 0 || mi_col + col_offset >= num_mi_cols) | 
 |     return 0; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | // Compute the minimum MV error between current MV and spatial MV predictors. | 
 | static int get_spatial_mvpred_err(AV1_COMMON *cm, TplParams *const tpl_data, | 
 |                                   int tpl_idx, int mi_row, int mi_col, | 
 |                                   int ref_idx, int_mv cur_mv, int allow_hp, | 
 |                                   int is_integer) { | 
 |   const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; | 
 |   TplDepStats *tpl_ptr = tpl_frame->tpl_stats_ptr; | 
 |   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; | 
 |  | 
 |   int mv_err = INT32_MAX; | 
 |   const int step = 1 << block_mis_log2; | 
 |   const int mv_pred_pos_in_mis[6][2] = { | 
 |     { -step, 0 },     { 0, -step },     { -step, step }, | 
 |     { -step, -step }, { -2 * step, 0 }, { 0, -2 * step }, | 
 |   }; | 
 |  | 
 |   for (int i = 0; i < 6; i++) { | 
 |     int row_offset = mv_pred_pos_in_mis[i][0]; | 
 |     int col_offset = mv_pred_pos_in_mis[i][1]; | 
 |     if (!is_inside_frame_border(mi_row, mi_col, row_offset, col_offset, | 
 |                                 tpl_frame->mi_rows, tpl_frame->mi_cols)) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     const TplDepStats *tpl_stats = | 
 |         &tpl_ptr[av1_tpl_ptr_pos(mi_row + row_offset, mi_col + col_offset, | 
 |                                  tpl_frame->stride, block_mis_log2)]; | 
 |     int_mv this_refmv = tpl_stats->mv[ref_idx]; | 
 |     lower_mv_precision(&this_refmv.as_mv, allow_hp, is_integer); | 
 |     check_mv_err_and_update(cur_mv.as_mv, this_refmv.as_mv, &mv_err); | 
 |   } | 
 |  | 
 |   // Check MV error w.r.t. Global MV / Zero MV | 
 |   int_mv gm_mv = { 0 }; | 
 |   if (cm->global_motion[ref_idx + LAST_FRAME].wmtype > TRANSLATION) { | 
 |     const BLOCK_SIZE bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d); | 
 |     gm_mv = gm_get_motion_vector(&cm->global_motion[ref_idx + LAST_FRAME], | 
 |                                  allow_hp, bsize, mi_col, mi_row, is_integer); | 
 |   } | 
 |   check_mv_err_and_update(cur_mv.as_mv, gm_mv.as_mv, &mv_err); | 
 |  | 
 |   return mv_err; | 
 | } | 
 |  | 
 | // Compute the minimum MV error between current MV and temporal MV predictors. | 
 | static int get_temporal_mvpred_err(AV1_COMMON *cm, int mi_row, int mi_col, | 
 |                                    int num_mi_rows, int num_mi_cols, | 
 |                                    int ref_idx, int_mv cur_mv, int allow_hp, | 
 |                                    int is_integer) { | 
 |   const RefCntBuffer *ref_buf = get_ref_frame_buf(cm, ref_idx + LAST_FRAME); | 
 |   if (ref_buf == NULL) return INT32_MAX; | 
 |   int cur_to_ref_dist = | 
 |       get_relative_dist(&cm->seq_params->order_hint_info, | 
 |                         cm->cur_frame->order_hint, ref_buf->order_hint); | 
 |  | 
 |   int mv_err = INT32_MAX; | 
 |   const int mv_pred_pos_in_mis[7][2] = { | 
 |     { 0, 0 }, { 0, 2 }, { 2, 0 }, { 2, 2 }, { 4, -2 }, { 4, 4 }, { 2, 4 }, | 
 |   }; | 
 |  | 
 |   for (int i = 0; i < 7; i++) { | 
 |     int row_offset = mv_pred_pos_in_mis[i][0]; | 
 |     int col_offset = mv_pred_pos_in_mis[i][1]; | 
 |     if (!is_inside_frame_border(mi_row, mi_col, row_offset, col_offset, | 
 |                                 num_mi_rows, num_mi_cols)) { | 
 |       continue; | 
 |     } | 
 |     const TPL_MV_REF *ref_mvs = | 
 |         cm->tpl_mvs + | 
 |         ((mi_row + row_offset) >> 1) * (cm->mi_params.mi_stride >> 1) + | 
 |         ((mi_col + col_offset) >> 1); | 
 |     if (ref_mvs->mfmv0.as_int == INVALID_MV) continue; | 
 |  | 
 |     int_mv this_refmv; | 
 |     av1_get_mv_projection(&this_refmv.as_mv, ref_mvs->mfmv0.as_mv, | 
 |                           cur_to_ref_dist, ref_mvs->ref_frame_offset); | 
 |     lower_mv_precision(&this_refmv.as_mv, allow_hp, is_integer); | 
 |     check_mv_err_and_update(cur_mv.as_mv, this_refmv.as_mv, &mv_err); | 
 |   } | 
 |  | 
 |   return mv_err; | 
 | } | 
 |  | 
 | // Determine whether to disable temporal MV prediction for the current frame | 
 | // based on TPL and motion field data. Temporal MV prediction is disabled if the | 
 | // reduction in MV error by including temporal MVs as MV predictors is small. | 
 | static void check_to_disable_ref_frame_mvs(AV1_COMP *cpi) { | 
 |   AV1_COMMON *cm = &cpi->common; | 
 |   if (!cm->features.allow_ref_frame_mvs || cpi->sf.hl_sf.ref_frame_mvs_lvl != 1) | 
 |     return; | 
 |  | 
 |   const int tpl_idx = cpi->gf_frame_index; | 
 |   TplParams *const tpl_data = &cpi->ppi->tpl_data; | 
