|  | /* | 
|  | * Copyright (c) 2019, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <stdint.h> | 
|  |  | 
|  | #include "config/aom_config.h" | 
|  | #include "config/aom_scale_rtcd.h" | 
|  |  | 
|  | #include "aom/aom_codec.h" | 
|  | #include "aom/aom_encoder.h" | 
|  |  | 
|  | #include "aom_ports/system_state.h" | 
|  |  | 
|  | #include "av1/common/onyxc_int.h" | 
|  |  | 
|  | #include "av1/encoder/encoder.h" | 
|  | #include "av1/encoder/firstpass.h" | 
|  | #include "av1/encoder/gop_structure.h" | 
|  | #include "av1/encoder/ratectrl.h" | 
|  | #include "av1/encoder/use_flat_gop_model_params.h" | 
|  | #include "av1/encoder/encode_strategy.h" | 
|  |  | 
|  | #define DEFAULT_KF_BOOST 2300 | 
|  | #define DEFAULT_GF_BOOST 2000 | 
|  |  | 
|  | // Calculate an active area of the image that discounts formatting | 
|  | // bars and partially discounts other 0 energy areas. | 
|  | #define MIN_ACTIVE_AREA 0.5 | 
|  | #define MAX_ACTIVE_AREA 1.0 | 
|  | static double calculate_active_area(const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *this_frame) { | 
|  | const double active_pct = | 
|  | 1.0 - | 
|  | ((this_frame->intra_skip_pct / 2) + | 
|  | ((this_frame->inactive_zone_rows * 2) / (double)frame_info->mb_rows)); | 
|  | return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA); | 
|  | } | 
|  |  | 
|  | // Calculate a modified Error used in distributing bits between easier and | 
|  | // harder frames. | 
|  | #define ACT_AREA_CORRECTION 0.5 | 
|  | static double calculate_modified_err(const FRAME_INFO *frame_info, | 
|  | const TWO_PASS *twopass, | 
|  | const AV1EncoderConfig *oxcf, | 
|  | const FIRSTPASS_STATS *this_frame) { | 
|  | const FIRSTPASS_STATS *const stats = twopass->total_stats; | 
|  | if (stats == NULL) { | 
|  | return 0; | 
|  | } | 
|  | const double av_weight = stats->weight / stats->count; | 
|  | const double av_err = (stats->coded_error * av_weight) / stats->count; | 
|  | double modified_error = | 
|  | av_err * pow(this_frame->coded_error * this_frame->weight / | 
|  | DOUBLE_DIVIDE_CHECK(av_err), | 
|  | oxcf->two_pass_vbrbias / 100.0); | 
|  |  | 
|  | // Correction for active area. Frames with a reduced active area | 
|  | // (eg due to formatting bars) have a higher error per mb for the | 
|  | // remaining active MBs. The correction here assumes that coding | 
|  | // 0.5N blocks of complexity 2X is a little easier than coding N | 
|  | // blocks of complexity X. | 
|  | modified_error *= | 
|  | pow(calculate_active_area(frame_info, this_frame), ACT_AREA_CORRECTION); | 
|  |  | 
|  | return fclamp(modified_error, twopass->modified_error_min, | 
|  | twopass->modified_error_max); | 
|  | } | 
|  |  | 
|  | // Resets the first pass file to the given position using a relative seek from | 
|  | // the current position. | 
|  | static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) { | 
|  | p->stats_in = position; | 
|  | } | 
|  |  | 
|  | static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) { | 
|  | if (p->stats_in >= p->stats_buf_ctx->stats_in_end) return EOF; | 
|  |  | 
|  | *fps = *p->stats_in; | 
|  | ++p->stats_in; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int input_stats_lap(TWO_PASS *p, FIRSTPASS_STATS *fps) { | 
|  | if (p->stats_in >= p->stats_buf_ctx->stats_in_end) return EOF; | 
|  |  | 
|  | *fps = *p->stats_in; | 
|  | /* Move old stats[0] out to accommodate for next frame stats  */ | 
|  | memmove(p->frame_stats_arr[0], p->frame_stats_arr[1], | 
|  | (p->stats_buf_ctx->stats_in_end - p->stats_in - 1) * | 
|  | sizeof(FIRSTPASS_STATS)); | 
|  | p->stats_buf_ctx->stats_in_end--; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Read frame stats at an offset from the current position. | 
|  | static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) { | 
|  | if ((offset >= 0 && p->stats_in + offset >= p->stats_buf_ctx->stats_in_end) || | 
|  | (offset < 0 && p->stats_in + offset < p->stats_buf_ctx->stats_in_start)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return &p->stats_in[offset]; | 
|  | } | 
|  |  | 
|  | static void subtract_stats(FIRSTPASS_STATS *section, | 
|  | const FIRSTPASS_STATS *frame) { | 
|  | section->frame -= frame->frame; | 
|  | section->weight -= frame->weight; | 
|  | section->intra_error -= frame->intra_error; | 
|  | section->frame_avg_wavelet_energy -= frame->frame_avg_wavelet_energy; | 
|  | section->coded_error -= frame->coded_error; | 
|  | section->sr_coded_error -= frame->sr_coded_error; | 
|  | section->pcnt_inter -= frame->pcnt_inter; | 
|  | section->pcnt_motion -= frame->pcnt_motion; | 
|  | section->pcnt_second_ref -= frame->pcnt_second_ref; | 
|  | section->pcnt_neutral -= frame->pcnt_neutral; | 
|  | section->intra_skip_pct -= frame->intra_skip_pct; | 
|  | section->inactive_zone_rows -= frame->inactive_zone_rows; | 
|  | section->inactive_zone_cols -= frame->inactive_zone_cols; | 
|  | section->MVr -= frame->MVr; | 
|  | section->mvr_abs -= frame->mvr_abs; | 
|  | section->MVc -= frame->MVc; | 
|  | section->mvc_abs -= frame->mvc_abs; | 
|  | section->MVrv -= frame->MVrv; | 
|  | section->MVcv -= frame->MVcv; | 
|  | section->mv_in_out_count -= frame->mv_in_out_count; | 
|  | section->new_mv_count -= frame->new_mv_count; | 
|  | section->count -= frame->count; | 
|  | section->duration -= frame->duration; | 
|  | } | 
|  |  | 
|  | // Calculate the linear size relative to a baseline of 1080P | 
|  | #define BASE_SIZE 2073600.0  // 1920x1080 | 
|  | static double get_linear_size_factor(const AV1_COMP *cpi) { | 
|  | const double this_area = cpi->initial_width * cpi->initial_height; | 
|  | return pow(this_area / BASE_SIZE, 0.5); | 
|  | } | 
|  |  | 
|  | // This function returns the maximum target rate per frame. | 
|  | static int frame_max_bits(const RATE_CONTROL *rc, | 
|  | const AV1EncoderConfig *oxcf) { | 
|  | int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * | 
|  | (int64_t)oxcf->two_pass_vbrmax_section) / | 
|  | 100; | 
|  | if (max_bits < 0) | 
|  | max_bits = 0; | 
|  | else if (max_bits > rc->max_frame_bandwidth) | 
|  | max_bits = rc->max_frame_bandwidth; | 
|  |  | 
|  | return (int)max_bits; | 
|  | } | 
|  |  | 
|  | static double calc_correction_factor(double err_per_mb, double err_divisor, | 
|  | double pt_low, double pt_high, int q, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | const double error_term = err_per_mb / err_divisor; | 
|  |  | 
|  | // Adjustment based on actual quantizer to power term. | 
|  | const double power_term = | 
|  | AOMMIN(av1_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high); | 
