blob: c57f0a55ddaea3c1f96977837c348a3cd7ca43c3 [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "vp9/common/vp9_loopfilter.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_reconinter.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_seg_common.h"
static void lf_init_lut(loop_filter_info_n *lfi) {
lfi->mode_lf_lut[DC_PRED] = 0;
lfi->mode_lf_lut[D45_PRED] = 0;
lfi->mode_lf_lut[D135_PRED] = 0;
lfi->mode_lf_lut[D117_PRED] = 0;
lfi->mode_lf_lut[D153_PRED] = 0;
lfi->mode_lf_lut[D27_PRED] = 0;
lfi->mode_lf_lut[D63_PRED] = 0;
lfi->mode_lf_lut[V_PRED] = 0;
lfi->mode_lf_lut[H_PRED] = 0;
lfi->mode_lf_lut[TM_PRED] = 0;
lfi->mode_lf_lut[ZEROMV] = 0;
lfi->mode_lf_lut[NEARESTMV] = 1;
lfi->mode_lf_lut[NEARMV] = 1;
lfi->mode_lf_lut[NEWMV] = 1;
}
static void update_sharpness(loop_filter_info_n *const lfi, int sharpness_lvl) {
int lvl;
// For each possible value for the loop filter fill out limits
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
// Set loop filter paramaeters that control sharpness.
int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
if (sharpness_lvl > 0) {
if (block_inside_limit > (9 - sharpness_lvl))
block_inside_limit = (9 - sharpness_lvl);
}
if (block_inside_limit < 1)
block_inside_limit = 1;
vpx_memset(lfi->lim[lvl], block_inside_limit, SIMD_WIDTH);
vpx_memset(lfi->mblim[lvl], (2 * (lvl + 2) + block_inside_limit),
SIMD_WIDTH);
}
}
void vp9_loop_filter_init(VP9_COMMON *cm, struct loopfilter *lf) {
loop_filter_info_n *lfi = &cm->lf_info;
int i;
// init limits for given sharpness
update_sharpness(lfi, lf->sharpness_level);
lf->last_sharpness_level = lf->sharpness_level;
// init LUT for lvl and hev thr picking
lf_init_lut(lfi);
// init hev threshold const vectors
for (i = 0; i < 4; i++)
vpx_memset(lfi->hev_thr[i], i, SIMD_WIDTH);
}
void vp9_loop_filter_frame_init(VP9_COMMON *const cm, MACROBLOCKD *const xd,
int default_filt_lvl) {
int seg;
// n_shift is the a multiplier for lf_deltas
// the multiplier is 1 for when filter_lvl is between 0 and 31;
// 2 when filter_lvl is between 32 and 63
const int n_shift = default_filt_lvl >> 5;
loop_filter_info_n *const lfi = &cm->lf_info;
struct loopfilter *lf = &xd->lf;
// update limits if sharpness has changed
if (lf->last_sharpness_level != lf->sharpness_level) {
update_sharpness(lfi, lf->sharpness_level);
lf->last_sharpness_level = lf->sharpness_level;
}
for (seg = 0; seg < MAX_SEGMENTS; seg++) {
int lvl_seg = default_filt_lvl, ref, mode, intra_lvl;
// Set the baseline filter values for each segment
if (vp9_segfeature_active(&xd->seg, seg, SEG_LVL_ALT_LF)) {
const int data = vp9_get_segdata(&xd->seg, seg, SEG_LVL_ALT_LF);
lvl_seg = xd->seg.abs_delta == SEGMENT_ABSDATA
? data
: clamp(default_filt_lvl + data, 0, MAX_LOOP_FILTER);
}
if (!lf->mode_ref_delta_enabled) {
// we could get rid of this if we assume that deltas are set to
// zero when not in use; encoder always uses deltas
vpx_memset(lfi->lvl[seg][0], lvl_seg, 4 * 4);
continue;
}
intra_lvl = lvl_seg + (lf->ref_deltas[INTRA_FRAME] << n_shift);
lfi->lvl[seg][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER);
for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref)
for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
const int inter_lvl = lvl_seg + (lf->ref_deltas[ref] << n_shift)
+ (lf->mode_deltas[mode] << n_shift);
lfi->lvl[seg][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER);
}
}
}
static int build_lfi(const loop_filter_info_n *const lfi_n,
const MB_MODE_INFO *const mbmi,
struct loop_filter_info *const lfi) {
const int seg = mbmi->segment_id;
const int ref = mbmi->ref_frame[0];
const int mode = lfi_n->mode_lf_lut[mbmi->mode];