 |   if (!av1_tpl_stats_ready(tpl_data, tpl_idx)) return; | 
 |  | 
 |   const SUBPEL_FORCE_STOP tpl_subpel_precision = | 
 |       cpi->sf.tpl_sf.subpel_force_stop; | 
 |   const int allow_high_precision_mv = tpl_subpel_precision == EIGHTH_PEL && | 
 |                                       cm->features.allow_high_precision_mv; | 
 |   const int force_integer_mv = tpl_subpel_precision == FULL_PEL || | 
 |                                cm->features.cur_frame_force_integer_mv; | 
 |  | 
 |   const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; | 
 |   TplDepStats *tpl_ptr = tpl_frame->tpl_stats_ptr; | 
 |   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; | 
 |   const int step = 1 << block_mis_log2; | 
 |  | 
 |   uint64_t accum_spatial_mvpred_err = 0; | 
 |   uint64_t accum_best_err = 0; | 
 |  | 
 |   for (int mi_row = 0; mi_row < tpl_frame->mi_rows; mi_row += step) { | 
 |     for (int mi_col = 0; mi_col < tpl_frame->mi_cols; mi_col += step) { | 
 |       TplDepStats *tpl_stats_ptr = &tpl_ptr[av1_tpl_ptr_pos( | 
 |           mi_row, mi_col, tpl_frame->stride, block_mis_log2)]; | 
 |       const int cur_best_ref_idx = tpl_stats_ptr->ref_frame_index[0]; | 
 |       if (cur_best_ref_idx == NONE_FRAME) continue; | 
 |  | 
 |       int_mv cur_mv = tpl_stats_ptr->mv[cur_best_ref_idx]; | 
 |       lower_mv_precision(&cur_mv.as_mv, allow_high_precision_mv, | 
 |                          force_integer_mv); | 
 |  | 
 |       const int cur_spatial_mvpred_err = get_spatial_mvpred_err( | 
 |           cm, tpl_data, tpl_idx, mi_row, mi_col, cur_best_ref_idx, cur_mv, | 
 |           allow_high_precision_mv, force_integer_mv); | 
 |  | 
 |       const int cur_temporal_mvpred_err = get_temporal_mvpred_err( | 
 |           cm, mi_row, mi_col, tpl_frame->mi_rows, tpl_frame->mi_cols, | 
 |           cur_best_ref_idx, cur_mv, allow_high_precision_mv, force_integer_mv); | 
 |  | 
 |       const int cur_best_err = | 
 |           AOMMIN(cur_spatial_mvpred_err, cur_temporal_mvpred_err); | 
 |       accum_spatial_mvpred_err += cur_spatial_mvpred_err; | 
 |       accum_best_err += cur_best_err; | 
 |     } | 
 |   } | 
 |  | 
 |   const float threshold = | 
 |       get_thresh_based_on_q(cm->quant_params.base_qindex, cpi->oxcf.speed); | 
 |   const float mv_err_reduction = | 
 |       (float)(accum_spatial_mvpred_err - accum_best_err); | 
 |  | 
 |   if (mv_err_reduction <= threshold * accum_spatial_mvpred_err) | 
 |     cm->features.allow_ref_frame_mvs = 0; | 
 | } | 
 | #endif  // !CONFIG_REALTIME_ONLY | 
 |  | 
 | /*!\brief Encoder setup(only for the current frame), encoding, and recontruction | 
 |  * for a single frame | 
 |  * | 
 |  * \ingroup high_level_algo | 
 |  */ | 
 | static inline void encode_frame_internal(AV1_COMP *cpi) { | 
 |   ThreadData *const td = &cpi->td; | 
 |   MACROBLOCK *const x = &td->mb; | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   CommonModeInfoParams *const mi_params = &cm->mi_params; | 
 |   FeatureFlags *const features = &cm->features; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   RD_COUNTS *const rdc = &cpi->td.rd_counts; | 
 | #if CONFIG_FPMT_TEST | 
 |   FrameProbInfo *const temp_frame_probs = &cpi->ppi->temp_frame_probs; | 
 |   FrameProbInfo *const temp_frame_probs_simulation = | 
 |       &cpi->ppi->temp_frame_probs_simulation; | 
 | #endif | 
 |   FrameProbInfo *const frame_probs = &cpi->ppi->frame_probs; | 
 |   IntraBCHashInfo *const intrabc_hash_info = &x->intrabc_hash_info; | 
 |   MultiThreadInfo *const mt_info = &cpi->mt_info; | 
 |   AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; | 
 |   const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
 |   const DELTAQ_MODE deltaq_mode = oxcf->q_cfg.deltaq_mode; | 
 |   int i; | 
 |  | 
 |   if (!cpi->sf.rt_sf.use_nonrd_pick_mode) { | 
 |     mi_params->setup_mi(mi_params); | 
 |   } | 
 |  | 
 |   set_mi_offsets(mi_params, xd, 0, 0); | 
 |  | 
 |   av1_zero(*td->counts); | 
 |   av1_zero(rdc->tx_type_used); | 
 |   av1_zero(rdc->obmc_used); | 
 |   av1_zero(rdc->warped_used); | 
 |   av1_zero(rdc->seg_tmp_pred_cost); | 
 |  | 
 |   // Reset the flag. | 
 |   cpi->intrabc_used = 0; | 
 |   // Need to disable intrabc when superres is selected | 
 |   if (av1_superres_scaled(cm)) { | 
 |     features->allow_intrabc = 0; | 
 |   } | 
 |  | 
 |   features->allow_intrabc &= (oxcf->kf_cfg.enable_intrabc); | 
 |  | 
 |   if (features->allow_warped_motion && | 
 |       cpi->sf.inter_sf.prune_warped_prob_thresh > 0) { | 
 |     const FRAME_UPDATE_TYPE update_type = | 
 |         get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
 |     int warped_probability = | 