|  |  | 
|  | // Calculate correction factor. | 
|  | if (power_term < 1.0) assert(error_term >= 0.0); | 
|  |  | 
|  | return fclamp(pow(error_term, power_term), 0.05, 5.0); | 
|  | } | 
|  |  | 
|  | #define ERR_DIVISOR 100.0 | 
|  | #define FACTOR_PT_LOW 0.70 | 
|  | #define FACTOR_PT_HIGH 0.90 | 
|  |  | 
|  | // Similar to find_qindex_by_rate() function in ratectrl.c, but includes | 
|  | // calculation of a correction_factor. | 
|  | static int find_qindex_by_rate_with_correction( | 
|  | int desired_bits_per_mb, aom_bit_depth_t bit_depth, FRAME_TYPE frame_type, | 
|  | double error_per_mb, double ediv_size_correction, | 
|  | double group_weight_factor, int best_qindex, int worst_qindex) { | 
|  | assert(best_qindex <= worst_qindex); | 
|  | int low = best_qindex; | 
|  | int high = worst_qindex; | 
|  | while (low < high) { | 
|  | const int mid = (low + high) >> 1; | 
|  | const double mid_factor = | 
|  | calc_correction_factor(error_per_mb, ERR_DIVISOR - ediv_size_correction, | 
|  | FACTOR_PT_LOW, FACTOR_PT_HIGH, mid, bit_depth); | 
|  | const int mid_bits_per_mb = av1_rc_bits_per_mb( | 
|  | frame_type, mid, mid_factor * group_weight_factor, bit_depth); | 
|  | if (mid_bits_per_mb > desired_bits_per_mb) { | 
|  | low = mid + 1; | 
|  | } else { | 
|  | high = mid; | 
|  | } | 
|  | } | 
|  | #if CONFIG_DEBUG | 
|  | assert(low == high); | 
|  | const double low_factor = | 
|  | calc_correction_factor(error_per_mb, ERR_DIVISOR - ediv_size_correction, | 
|  | FACTOR_PT_LOW, FACTOR_PT_HIGH, low, bit_depth); | 
|  | const int low_bits_per_mb = av1_rc_bits_per_mb( | 
|  | frame_type, low, low_factor * group_weight_factor, bit_depth); | 
|  | assert(low_bits_per_mb <= desired_bits_per_mb || low == worst_qindex); | 
|  | #endif  // CONFIG_DEBUG | 
|  | return low; | 
|  | } | 
|  |  | 
|  | static int get_twopass_worst_quality(const AV1_COMP *cpi, | 
|  | const double section_err, | 
|  | double inactive_zone, | 
|  | int section_target_bandwidth, | 
|  | double group_weight_factor) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  |  | 
|  | inactive_zone = fclamp(inactive_zone, 0.0, 1.0); | 
|  |  | 
|  | if (section_target_bandwidth <= 0) { | 
|  | return rc->worst_quality;  // Highest value allowed | 
|  | } else { | 
|  | const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) | 
|  | ? cpi->initial_mbs | 
|  | : cpi->common.MBs; | 
|  | const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone)); | 
|  | const double av_err_per_mb = section_err / active_mbs; | 
|  | const int target_norm_bits_per_mb = | 
|  | (int)((uint64_t)section_target_bandwidth << BPER_MB_NORMBITS) / | 
|  | active_mbs; | 
|  |  | 
|  | // Larger image formats are expected to be a little harder to code | 
|  | // relatively given the same prediction error score. This in part at | 
|  | // least relates to the increased size and hence coding overheads of | 
|  | // motion vectors. Some account of this is made through adjustment of | 
|  | // the error divisor. | 
|  | double ediv_size_correction = | 
|  | AOMMAX(0.2, AOMMIN(5.0, get_linear_size_factor(cpi))); | 
|  | if (ediv_size_correction < 1.0) | 
|  | ediv_size_correction = -(1.0 / ediv_size_correction); | 
|  | ediv_size_correction *= 4.0; | 
|  |  | 
|  | // Try and pick a max Q that will be high enough to encode the | 
|  | // content at the given rate. | 
|  | int q = find_qindex_by_rate_with_correction( | 
|  | target_norm_bits_per_mb, cpi->common.seq_params.bit_depth, INTER_FRAME, | 
|  | av_err_per_mb, ediv_size_correction, group_weight_factor, | 
|  | rc->best_quality, rc->worst_quality); | 
|  |  | 
|  | // Restriction on active max q for constrained quality mode. | 
|  | if (cpi->oxcf.rc_mode == AOM_CQ) q = AOMMAX(q, oxcf->cq_level); | 
|  | return q; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define SR_DIFF_PART 0.0015 | 
|  | #define MOTION_AMP_PART 0.003 | 
|  | #define INTRA_PART 0.005 | 
|  | #define DEFAULT_DECAY_LIMIT 0.75 | 
|  | #define LOW_SR_DIFF_TRHESH 0.1 | 
|  | #define SR_DIFF_MAX 128.0 | 
|  | #define NCOUNT_FRAME_II_THRESH 5.0 | 
|  |  | 
|  | static double get_sr_decay_rate(const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *frame) { | 
|  | const int num_mbs = frame_info->num_mbs; | 
|  | double sr_diff = (frame->sr_coded_error - frame->coded_error) / num_mbs; | 
|  | double sr_decay = 1.0; | 
|  | double modified_pct_inter; | 
|  | double modified_pcnt_intra; | 
|  | const double motion_amplitude_factor = | 
|  | frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2); | 
|  |  | 
|  | modified_pct_inter = frame->pcnt_inter; | 
|  | if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) < | 
|  | (double)NCOUNT_FRAME_II_THRESH) { | 
|  | modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral; | 
|  | } | 
|  | modified_pcnt_intra = 100 * (1.0 - modified_pct_inter); | 
|  |  | 
|  | if ((sr_diff > LOW_SR_DIFF_TRHESH)) { | 
|  | sr_diff = AOMMIN(sr_diff, SR_DIFF_MAX); | 
|  | sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - | 
|  | (MOTION_AMP_PART * motion_amplitude_factor) - | 
|  | (INTRA_PART * modified_pcnt_intra); | 
|  | } | 
|  | return AOMMAX(sr_decay, AOMMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter)); | 
|  | } | 
|  |  | 
|  | // This function gives an estimate of how badly we believe the prediction | 
|  | // quality is decaying from frame to frame. | 
|  | static double get_zero_motion_factor(const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *frame) { | 
|  | const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion; | 
|  | double sr_decay = get_sr_decay_rate(frame_info, frame); | 
|  | return AOMMIN(sr_decay, zero_motion_pct); | 
|  | } | 
|  |  | 
|  | #define ZM_POWER_FACTOR 0.75 | 
|  |  | 
|  | static double get_prediction_decay_rate(const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *next_frame) { | 
|  | const double sr_decay_rate = get_sr_decay_rate(frame_info, next_frame); | 
|  | const double zero_motion_factor = | 
|  | (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion), | 
|  | ZM_POWER_FACTOR)); | 
|  |  | 
|  | return AOMMAX(zero_motion_factor, | 
|  | (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor))); | 
|  | } | 
|  |  | 
|  | // Function to test for a condition where a complex transition is followed | 
|  | // by a static section. For example in slide shows where there is a fade | 
|  | // between slides. This is to help with more optimal kf and gf positioning. | 
|  | static int detect_transition_to_still(AV1_COMP *cpi, int frame_interval, | 
|  | int still_interval, | 
|  | double loop_decay_rate, | 
