|  | /* | 
|  | * Copyright (c) 2019, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <float.h> | 
|  |  | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  |  | 
|  | #include "aom_ports/system_state.h" | 
|  |  | 
|  | #include "av1/common/enums.h" | 
|  | #include "av1/common/reconinter.h" | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | #include "av1/common/cnn.h" | 
|  | #include "av1/encoder/partition_model_weights.h" | 
|  | #include "av1/encoder/partition_cnn_weights.h" | 
|  | #endif | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | #include "av1/common/idct.h" | 
|  | #include "av1/encoder/hybrid_fwd_txfm.h" | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | #include "av1/encoder/encoder.h" | 
|  |  | 
|  | #include "av1/encoder/partition_search_utils.h" | 
|  | #include "av1/encoder/partition_strategy.h" | 
|  | #include "av1/encoder/rdopt.h" | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | static void simple_motion_search_prune_part_features( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, float *features, | 
|  | int features_to_get); | 
|  | #endif | 
|  |  | 
|  | static INLINE int convert_bsize_to_idx(BLOCK_SIZE bsize) { | 
|  | switch (bsize) { | 
|  | case BLOCK_128X128: return 0; | 
|  | case BLOCK_64X64: return 1; | 
|  | case BLOCK_32X32: return 2; | 
|  | case BLOCK_16X16: return 3; | 
|  | case BLOCK_8X8: return 4; | 
|  | default: assert(0 && "Invalid bsize"); return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | // TODO(chiyotsai@google.com): This is very much a work in progress. We still | 
|  | // need to the following: | 
|  | //   -- add support for hdres | 
|  | //   -- add support for pruning rectangular partitions | 
|  | //   -- use reconstructed pixels instead of source pixels for padding | 
|  | //   -- use chroma pixels in addition to luma pixels | 
|  | void av1_intra_mode_cnn_partition(const AV1_COMMON *const cm, MACROBLOCK *x, | 
|  | int bsize, int quad_tree_idx, | 
|  | int *partition_none_allowed, | 
|  | int *partition_horz_allowed, | 
|  | int *partition_vert_allowed, | 
|  | int *do_rectangular_split, | 
|  | int *do_square_split) { | 
|  | assert(cm->seq_params.sb_size >= BLOCK_64X64 && | 
|  | "Invalid sb_size for intra_cnn!"); | 
|  | const int bsize_idx = convert_bsize_to_idx(bsize); | 
|  |  | 
|  | if (bsize == BLOCK_128X128) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Precompute the CNN part and cache the result in MACROBLOCK | 
|  | if (bsize == BLOCK_64X64 && !x->cnn_output_valid) { | 
|  | aom_clear_system_state(); | 
|  | const CNN_CONFIG *cnn_config = &av1_intra_mode_cnn_partition_cnn_config; | 
|  |  | 
|  | // Prepare the output | 
|  | const CNN_THREAD_DATA thread_data = { .num_workers = 1, .workers = NULL }; | 
|  | const int num_outputs = 4; | 
|  | const int output_dims[4] = { 1, 2, 4, 8 }; | 
|  | const int out_chs[4] = { CNN_BRANCH_0_OUT_CH, CNN_BRANCH_1_OUT_CH, | 
|  | CNN_BRANCH_2_OUT_CH, CNN_BRANCH_3_OUT_CH }; | 
|  | float *output_buffer[CNN_TOT_OUT_CH]; | 
|  |  | 
|  | float **cur_output_buf = output_buffer; | 
|  | float *curr_buf_ptr = x->cnn_buffer; | 
|  | for (int output_idx = 0; output_idx < num_outputs; output_idx++) { | 
|  | const int num_chs = out_chs[output_idx]; | 
|  | const int ch_size = output_dims[output_idx] * output_dims[output_idx]; | 
|  | for (int ch = 0; ch < num_chs; ch++) { | 
|  | cur_output_buf[ch] = curr_buf_ptr; | 
|  | curr_buf_ptr += ch_size; | 
|  | } | 
|  | cur_output_buf += num_chs; | 
|  | } | 
|  |  | 
|  | CNN_MULTI_OUT output = { | 
|  | .num_outputs = 4, | 
|  | .output_channels = out_chs, | 
|  | .output_strides = output_dims, | 
|  | .output_buffer = output_buffer, | 
|  | }; | 
|  |  | 
|  | // Prepare the input | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | const int bit_depth = xd->bd; | 
|  | const int dc_q = av1_dc_quant_QTX(x->qindex, 0, | 
|  | #if CONFIG_EXTQUANT | 
|  | cm->seq_params.base_y_dc_delta_q, | 
|  | #endif  // CONFIG_EXTQUANT | 
|  | bit_depth) >> | 
|  | (bit_depth - 8); | 
|  | x->log_q = logf(1.0f + (float)((int64_t)dc_q * (int64_t)dc_q) / | 
|  | (256 << (2 * QUANT_TABLE_BITS))); | 
|  | x->log_q = (x->log_q - av1_intra_mode_cnn_partition_mean[0]) / | 
|  | av1_intra_mode_cnn_partition_std[0]; | 
|  |  | 
|  | const int width = 65, height = 65, | 
|  | stride = x->plane[AOM_PLANE_Y].src.stride; | 
|  |  | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | uint16_t *image[1] = { | 
|  | CONVERT_TO_SHORTPTR(x->plane[AOM_PLANE_Y].src.buf) - stride - 1 | 
|  | }; | 
|  |  | 
|  | av1_cnn_predict_img_multi_out_highbd(image, width, height, stride, | 
|  | cnn_config, &thread_data, bit_depth, | 
|  | &output); | 
|  | } else { | 
|  | uint8_t *image[1] = { x->plane[AOM_PLANE_Y].src.buf - stride - 1 }; | 
|  |  | 
|  | av1_cnn_predict_img_multi_out(image, width, height, stride, cnn_config, | 
|  | &thread_data, &output); | 
|  | } | 
|  |  | 
|  | x->cnn_output_valid = 1; | 
|  | } | 
|  |  | 
|  | if (!x->cnn_output_valid) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const NN_CONFIG *dnn_configs[5] = { | 
|  | NULL, | 
|  | &av1_intra_mode_cnn_partition_branch_0_dnn_config, | 
|  | &av1_intra_mode_cnn_partition_branch_1_dnn_config, | 
|  | &av1_intra_mode_cnn_partition_branch_2_dnn_config, | 
|  | &av1_intra_mode_cnn_partition_branch_3_dnn_config, | 
|  | }; | 
|  |  | 
|  | const NN_CONFIG *dnn_config = dnn_configs[bsize_idx]; | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | float dnn_features[100]; | 
|  | float logits[4] = { 0.0f }; | 
|  |  | 
|  | const float *branch_0 = x->cnn_buffer; | 
|  | const float *branch_1 = branch_0 + CNN_BRANCH_0_OUT_SIZE; | 
|  | const float *branch_2 = branch_1 + CNN_BRANCH_1_OUT_SIZE; | 
|  | const float *branch_3 = branch_2 + CNN_BRANCH_2_OUT_SIZE; | 
|  |  | 
|  | if (bsize == BLOCK_64X64) { | 
|  | int f_idx = 0; | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_0_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_0[ch_idx]; | 
|  | } | 
|  |  | 
|  | const int spa_stride = 2 * 2; | 
|  | for (int lin_idx = 0; lin_idx < spa_stride; lin_idx++) { | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_1[lin_idx + ch_idx * spa_stride]; | 
|  | } | 
|  | } | 
|  | dnn_features[f_idx++] = x->log_q; | 
|  | } else if (bsize == BLOCK_32X32) { | 
|  | int f_idx = 0; | 
|  | for (int idx = 0; idx < CNN_BRANCH_0_OUT_CH; idx++) { | 
|  | dnn_features[f_idx++] = branch_0[idx]; | 
|  | } | 
|  |  | 
|  | const int curr_lin_idx = quad_to_linear_1[quad_tree_idx - 1]; | 
|  | const int spa_stride = 2 * 2; | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_1[curr_lin_idx + ch_idx * spa_stride]; | 
|  | } | 
|  | dnn_features[f_idx++] = x->log_q; | 
|  | } else if (bsize == BLOCK_16X16) { | 
|  | int f_idx = 0; | 
|  | const int prev_quad_idx = (quad_tree_idx - 1) / 4; | 
|  | const int prev_lin_idx = quad_to_linear_1[prev_quad_idx - 1]; | 
|  | const int prev_spa_stride = 2 * 2; | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_1[prev_lin_idx + ch_idx * prev_spa_stride]; | 
|  | } | 
|  |  | 
|  | const int curr_lin_idx = quad_to_linear_2[quad_tree_idx - 5]; | 
|  | const int spa_stride = 4 * 4; | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_2[curr_lin_idx + ch_idx * spa_stride]; | 
|  | } | 
|  | dnn_features[f_idx++] = x->log_q; | 
|  | } else if (bsize == BLOCK_8X8) { | 
|  | int f_idx = 0; | 
|  | const int prev_quad_idx = (quad_tree_idx - 1) / 4; | 
|  | const int prev_lin_idx = quad_to_linear_2[prev_quad_idx - 5]; | 
|  | const int prev_spa_stride = 4 * 4; | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_2[prev_lin_idx + ch_idx * prev_spa_stride]; | 
|  | } | 
|  |  | 
|  | const int curr_lin_idx = quad_to_linear_3[quad_tree_idx - 21]; | 
|  | const int spa_stride = 8 * 8; | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_3_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_3[curr_lin_idx + ch_idx * spa_stride]; | 
|  | } | 
|  | dnn_features[f_idx++] = x->log_q; | 
|  | } else { | 
|  | assert(0 && "Invalid bsize in intra_cnn partition"); | 
|  | } | 
|  |  | 
|  | // Make decision | 
|  | av1_nn_predict(dnn_features, dnn_config, 1, logits); | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720; | 
|  | const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; | 
|  | float split_only_thresh = 100.0f, no_split_thresh = -100.0f; | 
|  | if (is_720p_or_larger) { | 
|  | split_only_thresh = | 
|  | av1_intra_mode_cnn_partition_split_thresh_hdres[bsize_idx]; | 
|  | no_split_thresh = | 
|  | av1_intra_mode_cnn_partition_no_split_thresh_hdres[bsize_idx]; | 
|  | } else if (is_480p_or_larger) { | 
|  | split_only_thresh = | 
|  | av1_intra_mode_cnn_partition_split_thresh_midres[bsize_idx]; | 
|  | no_split_thresh = | 
|  | av1_intra_mode_cnn_partition_no_split_thresh_midres[bsize_idx]; | 
|  | } else { | 
|  | split_only_thresh = | 
|  | av1_intra_mode_cnn_partition_split_thresh_lowres[bsize_idx]; | 
|  | no_split_thresh = | 
|  | av1_intra_mode_cnn_partition_no_split_thresh_lowres[bsize_idx]; | 
|  | } | 