 | #if CONFIG_FPMT_TEST | 
 |         cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE | 
 |             ? temp_frame_probs->warped_probs[update_type] | 
 |             : | 
 | #endif  // CONFIG_FPMT_TEST | 
 |             frame_probs->warped_probs[update_type]; | 
 |     if (warped_probability < cpi->sf.inter_sf.prune_warped_prob_thresh) | 
 |       features->allow_warped_motion = 0; | 
 |   } | 
 |  | 
 |   int hash_table_created = 0; | 
 |   if (!is_stat_generation_stage(cpi) && av1_use_hash_me(cpi) && | 
 |       !cpi->sf.rt_sf.use_nonrd_pick_mode) { | 
 |     // TODO(any): move this outside of the recoding loop to avoid recalculating | 
 |     // the hash table. | 
 |     // add to hash table | 
 |     const int pic_width = cpi->source->y_crop_width; | 
 |     const int pic_height = cpi->source->y_crop_height; | 
 |     uint32_t *block_hash_values[2] = { NULL };  // two buffers used ping-pong | 
 |     bool error = false; | 
 |  | 
 |     for (int j = 0; j < 2; ++j) { | 
 |       block_hash_values[j] = (uint32_t *)aom_malloc( | 
 |           sizeof(*block_hash_values[j]) * pic_width * pic_height); | 
 |       if (!block_hash_values[j]) { | 
 |         error = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     av1_hash_table_init(intrabc_hash_info); | 
 |     if (error || | 
 |         !av1_hash_table_create(&intrabc_hash_info->intrabc_hash_table)) { | 
 |       free_block_hash_buffers(block_hash_values); | 
 |       aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, | 
 |                          "Error allocating intrabc_hash_table and buffers"); | 
 |     } | 
 |     hash_table_created = 1; | 
 |     av1_generate_block_2x2_hash_value(cpi->source, block_hash_values[0]); | 
 |     // Hash data generated for screen contents is used for intraBC ME | 
 |     const int min_alloc_size = block_size_wide[mi_params->mi_alloc_bsize]; | 
 |     int max_sb_size = (1 << (cm->seq_params->mib_size_log2 + MI_SIZE_LOG2)); | 
 |  | 
 |     if (cpi->sf.mv_sf.hash_max_8x8_intrabc_blocks) { | 
 |       max_sb_size = AOMMIN(8, max_sb_size); | 
 |     } | 
 |  | 
 |     int src_idx = 0; | 
 |     for (int size = 4; size <= max_sb_size; size *= 2, src_idx = !src_idx) { | 
 |       const int dst_idx = !src_idx; | 
 |       av1_generate_block_hash_value(intrabc_hash_info, cpi->source, size, | 
 |                                     block_hash_values[src_idx], | 
 |                                     block_hash_values[dst_idx]); | 
 |       if (size >= min_alloc_size && | 
 |           !av1_add_to_hash_map_by_row_with_precal_data( | 
 |               &intrabc_hash_info->intrabc_hash_table, | 
 |               block_hash_values[dst_idx], pic_width, pic_height, size)) { | 
 |         error = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     free_block_hash_buffers(block_hash_values); | 
 |  | 
 |     if (error) { | 
 |       aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, | 
 |                          "Error adding data to intrabc_hash_table"); | 
 |     } | 
 |   } | 
 |  | 
 |   const CommonQuantParams *quant_params = &cm->quant_params; | 
 |   for (i = 0; i < MAX_SEGMENTS; ++i) { | 
 |     const int qindex = | 
 |         cm->seg.enabled ? av1_get_qindex(&cm->seg, i, quant_params->base_qindex) | 
 |                         : quant_params->base_qindex; | 
 |     xd->lossless[i] = | 
 |         qindex == 0 && quant_params->y_dc_delta_q == 0 && | 
 |         quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 && | 
 |         quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0; | 
 |     if (xd->lossless[i]) cpi->enc_seg.has_lossless_segment = 1; | 
 |     xd->qindex[i] = qindex; | 
 |     if (xd->lossless[i]) { | 
 |       cpi->optimize_seg_arr[i] = NO_TRELLIS_OPT; | 
 |     } else { | 
 |       cpi->optimize_seg_arr[i] = cpi->sf.rd_sf.optimize_coefficients; | 
 |     } | 
 |   } | 
 |   features->coded_lossless = is_coded_lossless(cm, xd); | 
 |   features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm); | 
 |  | 
 |   // Fix delta q resolution for the moment | 
 |  | 
 |   cm->delta_q_info.delta_q_res = 0; | 
 |   if (cpi->use_ducky_encode) { | 
 |     cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_DUCKY_ENCODE; | 
 |   } else if (cpi->oxcf.q_cfg.aq_mode != CYCLIC_REFRESH_AQ && | 
 |              !cpi->roi.enabled) { | 
 |     if (deltaq_mode == DELTA_Q_OBJECTIVE) | 
 |       cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_OBJECTIVE; | 
 |     else if (deltaq_mode == DELTA_Q_PERCEPTUAL) | 
 |       cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; | 
 |     else if (deltaq_mode == DELTA_Q_PERCEPTUAL_AI) | 