|  | double last_decay_rate) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | // Break clause to detect very still sections after motion | 
|  | // For example a static image after a fade or other transition | 
|  | // instead of a clean scene cut. | 
|  | if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 && | 
|  | last_decay_rate < 0.9) { | 
|  | int j; | 
|  |  | 
|  | // Look ahead a few frames to see if static condition persists... | 
|  | for (j = 0; j < still_interval; ++j) { | 
|  | const FIRSTPASS_STATS *stats = &twopass->stats_in[j]; | 
|  | if (stats >= twopass->stats_buf_ctx->stats_in_end) break; | 
|  |  | 
|  | if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break; | 
|  | } | 
|  |  | 
|  | // Only if it does do we signal a transition to still. | 
|  | return j == still_interval; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This function detects a flash through the high relative pcnt_second_ref | 
|  | // score in the frame following a flash frame. The offset passed in should | 
|  | // reflect this. | 
|  | static int detect_flash(const TWO_PASS *twopass, int offset) { | 
|  | const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset); | 
|  |  | 
|  | // What we are looking for here is a situation where there is a | 
|  | // brief break in prediction (such as a flash) but subsequent frames | 
|  | // are reasonably well predicted by an earlier (pre flash) frame. | 
|  | // The recovery after a flash is indicated by a high pcnt_second_ref | 
|  | // compared to pcnt_inter. | 
|  | return next_frame != NULL && | 
|  | next_frame->pcnt_second_ref > next_frame->pcnt_inter && | 
|  | next_frame->pcnt_second_ref >= 0.5; | 
|  | } | 
|  |  | 
|  | // Update the motion related elements to the GF arf boost calculation. | 
|  | static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats, | 
|  | double *mv_in_out, | 
|  | double *mv_in_out_accumulator, | 
|  | double *abs_mv_in_out_accumulator, | 
|  | double *mv_ratio_accumulator) { | 
|  | const double pct = stats->pcnt_motion; | 
|  |  | 
|  | // Accumulate Motion In/Out of frame stats. | 
|  | *mv_in_out = stats->mv_in_out_count * pct; | 
|  | *mv_in_out_accumulator += *mv_in_out; | 
|  | *abs_mv_in_out_accumulator += fabs(*mv_in_out); | 
|  |  | 
|  | // Accumulate a measure of how uniform (or conversely how random) the motion | 
|  | // field is (a ratio of abs(mv) / mv). | 
|  | if (pct > 0.05) { | 
|  | const double mvr_ratio = | 
|  | fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr)); | 
|  | const double mvc_ratio = | 
|  | fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc)); | 
|  |  | 
|  | *mv_ratio_accumulator += | 
|  | pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs); | 
|  | *mv_ratio_accumulator += | 
|  | pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define BOOST_FACTOR 12.5 | 
|  | static double baseline_err_per_mb(const FRAME_INFO *frame_info) { | 
|  | unsigned int screen_area = frame_info->frame_height * frame_info->frame_width; | 
|  |  | 
|  | // Use a different error per mb factor for calculating boost for | 
|  | //  different formats. | 
|  | if (screen_area <= 640 * 360) { | 
|  | return 500.0; | 
|  | } else { | 
|  | return 1000.0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static double calc_frame_boost(const RATE_CONTROL *rc, | 
|  | const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *this_frame, | 
|  | double this_frame_mv_in_out, double max_boost) { | 
|  | double frame_boost; | 
|  | const double lq = av1_convert_qindex_to_q(rc->avg_frame_qindex[INTER_FRAME], | 
|  | frame_info->bit_depth); | 
|  | const double boost_q_correction = AOMMIN((0.5 + (lq * 0.015)), 1.5); | 
|  | const double active_area = calculate_active_area(frame_info, this_frame); | 
|  | int num_mbs = frame_info->num_mbs; | 
|  |  | 
|  | // Correct for any inactive region in the image | 
|  | num_mbs = (int)AOMMAX(1, num_mbs * active_area); | 
|  |  | 
|  | // Underlying boost factor is based on inter error ratio. | 
|  | frame_boost = AOMMAX(baseline_err_per_mb(frame_info) * num_mbs, | 
|  | this_frame->intra_error * active_area) / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->coded_error); | 
|  | frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction; | 
|  |  | 
|  | // Increase boost for frames where new data coming into frame (e.g. zoom out). | 
|  | // Slightly reduce boost if there is a net balance of motion out of the frame | 
|  | // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0. | 
|  | if (this_frame_mv_in_out > 0.0) | 
|  | frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); | 
|  | // In the extreme case the boost is halved. | 
|  | else | 
|  | frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); | 
|  |  | 
|  | return AOMMIN(frame_boost, max_boost * boost_q_correction); | 
|  | } | 
|  |  | 
|  | static double calc_kf_frame_boost(const RATE_CONTROL *rc, | 
|  | const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *this_frame, | 
|  | double *sr_accumulator, double max_boost) { | 
|  | double frame_boost; | 
|  | const double lq = av1_convert_qindex_to_q(rc->avg_frame_qindex[INTER_FRAME], | 
|  | frame_info->bit_depth); | 
|  | const double boost_q_correction = AOMMIN((0.50 + (lq * 0.015)), 2.00); | 
|  | const double active_area = calculate_active_area(frame_info, this_frame); | 
|  | int num_mbs = frame_info->num_mbs; | 
|  |  | 
|  | // Correct for any inactive region in the image | 
|  | num_mbs = (int)AOMMAX(1, num_mbs * active_area); | 
|  |  | 
|  | // Underlying boost factor is based on inter error ratio. | 
|  | frame_boost = AOMMAX(baseline_err_per_mb(frame_info) * num_mbs, | 
|  | this_frame->intra_error * active_area) / | 
|  | DOUBLE_DIVIDE_CHECK( | 
|  | (this_frame->coded_error + *sr_accumulator) * active_area); | 
|  |  | 
|  | // Update the accumulator for second ref error difference. | 
|  | // This is intended to give an indication of how much the coded error is | 
|  | // increasing over time. | 
|  | *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error); | 
|  | *sr_accumulator = AOMMAX(0.0, *sr_accumulator); | 
|  |  | 
|  | // Q correction and scaling | 
|  | // The 40.0 value here is an experimentally derived baseline minimum. | 
|  | // This value is in line with the minimum per frame boost in the alt_ref | 
|  | // boost calculation. | 
|  | frame_boost = ((frame_boost + 40.0) * boost_q_correction); | 
|  |  | 
|  | return AOMMIN(frame_boost, max_boost * boost_q_correction); | 
|  | } | 
|  |  | 
|  | static int get_projected_gfu_boost(const RATE_CONTROL *rc, int gfu_boost, | 