|  |  | 
|  | if (logits[0] > split_only_thresh) { | 
|  | *partition_none_allowed = 0; | 
|  | *partition_horz_allowed = 0; | 
|  | *partition_vert_allowed = 0; | 
|  | *do_rectangular_split = 0; | 
|  | } | 
|  |  | 
|  | if (logits[0] < no_split_thresh) { | 
|  | *do_square_split = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_simple_motion_search_based_split( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, int *partition_none_allowed, | 
|  | int *partition_horz_allowed, int *partition_vert_allowed, | 
|  | int *do_rectangular_split, int *do_square_split) { | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720; | 
|  | const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; | 
|  | const int bsize_idx = convert_bsize_to_idx(bsize); | 
|  |  | 
|  | assert(bsize_idx >= 0 && bsize_idx <= 4 && | 
|  | "Invalid bsize in simple_motion_search_based_split"); | 
|  |  | 
|  | float split_only_thresh = 100.0f, no_split_thresh = -100.0f; | 
|  |  | 
|  | const float *ml_mean = av1_simple_motion_search_split_mean[bsize_idx]; | 
|  | const float *ml_std = av1_simple_motion_search_split_std[bsize_idx]; | 
|  | const NN_CONFIG *nn_config = | 
|  | av1_simple_motion_search_split_nn_config[bsize_idx]; | 
|  | if (is_720p_or_larger) { | 
|  | split_only_thresh = av1_simple_motion_search_split_hdres_thresh[bsize_idx]; | 
|  | no_split_thresh = av1_simple_motion_search_split_hdres_no_thresh[bsize_idx]; | 
|  | } else if (is_480p_or_larger) { | 
|  | split_only_thresh = av1_simple_motion_search_split_midres_thresh[bsize_idx]; | 
|  | no_split_thresh = | 
|  | av1_simple_motion_search_split_midres_no_thresh[bsize_idx]; | 
|  | } else { | 
|  | split_only_thresh = av1_simple_motion_search_split_lowres_thresh[bsize_idx]; | 
|  | no_split_thresh = | 
|  | av1_simple_motion_search_split_lowres_no_thresh[bsize_idx]; | 
|  | } | 
|  |  | 
|  | float features[FEATURE_SIZE_SMS_SPLIT] = { 0.0f }; | 
|  | simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col, | 
|  | bsize, features, | 
|  | FEATURE_SMS_SPLIT_MODEL_FLAG); | 
|  | for (int idx = 0; idx < FEATURE_SIZE_SMS_SPLIT; idx++) { | 
|  | features[idx] = (features[idx] - ml_mean[idx]) / ml_std[idx]; | 
|  | } | 
|  |  | 
|  | float score = 0.0f; | 
|  |  | 
|  | av1_nn_predict(features, nn_config, 1, &score); | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | if (score > split_only_thresh) { | 
|  | *partition_none_allowed = 0; | 
|  | *partition_horz_allowed = 0; | 
|  | *partition_vert_allowed = 0; | 
|  | *do_rectangular_split = 0; | 
|  | } | 
|  |  | 
|  | if (cpi->sf.simple_motion_search_split >= 2 && score < no_split_thresh) { | 
|  | *do_square_split = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Given a list of ref frames in refs, performs simple_motion_search on each of | 
|  | // the refs and returns the ref with the smallest sse. Returns -1 if none of the | 
|  | // ref in the list is available. Also stores the best sse and var in best_sse, | 
|  | // best_var, respectively. If save_mv is 0, don't update mv_ref_fulls in | 
|  | // sms_tree. If save_mv is 1, update mv_ref_fulls under sms_tree and the | 
|  | // subtrees. | 
|  | static int simple_motion_search_get_best_ref( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, const int *const refs, | 
|  | int num_refs, int use_subpixel, int save_mv, unsigned int *best_sse, | 
|  | unsigned int *best_var) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | int best_ref = -1; | 
|  |  | 
|  | if (mi_col >= cm->mi_cols || mi_row >= cm->mi_rows) { | 
|  | // If the whole block is outside of the image, set the var and sse to 0. | 
|  | *best_var = 0; | 
|  | *best_sse = 0; | 
|  |  | 
|  | return best_ref; | 
|  | } | 
|  |  | 
|  | // Otherwise do loop through the reference frames and find the one with the | 
|  | // minimum SSE | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | const MV *mv_ref_fulls = sms_tree->mv_ref_fulls; | 
|  |  | 
|  | const int num_planes = 1; | 
|  |  | 
|  | *best_sse = INT_MAX; | 
|  |  | 
|  | for (int ref_idx = 0; ref_idx < num_refs; ref_idx++) { | 
|  | const int ref = refs[ref_idx]; | 
|  |  | 
|  | if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref]) { | 
|  | unsigned int curr_sse = 0, curr_var = 0; | 
|  | av1_simple_motion_search(cpi, x, mi_row, mi_col, bsize, ref, | 
|  | mv_ref_fulls[ref], num_planes, use_subpixel); | 
|  | curr_var = cpi->fn_ptr[bsize].vf( | 
|  | x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].dst.buf, | 
|  | xd->plane[0].dst.stride, &curr_sse); | 
|  | if (curr_sse < *best_sse) { | 
|  | *best_sse = curr_sse; | 
|  | *best_var = curr_var; | 
|  | best_ref = ref; | 
|  | } | 
|  |  | 
|  | if (save_mv) { | 
|  | const int new_mv_row = x->best_mv.as_mv.row / 8; | 
|  | const int new_mv_col = x->best_mv.as_mv.col / 8; | 
|  |  | 
|  | sms_tree->mv_ref_fulls[ref].row = new_mv_row; | 
|  | sms_tree->mv_ref_fulls[ref].col = new_mv_col; | 
|  |  | 
|  | if (bsize >= BLOCK_8X8) { | 
|  | for (int r_idx = 0; r_idx < 4; r_idx++) { | 
|  | // Propagate the new motion vectors to a lower level | 
|  | SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx]; | 
|  | sub_tree->mv_ref_fulls[ref].row = new_mv_row; | 
|  | sub_tree->mv_ref_fulls[ref].col = new_mv_col; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return best_ref; | 
|  | } | 
|  |  | 
|  | // Collects features using simple_motion_search and store them in features. The | 
|  | // features are also cached in SIMPLE_MOTION_DATA_TREE. By default, the features | 
|  | // collected are the sse and var from the subblocks flagged by features_to_get. | 
|  | // Furthermore, if features is not NULL, then 7 more features are appended to | 
|  | // the end of features: | 
|  | //  - log(1.0 + dc_q ** 2) | 
|  | //  - whether an above macroblock exists | 
|  | //  - width of above macroblock | 
|  | //  - height of above macroblock | 
|  | //  - whether a left marcoblock exists | 
|  | //  - width of left macroblock | 
|  | //  - height of left macroblock | 
|  | static void simple_motion_search_prune_part_features( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, float *features, | 
|  | int features_to_get) { | 
|  | const int w_mi = mi_size_wide[bsize]; | 
|  | const int h_mi = mi_size_high[bsize]; | 
|  | assert(mi_size_wide[bsize] == mi_size_high[bsize]); | 
|  | assert(cpi->ref_frame_flags & av1_ref_frame_flag_list[LAST_FRAME] || | 
|  | cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]); | 
|  |  | 
|  | // Setting up motion search | 
|  | const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME | 
|  | : LAST_FRAME }; | 
|  | const int num_refs = 1; | 
|  | const int use_subpixel = 1; | 
|  |  | 
|  | // Doing whole block first to update the mv | 
|  | if (!sms_tree->sms_none_valid && features_to_get & FEATURE_SMS_NONE_FLAG) { | 
|  | simple_motion_search_get_best_ref(cpi, x, sms_tree, mi_row, mi_col, bsize, | 
|  | ref_list, num_refs, use_subpixel, 1, | 
|  | &sms_tree->sms_none_feat[0], | 
|  | &sms_tree->sms_none_feat[1]); | 
|  | sms_tree->sms_none_valid = 1; | 
|  | } | 
|  |  | 
|  | // Split subblocks | 
|  | if (features_to_get & FEATURE_SMS_SPLIT_FLAG) { | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | for (int r_idx = 0; r_idx < 4; r_idx++) { | 
|  | const int sub_mi_col = mi_col + (r_idx & 1) * w_mi / 2; | 
|  | const int sub_mi_row = mi_row + (r_idx >> 1) * h_mi / 2; | 
|  | SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx]; | 
|  |  | 
|  | if (!sub_tree->sms_none_valid) { | 
|  | simple_motion_search_get_best_ref( | 
|  | cpi, x, sub_tree, sub_mi_row, sub_mi_col, subsize, ref_list, | 
|  | num_refs, use_subpixel, 1, &sub_tree->sms_none_feat[0], | 
|  | &sub_tree->sms_none_feat[1]); | 
|  | sub_tree->sms_none_valid = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rectangular subblocks | 
|  | if (!sms_tree->sms_rect_valid && features_to_get & FEATURE_SMS_RECT_FLAG) { | 
|  | // Horz subblock | 
|  | BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | for (int r_idx = 0; r_idx < 2; r_idx++) { | 
|  | const int sub_mi_col = mi_col + 0; | 
|  | const int sub_mi_row = mi_row + r_idx * h_mi / 2; | 
|  |  | 
|  | simple_motion_search_get_best_ref( | 
|  | cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs, | 
|  | use_subpixel, 0, &sms_tree->sms_rect_feat[2 * r_idx], | 
|  | &sms_tree->sms_rect_feat[2 * r_idx + 1]); | 
|  | } | 
|  |  | 
|  | // Vert subblock | 
|  | subsize = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | for (int r_idx = 0; r_idx < 2; r_idx++) { | 
|  | const int sub_mi_col = mi_col + r_idx * w_mi / 2; | 
|  | const int sub_mi_row = mi_row + 0; | 
|  |  | 
|  | simple_motion_search_get_best_ref( | 
|  | cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs, | 
|  | use_subpixel, 0, &sms_tree->sms_rect_feat[4 + 2 * r_idx], | 
|  | &sms_tree->sms_rect_feat[4 + 2 * r_idx + 1]); | 
|  | } | 
|  | sms_tree->sms_rect_valid = 1; | 
|  | } | 
|  |  | 
|  | if (!features) return; | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | int f_idx = 0; | 