 |       cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; | 
 |     else if (deltaq_mode == DELTA_Q_USER_RATING_BASED) | 
 |       cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; | 
 |     else if (deltaq_mode == DELTA_Q_HDR) | 
 |       cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; | 
 |     else if (deltaq_mode == DELTA_Q_VARIANCE_BOOST) | 
 |       cm->delta_q_info.delta_q_res = | 
 |           aom_get_variance_boost_delta_q_res(quant_params->base_qindex); | 
 |     // Set delta_q_present_flag before it is used for the first time | 
 |     cm->delta_q_info.delta_lf_res = DEFAULT_DELTA_LF_RES; | 
 |     cm->delta_q_info.delta_q_present_flag = deltaq_mode != NO_DELTA_Q; | 
 |  | 
 |     // Turn off cm->delta_q_info.delta_q_present_flag if objective delta_q | 
 |     // is used for ineligible frames. That effectively will turn off row_mt | 
 |     // usage. Note objective delta_q and tpl eligible frames are only altref | 
 |     // frames currently. | 
 |     const GF_GROUP *gf_group = &cpi->ppi->gf_group; | 
 |     if (cm->delta_q_info.delta_q_present_flag) { | 
 |       if (deltaq_mode == DELTA_Q_OBJECTIVE && | 
 |           gf_group->update_type[cpi->gf_frame_index] == LF_UPDATE) | 
 |         cm->delta_q_info.delta_q_present_flag = 0; | 
 |  | 
 |       if (deltaq_mode == DELTA_Q_OBJECTIVE && | 
 |           cm->delta_q_info.delta_q_present_flag) { | 
 |         cm->delta_q_info.delta_q_present_flag &= allow_deltaq_mode(cpi); | 
 |       } | 
 |     } | 
 |  | 
 |     // Reset delta_q_used flag | 
 |     cpi->deltaq_used = 0; | 
 |  | 
 |     cm->delta_q_info.delta_lf_present_flag = | 
 |         cm->delta_q_info.delta_q_present_flag && | 
 |         oxcf->tool_cfg.enable_deltalf_mode; | 
 |     cm->delta_q_info.delta_lf_multi = DEFAULT_DELTA_LF_MULTI; | 
 |  | 
 |     // update delta_q_present_flag and delta_lf_present_flag based on | 
 |     // base_qindex | 
 |     cm->delta_q_info.delta_q_present_flag &= quant_params->base_qindex > 0; | 
 |     cm->delta_q_info.delta_lf_present_flag &= quant_params->base_qindex > 0; | 
 |   } else if (cpi->cyclic_refresh->apply_cyclic_refresh || | 
 |              cpi->svc.number_temporal_layers == 1) { | 
 |     cpi->cyclic_refresh->actual_num_seg1_blocks = 0; | 
 |     cpi->cyclic_refresh->actual_num_seg2_blocks = 0; | 
 |   } | 
 |   cpi->rc.cnt_zeromv = 0; | 
 |  | 
 |   av1_frame_init_quantizer(cpi); | 
 |   init_encode_frame_mb_context(cpi); | 
 |   set_default_interp_skip_flags(cm, &cpi->interp_search_flags); | 
 |  | 
 |   if (cm->prev_frame && cm->prev_frame->seg.enabled && | 
 |       cpi->svc.number_spatial_layers == 1) | 
 |     cm->last_frame_seg_map = cm->prev_frame->seg_map; | 
 |   else | 
 |     cm->last_frame_seg_map = NULL; | 
 |   if (features->allow_intrabc || features->coded_lossless) { | 
 |     av1_set_default_ref_deltas(cm->lf.ref_deltas); | 
 |     av1_set_default_mode_deltas(cm->lf.mode_deltas); | 
 |   } else if (cm->prev_frame) { | 
 |     memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES); | 
 |     memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); | 
 |   } | 
 |   memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES); | 
 |   memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS); | 
 |  | 
 |   cpi->all_one_sided_refs = | 
 |       frame_is_intra_only(cm) ? 0 : refs_are_one_sided(cm); | 
 |  | 
 |   cpi->prune_ref_frame_mask = 0; | 
 |   // Figure out which ref frames can be skipped at frame level. | 
 |   setup_prune_ref_frame_mask(cpi); | 
 |  | 
 |   x->txfm_search_info.txb_split_count = 0; | 
 | #if CONFIG_SPEED_STATS | 
 |   x->txfm_search_info.tx_search_count = 0; | 
 | #endif  // CONFIG_SPEED_STATS | 
 |  | 
 | #if !CONFIG_REALTIME_ONLY | 
 | #if CONFIG_COLLECT_COMPONENT_TIMING | 
 |   start_timing(cpi, av1_compute_global_motion_time); | 
 | #endif | 
 |   av1_compute_global_motion_facade(cpi); | 
 | #if CONFIG_COLLECT_COMPONENT_TIMING | 
 |   end_timing(cpi, av1_compute_global_motion_time); | 
 | #endif | 
 | #endif  // !CONFIG_REALTIME_ONLY | 
 |  | 
 | #if CONFIG_COLLECT_COMPONENT_TIMING | 
 |   start_timing(cpi, av1_setup_motion_field_time); | 
 | #endif | 
 |   av1_calculate_ref_frame_side(cm); | 
 |  | 
 |   features->allow_ref_frame_mvs &= !(cpi->sf.hl_sf.ref_frame_mvs_lvl == 2); | 
 |   if (features->allow_ref_frame_mvs) av1_setup_motion_field(cm); | 
 | #if !CONFIG_REALTIME_ONLY | 
 |   check_to_disable_ref_frame_mvs(cpi); | 
 | #endif  // !CONFIG_REALTIME_ONLY | 
 |  | 
 | #if CONFIG_COLLECT_COMPONENT_TIMING | 
 |   end_timing(cpi, av1_setup_motion_field_time); | 
 | #endif | 
 |  | 
 |   cm->current_frame.skip_mode_info.skip_mode_flag = | 
 |       check_skip_mode_enabled(cpi); | 