|  | int frames_to_project, | 
|  | int num_stats_used_for_gfu_boost) { | 
|  | /* | 
|  | * If frames_to_project is equal to num_stats_used_for_gfu_boost, | 
|  | * it means that gfu_boost was calculated over frames_to_project to | 
|  | * begin with(ie; all stats required were available), hence return | 
|  | * the original boost. | 
|  | */ | 
|  | if (num_stats_used_for_gfu_boost >= frames_to_project) return gfu_boost; | 
|  |  | 
|  | double min_boost_factor = sqrt(rc->baseline_gf_interval); | 
|  | // Get the current tpl factor (number of frames = frames_to_project). | 
|  | double tpl_factor = av1_get_gfu_boost_projection_factor( | 
|  | min_boost_factor, MAX_GFUBOOST_FACTOR, frames_to_project); | 
|  | // Get the tpl factor when number of frames = num_stats_used_for_prior_boost. | 
|  | double tpl_factor_num_stats = av1_get_gfu_boost_projection_factor( | 
|  | min_boost_factor, MAX_GFUBOOST_FACTOR, num_stats_used_for_gfu_boost); | 
|  | int projected_gfu_boost = | 
|  | (int)rint((tpl_factor * gfu_boost) / tpl_factor_num_stats); | 
|  | return projected_gfu_boost; | 
|  | } | 
|  |  | 
|  | #define GF_MAX_BOOST 90.0 | 
|  | #define MIN_DECAY_FACTOR 0.01 | 
|  | int av1_calc_arf_boost(const TWO_PASS *twopass, const RATE_CONTROL *rc, | 
|  | FRAME_INFO *frame_info, int offset, int f_frames, | 
|  | int b_frames, int *num_fpstats_used, | 
|  | int *num_fpstats_required) { | 
|  | int i; | 
|  | double boost_score = 0.0; | 
|  | double mv_ratio_accumulator = 0.0; | 
|  | double decay_accumulator = 1.0; | 
|  | double this_frame_mv_in_out = 0.0; | 
|  | double mv_in_out_accumulator = 0.0; | 
|  | double abs_mv_in_out_accumulator = 0.0; | 
|  | int arf_boost; | 
|  | int flash_detected = 0; | 
|  | if (num_fpstats_used) *num_fpstats_used = 0; | 
|  |  | 
|  | // Search forward from the proposed arf/next gf position. | 
|  | for (i = 0; i < f_frames; ++i) { | 
|  | const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); | 
|  | if (this_frame == NULL) break; | 
|  |  | 
|  | // Update the motion related elements to the boost calculation. | 
|  | accumulate_frame_motion_stats( | 
|  | this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, | 
|  | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); | 
|  |  | 
|  | // We want to discount the flash frame itself and the recovery | 
|  | // frame that follows as both will have poor scores. | 
|  | flash_detected = detect_flash(twopass, i + offset) || | 
|  | detect_flash(twopass, i + offset + 1); | 
|  |  | 
|  | // Accumulate the effect of prediction quality decay. | 
|  | if (!flash_detected) { | 
|  | decay_accumulator *= get_prediction_decay_rate(frame_info, this_frame); | 
|  | decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR | 
|  | ? MIN_DECAY_FACTOR | 
|  | : decay_accumulator; | 
|  | } | 
|  |  | 
|  | boost_score += decay_accumulator * | 
|  | calc_frame_boost(rc, frame_info, this_frame, | 
|  | this_frame_mv_in_out, GF_MAX_BOOST); | 
|  | if (num_fpstats_used) (*num_fpstats_used)++; | 
|  | } | 
|  |  | 
|  | arf_boost = (int)boost_score; | 
|  |  | 
|  | // Reset for backward looking loop. | 
|  | boost_score = 0.0; | 
|  | mv_ratio_accumulator = 0.0; | 
|  | decay_accumulator = 1.0; | 
|  | this_frame_mv_in_out = 0.0; | 
|  | mv_in_out_accumulator = 0.0; | 
|  | abs_mv_in_out_accumulator = 0.0; | 
|  |  | 
|  | // Search backward towards last gf position. | 
|  | for (i = -1; i >= -b_frames; --i) { | 
|  | const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); | 
|  | if (this_frame == NULL) break; | 
|  |  | 
|  | // Update the motion related elements to the boost calculation. | 
|  | accumulate_frame_motion_stats( | 
|  | this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, | 
|  | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); | 
|  |  | 
|  | // We want to discount the the flash frame itself and the recovery | 
|  | // frame that follows as both will have poor scores. | 
|  | flash_detected = detect_flash(twopass, i + offset) || | 
|  | detect_flash(twopass, i + offset + 1); | 
|  |  | 
|  | // Cumulative effect of prediction quality decay. | 
|  | if (!flash_detected) { | 
|  | decay_accumulator *= get_prediction_decay_rate(frame_info, this_frame); | 
|  | decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR | 
|  | ? MIN_DECAY_FACTOR | 
|  | : decay_accumulator; | 
|  | } | 
|  |  | 
|  | boost_score += decay_accumulator * | 
|  | calc_frame_boost(rc, frame_info, this_frame, | 
|  | this_frame_mv_in_out, GF_MAX_BOOST); | 
|  | if (num_fpstats_used) (*num_fpstats_used)++; | 
|  | } | 
|  | arf_boost += (int)boost_score; | 
|  |  | 
|  | if (num_fpstats_required) { | 
|  | *num_fpstats_required = f_frames + b_frames; | 
|  | if (num_fpstats_used) { | 
|  | arf_boost = get_projected_gfu_boost(rc, arf_boost, *num_fpstats_required, | 
|  | *num_fpstats_used); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (arf_boost < ((b_frames + f_frames) * 50)) | 
|  | arf_boost = ((b_frames + f_frames) * 50); | 
|  | arf_boost = AOMMAX(arf_boost, MIN_ARF_GF_BOOST); | 
|  |  | 
|  | return arf_boost; | 
|  | } | 
|  |  | 
|  | // Calculate a section intra ratio used in setting max loop filter. | 
|  | static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, | 
|  | const FIRSTPASS_STATS *end, | 
|  | int section_length) { | 
|  | const FIRSTPASS_STATS *s = begin; | 
|  | double intra_error = 0.0; | 
|  | double coded_error = 0.0; | 
|  | int i = 0; | 
|  |  | 
|  | while (s < end && i < section_length) { | 
|  | intra_error += s->intra_error; | 
|  | coded_error += s->coded_error; | 
|  | ++s; | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); | 
|  | } | 
|  |  | 
|  | // Calculate the total bits to allocate in this GF/ARF group. | 
|  | static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi, | 
|  | double gf_group_err) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const TWO_PASS *const twopass = &cpi->twopass; | 
|  | const int max_bits = frame_max_bits(rc, &cpi->oxcf); | 
|  | int64_t total_group_bits; | 
|  |  | 
|  | // Calculate the bits to be allocated to the group as a whole. | 
|  | if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) { | 
|  | total_group_bits = (int64_t)(twopass->kf_group_bits * | 
|  | (gf_group_err / twopass->kf_group_error_left)); | 
|  | } else { | 
|  | total_group_bits = 0; | 
|  | } | 
|  |  | 
|  | // Clamp odd edge cases. | 
|  | total_group_bits = (total_group_bits < 0) | 
|  | ? 0 | 
|  | : (total_group_bits > twopass->kf_group_bits) | 
|  | ? twopass->kf_group_bits | 
|  | : total_group_bits; | 
|  |  | 