|  | if (features_to_get & FEATURE_SMS_NONE_FLAG) { | 
|  | for (int sub_idx = 0; sub_idx < 2; sub_idx++) { | 
|  | features[f_idx++] = logf(1.0f + sms_tree->sms_none_feat[sub_idx]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (features_to_get & FEATURE_SMS_SPLIT_FLAG) { | 
|  | for (int sub_idx = 0; sub_idx < 4; sub_idx++) { | 
|  | SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[sub_idx]; | 
|  | features[f_idx++] = logf(1.0f + sub_tree->sms_none_feat[0]); | 
|  | features[f_idx++] = logf(1.0f + sub_tree->sms_none_feat[1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (features_to_get & FEATURE_SMS_RECT_FLAG) { | 
|  | for (int sub_idx = 0; sub_idx < 8; sub_idx++) { | 
|  | features[f_idx++] = logf(1.0f + sms_tree->sms_rect_feat[sub_idx]); | 
|  | } | 
|  | } | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | set_offsets_for_motion_search(cpi, x, mi_row, mi_col, bsize); | 
|  |  | 
|  | // Q_INDEX | 
|  | const int dc_q = av1_dc_quant_QTX(x->qindex, 0, | 
|  | #if CONFIG_EXTQUANT | 
|  | cpi->common.seq_params.base_y_dc_delta_q, | 
|  | #endif  // CONFIG_EXTQUANT | 
|  | xd->bd) >> | 
|  | (xd->bd - 8); | 
|  | features[f_idx++] = logf(1.0f + (float)((int64_t)dc_q * (int64_t)dc_q) / | 
|  | (256 << (2 * QUANT_TABLE_BITS))); | 
|  |  | 
|  | // Neighbor stuff | 
|  | const int has_above = !!xd->above_mbmi; | 
|  | const int has_left = !!xd->left_mbmi; | 
|  | const BLOCK_SIZE above_bsize = has_above ? xd->above_mbmi->sb_type : bsize; | 
|  | const BLOCK_SIZE left_bsize = has_left ? xd->left_mbmi->sb_type : bsize; | 
|  | features[f_idx++] = (float)has_above; | 
|  | features[f_idx++] = (float)mi_size_wide_log2[above_bsize]; | 
|  | features[f_idx++] = (float)mi_size_high_log2[above_bsize]; | 
|  | features[f_idx++] = (float)has_left; | 
|  | features[f_idx++] = (float)mi_size_wide_log2[left_bsize]; | 
|  | features[f_idx++] = (float)mi_size_high_log2[left_bsize]; | 
|  | } | 
|  |  | 
|  | void av1_simple_motion_search_prune_part( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, int *partition_none_allowed, | 
|  | int *partition_horz_allowed, int *partition_vert_allowed, | 
|  | int *do_square_split, int *do_rectangular_split, int *prune_horz, | 
|  | int *prune_vert) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | // Get model parameters | 
|  | const NN_CONFIG *nn_config = NULL; | 
|  | const float *prune_thresh = NULL, *only_thresh = NULL; | 
|  | const float *ml_mean = NULL, *ml_std = NULL; | 
|  | float features[FEATURE_SIZE_SMS_PRUNE_PART] = { 0.0f }; | 
|  |  | 
|  | if (bsize == BLOCK_128X128) { | 
|  | nn_config = &av1_simple_motion_search_prune_part_nn_config_128; | 
|  | ml_mean = av1_simple_motion_search_prune_part_mean_128; | 
|  | ml_std = av1_simple_motion_search_prune_part_std_128; | 
|  | prune_thresh = av1_simple_motion_search_prune_part_prune_thresh_128; | 
|  | only_thresh = av1_simple_motion_search_prune_part_only_thresh_128; | 
|  | } else if (bsize == BLOCK_64X64) { | 
|  | nn_config = &av1_simple_motion_search_prune_part_nn_config_64; | 
|  | ml_mean = av1_simple_motion_search_prune_part_mean_64; | 
|  | ml_std = av1_simple_motion_search_prune_part_std_64; | 
|  | prune_thresh = av1_simple_motion_search_prune_part_prune_thresh_64; | 
|  | only_thresh = av1_simple_motion_search_prune_part_only_thresh_64; | 
|  | } else if (bsize == BLOCK_32X32) { | 
|  | nn_config = &av1_simple_motion_search_prune_part_nn_config_32; | 
|  | ml_mean = av1_simple_motion_search_prune_part_mean_32; | 
|  | ml_std = av1_simple_motion_search_prune_part_std_32; | 
|  | prune_thresh = av1_simple_motion_search_prune_part_prune_thresh_32; | 
|  | only_thresh = av1_simple_motion_search_prune_part_only_thresh_32; | 
|  | } else if (bsize == BLOCK_16X16) { | 
|  | nn_config = &av1_simple_motion_search_prune_part_nn_config_16; | 
|  | ml_mean = av1_simple_motion_search_prune_part_mean_16; | 
|  | ml_std = av1_simple_motion_search_prune_part_std_16; | 
|  | prune_thresh = av1_simple_motion_search_prune_part_prune_thresh_16; | 
|  | only_thresh = av1_simple_motion_search_prune_part_only_thresh_16; | 
|  | } else if (bsize == BLOCK_8X8) { | 
|  | nn_config = &av1_simple_motion_search_prune_part_nn_config_8; | 
|  | ml_mean = av1_simple_motion_search_prune_part_mean_8; | 
|  | ml_std = av1_simple_motion_search_prune_part_std_8; | 
|  | prune_thresh = av1_simple_motion_search_prune_part_prune_thresh_8; | 
|  | only_thresh = av1_simple_motion_search_prune_part_only_thresh_8; | 
|  | } else { | 
|  | assert(0 && "Unexpected block size in simple_motion_prune_part"); | 
|  | } | 
|  |  | 
|  | // If there is no valid threshold, return immediately. | 
|  | if (!nn_config || (prune_thresh[PARTITION_HORZ] == 0.0f && | 
|  | prune_thresh[PARTITION_VERT] == 0.0f)) { | 
|  | return; | 
|  | } | 
|  | if (bsize < BLOCK_8X8) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get features | 
|  | simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col, | 
|  | bsize, features, | 
|  | FEATURE_SMS_PRUNE_PART_FLAG); | 
|  | for (int f_idx = 0; f_idx < FEATURE_SIZE_SMS_PRUNE_PART; f_idx++) { | 
|  | features[f_idx] = (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx]; | 
|  | } | 
|  |  | 
|  | // Get probabilities | 
|  | float scores[EXT_PARTITION_TYPES] = { 0.0f }, | 
|  | probs[EXT_PARTITION_TYPES] = { 0.0f }; | 
|  | const int num_classes = (bsize == BLOCK_128X128 || bsize == BLOCK_8X8) | 
|  | ? PARTITION_TYPES | 
|  | : EXT_PARTITION_TYPES; | 
|  |  | 
|  | av1_nn_predict(features, nn_config, 1, scores); | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | av1_nn_softmax(scores, probs, num_classes); | 
|  |  | 
|  | // Determine if we should prune rectangular partitions. | 
|  | if (cpi->sf.simple_motion_search_prune_rect && !frame_is_intra_only(cm) && | 
|  | (*partition_horz_allowed || *partition_vert_allowed) && | 
|  | bsize >= BLOCK_8X8 && !av1_superres_scaled(cm)) { | 
|  | *prune_horz = probs[PARTITION_HORZ] <= prune_thresh[PARTITION_HORZ]; | 
|  | *prune_vert = probs[PARTITION_VERT] <= prune_thresh[PARTITION_VERT]; | 
|  | } | 
|  |  | 
|  | // Silence compiler warnings | 
|  | (void)only_thresh; | 
|  | (void)partition_none_allowed; | 
|  | (void)do_square_split; | 
|  | (void)do_rectangular_split; | 
|  | } | 
|  |  | 
|  | // Early terminates PARTITION_NONE using simple_motion_search features and the | 
|  | // rate, distortion, and rdcost of PARTITION_NONE. This is only called when: | 
|  | //  - The frame is a show frame | 
|  | //  - The frame is not intra only | 
|  | //  - The current bsize is > BLOCK_8X8 | 
|  | //  - blk_row + blk_height/2 < total_rows and blk_col + blk_width/2 < total_cols | 
|  | void av1_simple_motion_search_early_term_none( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, const RD_STATS *none_rdc, | 
|  | int *early_terminate) { | 
|  | // TODO(chiyotsai@google.com): There are other features we can extract from | 
|  | // PARTITION_NONE. Play with this later. | 
|  | float features[FEATURE_SIZE_SMS_TERM_NONE] = { 0.0f }; | 
|  | simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col, | 
|  | bsize, features, | 
|  | FEATURE_SMS_PRUNE_PART_FLAG); | 
|  | int f_idx = FEATURE_SIZE_SMS_PRUNE_PART; | 
|  |  | 
|  | features[f_idx++] = logf(1.0f + (float)none_rdc->rate); | 
|  | features[f_idx++] = logf(1.0f + (float)none_rdc->dist); | 
|  | features[f_idx++] = logf(1.0f + (float)none_rdc->rdcost); | 
|  |  | 
|  | assert(f_idx == FEATURE_SIZE_SMS_TERM_NONE); | 
|  |  | 
|  | const float *ml_mean = NULL; | 
|  | const float *ml_std = NULL; | 
|  | const float *ml_model = NULL; | 
|  |  | 
|  | if (bsize == BLOCK_128X128) { | 
|  | ml_mean = av1_simple_motion_search_term_none_mean_128; | 
|  | ml_std = av1_simple_motion_search_term_none_std_128; | 
|  | ml_model = av1_simple_motion_search_term_none_model_128; | 
|  | } else if (bsize == BLOCK_64X64) { | 
|  | ml_mean = av1_simple_motion_search_term_none_mean_64; | 
|  | ml_std = av1_simple_motion_search_term_none_std_64; | 
|  | ml_model = av1_simple_motion_search_term_none_model_64; | 
|  | } else if (bsize == BLOCK_32X32) { | 
|  | ml_mean = av1_simple_motion_search_term_none_mean_32; | 
|  | ml_std = av1_simple_motion_search_term_none_std_32; | 
|  | ml_model = av1_simple_motion_search_term_none_model_32; | 
|  | } else if (bsize == BLOCK_16X16) { | 
|  | ml_mean = av1_simple_motion_search_term_none_mean_16; | 
|  | ml_std = av1_simple_motion_search_term_none_std_16; | 
|  | ml_model = av1_simple_motion_search_term_none_model_16; | 
|  | } else { | 
|  | assert(0 && "Unexpected block size in simple_motion_term_none"); | 
|  | } | 
|  |  | 
|  | if (ml_model) { | 
|  | float score = 0.0f; | 
|  | for (f_idx = 0; f_idx < FEATURE_SIZE_SMS_TERM_NONE; f_idx++) { | 
|  | score += | 
|  | ml_model[f_idx] * (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx]; | 
|  | } | 
|  | score += ml_model[FEATURE_SIZE_SMS_TERM_NONE]; | 
|  |  | 
|  | if (score >= 0.0f) { | 
|  | *early_terminate = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_get_max_min_partition_features(AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | int mi_row, int mi_col, | 