const int filter_level = lfi_n->lvl[seg][ref][mode];
if (filter_level > 0) {
lfi->mblim = lfi_n->mblim[filter_level];
lfi->lim = lfi_n->lim[filter_level];
lfi->hev_thr = lfi_n->hev_thr[filter_level >> 4];
return 1;
} else {
return 0;
}
}
static void filter_selectively_vert(uint8_t *s, int pitch,
unsigned int mask_16x16,
unsigned int mask_8x8,
unsigned int mask_4x4,
unsigned int mask_4x4_int,
const struct loop_filter_info *lfi) {
unsigned int mask;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
mask; mask >>= 1) {
if (mask & 1) {
if (mask_16x16 & 1) {
vp9_mb_lpf_vertical_edge_w(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
assert(!(mask_8x8 & 1));
assert(!(mask_4x4 & 1));
assert(!(mask_4x4_int & 1));
} else if (mask_8x8 & 1) {
vp9_mbloop_filter_vertical_edge(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, 1);
assert(!(mask_16x16 & 1));
assert(!(mask_4x4 & 1));
} else if (mask_4x4 & 1) {
vp9_loop_filter_vertical_edge(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, 1);
assert(!(mask_16x16 & 1));
assert(!(mask_8x8 & 1));
}
}
if (mask_4x4_int & 1)
vp9_loop_filter_vertical_edge(s + 4, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, 1);
s += 8;
lfi++;
mask_16x16 >>= 1;
mask_8x8 >>= 1;
mask_4x4 >>= 1;
mask_4x4_int >>= 1;
}
}
static void filter_selectively_horiz(uint8_t *s, int pitch,
unsigned int mask_16x16,
unsigned int mask_8x8,
unsigned int mask_4x4,
unsigned int mask_4x4_int,
int only_4x4_1,
const struct loop_filter_info *lfi) {
unsigned int mask;
int count;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
mask; mask >>= count) {
count = 1;
if (mask & 1) {
if (!only_4x4_1) {
if (mask_16x16 & 1) {
if ((mask_16x16 & 3) == 3) {
vp9_mb_lpf_horizontal_edge_w(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, 2);
count = 2;
} else {
vp9_mb_lpf_horizontal_edge_w(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, 1);
}
assert(!(mask_8x8 & 1));
assert(!(mask_4x4 & 1));
assert(!(mask_4x4_int & 1));
} else if (mask_8x8 & 1) {
vp9_mbloop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, 1);
assert(!(mask_16x16 & 1));
assert(!(mask_4x4 & 1));
} else if (mask_4x4 & 1) {
vp9_loop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, 1);
assert(!(mask_16x16 & 1));
assert(!(mask_8x8 & 1));
}
}
if (mask_4x4_int & 1)
vp9_loop_filter_horizontal_edge(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, 1);
}
s += 8 * count;
lfi += count;
mask_16x16 >>= count;
mask_8x8 >>= count;
mask_4x4 >>= count;
mask_4x4_int >>= count;
}
}
static void filter_block_plane(VP9_COMMON *const cm,
struct macroblockd_plane *const plane,
const MODE_INFO *mi,
int mi_row, int mi_col) {
const int ss_x = plane->subsampling_x;
const int ss_y = plane->subsampling_y;
const int row_step = 1 << ss_x;
const int col_step = 1 << ss_y;
const int row_step_stride = cm->mode_info_stride * row_step;
struct buf_2d *const dst = &plane->dst;
uint8_t* const dst0 = dst->buf;
unsigned int mask_16x16[MI_BLOCK_SIZE] = {0};
unsigned int mask_8x8[MI_BLOCK_SIZE] = {0};
unsigned int mask_4x4[MI_BLOCK_SIZE] = {0};
unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0};
struct loop_filter_info lfi[MI_BLOCK_SIZE][MI_BLOCK_SIZE];
int r, c;
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
unsigned int mask_16x16_c = 0;
unsigned int mask_8x8_c = 0;
unsigned int mask_4x4_c = 0;
unsigned int border_mask;
// Determine the vertical edges that need filtering
for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
const int skip_this = mi[c].mbmi.mb_skip_coeff
&& mi[c].mbmi.ref_frame[0] != INTRA_FRAME;
// left edge of current unit is block/partition edge -> no skip
const int block_edge_left = b_width_log2(mi[c].mbmi.sb_type) ?