 |  | 
 |   // Initialization of skip mode cost depends on the value of | 
 |   // 'skip_mode_flag'. This initialization happens in the function | 
 |   // av1_fill_mode_rates(), which is in turn called in | 
 |   // av1_initialize_rd_consts(). Thus, av1_initialize_rd_consts() | 
 |   // has to be called after 'skip_mode_flag' is initialized. | 
 |   av1_initialize_rd_consts(cpi); | 
 |   av1_set_sad_per_bit(cpi, &x->sadperbit, quant_params->base_qindex); | 
 |   populate_thresh_to_force_zeromv_skip(cpi); | 
 |  | 
 |   enc_row_mt->sync_read_ptr = av1_row_mt_sync_read_dummy; | 
 |   enc_row_mt->sync_write_ptr = av1_row_mt_sync_write_dummy; | 
 |   mt_info->row_mt_enabled = 0; | 
 |   mt_info->pack_bs_mt_enabled = AOMMIN(mt_info->num_mod_workers[MOD_PACK_BS], | 
 |                                        cm->tiles.cols * cm->tiles.rows) > 1; | 
 |  | 
 |   if (oxcf->row_mt && (mt_info->num_workers > 1)) { | 
 |     mt_info->row_mt_enabled = 1; | 
 |     enc_row_mt->sync_read_ptr = av1_row_mt_sync_read; | 
 |     enc_row_mt->sync_write_ptr = av1_row_mt_sync_write; | 
 |     av1_encode_tiles_row_mt(cpi); | 
 |   } else { | 
 |     if (AOMMIN(mt_info->num_workers, cm->tiles.cols * cm->tiles.rows) > 1) { | 
 |       av1_encode_tiles_mt(cpi); | 
 |     } else { | 
 |       // Preallocate the pc_tree for realtime coding to reduce the cost of | 
 |       // memory allocation. | 
 |       const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode; | 
 |       if (use_nonrd_mode) { | 
 |         td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size); | 
 |         if (!td->pc_root) | 
 |           aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
 |                              "Failed to allocate PC_TREE"); | 
 |       } else { | 
 |         td->pc_root = NULL; | 
 |       } | 
 |  | 
 |       encode_tiles(cpi); | 
 |       av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, | 
 |                                  cpi->sf.part_sf.partition_search_type); | 
 |       td->pc_root = NULL; | 
 |     } | 
 |   } | 
 |  | 
 |   // If intrabc is allowed but never selected, reset the allow_intrabc flag. | 
 |   if (features->allow_intrabc && !cpi->intrabc_used) { | 
 |     features->allow_intrabc = 0; | 
 |   } | 
 |   if (features->allow_intrabc) { | 
 |     cm->delta_q_info.delta_lf_present_flag = 0; | 
 |   } | 
 |  | 
 |   if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) { | 
 |     cm->delta_q_info.delta_q_present_flag = 0; | 
 |   } | 
 |  | 
 |   // Set the transform size appropriately before bitstream creation | 
 |   const MODE_EVAL_TYPE eval_type = | 
 |       cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch | 
 |           ? WINNER_MODE_EVAL | 
 |           : DEFAULT_EVAL; | 
 |   const TX_SIZE_SEARCH_METHOD tx_search_type = | 
 |       cpi->winner_mode_params.tx_size_search_methods[eval_type]; | 
 |   assert(oxcf->txfm_cfg.enable_tx64 || tx_search_type != USE_LARGESTALL); | 
 |   features->tx_mode = select_tx_mode(cm, tx_search_type); | 
 |  | 
 |   // Retain the frame level probability update conditions for parallel frames. | 
 |   // These conditions will be consumed during postencode stage to update the | 
 |   // probability. | 
 |   if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { | 
 |     cpi->do_update_frame_probs_txtype[cpi->num_frame_recode] = | 
 |         cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats; | 
 |     cpi->do_update_frame_probs_obmc[cpi->num_frame_recode] = | 
 |         (cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 && | 
 |          cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX); | 
 |     cpi->do_update_frame_probs_warp[cpi->num_frame_recode] = | 
 |         (features->allow_warped_motion && | 
 |          cpi->sf.inter_sf.prune_warped_prob_thresh > 0); | 
 |     cpi->do_update_frame_probs_interpfilter[cpi->num_frame_recode] = | 
 |         (cm->current_frame.frame_type != KEY_FRAME && | 
 |          cpi->sf.interp_sf.adaptive_interp_filter_search == 2 && | 
 |          features->interp_filter == SWITCHABLE); | 
 |   } | 
 |  | 
 |   if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats || | 
 |       ((cpi->sf.tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh != | 
 |         INT_MAX) && | 
 |        (cpi->sf.tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh != 0))) { | 
 |     const FRAME_UPDATE_TYPE update_type = | 
 |         get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
 |     for (i = 0; i < TX_SIZES_ALL; i++) { | 
 |       int sum = 0; | 
 |       int j; | 
 |       int left = MAX_TX_TYPE_PROB; | 
 |  | 
 |       for (j = 0; j < TX_TYPES; j++) | 