|  | float *features) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | const BLOCK_SIZE sb_size = cm->seq_params.sb_size; | 
|  |  | 
|  | assert(sb_size == BLOCK_128X128); | 
|  |  | 
|  | int f_idx = 0; | 
|  |  | 
|  | const int dc_q = av1_dc_quant_QTX(x->qindex, 0, | 
|  | #if CONFIG_EXTQUANT | 
|  | cm->seq_params.base_y_dc_delta_q, | 
|  | #endif  // CONFIG_EXTQUANT | 
|  | xd->bd) >> | 
|  | (xd->bd - 8); | 
|  | aom_clear_system_state(); | 
|  | const float log_q_sq = logf(1.0f + (float)((int64_t)dc_q * (int64_t)dc_q) / | 
|  | (256 << (2 * QUANT_TABLE_BITS))); | 
|  |  | 
|  | // Perform full-pixel single motion search in Y plane of 16x16 mbs in the sb | 
|  | float sum_mv_row_sq = 0; | 
|  | float sum_mv_row = 0; | 
|  | float min_abs_mv_row = FLT_MAX; | 
|  | float max_abs_mv_row = 0; | 
|  |  | 
|  | float sum_mv_col_sq = 0; | 
|  | float sum_mv_col = 0; | 
|  | float min_abs_mv_col = FLT_MAX; | 
|  | float max_abs_mv_col = 0; | 
|  |  | 
|  | float sum_log_sse_sq = 0; | 
|  | float sum_log_sse = 0; | 
|  | float min_log_sse = FLT_MAX; | 
|  | float max_log_sse = 0; | 
|  |  | 
|  | const BLOCK_SIZE mb_size = BLOCK_16X16; | 
|  | const int mb_rows = block_size_high[sb_size] / block_size_high[mb_size]; | 
|  | const int mb_cols = block_size_wide[sb_size] / block_size_wide[mb_size]; | 
|  | const int mb_in_mi_size_high_log2 = mi_size_high_log2[mb_size]; | 
|  | const int mb_in_mi_size_wide_log2 = mi_size_wide_log2[mb_size]; | 
|  |  | 
|  | for (int mb_row = 0; mb_row < mb_rows; mb_row++) | 
|  | for (int mb_col = 0; mb_col < mb_cols; mb_col++) { | 
|  | const int this_mi_row = mi_row + (mb_row << mb_in_mi_size_high_log2); | 
|  | const int this_mi_col = mi_col + (mb_col << mb_in_mi_size_wide_log2); | 
|  | unsigned int sse = 0; | 
|  | unsigned int var = 0; | 
|  | const MV ref_mv_full = { .row = 0, .col = 0 }; | 
|  |  | 
|  | av1_simple_motion_sse_var(cpi, x, this_mi_row, this_mi_col, mb_size, | 
|  | ref_mv_full, 0, &sse, &var); | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | const float mv_row = (float)(x->best_mv.as_mv.row / 8); | 
|  | const float mv_col = (float)(x->best_mv.as_mv.col / 8); | 
|  | const float log_sse = logf(1.0f + (float)sse); | 
|  | const float abs_mv_row = fabsf(mv_row); | 
|  | const float abs_mv_col = fabsf(mv_col); | 
|  |  | 
|  | sum_mv_row_sq += mv_row * mv_row; | 
|  | sum_mv_row += mv_row; | 
|  | sum_mv_col_sq += mv_col * mv_col; | 
|  | sum_mv_col += mv_col; | 
|  |  | 
|  | if (abs_mv_row < min_abs_mv_row) min_abs_mv_row = abs_mv_row; | 
|  | if (abs_mv_row > max_abs_mv_row) max_abs_mv_row = abs_mv_row; | 
|  | if (abs_mv_col < min_abs_mv_col) min_abs_mv_col = abs_mv_col; | 
|  | if (abs_mv_col > max_abs_mv_col) max_abs_mv_col = abs_mv_col; | 
|  |  | 
|  | sum_log_sse_sq += log_sse * log_sse; | 
|  | sum_log_sse += log_sse; | 
|  | if (log_sse < min_log_sse) min_log_sse = log_sse; | 
|  | if (log_sse > max_log_sse) max_log_sse = log_sse; | 
|  | } | 
|  | aom_clear_system_state(); | 
|  | const float avg_mv_row = sum_mv_row / 64.0f; | 
|  | const float var_mv_row = sum_mv_row_sq / 64.0f - avg_mv_row * avg_mv_row; | 
|  |  | 
|  | const float avg_mv_col = sum_mv_col / 64.0f; | 
|  | const float var_mv_col = sum_mv_col_sq / 64.0f - avg_mv_col * avg_mv_col; | 
|  |  | 
|  | const float avg_log_sse = sum_log_sse / 64.0f; | 
|  | const float var_log_sse = sum_log_sse_sq / 64.0f - avg_log_sse * avg_log_sse; | 
|  |  | 
|  | features[f_idx++] = avg_log_sse; | 
|  | features[f_idx++] = avg_mv_col; | 
|  | features[f_idx++] = avg_mv_row; | 
|  | features[f_idx++] = log_q_sq; | 
|  | features[f_idx++] = max_abs_mv_col; | 
|  | features[f_idx++] = max_abs_mv_row; | 
|  | features[f_idx++] = max_log_sse; | 
|  | features[f_idx++] = min_abs_mv_col; | 
|  | features[f_idx++] = min_abs_mv_row; | 
|  | features[f_idx++] = min_log_sse; | 
|  | features[f_idx++] = var_log_sse; | 
|  | features[f_idx++] = var_mv_col; | 
|  | features[f_idx++] = var_mv_row; | 
|  |  | 
|  | assert(f_idx == FEATURE_SIZE_MAX_MIN_PART_PRED); | 
|  | } | 
|  |  | 
|  | BLOCK_SIZE av1_predict_max_partition(AV1_COMP *const cpi, MACROBLOCK *const x, | 
|  | const float *features) { | 
|  | float scores[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f }, | 
|  | probs[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f }; | 
|  | const NN_CONFIG *nn_config = &av1_max_part_pred_nn_config; | 
|  |  | 
|  | assert(cpi->sf.auto_max_partition_based_on_simple_motion != NOT_IN_USE); | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | av1_nn_predict(features, nn_config, 1, scores); | 
|  | av1_nn_softmax(scores, probs, MAX_NUM_CLASSES_MAX_MIN_PART_PRED); | 
|  |  | 
|  | int result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; | 
|  | if (cpi->sf.auto_max_partition_based_on_simple_motion == DIRECT_PRED) { | 
|  | result = 0; | 
|  | float max_prob = probs[0]; | 
|  | for (int i = 1; i < MAX_NUM_CLASSES_MAX_MIN_PART_PRED; ++i) { | 
|  | if (probs[i] > max_prob) { | 
|  | max_prob = probs[i]; | 
|  | result = i; | 
|  | } | 
|  | } | 
|  | } else if (cpi->sf.auto_max_partition_based_on_simple_motion == | 
|  | RELAXED_PRED) { | 
|  | for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0; | 
|  | --result) { | 
|  | if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) { | 
|  | probs[result] += probs[result + 1]; | 
|  | } | 
|  | if (probs[result] > 0.2) break; | 
|  | } | 
|  | } else if (cpi->sf.auto_max_partition_based_on_simple_motion == ADAPT_PRED) { | 
|  | const BLOCK_SIZE sb_size = cpi->common.seq_params.sb_size; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | // TODO(debargha): x->source_variance is unavailable at this point, | 
|  | // so compute. The redundant recomputation later can be removed. | 
|  | const unsigned int source_variance = | 
|  | is_cur_buf_hbd(xd) | 
|  | ? av1_high_get_sby_perpixel_variance(cpi, &x->plane[0].src, sb_size, | 
|  | xd->bd) | 
|  | : av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, sb_size); | 
|  | if (source_variance > 16) { | 
|  | const double thresh = source_variance < 128 ? 0.05 : 0.1; | 
|  | for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0; | 
|  | --result) { | 
|  | if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) { | 
|  | probs[result] += probs[result + 1]; | 
|  | } | 
|  | if (probs[result] > thresh) break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return (BLOCK_SIZE)((result + 2) * 3); | 
|  | } | 
|  |  | 
|  | // Get the minimum partition block width and height(in log scale) under a | 
|  | // SIMPLE_MOTION_DATA_TREE. | 
|  | static void get_min_bsize(const SIMPLE_MOTION_DATA_TREE *sms_tree, int *min_bw, | 
|  | int *min_bh) { | 
|  | if (!sms_tree) return; | 
|  |  | 
|  | const BLOCK_SIZE bsize = sms_tree->block_size; | 
|  | if (bsize == BLOCK_4X4) { | 
|  | *min_bw = 0; | 
|  | *min_bh = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | PARTITION_TYPE part_type = sms_tree->partitioning; | 
|  | if (part_type == PARTITION_INVALID) return; | 
|  |  | 
|  | if (part_type == PARTITION_SPLIT) { | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | get_min_bsize(sms_tree->split[i], min_bw, min_bh); | 
|  | } | 
|  | } else { | 
|  | #if !CONFIG_EXT_RECUR_PARTITIONS | 
|  | if (part_type == PARTITION_HORZ_A || part_type == PARTITION_HORZ_B || | 
|  | part_type == PARTITION_VERT_A || part_type == PARTITION_VERT_B) | 
|  | part_type = PARTITION_SPLIT; | 
|  | #endif  // !CONFIG_EXT_RECUR_PARTITIONS | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, part_type); | 
|  | if (subsize != BLOCK_INVALID) { | 
|  | *min_bw = AOMMIN(*min_bw, mi_size_wide_log2[subsize]); | 
|  | *min_bh = AOMMIN(*min_bh, mi_size_high_log2[subsize]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void add_rd_feature(int64_t rd, int64_t best_rd, float *features, | 
|  | int *feature_idx) { | 
|  | const int rd_valid = rd > 0 && rd < INT64_MAX; | 
|  | const float rd_ratio = rd_valid ? (float)rd / best_rd : 1.0f; | 
|  | features[(*feature_idx)++] = (float)rd_valid; | 
|  | features[(*feature_idx)++] = rd_ratio; | 
|  | } | 
|  |  | 
|  | #define FEATURES 31 | 
|  | void av1_ml_early_term_after_split(AV1_COMP *const cpi, MACROBLOCK *const x, | 
|  | SIMPLE_MOTION_DATA_TREE *const sms_tree, | 
|  | BLOCK_SIZE bsize, int64_t best_rd, | 
|  | int64_t part_none_rd, int64_t part_split_rd, | 
|  | int64_t *split_block_rd, int mi_row, | 
|  | int mi_col, | 
|  | int *const terminate_partition_search) { | 
|  | if (best_rd <= 0 || best_rd == INT64_MAX || *terminate_partition_search) | 
|  | return; | 
|  |  | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; | 
|  | const NN_CONFIG *nn_config = NULL; | 
|  | float thresh = -1e6; | 
|  | switch (bsize) { | 
|  | case BLOCK_128X128: break; | 
|  | case BLOCK_64X64: | 
|  | nn_config = &av1_early_term_after_split_nnconfig_64; | 
|  | thresh = is_480p_or_larger ? -2.0f : -1.2f; | 
|  | break; | 
|  | case BLOCK_32X32: | 