!(c & ((1 << (b_width_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1;
const int skip_this_c = skip_this && !block_edge_left;
// top edge of current unit is block/partition edge -> no skip
const int block_edge_above = b_height_log2(mi[c].mbmi.sb_type) ?
!(r & ((1 << (b_height_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1;
const int skip_this_r = skip_this && !block_edge_above;
const TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV)
? get_uv_tx_size(&mi[c].mbmi)
: mi[c].mbmi.txfm_size;
const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1;
const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
// Filter level can vary per MI
if (!build_lfi(&cm->lf_info, &mi[c].mbmi, lfi[r] + (c >> ss_x)))
continue;
// Build masks based on the transform size of each block
if (tx_size == TX_32X32) {
if (!skip_this_c && ((c >> ss_x) & 3) == 0) {
if (!skip_border_4x4_c)
mask_16x16_c |= 1 << (c >> ss_x);
else
mask_8x8_c |= 1 << (c >> ss_x);
}
if (!skip_this_r && ((r >> ss_y) & 3) == 0) {
if (!skip_border_4x4_r)
mask_16x16[r] |= 1 << (c >> ss_x);
else
mask_8x8[r] |= 1 << (c >> ss_x);
}
} else if (tx_size == TX_16X16) {
if (!skip_this_c && ((c >> ss_x) & 1) == 0) {
if (!skip_border_4x4_c)
mask_16x16_c |= 1 << (c >> ss_x);
else
mask_8x8_c |= 1 << (c >> ss_x);
}
if (!skip_this_r && ((r >> ss_y) & 1) == 0) {
if (!skip_border_4x4_r)
mask_16x16[r] |= 1 << (c >> ss_x);
else
mask_8x8[r] |= 1 << (c >> ss_x);
}
} else {
// force 8x8 filtering on 32x32 boundaries
if (!skip_this_c) {
if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0)
mask_8x8_c |= 1 << (c >> ss_x);
else
mask_4x4_c |= 1 << (c >> ss_x);
}
if (!skip_this_r) {
if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0)
mask_8x8[r] |= 1 << (c >> ss_x);
else
mask_4x4[r] |= 1 << (c >> ss_x);
}
if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c)
mask_4x4_int[r] |= 1 << (c >> ss_x);
}
}
// Disable filtering on the leftmost column
border_mask = ~(mi_col == 0);
filter_selectively_vert(dst->buf, dst->stride,
mask_16x16_c & border_mask,
mask_8x8_c & border_mask,
mask_4x4_c & border_mask,
mask_4x4_int[r], lfi[r]);
dst->buf += 8 * dst->stride;
mi += row_step_stride;
}
// Now do horizontal pass
dst->buf = dst0;
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];
filter_selectively_horiz(dst->buf, dst->stride,
mask_16x16[r],
mask_8x8[r],
mask_4x4[r],
mask_4x4_int_r, mi_row + r == 0, lfi[r]);
dst->buf += 8 * dst->stride;
}
}
void vp9_loop_filter_rows(const YV12_BUFFER_CONFIG *frame_buffer,
VP9_COMMON *cm, MACROBLOCKD *xd,
int start, int stop, int y_only) {
const int num_planes = y_only ? 1 : MAX_MB_PLANE;
int mi_row, mi_col;
for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) {
MODE_INFO* const mi = cm->mi + mi_row * cm->mode_info_stride;
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
int plane;
setup_dst_planes(xd, frame_buffer, mi_row, mi_col);
for (plane = 0; plane < num_planes; ++plane) {
filter_block_plane(cm, &xd->plane[plane], mi + mi_col, mi_row, mi_col);
}
}
}
}
void vp9_loop_filter_frame(VP9_COMMON *cm, MACROBLOCKD *xd,
int frame_filter_level, int y_only) {
if (!frame_filter_level) return;
vp9_loop_filter_frame_init(cm, xd, frame_filter_level);
vp9_loop_filter_rows(cm->frame_to_show, cm, xd,
0, cm->mi_rows, y_only);
}
int vp9_loop_filter_worker(void *arg1, void *arg2) {
LFWorkerData *const lf_data = (LFWorkerData*)arg1;
(void)arg2;
vp9_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, &lf_data->xd,
lf_data->start, lf_data->stop, lf_data->y_only);
return 1;
}