|  | // Clip based on user supplied data rate variability limit. | 
|  | if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval) | 
|  | total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval; | 
|  |  | 
|  | return total_group_bits; | 
|  | } | 
|  |  | 
|  | // Calculate the number bits extra to assign to boosted frames in a group. | 
|  | static int calculate_boost_bits(int frame_count, int boost, | 
|  | int64_t total_group_bits) { | 
|  | int allocation_chunks; | 
|  |  | 
|  | // return 0 for invalid inputs (could arise e.g. through rounding errors) | 
|  | if (!boost || (total_group_bits <= 0) || (frame_count <= 0)) return 0; | 
|  |  | 
|  | allocation_chunks = (frame_count * 100) + boost; | 
|  |  | 
|  | // Prevent overflow. | 
|  | if (boost > 1023) { | 
|  | int divisor = boost >> 10; | 
|  | boost /= divisor; | 
|  | allocation_chunks /= divisor; | 
|  | } | 
|  |  | 
|  | // Calculate the number of extra bits for use in the boosted frame or frames. | 
|  | return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | static void allocate_gf_group_bits( | 
|  | AV1_COMP *cpi, int64_t gf_group_bits, int gf_arf_bits, | 
|  | const EncodeFrameParams *const frame_params) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | const int key_frame = (frame_params->frame_type == KEY_FRAME); | 
|  | const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf); | 
|  | int64_t total_group_bits = gf_group_bits; | 
|  |  | 
|  | // For key frames the frame target rate is already set and it | 
|  | // is also the golden frame. | 
|  | // === [frame_index == 0] === | 
|  | int frame_index = 0; | 
|  | if (!key_frame) { | 
|  | if (rc->source_alt_ref_active) | 
|  | gf_group->bit_allocation[frame_index] = 0; | 
|  | else | 
|  | gf_group->bit_allocation[frame_index] = gf_arf_bits; | 
|  |  | 
|  | // Step over the golden frame / overlay frame | 
|  | FIRSTPASS_STATS frame_stats; | 
|  | if (EOF == input_stats(twopass, &frame_stats)) return; | 
|  | } | 
|  |  | 
|  | // Deduct the boost bits for arf (or gf if it is not a key frame) | 
|  | // from the group total. | 
|  | if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits; | 
|  |  | 
|  | frame_index++; | 
|  |  | 
|  | // Store the bits to spend on the ARF if there is one. | 
|  | // === [frame_index == 1] === | 
|  | if (rc->source_alt_ref_pending) { | 
|  | gf_group->bit_allocation[frame_index] = gf_arf_bits; | 
|  | ++frame_index; | 
|  | } | 
|  |  | 
|  | const int gf_group_size = gf_group->size; | 
|  | int arf_depth_bits[MAX_ARF_LAYERS + 1] = { 0 }; | 
|  | int arf_depth_count[MAX_ARF_LAYERS + 1] = { 0 }; | 
|  | int arf_depth_boost[MAX_ARF_LAYERS + 1] = { 0 }; | 
|  | int total_arfs = rc->source_alt_ref_pending; | 
|  |  | 
|  | for (int idx = 0; idx < gf_group_size; ++idx) { | 
|  | if (gf_group->update_type[idx] == ARF_UPDATE || | 
|  | gf_group->update_type[idx] == INTNL_ARF_UPDATE) { | 
|  | arf_depth_boost[gf_group->layer_depth[idx]] += gf_group->arf_boost[idx]; | 
|  | ++arf_depth_count[gf_group->layer_depth[idx]]; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int idx = 2; idx < MAX_ARF_LAYERS; ++idx) { | 
|  | if (arf_depth_boost[idx] == 0) break; | 
|  | arf_depth_bits[idx] = calculate_boost_bits( | 
|  | rc->baseline_gf_interval - total_arfs - arf_depth_count[idx], | 
|  | arf_depth_boost[idx], total_group_bits); | 
|  |  | 
|  | total_group_bits -= arf_depth_bits[idx]; | 
|  | total_arfs += arf_depth_count[idx]; | 
|  | } | 
|  |  | 
|  | int normal_frames = rc->baseline_gf_interval - total_arfs; | 
|  | int normal_frame_bits; | 
|  |  | 
|  | if (normal_frames > 1) | 
|  | normal_frame_bits = (int)(total_group_bits / normal_frames); | 
|  | else | 
|  | normal_frame_bits = (int)total_group_bits; | 
|  |  | 
|  | // TODO(jingning): Currently assume even budget distribution for all the | 
|  | // regular frames. Can this be improved? | 
|  | int target_frame_size = normal_frame_bits; | 
|  | target_frame_size = | 
|  | clamp(target_frame_size, 0, AOMMIN(max_bits, (int)total_group_bits)); | 
|  |  | 
|  | for (int idx = frame_index; idx < gf_group_size; ++idx) { | 
|  | switch (gf_group->update_type[idx]) { | 
|  | case ARF_UPDATE: | 
|  | case INTNL_ARF_UPDATE: | 
|  | gf_group->bit_allocation[idx] = | 
|  | (int)(((int64_t)arf_depth_bits[gf_group->layer_depth[idx]] * | 
|  | gf_group->arf_boost[idx]) / | 
|  | arf_depth_boost[gf_group->layer_depth[idx]]); | 
|  | break; | 
|  | case INTNL_OVERLAY_UPDATE: | 
|  | case OVERLAY_UPDATE: gf_group->bit_allocation[idx] = 0; break; | 
|  | default: gf_group->bit_allocation[idx] = target_frame_size; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set the frame following the current GOP to 0 bit allocation. For ARF | 
|  | // groups, this next frame will be overlay frame, which is the first frame | 
|  | // in the next GOP. For GF group, next GOP will overwrite the rate allocation. | 
|  | // Setting this frame to use 0 bit (of out the current GOP budget) will | 
|  | // simplify logics in reference frame management. | 
|  | gf_group->bit_allocation[gf_group_size] = 0; | 
|  | } | 
|  |  | 
|  | // Given the maximum allowed height of the pyramid structure, return the fixed | 
|  | // GF length to be used. | 
|  | static INLINE int get_fixed_gf_length(int max_pyr_height) { | 
|  | (void)max_pyr_height; | 
|  | return MAX_GF_INTERVAL; | 
|  | } | 
|  |  | 
|  | // Returns true if KF group and GF group both are almost completely static. | 
|  | static INLINE int is_almost_static(double gf_zero_motion, int kf_zero_motion) { | 
|  | return (gf_zero_motion >= 0.995) && | 
|  | (kf_zero_motion >= STATIC_KF_GROUP_THRESH); | 
|  | } | 
|  |  | 
|  | #define ARF_ABS_ZOOM_THRESH 4.4 | 
|  | #define GROUP_ADAPTIVE_MAXQ 1 | 
|  | #if GROUP_ADAPTIVE_MAXQ | 
|  | #define RC_FACTOR_MIN 0.75 | 
|  | #define RC_FACTOR_MAX 1.75 | 
|  | #endif  // GROUP_ADAPTIVE_MAXQ | 
|  | #define MIN_FWD_KF_INTERVAL 8 | 
|  |  | 
|  | static void correct_frames_to_key(AV1_COMP *cpi) { | 
|  | int lookahead_size = | 
|  | (int)av1_lookahead_depth(cpi->lookahead, cpi->compressor_stage) + 1; | 
|  | if (lookahead_size < | 
|  | av1_lookahead_pop_sz(cpi->lookahead, cpi->compressor_stage)) { | 
|  | cpi->rc.frames_to_key = AOMMIN(cpi->rc.frames_to_key, lookahead_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void define_gf_group_pass0(AV1_COMP *cpi, | 
|  | const EncodeFrameParams *const frame_params) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | int target; | 
|  |  | 
|  | // correct frames_to_key when lookahead queue is flushing | 
|  | correct_frames_to_key(cpi); | 
|  |  | 