|  | nn_config = &av1_early_term_after_split_nnconfig_32; | 
|  | thresh = is_480p_or_larger ? -2.6f : -2.3f; | 
|  | break; | 
|  | case BLOCK_16X16: | 
|  | nn_config = &av1_early_term_after_split_nnconfig_16; | 
|  | thresh = is_480p_or_larger ? -2.0f : -2.4f; | 
|  | break; | 
|  | case BLOCK_8X8: | 
|  | nn_config = &av1_early_term_after_split_nnconfig_8; | 
|  | thresh = is_480p_or_larger ? -1.0f : -1.4f; | 
|  | break; | 
|  | case BLOCK_4X4: break; | 
|  | default: | 
|  | assert(0 && "Invalid block size in av1_ml_early_term_after_split()."); | 
|  | break; | 
|  | } | 
|  | if (!nn_config) return; | 
|  |  | 
|  | // Use more conservative threshold for level 1. | 
|  | if (cpi->sf.ml_early_term_after_part_split_level < 2) thresh -= 0.3f; | 
|  |  | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int dc_q = av1_dc_quant_QTX(x->qindex, 0, | 
|  | #if CONFIG_EXTQUANT | 
|  | cm->seq_params.base_y_dc_delta_q, | 
|  | #endif  // CONFIG_EXTQUANT | 
|  | xd->bd) >> | 
|  | (xd->bd - 8); | 
|  | const int bs = block_size_wide[bsize]; | 
|  | int f_idx = 0; | 
|  | float features[FEATURES] = { 0.0f }; | 
|  |  | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | features[f_idx++] = logf(1.0f + (float)dc_q / (4 << QUANT_TABLE_BITS)); | 
|  | features[f_idx++] = logf(1.0f + (float)best_rd / bs / bs / 1024.0f); | 
|  |  | 
|  | add_rd_feature(part_none_rd, best_rd, features, &f_idx); | 
|  | add_rd_feature(part_split_rd, best_rd, features, &f_idx); | 
|  |  | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | add_rd_feature(split_block_rd[i], best_rd, features, &f_idx); | 
|  | int min_bw = MAX_SB_SIZE_LOG2; | 
|  | int min_bh = MAX_SB_SIZE_LOG2; | 
|  | get_min_bsize(sms_tree->split[i], &min_bw, &min_bh); | 
|  | features[f_idx++] = (float)min_bw; | 
|  | features[f_idx++] = (float)min_bh; | 
|  | } | 
|  |  | 
|  | simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col, | 
|  | bsize, NULL, | 
|  | FEATURE_SMS_PRUNE_PART_FLAG); | 
|  |  | 
|  | features[f_idx++] = logf(1.0f + (float)sms_tree->sms_none_feat[1]); | 
|  |  | 
|  | features[f_idx++] = logf(1.0f + (float)sms_tree->split[0]->sms_none_feat[1]); | 
|  | features[f_idx++] = logf(1.0f + (float)sms_tree->split[1]->sms_none_feat[1]); | 
|  | features[f_idx++] = logf(1.0f + (float)sms_tree->split[2]->sms_none_feat[1]); | 
|  | features[f_idx++] = logf(1.0f + (float)sms_tree->split[3]->sms_none_feat[1]); | 
|  |  | 
|  | features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[1]); | 
|  | features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[3]); | 
|  | features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[5]); | 
|  | features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[7]); | 
|  |  | 
|  | assert(f_idx == FEATURES); | 
|  |  | 
|  | float score = 0.0f; | 
|  | av1_nn_predict(features, nn_config, 1, &score); | 
|  | // Score is indicator of confidence that we should NOT terminate. | 
|  | if (score < thresh) *terminate_partition_search = 1; | 
|  | } | 
|  | #undef FEATURES | 
|  |  | 
|  | void av1_ml_prune_rect_partition(const AV1_COMP *const cpi, | 
|  | const MACROBLOCK *const x, BLOCK_SIZE bsize, | 
|  | int64_t best_rd, int64_t none_rd, | 
|  | int64_t *split_rd, int *const dst_prune_horz, | 
|  | int *const dst_prune_vert) { | 
|  | if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return; | 
|  | best_rd = AOMMAX(best_rd, 1); | 
|  | const NN_CONFIG *nn_config = NULL; | 
|  | const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f }; | 
|  | float cur_thresh = 0.0f; | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: | 
|  | nn_config = &av1_rect_partition_nnconfig_8; | 
|  | cur_thresh = prob_thresholds[0]; | 
|  | break; | 
|  | case BLOCK_16X16: | 
|  | nn_config = &av1_rect_partition_nnconfig_16; | 
|  | cur_thresh = prob_thresholds[1]; | 
|  | break; | 
|  | case BLOCK_32X32: | 
|  | nn_config = &av1_rect_partition_nnconfig_32; | 
|  | cur_thresh = prob_thresholds[2]; | 
|  | break; | 
|  | case BLOCK_64X64: | 
|  | nn_config = &av1_rect_partition_nnconfig_64; | 
|  | cur_thresh = prob_thresholds[3]; | 
|  | break; | 
|  | case BLOCK_128X128: | 
|  | nn_config = &av1_rect_partition_nnconfig_128; | 
|  | cur_thresh = prob_thresholds[4]; | 
|  | break; | 
|  | default: assert(0 && "Unexpected bsize."); | 
|  | } | 
|  | if (!nn_config) return; | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | // 1. Compute input features | 
|  | float features[9]; | 
|  |  | 
|  | // RD cost ratios | 
|  | for (int i = 0; i < 5; i++) features[i] = 1.0f; | 
|  | if (none_rd > 0 && none_rd < 1000000000) | 
|  | features[0] = (float)none_rd / (float)best_rd; | 
|  | for (int i = 0; i < 4; i++) { | 
|  | if (split_rd[i] > 0 && split_rd[i] < 1000000000) | 
|  | features[1 + i] = (float)split_rd[i] / (float)best_rd; | 
|  | } | 
|  |  | 
|  | // Variance ratios | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | int whole_block_variance; | 
|  | if (is_cur_buf_hbd(xd)) { | 
|  | whole_block_variance = av1_high_get_sby_perpixel_variance( | 
|  | cpi, &x->plane[0].src, bsize, xd->bd); | 
|  | } else { | 
|  | whole_block_variance = | 
|  | av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); | 
|  | } | 
|  | whole_block_variance = AOMMAX(whole_block_variance, 1); | 
|  |  | 
|  | int split_variance[4]; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | struct buf_2d buf; | 
|  | buf.stride = x->plane[0].src.stride; | 
|  | const int bw = block_size_wide[bsize]; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | const int x_idx = (i & 1) * bw / 2; | 
|  | const int y_idx = (i >> 1) * bw / 2; | 
|  | buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride; | 
|  | if (is_cur_buf_hbd(xd)) { | 
|  | split_variance[i] = | 
|  | av1_high_get_sby_perpixel_variance(cpi, &buf, subsize, xd->bd); | 
|  | } else { | 
|  | split_variance[i] = av1_get_sby_perpixel_variance(cpi, &buf, subsize); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 4; i++) | 
|  | features[5 + i] = (float)split_variance[i] / (float)whole_block_variance; | 
|  |  | 
|  | // 2. Do the prediction and prune 0-2 partitions based on their probabilities | 
|  | float raw_scores[3] = { 0.0f }; | 
|  | av1_nn_predict(features, nn_config, 1, raw_scores); | 
|  | aom_clear_system_state(); | 
|  | float probs[3] = { 0.0f }; | 
|  | av1_nn_softmax(raw_scores, probs, 3); | 
|  |  | 
|  | // probs[0] is the probability of the fact that both rectangular partitions | 
|  | // are worse than current best_rd | 
|  | if (probs[1] <= cur_thresh) (*dst_prune_horz) = 1; | 
|  | if (probs[2] <= cur_thresh) (*dst_prune_vert) = 1; | 
|  | } | 
|  |  | 
|  | // Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be | 
|  | // considered. | 
|  | void av1_ml_prune_ab_partition(BLOCK_SIZE bsize, int part_ctx, int var_ctx, | 
|  | int64_t best_rd, int64_t horz_rd[2], | 
|  | int64_t vert_rd[2], int64_t split_rd[4], | 
|  | int *const horza_partition_allowed, | 
|  | int *const horzb_partition_allowed, | 
|  | int *const verta_partition_allowed, | 
|  | int *const vertb_partition_allowed) { | 
|  | if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return; | 
|  | const NN_CONFIG *nn_config = NULL; | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: nn_config = NULL; break; | 
|  | case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break; | 
|  | case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break; | 
|  | case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break; | 
|  | case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break; | 
|  | default: assert(0 && "Unexpected bsize."); | 
|  | } | 
|  | if (!nn_config) return; | 
|  |  | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | // Generate features. | 
|  | float features[10]; | 
|  | int feature_index = 0; | 
|  | features[feature_index++] = (float)part_ctx; | 
|  | features[feature_index++] = (float)var_ctx; | 
|  | const int rdcost = (int)AOMMIN(INT_MAX, best_rd); | 
|  | int sub_block_rdcost[8] = { 0 }; | 
|  | int rd_index = 0; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)horz_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)vert_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | if (split_rd[i] > 0 && split_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)split_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | // Ratio between the sub-block RD and the whole-block RD. | 
|  | float rd_ratio = 1.0f; | 
|  | if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) | 
|  | rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; | 
|  | features[feature_index++] = rd_ratio; | 
|  | } | 
|  | assert(feature_index == 10); | 
|  |  | 
|  | // Calculate scores using the NN model. | 
|  | float score[16] = { 0.0f }; | 
|  | av1_nn_predict(features, nn_config, 1, score); | 
|  | aom_clear_system_state(); | 
|  | int int_score[16]; | 
|  | int max_score = -1000; | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | int_score[i] = (int)(100 * score[i]); | 
|  | max_score = AOMMAX(int_score[i], max_score); | 
|  | } | 