 |         sum += cpi->td.rd_counts.tx_type_used[i][j]; | 
 |  | 
 |       for (j = TX_TYPES - 1; j >= 0; j--) { | 
 |         int update_txtype_frameprobs = 1; | 
 |         const int new_prob = | 
 |             sum ? (int)((int64_t)MAX_TX_TYPE_PROB * | 
 |                         cpi->td.rd_counts.tx_type_used[i][j] / sum) | 
 |                 : (j ? 0 : MAX_TX_TYPE_PROB); | 
 | #if CONFIG_FPMT_TEST | 
 |         if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { | 
 |           if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == | 
 |               0) { | 
 |             int prob = | 
 |                 (temp_frame_probs_simulation->tx_type_probs[update_type][i][j] + | 
 |                  new_prob) >> | 
 |                 1; | 
 |             left -= prob; | 
 |             if (j == 0) prob += left; | 
 |             temp_frame_probs_simulation->tx_type_probs[update_type][i][j] = | 
 |                 prob; | 
 |             // Copy temp_frame_probs_simulation to temp_frame_probs | 
 |             for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; | 
 |                  update_type_idx++) { | 
 |               temp_frame_probs->tx_type_probs[update_type_idx][i][j] = | 
 |                   temp_frame_probs_simulation | 
 |                       ->tx_type_probs[update_type_idx][i][j]; | 
 |             } | 
 |           } | 
 |           update_txtype_frameprobs = 0; | 
 |         } | 
 | #endif  // CONFIG_FPMT_TEST | 
 |         // Track the frame probabilities of parallel encode frames to update | 
 |         // during postencode stage. | 
 |         if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { | 
 |           update_txtype_frameprobs = 0; | 
 |           cpi->frame_new_probs[cpi->num_frame_recode] | 
 |               .tx_type_probs[update_type][i][j] = new_prob; | 
 |         } | 
 |         if (update_txtype_frameprobs) { | 
 |           int prob = | 
 |               (frame_probs->tx_type_probs[update_type][i][j] + new_prob) >> 1; | 
 |           left -= prob; | 
 |           if (j == 0) prob += left; | 
 |           frame_probs->tx_type_probs[update_type][i][j] = prob; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (cm->seg.enabled) { | 
 |     cm->seg.temporal_update = 1; | 
 |     if (rdc->seg_tmp_pred_cost[0] < rdc->seg_tmp_pred_cost[1]) | 
 |       cm->seg.temporal_update = 0; | 
 |   } | 
 |  | 
 |   if (cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 && | 
 |       cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX) { | 
 |     const FRAME_UPDATE_TYPE update_type = | 
 |         get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
 |  | 
 |     for (i = 0; i < BLOCK_SIZES_ALL; i++) { | 
 |       int sum = 0; | 
 |       int update_obmc_frameprobs = 1; | 
 |       for (int j = 0; j < 2; j++) sum += cpi->td.rd_counts.obmc_used[i][j]; | 
 |  | 
 |       const int new_prob = | 
 |           sum ? 128 * cpi->td.rd_counts.obmc_used[i][1] / sum : 0; | 
 | #if CONFIG_FPMT_TEST | 
 |       if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { | 
 |         if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { | 
 |           temp_frame_probs_simulation->obmc_probs[update_type][i] = | 
 |               (temp_frame_probs_simulation->obmc_probs[update_type][i] + | 
 |                new_prob) >> | 
 |               1; | 
 |           // Copy temp_frame_probs_simulation to temp_frame_probs | 
 |           for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; | 
 |                update_type_idx++) { | 
 |             temp_frame_probs->obmc_probs[update_type_idx][i] = | 
 |                 temp_frame_probs_simulation->obmc_probs[update_type_idx][i]; | 
 |           } | 
 |         } | 
 |         update_obmc_frameprobs = 0; | 
 |       } | 
 | #endif  // CONFIG_FPMT_TEST | 
 |       // Track the frame probabilities of parallel encode frames to update | 
 |       // during postencode stage. | 
 |       if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { | 
 |         update_obmc_frameprobs = 0; | 
 |         cpi->frame_new_probs[cpi->num_frame_recode].obmc_probs[update_type][i] = | 
 |             new_prob; | 
 |       } | 
 |       if (update_obmc_frameprobs) { | 
 |         frame_probs->obmc_probs[update_type][i] = | 
 |             (frame_probs->obmc_probs[update_type][i] + new_prob) >> 1; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (features->allow_warped_motion && | 
 |       cpi->sf.inter_sf.prune_warped_prob_thresh > 0) { | 
 |     const FRAME_UPDATE_TYPE update_type = | 
 |         get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
 |     int update_warp_frameprobs = 1; | 