|  | if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) | 
|  | av1_cyclic_refresh_set_golden_update(cpi); | 
|  | else | 
|  | rc->baseline_gf_interval = MAX_GF_INTERVAL; | 
|  |  | 
|  | // Respect the user-supplied GF interval limits. | 
|  | rc->baseline_gf_interval = | 
|  | AOMMAX(rc->baseline_gf_interval, rc->min_gf_interval); | 
|  | rc->baseline_gf_interval = | 
|  | AOMMIN(rc->baseline_gf_interval, rc->max_gf_interval); | 
|  | // Respect the next keyframe boundary. | 
|  | rc->baseline_gf_interval = | 
|  | AOMMIN(rc->baseline_gf_interval, rc->frames_to_key); | 
|  |  | 
|  | rc->gfu_boost = DEFAULT_GF_BOOST; | 
|  | rc->constrained_gf_group = | 
|  | (rc->baseline_gf_interval >= rc->frames_to_key) ? 1 : 0; | 
|  | const int use_alt_ref = | 
|  | is_altref_enabled(cpi) && | 
|  | (rc->baseline_gf_interval < cpi->oxcf.lag_in_frames) && | 
|  | (cpi->oxcf.gf_max_pyr_height > MIN_PYRAMID_LVL) && | 
|  | (rc->baseline_gf_interval >= MIN_GF_INTERVAL); | 
|  | rc->source_alt_ref_pending = use_alt_ref; | 
|  |  | 
|  | gf_group->max_layer_depth_allowed = | 
|  | (use_alt_ref == 0) ? 0 : cpi->oxcf.gf_max_pyr_height; | 
|  |  | 
|  | if (!cpi->oxcf.fwd_kf_enabled && rc->source_alt_ref_pending) { | 
|  | // We cannot use a forward keyframe as an altref frame, so need to use the | 
|  | // frame before keyframe as the altref. | 
|  | rc->baseline_gf_interval = | 
|  | AOMMIN(rc->baseline_gf_interval, rc->frames_to_key - 1); | 
|  | } | 
|  |  | 
|  | // Set up the structure of this Group-Of-Pictures (same as GF_GROUP) | 
|  | av1_gop_setup_structure(cpi, frame_params); | 
|  |  | 
|  | // Allocate bits to each of the frames in the GF group. | 
|  | // TODO(sarahparker) Extend this to work with pyramid structure. | 
|  | for (int cur_index = 0; cur_index < gf_group->size; ++cur_index) { | 
|  | const FRAME_UPDATE_TYPE cur_update_type = gf_group->update_type[cur_index]; | 
|  | if (cpi->oxcf.rc_mode == AOM_CBR) { | 
|  | if (cur_update_type == KEY_FRAME) { | 
|  | target = av1_calc_iframe_target_size_one_pass_cbr(cpi); | 
|  | } else { | 
|  | target = av1_calc_pframe_target_size_one_pass_cbr(cpi, cur_update_type); | 
|  | } | 
|  | } else { | 
|  | if (cur_update_type == KEY_FRAME) { | 
|  | target = av1_calc_iframe_target_size_one_pass_vbr(cpi); | 
|  | } else { | 
|  | target = av1_calc_pframe_target_size_one_pass_vbr(cpi, cur_update_type); | 
|  | } | 
|  | } | 
|  | gf_group->bit_allocation[cur_index] = target; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void set_baseline_gf_interval(AV1_COMP *cpi, int arf_position, | 
|  | int active_max_gf_interval) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | // Set the interval until the next gf. | 
|  | // If forward keyframes are enabled, ensure the final gf group obeys the | 
|  | // MIN_FWD_KF_INTERVAL. | 
|  | if (cpi->oxcf.fwd_kf_enabled && | 
|  | ((twopass->stats_in - arf_position + rc->frames_to_key) < | 
|  | twopass->stats_buf_ctx->stats_in_end) && | 
|  | cpi->rc.next_is_fwd_key) { | 
|  | if (arf_position == rc->frames_to_key) { | 
|  | rc->baseline_gf_interval = arf_position; | 
|  | // if the last gf group will be smaller than MIN_FWD_KF_INTERVAL | 
|  | } else if ((rc->frames_to_key - arf_position < | 
|  | AOMMAX(MIN_FWD_KF_INTERVAL, rc->min_gf_interval)) && | 
|  | (rc->frames_to_key != arf_position)) { | 
|  | // if possible, merge the last two gf groups | 
|  | if (rc->frames_to_key <= active_max_gf_interval) { | 
|  | rc->baseline_gf_interval = rc->frames_to_key; | 
|  | // if merging the last two gf groups creates a group that is too long, | 
|  | // split them and force the last gf group to be the MIN_FWD_KF_INTERVAL | 
|  | } else { | 
|  | rc->baseline_gf_interval = rc->frames_to_key - MIN_FWD_KF_INTERVAL; | 
|  | } | 
|  | } else { | 
|  | rc->baseline_gf_interval = arf_position - rc->source_alt_ref_pending; | 
|  | } | 
|  | } else { | 
|  | rc->baseline_gf_interval = arf_position - rc->source_alt_ref_pending; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Analyse and define a gf/arf group. | 
|  | #define MAX_GF_BOOST 5400 | 
|  | static void define_gf_group(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame, | 
|  | const EncodeFrameParams *const frame_params) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | FIRSTPASS_STATS next_frame; | 
|  | const FIRSTPASS_STATS *const start_pos = twopass->stats_in; | 
|  | GF_GROUP *gf_group = &cpi->gf_group; | 
|  | FRAME_INFO *frame_info = &cpi->frame_info; | 
|  | int i; | 
|  |  | 
|  | double boost_score = 0.0; | 
|  | double gf_group_err = 0.0; | 
|  | #if GROUP_ADAPTIVE_MAXQ | 
|  | double gf_group_raw_error = 0.0; | 
|  | #endif | 
|  | double gf_group_skip_pct = 0.0; | 
|  | double gf_group_inactive_zone_rows = 0.0; | 
|  | double gf_first_frame_err = 0.0; | 
|  | double mod_frame_err = 0.0; | 
|  |  | 
|  | double mv_ratio_accumulator = 0.0; | 
|  | double decay_accumulator = 1.0; | 
|  | double zero_motion_accumulator = 1.0; | 
|  |  | 
|  | double loop_decay_rate = 1.00; | 
|  | double last_loop_decay_rate = 1.00; | 
|  |  | 
|  | double this_frame_mv_in_out = 0.0; | 
|  | double mv_in_out_accumulator = 0.0; | 
|  | double abs_mv_in_out_accumulator = 0.0; | 
|  |  | 
|  | unsigned int allow_alt_ref = is_altref_enabled(cpi); | 
|  | const int can_disable_arf = (oxcf->gf_min_pyr_height == MIN_PYRAMID_LVL); | 
|  |  | 
|  | int flash_detected; | 
|  | int64_t gf_group_bits; | 
|  | int gf_arf_bits; | 
|  | const int is_intra_only = frame_params->frame_type == KEY_FRAME || | 
|  | frame_params->frame_type == INTRA_ONLY_FRAME; | 
|  | const int arf_active_or_kf = is_intra_only || rc->source_alt_ref_active; | 
|  |  | 
|  | cpi->internal_altref_allowed = (oxcf->gf_max_pyr_height > 1); | 
|  |  | 
|  | // Reset the GF group data structures unless this is a key | 
|  | // frame in which case it will already have been done. | 
|  | if (!is_intra_only) { | 
|  | av1_zero(cpi->gf_group); | 
|  | } | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | av1_zero(next_frame); | 
|  |  | 
|  | if (has_no_stats_stage(cpi)) { | 
|  | define_gf_group_pass0(cpi, frame_params); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // correct frames_to_key when lookahead queue is emptying | 
|  | if (cpi->lap_enabled) { | 
|  | correct_frames_to_key(cpi); | 
|  | } | 
|  |  | 
|  | // Load stats for the current frame. | 
|  | mod_frame_err = calculate_modified_err(frame_info, twopass, oxcf, this_frame); | 
|  |  | 
|  | // Note the error of the frame at the start of the group. This will be | 
|  | // the GF frame error if we code a normal gf. | 
|  | gf_first_frame_err = mod_frame_err; | 