|  |  | 
|  | // Make decisions based on the model scores. | 
|  | int thresh = max_score; | 
|  | switch (bsize) { | 
|  | case BLOCK_16X16: thresh -= 150; break; | 
|  | case BLOCK_32X32: thresh -= 100; break; | 
|  | default: break; | 
|  | } | 
|  | *horza_partition_allowed = 0; | 
|  | *horzb_partition_allowed = 0; | 
|  | *verta_partition_allowed = 0; | 
|  | *vertb_partition_allowed = 0; | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | if (int_score[i] >= thresh) { | 
|  | if ((i >> 0) & 1) *horza_partition_allowed = 1; | 
|  | if ((i >> 1) & 1) *horzb_partition_allowed = 1; | 
|  | if ((i >> 2) & 1) *verta_partition_allowed = 1; | 
|  | if ((i >> 3) & 1) *vertb_partition_allowed = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define FEATURES 18 | 
|  | #define LABELS 4 | 
|  | // Use a ML model to predict if horz4 and vert4 should be considered. | 
|  | void av1_ml_prune_4_partition(const AV1_COMP *const cpi, MACROBLOCK *const x, | 
|  | BLOCK_SIZE bsize, int part_ctx, int64_t best_rd, | 
|  | int64_t horz_rd[2], int64_t vert_rd[2], | 
|  | int64_t split_rd[4], | 
|  | int *const partition_horz4_allowed, | 
|  | int *const partition_vert4_allowed, | 
|  | unsigned int pb_source_variance, int mi_row, | 
|  | int mi_col) { | 
|  | if (best_rd >= 1000000000) return; | 
|  | const NN_CONFIG *nn_config = NULL; | 
|  | switch (bsize) { | 
|  | case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break; | 
|  | case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break; | 
|  | case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break; | 
|  | default: assert(0 && "Unexpected bsize."); | 
|  | } | 
|  | if (!nn_config) return; | 
|  |  | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | // Generate features. | 
|  | float features[FEATURES]; | 
|  | int feature_index = 0; | 
|  | features[feature_index++] = (float)part_ctx; | 
|  | features[feature_index++] = (float)get_unsigned_bits(pb_source_variance); | 
|  |  | 
|  | const int rdcost = (int)AOMMIN(INT_MAX, best_rd); | 
|  | int sub_block_rdcost[8] = { 0 }; | 
|  | int rd_index = 0; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)horz_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)vert_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | if (split_rd[i] > 0 && split_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)split_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | // Ratio between the sub-block RD and the whole-block RD. | 
|  | float rd_ratio = 1.0f; | 
|  | if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) | 
|  | rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; | 
|  | features[feature_index++] = rd_ratio; | 
|  | } | 
|  |  | 
|  | // Get variance of the 1:4 and 4:1 sub-blocks. | 
|  | unsigned int horz_4_source_var[4] = { 0 }; | 
|  | unsigned int vert_4_source_var[4] = { 0 }; | 
|  | { | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_3); | 
|  | BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_3); | 
|  | #else | 
|  | BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4); | 
|  | BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4); | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  | CHROMA_REF_INFO chr_ref_info = { 1, 0, mi_row, mi_col, bsize, bsize }; | 
|  | av1_setup_src_planes(x, cpi->source, mi_row, mi_col, | 
|  | av1_num_planes(&cpi->common), &chr_ref_info); | 
|  | const int src_stride = x->plane[0].src.stride; | 
|  | uint8_t *src = x->plane[0].src.buf; | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  |  | 
|  | struct buf_2d horz_4_src, vert_4_src; | 
|  | horz_4_src.stride = src_stride; | 
|  | vert_4_src.stride = src_stride; | 
|  |  | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride; | 
|  | vert_4_src.buf = src + i * block_size_wide[vert_4_bs]; | 
|  |  | 
|  | if (is_cur_buf_hbd(xd)) { | 
|  | horz_4_source_var[i] = av1_high_get_sby_perpixel_variance( | 
|  | cpi, &horz_4_src, horz_4_bs, xd->bd); | 
|  | vert_4_source_var[i] = av1_high_get_sby_perpixel_variance( | 
|  | cpi, &vert_4_src, vert_4_bs, xd->bd); | 
|  | } else { | 
|  | horz_4_source_var[i] = | 
|  | av1_get_sby_perpixel_variance(cpi, &horz_4_src, horz_4_bs); | 
|  | vert_4_source_var[i] = | 
|  | av1_get_sby_perpixel_variance(cpi, &vert_4_src, vert_4_bs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const float denom = (float)(pb_source_variance + 1); | 
|  | const float low_b = 0.1f; | 
|  | const float high_b = 10.0f; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | // Ratio between the 4:1 sub-block variance and the whole-block variance. | 
|  | float var_ratio = (float)(horz_4_source_var[i] + 1) / denom; | 
|  | if (var_ratio < low_b) var_ratio = low_b; | 
|  | if (var_ratio > high_b) var_ratio = high_b; | 
|  | features[feature_index++] = var_ratio; | 
|  | } | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | // Ratio between the 1:4 sub-block RD and the whole-block RD. | 
|  | float var_ratio = (float)(vert_4_source_var[i] + 1) / denom; | 
|  | if (var_ratio < low_b) var_ratio = low_b; | 
|  | if (var_ratio > high_b) var_ratio = high_b; | 
|  | features[feature_index++] = var_ratio; | 
|  | } | 
|  | assert(feature_index == FEATURES); | 
|  |  | 
|  | // Calculate scores using the NN model. | 
|  | float score[LABELS] = { 0.0f }; | 
|  | av1_nn_predict(features, nn_config, 1, score); | 
|  | aom_clear_system_state(); | 
|  | int int_score[LABELS]; | 
|  | int max_score = -1000; | 
|  | for (int i = 0; i < LABELS; ++i) { | 
|  | int_score[i] = (int)(100 * score[i]); | 
|  | max_score = AOMMAX(int_score[i], max_score); | 
|  | } | 
|  |  | 
|  | // Make decisions based on the model scores. | 
|  | int thresh = max_score; | 
|  | switch (bsize) { | 
|  | case BLOCK_16X16: thresh -= 500; break; | 
|  | case BLOCK_32X32: thresh -= 500; break; | 
|  | case BLOCK_64X64: thresh -= 200; break; | 
|  | default: break; | 
|  | } | 
|  | *partition_horz4_allowed = 0; | 
|  | *partition_vert4_allowed = 0; | 
|  | for (int i = 0; i < LABELS; ++i) { | 
|  | if (int_score[i] >= thresh) { | 
|  | if ((i >> 0) & 1) *partition_horz4_allowed = 1; | 
|  | if ((i >> 1) & 1) *partition_vert4_allowed = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | #undef FEATURES | 
|  | #undef LABELS | 
|  |  | 
|  | #define FEATURES 4 | 
|  | int av1_ml_predict_breakout(const AV1_COMP *const cpi, BLOCK_SIZE bsize, | 
|  | const MACROBLOCK *const x, | 
|  | const RD_STATS *const rd_stats, | 
|  | unsigned int pb_source_variance) { | 
|  | const NN_CONFIG *nn_config = NULL; | 
|  | int thresh = 0; | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: | 
|  | nn_config = &av1_partition_breakout_nnconfig_8; | 
|  | thresh = cpi->sf.ml_partition_search_breakout_thresh[0]; | 
|  | break; | 
|  | case BLOCK_16X16: | 
|  | nn_config = &av1_partition_breakout_nnconfig_16; | 
|  | thresh = cpi->sf.ml_partition_search_breakout_thresh[1]; | 
|  | break; | 
|  | case BLOCK_32X32: | 
|  | nn_config = &av1_partition_breakout_nnconfig_32; | 
|  | thresh = cpi->sf.ml_partition_search_breakout_thresh[2]; | 
|  | break; | 
|  | case BLOCK_64X64: | 
|  | nn_config = &av1_partition_breakout_nnconfig_64; | 
|  | thresh = cpi->sf.ml_partition_search_breakout_thresh[3]; | 
|  | break; | 
|  | case BLOCK_128X128: | 
|  | nn_config = &av1_partition_breakout_nnconfig_128; | 
|  | thresh = cpi->sf.ml_partition_search_breakout_thresh[4]; | 
|  | break; | 
|  | default: assert(0 && "Unexpected bsize."); | 
|  | } | 
|  | if (!nn_config || thresh < 0) return 0; | 
|  |  | 
|  | // Generate feature values. | 
|  | float features[FEATURES]; | 
|  | int feature_index = 0; | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | const int num_pels_log2 = num_pels_log2_lookup[bsize]; | 
|  | float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX); | 
|  | rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) * | 
|  | rate_f; | 
|  | features[feature_index++] = rate_f; | 
|  |  | 
|  | const float dist_f = | 
|  | (float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2); | 
|  | features[feature_index++] = dist_f; | 
|  |  | 
|  | features[feature_index++] = (float)pb_source_variance; | 
|  |  | 
|  | const int dc_q = (int)x->plane[0].dequant_QTX[0]; | 
|  | features[feature_index++] = | 
|  | (float)(dc_q * dc_q) / (256 << (2 * QUANT_TABLE_BITS)); | 
|  | assert(feature_index == FEATURES); | 
|  |  | 
|  | // Calculate score using the NN model. | 
|  | float score = 0.0f; | 
|  | av1_nn_predict(features, nn_config, 1, &score); | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | // Make decision. | 
|  | return (int)(score * 100) >= thresh; | 
|  | } | 
|  | #undef FEATURES | 
|  |  | 
|  | #if CONFIG_EXT_RECUR_PARTITIONS | 
|  | // Gets the number of sms data in a single dimension | 
|  | static INLINE int get_sms_count_from_length(int mi_length) { | 
|  | switch (mi_length) { | 
|  | case 32: return BLOCK_128_COUNT; | 
|  | case 16: return BLOCK_64_COUNT; | 
|  | case 8: return BLOCK_32_COUNT; | 
|  | case 4: return BLOCK_16_COUNT; | 
|  | case 2: return BLOCK_8_COUNT; | 