 |     int sum = 0; | 
 |     for (i = 0; i < 2; i++) sum += cpi->td.rd_counts.warped_used[i]; | 
 |     const int new_prob = sum ? 128 * cpi->td.rd_counts.warped_used[1] / sum : 0; | 
 | #if CONFIG_FPMT_TEST | 
 |     if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { | 
 |       if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { | 
 |         temp_frame_probs_simulation->warped_probs[update_type] = | 
 |             (temp_frame_probs_simulation->warped_probs[update_type] + | 
 |              new_prob) >> | 
 |             1; | 
 |         // Copy temp_frame_probs_simulation to temp_frame_probs | 
 |         for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; | 
 |              update_type_idx++) { | 
 |           temp_frame_probs->warped_probs[update_type_idx] = | 
 |               temp_frame_probs_simulation->warped_probs[update_type_idx]; | 
 |         } | 
 |       } | 
 |       update_warp_frameprobs = 0; | 
 |     } | 
 | #endif  // CONFIG_FPMT_TEST | 
 |     // Track the frame probabilities of parallel encode frames to update | 
 |     // during postencode stage. | 
 |     if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { | 
 |       update_warp_frameprobs = 0; | 
 |       cpi->frame_new_probs[cpi->num_frame_recode].warped_probs[update_type] = | 
 |           new_prob; | 
 |     } | 
 |     if (update_warp_frameprobs) { | 
 |       frame_probs->warped_probs[update_type] = | 
 |           (frame_probs->warped_probs[update_type] + new_prob) >> 1; | 
 |     } | 
 |   } | 
 |  | 
 |   if (cm->current_frame.frame_type != KEY_FRAME && | 
 |       cpi->sf.interp_sf.adaptive_interp_filter_search == 2 && | 
 |       features->interp_filter == SWITCHABLE) { | 
 |     const FRAME_UPDATE_TYPE update_type = | 
 |         get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
 |  | 
 |     for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { | 
 |       int sum = 0; | 
 |       int j; | 
 |       int left = 1536; | 
 |  | 
 |       for (j = 0; j < SWITCHABLE_FILTERS; j++) { | 
 |         sum += cpi->td.counts->switchable_interp[i][j]; | 
 |       } | 
 |  | 
 |       for (j = SWITCHABLE_FILTERS - 1; j >= 0; j--) { | 
 |         int update_interpfilter_frameprobs = 1; | 
 |         const int new_prob = | 
 |             sum ? 1536 * cpi->td.counts->switchable_interp[i][j] / sum | 
 |                 : (j ? 0 : 1536); | 
 | #if CONFIG_FPMT_TEST | 
 |         if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { | 
 |           if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == | 
 |               0) { | 
 |             int prob = (temp_frame_probs_simulation | 
 |                             ->switchable_interp_probs[update_type][i][j] + | 
 |                         new_prob) >> | 
 |                        1; | 
 |             left -= prob; | 
 |             if (j == 0) prob += left; | 
 |             temp_frame_probs_simulation | 
 |                 ->switchable_interp_probs[update_type][i][j] = prob; | 
 |             // Copy temp_frame_probs_simulation to temp_frame_probs | 
 |             for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; | 
 |                  update_type_idx++) { | 
 |               temp_frame_probs->switchable_interp_probs[update_type_idx][i][j] = | 
 |                   temp_frame_probs_simulation | 
 |                       ->switchable_interp_probs[update_type_idx][i][j]; | 
 |             } | 
 |           } | 
 |           update_interpfilter_frameprobs = 0; | 
 |         } | 
 | #endif  // CONFIG_FPMT_TEST | 
 |         // Track the frame probabilities of parallel encode frames to update | 
 |         // during postencode stage. | 
 |         if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { | 
 |           update_interpfilter_frameprobs = 0; | 
 |           cpi->frame_new_probs[cpi->num_frame_recode] | 
 |               .switchable_interp_probs[update_type][i][j] = new_prob; | 
 |         } | 
 |         if (update_interpfilter_frameprobs) { | 
 |           int prob = (frame_probs->switchable_interp_probs[update_type][i][j] + | 
 |                       new_prob) >> | 
 |                      1; | 
 |           left -= prob; | 
 |           if (j == 0) prob += left; | 
 |           frame_probs->switchable_interp_probs[update_type][i][j] = prob; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   if (hash_table_created) { | 
 |     av1_hash_table_destroy(&intrabc_hash_info->intrabc_hash_table); | 
 |   } | 
 | } | 
 |  | 
 | /*!\brief Setup reference frame buffers and encode a frame | 
 |  * | 
 |  * \ingroup high_level_algo | 
 |  * \callgraph | 
 |  * \callergraph | 
 |  * | 
 |  * \param[in]    cpi    Top-level encoder structure | 