|  |  | 
|  | const double first_frame_coded_error = this_frame->coded_error; | 
|  | const double first_frame_sr_coded_error = this_frame->sr_coded_error; | 
|  | const double first_frame_tr_coded_error = this_frame->tr_coded_error; | 
|  |  | 
|  | // If this is a key frame or the overlay from a previous arf then | 
|  | // the error score / cost of this frame has already been accounted for. | 
|  | if (arf_active_or_kf) { | 
|  | gf_group_err -= gf_first_frame_err; | 
|  | #if GROUP_ADAPTIVE_MAXQ | 
|  | gf_group_raw_error -= this_frame->coded_error; | 
|  | #endif | 
|  | gf_group_skip_pct -= this_frame->intra_skip_pct; | 
|  | gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows; | 
|  | } | 
|  | // Motion breakout threshold for loop below depends on image size. | 
|  | const double mv_ratio_accumulator_thresh = | 
|  | (cpi->initial_height + cpi->initial_width) / 4.0; | 
|  |  | 
|  | // TODO(urvang): Try logic to vary min and max interval based on q. | 
|  | const int active_min_gf_interval = rc->min_gf_interval; | 
|  | const int active_max_gf_interval = | 
|  | AOMMIN(rc->max_gf_interval, get_fixed_gf_length(oxcf->gf_max_pyr_height)); | 
|  |  | 
|  | double avg_sr_coded_error = 0; | 
|  | double avg_tr_coded_error = 0; | 
|  |  | 
|  | double avg_pcnt_second_ref = 0; | 
|  | double avg_pcnt_third_ref = 0; | 
|  |  | 
|  | double avg_new_mv_count = 0; | 
|  |  | 
|  | double avg_wavelet_energy = 0; | 
|  |  | 
|  | double avg_raw_err_stdev = 0; | 
|  | int non_zero_stdev_count = 0; | 
|  |  | 
|  | i = 0; | 
|  | while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) { | 
|  | ++i; | 
|  |  | 
|  | // Accumulate error score of frames in this gf group. | 
|  | mod_frame_err = | 
|  | calculate_modified_err(frame_info, twopass, oxcf, this_frame); | 
|  | gf_group_err += mod_frame_err; | 
|  | #if GROUP_ADAPTIVE_MAXQ | 
|  | gf_group_raw_error += this_frame->coded_error; | 
|  | #endif | 
|  | gf_group_skip_pct += this_frame->intra_skip_pct; | 
|  | gf_group_inactive_zone_rows += this_frame->inactive_zone_rows; | 
|  |  | 
|  | if (EOF == input_stats(twopass, &next_frame)) break; | 
|  |  | 
|  | // Test for the case where there is a brief flash but the prediction | 
|  | // quality back to an earlier frame is then restored. | 
|  | flash_detected = detect_flash(twopass, 0); | 
|  |  | 
|  | // Update the motion related elements to the boost calculation. | 
|  | accumulate_frame_motion_stats( | 
|  | &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, | 
|  | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); | 
|  | // sum up the metric values of current gf group | 
|  | avg_sr_coded_error += next_frame.sr_coded_error; | 
|  | avg_tr_coded_error += next_frame.tr_coded_error; | 
|  | avg_pcnt_second_ref += next_frame.pcnt_second_ref; | 
|  | avg_pcnt_third_ref += next_frame.pcnt_third_ref; | 
|  | avg_new_mv_count += next_frame.new_mv_count; | 
|  | avg_wavelet_energy += next_frame.frame_avg_wavelet_energy; | 
|  | if (fabs(next_frame.raw_error_stdev) > 0.000001) { | 
|  | non_zero_stdev_count++; | 
|  | avg_raw_err_stdev += next_frame.raw_error_stdev; | 
|  | } | 
|  |  | 
|  | // Accumulate the effect of prediction quality decay. | 
|  | if (!flash_detected) { | 
|  | last_loop_decay_rate = loop_decay_rate; | 
|  | loop_decay_rate = get_prediction_decay_rate(frame_info, &next_frame); | 
|  |  | 
|  | decay_accumulator = decay_accumulator * loop_decay_rate; | 
|  |  | 
|  | // Monitor for static sections. | 
|  | if ((rc->frames_since_key + i - 1) > 1) { | 
|  | zero_motion_accumulator = | 
|  | AOMMIN(zero_motion_accumulator, | 
|  | get_zero_motion_factor(frame_info, &next_frame)); | 
|  | } | 
|  |  | 
|  | // Break clause to detect very still sections after motion. For example, | 
|  | // a static image after a fade or other transition. | 
|  | if (can_disable_arf && | 
|  | detect_transition_to_still(cpi, i, 5, loop_decay_rate, | 
|  | last_loop_decay_rate)) { | 
|  | allow_alt_ref = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate a boost number for this frame. | 
|  | boost_score += decay_accumulator * | 
|  | calc_frame_boost(rc, frame_info, &next_frame, | 
|  | this_frame_mv_in_out, GF_MAX_BOOST); | 
|  | // If almost totally static, we will not use the the max GF length later, | 
|  | // so we can continue for more frames. | 
|  | if ((i >= active_max_gf_interval + 1) && | 
|  | !is_almost_static(zero_motion_accumulator, | 
|  | twopass->kf_zeromotion_pct)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Some conditions to breakout after min interval. | 
|  | if (i >= active_min_gf_interval && | 
|  | // If possible don't break very close to a kf | 
|  | (rc->frames_to_key - i >= rc->min_gf_interval) && (i & 0x01) && | 
|  | !flash_detected && | 
|  | (mv_ratio_accumulator > mv_ratio_accumulator_thresh || | 
|  | abs_mv_in_out_accumulator > ARF_ABS_ZOOM_THRESH)) { | 
|  | break; | 
|  | } | 
|  | *this_frame = next_frame; | 
|  | } | 
|  |  | 
|  | // Was the group length constrained by the requirement for a new KF? | 
|  | rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0; | 
|  |  | 
|  | const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs | 
|  | : cpi->common.MBs; | 
|  | assert(num_mbs > 0); | 
|  | const double last_frame_coded_error = next_frame.coded_error; | 
|  | const double last_frame_sr_coded_error = next_frame.sr_coded_error; | 
|  | const double last_frame_tr_coded_error = next_frame.tr_coded_error; | 
|  | double avg_pcnt_third_ref_nolast = avg_pcnt_third_ref; | 
|  | if (i) { | 
|  | avg_sr_coded_error /= i; | 
|  | avg_tr_coded_error /= i; | 
|  | avg_pcnt_second_ref /= i; | 
|  | if (i - 1) { | 
|  | avg_pcnt_third_ref_nolast = | 
|  | (avg_pcnt_third_ref - next_frame.pcnt_third_ref) / (i - 1); | 
|  | } else { | 
|  | avg_pcnt_third_ref_nolast = avg_pcnt_third_ref / i; | 
|  | } | 
|  | avg_pcnt_third_ref /= i; | 
|  | avg_new_mv_count /= i; | 
|  | avg_wavelet_energy /= i; | 
|  | } | 
|  |  | 
|  | if (non_zero_stdev_count) avg_raw_err_stdev /= non_zero_stdev_count; | 
|  |  | 
|  | // Disable internal ARFs for "still" gf groups. | 
|  | //   zero_motion_accumulator: minimum percentage of (0,0) motion; | 
|  | //   avg_sr_coded_error:      average of the SSE per pixel of each frame; | 
|  | //   avg_raw_err_stdev:       average of the standard deviation of (0,0) | 
|  | //                            motion error per block of each frame. | 
|  | const int can_disable_internal_arfs = | 
|  | (oxcf->gf_min_pyr_height <= MIN_PYRAMID_LVL + 1); | 
|  | if (can_disable_internal_arfs && zero_motion_accumulator > MIN_ZERO_MOTION && | 