|  | case 1: return BLOCK_4_COUNT; | 
|  | default: assert(0 && "Invalid mi_width"); return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Gets the linear index corresponds to the current block. | 
|  | static INLINE int get_sms_arr_1d_idx(int mi_bsize, int mi_in_sb) { | 
|  | int idx = -1; | 
|  | if (mi_bsize == 1) { | 
|  | idx = mi_in_sb; | 
|  | } else { | 
|  | assert(mi_in_sb % (mi_bsize / 2) == 0); | 
|  | idx = mi_in_sb / (mi_bsize / 2); | 
|  | } | 
|  | assert(idx >= 0 && idx < get_sms_count_from_length(mi_bsize)); | 
|  |  | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | #define MAKE_SMS_ARR_SWITCH_CASE(width, height) \ | 
|  | case BLOCK_##width##X##height: {              \ | 
|  | return sms_bufs->b_##width##x##height;      \ | 
|  | } | 
|  |  | 
|  | // Returns the buffer in SimpleMotionDataBufs that correspond to bsize. | 
|  | static INLINE SimpleMotionData *get_sms_arr(SimpleMotionDataBufs *sms_bufs, | 
|  | BLOCK_SIZE bsize) { | 
|  | switch (bsize) { | 
|  | // Square blocks | 
|  | MAKE_SMS_ARR_SWITCH_CASE(128, 128); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(64, 64); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(32, 32); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(16, 16); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(8, 8); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(4, 4); | 
|  |  | 
|  | // 1:2 blocks | 
|  | MAKE_SMS_ARR_SWITCH_CASE(64, 128); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(32, 64); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(16, 32); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(8, 16); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(4, 8); | 
|  |  | 
|  | // 2:1 blocks | 
|  | MAKE_SMS_ARR_SWITCH_CASE(128, 64); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(64, 32); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(32, 16); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(16, 8); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(8, 4); | 
|  |  | 
|  | // 1:4 blocks | 
|  | MAKE_SMS_ARR_SWITCH_CASE(16, 64); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(8, 32); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(4, 16); | 
|  |  | 
|  | // 4:1 blocks | 
|  | MAKE_SMS_ARR_SWITCH_CASE(64, 16); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(32, 8); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(16, 4); | 
|  |  | 
|  | #if CONFIG_FLEX_PARTITION | 
|  | // 1:8 blocks | 
|  | MAKE_SMS_ARR_SWITCH_CASE(8, 64); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(4, 32); | 
|  |  | 
|  | // 8:1 blocks | 
|  | MAKE_SMS_ARR_SWITCH_CASE(64, 8); | 
|  | MAKE_SMS_ARR_SWITCH_CASE(32, 4); | 
|  |  | 
|  | // 16:1 blocks | 
|  | MAKE_SMS_ARR_SWITCH_CASE(64, 4); | 
|  |  | 
|  | // 1:16 blocks | 
|  | MAKE_SMS_ARR_SWITCH_CASE(4, 64); | 
|  | #endif  // CONFIG_FLEX_PARTITION | 
|  |  | 
|  | default: assert(0 && "Invalid bsize"); return NULL; | 
|  | } | 
|  | } | 
|  | #undef MAKE_SMS_ARR_SWITCH_CASE | 
|  |  | 
|  | // Retrieves the SimpleMotionData from SimpleMotionDataBufs | 
|  | SimpleMotionData *av1_get_sms_data_entry(SimpleMotionDataBufs *sms_bufs, | 
|  | int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize, BLOCK_SIZE sb_size) { | 
|  | assert(mi_size_high[sb_size] == mi_size_wide[sb_size]); | 
|  | const int mi_in_sb = mi_size_high[sb_size]; | 
|  | const int mi_row_in_sb = mi_row % mi_in_sb; | 
|  | const int mi_col_in_sb = mi_col % mi_in_sb; | 
|  | const int mi_high = mi_size_high[bsize]; | 
|  | const int mi_wide = mi_size_wide[bsize]; | 
|  |  | 
|  | const int idx_row_in_sb = get_sms_arr_1d_idx(mi_high, mi_row_in_sb); | 
|  | const int idx_col_in_sb = get_sms_arr_1d_idx(mi_wide, mi_col_in_sb); | 
|  | const int arr_stride = get_sms_count_from_length(mi_wide); | 
|  |  | 
|  | SimpleMotionData *sms_arr = get_sms_arr(sms_bufs, bsize); | 
|  |  | 
|  | return &sms_arr[idx_row_in_sb * arr_stride + idx_col_in_sb]; | 
|  | } | 
|  |  | 
|  | void av1_cache_best_partition(SimpleMotionDataBufs *sms_bufs, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize, BLOCK_SIZE sb_size, | 
|  | PARTITION_TYPE partition) { | 
|  | SimpleMotionData *cur_block = | 
|  | av1_get_sms_data_entry(sms_bufs, mi_row, mi_col, bsize, sb_size); | 
|  | cur_block->has_prev_partition = 1; | 
|  | cur_block->prev_partition = partition; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void compute_sms_txfm_data( | 
|  | const MACROBLOCK *x, BLOCK_SIZE bsize, const aom_variance_fn_ptr_t *fn_ptr, | 
|  | int *est_rate, int64_t *dist) { | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | const uint8_t *src_buf = x->plane[0].src.buf; | 
|  | const uint8_t *dst_buf = xd->plane[0].dst.buf; | 
|  | const int src_stride = x->plane[0].src.stride; | 
|  | const int dst_stride = xd->plane[0].dst.stride; | 
|  | const int bw = block_size_wide[bsize]; | 
|  | const int bh = block_size_high[bsize]; | 
|  | const int is_hbd = is_cur_buf_hbd(xd); | 
|  | const int bd = xd->bd; | 
|  | assert(!is_hbd && | 
|  | "high bitdepth sms txfm pipeline has not been implemented yet"); | 
|  |  | 
|  | DECLARE_ALIGNED(32, int16_t, src_diff[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, tran_low_t, coeff[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, tran_low_t, qcoeff[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(16, uint8_t, recon[MAX_TX_SQUARE]); | 
|  | const int diff_stride = bw; | 
|  | const int recon_stride = MAX_TX_SIZE; | 
|  |  | 
|  | aom_subtract_block(bh, bw, src_diff, diff_stride, src_buf, src_stride, | 
|  | dst_buf, dst_stride); | 
|  |  | 
|  | const TX_SIZE tx_size = max_txsize_lookup[bsize]; | 
|  | const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; | 
|  | const int tx_wide = tx_size_wide[tx_size]; | 
|  | const int tx_high = tx_size_high[tx_size]; | 
|  | const int pix_num = av1_get_max_eob(tx_size); | 
|  | const TX_TYPE tx_type = DCT_DCT; | 
|  | TxfmParam txfm_param; | 
|  | txfm_param.tx_type = tx_type; | 
|  | txfm_param.tx_size = tx_size; | 
|  | txfm_param.lossless = 0; | 
|  | txfm_param.bd = bd; | 
|  | txfm_param.is_hbd = is_hbd; | 
|  | txfm_param.tx_set_type = EXT_TX_SET_ALL16; | 
|  |  | 
|  | *est_rate = *dist = 0; | 
|  | for (int row = 0; row < bh; row += tx_high) { | 
|  | for (int col = 0; col < bw; col += tx_wide) { | 
|  | const int16_t *cur_diff = src_diff + row * diff_stride + col; | 
|  | const uint8_t *cur_src = src_buf + row * src_stride + col; | 
|  | const uint8_t *cur_dst = dst_buf + row * dst_stride + col; | 
|  |  | 
|  | // Txfm | 
|  | av1_fwd_txfm(cur_diff, coeff, diff_stride, &txfm_param); | 
|  |  | 
|  | // Quantize | 
|  | const struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; | 
|  | const SCAN_ORDER *const scan_order = &av1_default_scan_orders[tx_size]; | 
|  | uint16_t eob = -1; | 
|  | int cur_est_rate = 0; | 
|  | av1_quantize_fp(coeff, pix_num, p->zbin_QTX, p->round_fp_QTX, | 
|  | p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, dqcoeff, | 
|  | p->dequant_QTX, &eob, scan_order->scan, | 
|  | scan_order->iscan); | 
|  |  | 
|  | for (int idx = 0; idx < eob; ++idx) { | 
|  | const int abs_level = abs(qcoeff[scan_order->scan[idx]]); | 
|  | cur_est_rate += (int)(log(abs_level + 1.0) / log(2.0)) + 1; | 
|  | } | 
|  | cur_est_rate <<= AV1_PROB_COST_SHIFT; | 
|  | *est_rate += cur_est_rate; | 
|  |  | 
|  | // Inverse transform | 
|  | aom_convolve_copy(cur_dst, dst_stride, recon, recon_stride, tx_wide, | 
|  | tx_high); | 
|  |  | 
|  | av1_inverse_transform_block(xd, dqcoeff, AOM_PLANE_Y, tx_type, tx_size, | 
|  | recon, recon_stride, eob, 0); | 
|  |  | 
|  | uint32_t cur_dist = 0; | 
|  | fn_ptr[tx_bsize].vf(cur_src, src_stride, recon, recon_stride, &cur_dist); | 
|  |  | 
|  | *dist += cur_dist; | 
|  | } | 
|  | } | 
|  |  | 
|  | *dist *= 16; | 
|  | } | 
|  |  | 
|  | // Performs a simple motion search and store the result in sms_data. | 
|  | static void compute_sms_data(AV1_COMP *const cpi, const TileInfo *const tile, | 
|  | MACROBLOCK *x, CHROMA_REF_INFO *chr_ref_info, | 
|  | SimpleMotionData *sms_data, int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int ref_frame = | 
|  | cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME; | 
|  |  | 
|  | if (mi_col >= cm->mi_cols || mi_row >= cm->mi_rows) { | 
|  | // If the whole block is outside of the image, set the var and sse to 0. | 
|  | sms_data->sse = 0; | 
|  | sms_data->var = 0; | 
|  | sms_data->dist = 0; | 
|  | sms_data->rate = 0; | 
|  | sms_data->rdcost = 0; | 
|  | sms_data->valid = 1; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | av1_enc_set_offsets(cpi, tile, x, mi_row, mi_col, bsize, chr_ref_info); | 
|  |  | 
|  | // We need to update the rd-mult here to in case we are doing simple motion | 
|  | // search on a subblock of the current coding block. | 
|  | const int orig_rdmult = x->rdmult; | 
|  | const AQ_MODE aq_mode = cpi->oxcf.aq_mode; | 
|  | MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; | 
|  | av1_setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi); | 