 |  */ | 
 | void av1_encode_frame(AV1_COMP *cpi) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   CurrentFrame *const current_frame = &cm->current_frame; | 
 |   FeatureFlags *const features = &cm->features; | 
 |   RD_COUNTS *const rdc = &cpi->td.rd_counts; | 
 |   const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
 |   // Indicates whether or not to use a default reduced set for ext-tx | 
 |   // rather than the potential full set of 16 transforms | 
 |   features->reduced_tx_set_used = oxcf->txfm_cfg.reduced_tx_type_set; | 
 |  | 
 |   // Make sure segment_id is no larger than last_active_segid. | 
 |   if (cm->seg.enabled && cm->seg.update_map) { | 
 |     const int mi_rows = cm->mi_params.mi_rows; | 
 |     const int mi_cols = cm->mi_params.mi_cols; | 
 |     const int last_active_segid = cm->seg.last_active_segid; | 
 |     uint8_t *map = cpi->enc_seg.map; | 
 |     for (int mi_row = 0; mi_row < mi_rows; ++mi_row) { | 
 |       for (int mi_col = 0; mi_col < mi_cols; ++mi_col) { | 
 |         map[mi_col] = AOMMIN(map[mi_col], last_active_segid); | 
 |       } | 
 |       map += mi_cols; | 
 |     } | 
 |   } | 
 |  | 
 |   av1_setup_frame_buf_refs(cm); | 
 |   enforce_max_ref_frames(cpi, &cpi->ref_frame_flags, | 
 |                          cm->cur_frame->ref_display_order_hint, | 
 |                          cm->current_frame.display_order_hint); | 
 |   set_rel_frame_dist(&cpi->common, &cpi->ref_frame_dist_info, | 
 |                      cpi->ref_frame_flags); | 
 |   av1_setup_frame_sign_bias(cm); | 
 |  | 
 |   // If global motion is enabled, then every buffer which is used as either | 
 |   // a source or a ref frame should have an image pyramid allocated. | 
 |   // Check here so that issues can be caught early in debug mode | 
 | #if !defined(NDEBUG) && !CONFIG_REALTIME_ONLY | 
 |   if (cpi->alloc_pyramid) { | 
 |     assert(cpi->source->y_pyramid); | 
 |     for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { | 
 |       const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame); | 
 |       if (buf != NULL) { | 
 |         assert(buf->buf.y_pyramid); | 
 |       } | 
 |     } | 
 |   } | 
 | #endif  // !defined(NDEBUG) && !CONFIG_REALTIME_ONLY | 
 |  | 
 | #if CONFIG_MISMATCH_DEBUG | 
 |   mismatch_reset_frame(av1_num_planes(cm)); | 
 | #endif | 
 |  | 
 |   rdc->newmv_or_intra_blocks = 0; | 
 |   cpi->palette_pixel_num = 0; | 
 |  | 
 |   if (cpi->sf.hl_sf.frame_parameter_update || | 
 |       cpi->sf.rt_sf.use_comp_ref_nonrd) { | 
 |     if (frame_is_intra_only(cm)) | 
 |       current_frame->reference_mode = SINGLE_REFERENCE; | 
 |     else | 
 |       current_frame->reference_mode = REFERENCE_MODE_SELECT; | 
 |  | 
 |     features->interp_filter = SWITCHABLE; | 
 |     if (cm->tiles.large_scale) features->interp_filter = EIGHTTAP_REGULAR; | 
 |  | 
 |     features->switchable_motion_mode = is_switchable_motion_mode_allowed( | 
 |         features->allow_warped_motion, oxcf->motion_mode_cfg.enable_obmc); | 
 |  | 
 |     rdc->compound_ref_used_flag = 0; | 
 |     rdc->skip_mode_used_flag = 0; | 
 |  | 
 |     encode_frame_internal(cpi); | 
 |  | 
 |     if (current_frame->reference_mode == REFERENCE_MODE_SELECT) { | 
 |       // Use a flag that includes 4x4 blocks | 
 |       if (rdc->compound_ref_used_flag == 0) { | 
 |         current_frame->reference_mode = SINGLE_REFERENCE; | 
 | #if CONFIG_ENTROPY_STATS | 
 |         av1_zero(cpi->td.counts->comp_inter); | 
 | #endif  // CONFIG_ENTROPY_STATS | 
 |       } | 
 |     } | 
 |     // Re-check on the skip mode status as reference mode may have been | 
 |     // changed. | 
 |     SkipModeInfo *const skip_mode_info = ¤t_frame->skip_mode_info; | 
 |     if (frame_is_intra_only(cm) || | 
 |         current_frame->reference_mode == SINGLE_REFERENCE) { | 
 |       skip_mode_info->skip_mode_allowed = 0; | 
 |       skip_mode_info->skip_mode_flag = 0; | 
 |     } | 
 |     if (skip_mode_info->skip_mode_flag && rdc->skip_mode_used_flag == 0) | 
 |       skip_mode_info->skip_mode_flag = 0; | 
 |  | 
 |     if (!cm->tiles.large_scale) { | 
 |       if (features->tx_mode == TX_MODE_SELECT && | 
 |           cpi->td.mb.txfm_search_info.txb_split_count == 0) | 
 |         features->tx_mode = TX_MODE_LARGEST; | 
 |     } | 
 |   } else { | 
 |     // This is needed if real-time speed setting is changed on the fly | 
 |     // from one using compound prediction to one using single reference. | 
 |     if (current_frame->reference_mode == REFERENCE_MODE_SELECT) | 
 |       current_frame->reference_mode = SINGLE_REFERENCE; | 
 |     encode_frame_internal(cpi); | 
 |   } | 
 | } |