|  | // Set error per bit for current rdmult | 
|  | set_error_per_bit(x, x->rdmult); | 
|  |  | 
|  | if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | const uint8_t *src_buf = x->plane[0].src.buf; | 
|  | const uint8_t *dst_buf = xd->plane[0].dst.buf; | 
|  | const int src_stride = x->plane[0].src.stride; | 
|  | const int dst_stride = xd->plane[0].dst.stride; | 
|  |  | 
|  | if (sms_data->num_start_mvs == 0) { | 
|  | sms_data->start_mv_list[sms_data->num_start_mvs++] = kZeroMv; | 
|  | } | 
|  | sms_data->rdcost = INT64_MAX; | 
|  | SimpleMotionData best_data = *sms_data; | 
|  |  | 
|  | for (int idx = 0; idx < sms_data->num_start_mvs; idx++) { | 
|  | const MV start_mv = sms_data->start_mv_list[idx]; | 
|  | av1_simple_motion_search_ext(cpi, tile, x, chr_ref_info, mi_row, mi_col, | 
|  | bsize, ref_frame, start_mv, sms_data); | 
|  | sms_data->var = cpi->fn_ptr[bsize].vf(src_buf, src_stride, dst_buf, | 
|  | dst_stride, &sms_data->sse); | 
|  |  | 
|  | sms_data->dist = 16 * sms_data->sse; | 
|  | sms_data->rate = 0; | 
|  |  | 
|  | if (USE_EST_TXFM) { | 
|  | compute_sms_txfm_data(x, bsize, cpi->fn_ptr, &sms_data->rate, | 
|  | &sms_data->dist); | 
|  | } | 
|  |  | 
|  | sms_data->rdcost = RDCOST(x->rdmult, sms_data->rate, sms_data->dist); | 
|  |  | 
|  | if (sms_data->rdcost <= best_data.rdcost) { | 
|  | best_data = *sms_data; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | sms_data->valid = 1; | 
|  | sms_data->bsize = bsize; | 
|  | sms_data->mi_row = mi_row; | 
|  | sms_data->mi_col = mi_col; | 
|  |  | 
|  | x->rdmult = orig_rdmult; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if CONFIG_DEBUG | 
|  | static INLINE void print_sms(const SimpleMotionData *sms_data, char *prefix) { | 
|  | BLOCK_SIZE bsize = sms_data->bsize; | 
|  | MV fullmv = sms_data->fullmv; | 
|  | MV submv = sms_data->submv; | 
|  | printf("%s:: bsize: (%d, %d), mi_row: %d, mi_col: %d, rd: %ld\n", prefix, | 
|  | block_size_wide[bsize], block_size_high[bsize], sms_data->mi_row, | 
|  | sms_data->mi_col, sms_data->rdcost); | 
|  | printf("%s:: fullmv: (%d, %d), submv: (%d, %d),\n", prefix, fullmv.row, | 
|  | fullmv.col, submv.row, submv.col); | 
|  |  | 
|  | printf("%s:: mv_cost_type: %d, sadpb: %d, errpb: %d, mv_prec: %d\n", prefix, | 
|  | sms_data->mv_cost_type, sms_data->sadpb, sms_data->errorperbit, | 
|  | sms_data->mv_precision); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static INLINE void add_start_mv_to_block(SimpleMotionData *block, MV start_mv) { | 
|  | if (block->num_start_mvs == kSMSMaxStartMVs) { | 
|  | return; | 
|  | } | 
|  | for (int idx = 0; idx < block->num_start_mvs; idx++) { | 
|  | const int_mv *cur_mv = (int_mv *)&block->start_mv_list[idx]; | 
|  | if (((int_mv *)&start_mv)->as_int == cur_mv->as_int) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | block->start_mv_list[block->num_start_mvs++] = start_mv; | 
|  | } | 
|  |  | 
|  | static INLINE void add_start_mv_to_partition( | 
|  | SimpleMotionDataBufs *sms_bufs, int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | BLOCK_SIZE sb_size, PARTITION_TYPE partition, MV start_mv) { | 
|  | const int quarter_step_h = block_size_high[bsize] / 4; | 
|  | const int quarter_step_w = block_size_wide[bsize] / 4; | 
|  | static const int subblock_count[EXT_PARTITION_TYPES] = { | 
|  | 1,  // PARTITION_NONE | 
|  | 2,  // PARTITION_HORZ | 
|  | 2,  // PARTITION_VERT | 
|  | 3,  // PARTITION_HORZ_3 | 
|  | 3,  // PARTITION_VERT_3 | 
|  | }; | 
|  | // PARTITION x NUM_SUBBLOCKS x (ROW and COL) | 
|  | static const int step_multiplier[EXT_PARTITION_TYPES][3][2] = { | 
|  | { { 0, 0 }, { 0, 0 }, { 0, 0 } },  // PARTITION_NONE | 
|  | { { 0, 0 }, { 2, 0 }, { 0, 0 } },  // PARTITION_HORZ | 
|  | { { 0, 0 }, { 0, 2 }, { 0, 0 } },  // PARTITION_VERT | 
|  | { { 0, 0 }, { 1, 0 }, { 3, 0 } },  // PARTITION_HORZ_3 | 
|  | { { 0, 0 }, { 0, 1 }, { 0, 3 } },  // PARTITION_VERT_3 | 
|  | }; | 
|  | for (int idx = 0; idx < subblock_count[partition]; idx++) { | 
|  | BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); | 
|  | if (subsize == BLOCK_INVALID) { | 
|  | return; | 
|  | } else if (partition == PARTITION_HORZ_3 && idx == 1) { | 
|  | subsize = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | } else if (partition == PARTITION_VERT_3 && idx == 1) { | 
|  | subsize = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | } | 
|  | const int sub_row = | 
|  | mi_row + step_multiplier[partition][idx][0] * quarter_step_h / 4; | 
|  | const int sub_col = | 
|  | mi_col + step_multiplier[partition][idx][1] * quarter_step_w / 4; | 
|  | SimpleMotionData *subblock = | 
|  | av1_get_sms_data_entry(sms_bufs, sub_row, sub_col, subsize, sb_size); | 
|  | add_start_mv_to_block(subblock, start_mv); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Computes and stores the simple motion search data for the block at mi_row, | 
|  | // mi_col with block size bsize. | 
|  | SimpleMotionData *av1_get_sms_data(AV1_COMP *const cpi, | 
|  | const TileInfo *const tile, MACROBLOCK *x, | 
|  | CHROMA_REF_INFO *chr_ref_info, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const BLOCK_SIZE sb_size = cm->seq_params.sb_size; | 
|  | SimpleMotionDataBufs *sms_bufs = x->sms_bufs; | 
|  | SimpleMotionData *cur_block = | 
|  | av1_get_sms_data_entry(sms_bufs, mi_row, mi_col, bsize, sb_size); | 
|  | const int valid = cur_block->valid; | 
|  | if (!valid) { | 
|  | compute_sms_data(cpi, tile, x, chr_ref_info, cur_block, mi_row, mi_col, | 
|  | bsize); | 
|  |  | 
|  | for (PARTITION_TYPE partition = PARTITION_NONE; | 
|  | partition < EXT_PARTITION_TYPES; partition++) { | 
|  | add_start_mv_to_partition(sms_bufs, mi_row, mi_col, bsize, sb_size, | 
|  | partition, cur_block->fullmv); | 
|  | } | 
|  | } | 
|  | return cur_block; | 
|  | } | 
|  |  | 
|  | PARTITION_TYPE av1_get_prev_partition(AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const BLOCK_SIZE sb_size = cm->seq_params.sb_size; | 
|  |  | 
|  | SimpleMotionDataBufs *sms_bufs = x->sms_bufs; | 
|  | const SimpleMotionData *cur_block = | 
|  | av1_get_sms_data_entry(sms_bufs, mi_row, mi_col, bsize, sb_size); | 
|  |  | 
|  | if (cur_block->has_prev_partition) { | 
|  | return cur_block->prev_partition; | 
|  | } else { | 
|  | return PARTITION_INVALID; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void gather_part_rd_stats(RD_STATS *rd_stats, | 
|  | const SMSPartitionStats *stat, | 
|  | int rdmult) { | 
|  | av1_init_rd_stats(rd_stats); | 
|  | if (stat->part_rate < INT_MAX) { | 
|  | // rd_stats->rate += part_rate; | 
|  | } else { | 
|  | rd_stats->rate = INT_MAX; | 
|  | rd_stats->rdcost = INT64_MAX; | 
|  | return; | 
|  | } | 
|  | for (int idx = 0; idx < stat->num_sub_parts; idx++) { | 
|  | rd_stats->rate += stat->sms_data[idx]->rate; | 
|  | rd_stats->dist += stat->sms_data[idx]->dist; | 
|  | } | 
|  | rd_stats->rdcost = RDCOST(rdmult, rd_stats->rate, rd_stats->dist); | 
|  | } | 
|  |  | 
|  | int av1_prune_new_part(const SMSPartitionStats *old_part, | 
|  | const SMSPartitionStats *new_part, int rdmult) { | 
|  | RD_STATS old_rd_stat, new_rd_stat; | 
|  | gather_part_rd_stats(&old_rd_stat, old_part, rdmult); | 
|  | gather_part_rd_stats(&new_rd_stat, new_part, rdmult); | 
|  |  | 
|  | return old_rd_stat.rdcost < new_rd_stat.rdcost; | 
|  | } | 
|  | #endif  // CONFIG_EXT_RECUR_PARTITIONS | 
|  |  | 
|  | void av1_get_max_min_partition_size(AV1_COMP *cpi, ThreadData *td, | 
|  | BLOCK_SIZE *max_sq_size, | 
|  | BLOCK_SIZE *min_sq_size, int mi_row, | 
|  | int mi_col) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | MACROBLOCK *x = &td->mb; | 
|  | const BLOCK_SIZE sb_size = cm->seq_params.sb_size; | 
|  |  | 
|  | switch (cpi->oxcf.max_partition_size) { | 
|  | case 4: *max_sq_size = BLOCK_4X4; break; | 
|  | case 8: *max_sq_size = BLOCK_8X8; break; | 
|  | case 16: *max_sq_size = BLOCK_16X16; break; | 
|  | case 32: *max_sq_size = BLOCK_32X32; break; | 
|  | case 64: *max_sq_size = BLOCK_64X64; break; | 
|  | case 128: *max_sq_size = BLOCK_128X128; break; | 
|  | default: assert(0); break; | 
|  | } | 
|  | *max_sq_size = AOMMIN(*max_sq_size, sb_size); | 
|  |  | 
|  | switch (cpi->oxcf.min_partition_size) { | 
|  | case 4: *min_sq_size = BLOCK_4X4; break; | 
|  | case 8: *min_sq_size = BLOCK_8X8; break; | 
|  | case 16: *min_sq_size = BLOCK_16X16; break; | 
|  | case 32: *min_sq_size = BLOCK_32X32; break; | 
|  | case 64: *min_sq_size = BLOCK_64X64; break; | 
|  | case 128: *min_sq_size = BLOCK_128X128; break; | 
|  | default: assert(0); break; | 
|  | } | 
|  |  | 
|  | if (use_auto_max_partition(cpi, sb_size, mi_row, mi_col)) { | 
|  | float features[FEATURE_SIZE_MAX_MIN_PART_PRED] = { 0.0f }; | 
|  |  | 
|  | av1_get_max_min_partition_features(cpi, x, mi_row, mi_col, features); | 
|  | *max_sq_size = | 
|  | AOMMIN(av1_predict_max_partition(cpi, x, features), *max_sq_size); | 
|  | } | 
|  |  | 
|  | *min_sq_size = AOMMIN(*min_sq_size, *max_sq_size); | 
|  | } | 
|  | #endif  // !CONFIG_REALTIME_ONLY |