|  | avg_sr_coded_error / num_mbs < MAX_SR_CODED_ERROR && | 
|  | avg_raw_err_stdev < MAX_RAW_ERR_VAR) { | 
|  | cpi->internal_altref_allowed = 0; | 
|  | } | 
|  |  | 
|  | int use_alt_ref; | 
|  | if (can_disable_arf) { | 
|  | use_alt_ref = !is_almost_static(zero_motion_accumulator, | 
|  | twopass->kf_zeromotion_pct) && | 
|  | allow_alt_ref && (i < cpi->oxcf.lag_in_frames) && | 
|  | (i >= MIN_GF_INTERVAL) && | 
|  | (cpi->oxcf.gf_max_pyr_height > MIN_PYRAMID_LVL); | 
|  |  | 
|  | // TODO(urvang): Improve and use model for VBR, CQ etc as well. | 
|  | if (use_alt_ref && cpi->oxcf.rc_mode == AOM_Q && | 
|  | cpi->oxcf.cq_level <= 200) { | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | /* clang-format off */ | 
|  | // Generate features. | 
|  | const float features[] = { | 
|  | (float)abs_mv_in_out_accumulator, | 
|  | (float)(avg_new_mv_count / num_mbs), | 
|  | (float)avg_pcnt_second_ref, | 
|  | (float)avg_pcnt_third_ref, | 
|  | (float)avg_pcnt_third_ref_nolast, | 
|  | (float)(avg_sr_coded_error / num_mbs), | 
|  | (float)(avg_tr_coded_error / num_mbs), | 
|  | (float)(avg_wavelet_energy / num_mbs), | 
|  | (float)(rc->constrained_gf_group), | 
|  | (float)decay_accumulator, | 
|  | (float)(first_frame_coded_error / num_mbs), | 
|  | (float)(first_frame_sr_coded_error / num_mbs), | 
|  | (float)(first_frame_tr_coded_error / num_mbs), | 
|  | (float)(gf_first_frame_err / num_mbs), | 
|  | (float)(twopass->kf_zeromotion_pct), | 
|  | (float)(last_frame_coded_error / num_mbs), | 
|  | (float)(last_frame_sr_coded_error / num_mbs), | 
|  | (float)(last_frame_tr_coded_error / num_mbs), | 
|  | (float)i, | 
|  | (float)mv_ratio_accumulator, | 
|  | (float)non_zero_stdev_count | 
|  | }; | 
|  | /* clang-format on */ | 
|  | // Infer using ML model. | 
|  | float score; | 
|  | av1_nn_predict(features, &av1_use_flat_gop_nn_config, 1, &score); | 
|  | use_alt_ref = (score <= 0.0); | 
|  | } | 
|  | } else { | 
|  | assert(cpi->oxcf.gf_max_pyr_height > MIN_PYRAMID_LVL); | 
|  | use_alt_ref = allow_alt_ref && (i < cpi->oxcf.lag_in_frames) && (i > 2); | 
|  | } | 
|  |  | 
|  | #define REDUCE_GF_LENGTH_THRESH 4 | 
|  | #define REDUCE_GF_LENGTH_TO_KEY_THRESH 9 | 
|  | #define REDUCE_GF_LENGTH_BY 1 | 
|  | int alt_offset = 0; | 
|  | // The length reduction strategy is tweaked for certain cases, and doesn't | 
|  | // work well for certain other cases. | 
|  | const int allow_gf_length_reduction = | 
|  | ((cpi->oxcf.rc_mode == AOM_Q && cpi->oxcf.cq_level <= 128) || | 
|  | !cpi->internal_altref_allowed) && | 
|  | !is_lossless_requested(&cpi->oxcf); | 
|  |  | 
|  | if (allow_gf_length_reduction && use_alt_ref) { | 
|  | // adjust length of this gf group if one of the following condition met | 
|  | // 1: only one overlay frame left and this gf is too long | 
|  | // 2: next gf group is too short to have arf compared to the current gf | 
|  |  | 
|  | // maximum length of next gf group | 
|  | const int next_gf_len = rc->frames_to_key - i; | 
|  | const int single_overlay_left = | 
|  | next_gf_len == 0 && i > REDUCE_GF_LENGTH_THRESH; | 
|  | // the next gf is probably going to have a ARF but it will be shorter than | 
|  | // this gf | 
|  | const int unbalanced_gf = | 
|  | i > REDUCE_GF_LENGTH_TO_KEY_THRESH && | 
|  | next_gf_len + 1 < REDUCE_GF_LENGTH_TO_KEY_THRESH && | 
|  | next_gf_len + 1 >= rc->min_gf_interval; | 
|  |  | 
|  | if (single_overlay_left || unbalanced_gf) { | 
|  | const int roll_back = REDUCE_GF_LENGTH_BY; | 
|  | // Reduce length only if active_min_gf_interval will be respected later. | 
|  | if (i - roll_back >= active_min_gf_interval + 1) { | 
|  | alt_offset = -roll_back; | 
|  | i -= roll_back; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Should we use the alternate reference frame. | 
|  | if (use_alt_ref) { | 
|  | rc->source_alt_ref_pending = 1; | 
|  | gf_group->max_layer_depth_allowed = cpi->oxcf.gf_max_pyr_height; | 
|  | set_baseline_gf_interval(cpi, i, active_max_gf_interval); | 
|  |  | 
|  | const int forward_frames = (rc->frames_to_key - i >= i - 1) | 
|  | ? i - 1 | 
|  | : AOMMAX(0, rc->frames_to_key - i); | 
|  |  | 
|  | // Calculate the boost for alt ref. | 
|  | rc->gfu_boost = av1_calc_arf_boost( | 
|  | twopass, rc, frame_info, alt_offset, forward_frames, (i - 1), | 
|  | cpi->lap_enabled ? &rc->num_stats_used_for_gfu_boost : NULL, | 
|  | cpi->lap_enabled ? &rc->num_stats_required_for_gfu_boost : NULL); | 
|  | } else { | 
|  | reset_fpf_position(twopass, start_pos); | 
|  | rc->source_alt_ref_pending = 0; | 
|  | gf_group->max_layer_depth_allowed = 0; | 
|  | set_baseline_gf_interval(cpi, i, active_max_gf_interval); | 
|  |  | 
|  | rc->gfu_boost = AOMMIN( | 
|  | MAX_GF_BOOST, | 
|  | av1_calc_arf_boost( | 
|  | twopass, rc, frame_info, alt_offset, (i - 1), 0, | 
|  | cpi->lap_enabled ? &rc->num_stats_used_for_gfu_boost : NULL, | 
|  | cpi->lap_enabled ? &rc->num_stats_required_for_gfu_boost : NULL)); | 
|  | } | 
|  |  | 
|  | #define LAST_ALR_BOOST_FACTOR 0.2f | 
|  | rc->arf_boost_factor = 1.0; | 
|  | if (rc->source_alt_ref_pending && !is_lossless_requested(&cpi->oxcf)) { | 
|  | // Reduce the boost of altref in the last gf group | 
|  | if (rc->frames_to_key - i == REDUCE_GF_LENGTH_BY || | 
|  | rc->frames_to_key - i == 0) { | 
|  | rc->arf_boost_factor = LAST_ALR_BOOST_FACTOR; | 
|  | } | 
|  | } | 
|  |  | 
|  | rc->frames_till_gf_update_due = rc->baseline_gf_interval; | 
|  |  | 
|  | // Reset the file position. | 
|  | reset_fpf_position(twopass, start_pos); | 
|  |  | 
|  | // Calculate the bits to be allocated to the gf/arf group as a whole | 
|  | gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err); | 
|  |  | 
|  | #if GROUP_ADAPTIVE_MAXQ | 
|  | // Calculate an estimate of the maxq needed for the group. | 
|  | // We are more agressive about correcting for sections | 
|  | // where there could be significant overshoot than for easier | 
|  | // sections where we do not wish to risk creating an overshoot | 
|  | // of the allocated bit budget. | 
|  | if ((cpi->oxcf.rc_mode != AOM_Q) && (rc->baseline_gf_interval > 1)) { | 
|  | const int vbr_group_bits_per_frame = | 
|  | (int)(gf_group_bits / rc->baseline_gf_interval); | 
|  | const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval; | 
|  | const double group_av_skip_pct = | 
|  | gf_group_skip_pct / rc->baseline_gf_interval; | 
|  | const double group_av_inactive_zone = | 
|  | ((gf_group_inactive_zone_rows * 2) / | 
|  | (rc->baseline_gf_interval * (double)cm->mb_rows)); | 
|  |  | 
|  | int tmp_q; | 
|  | // rc factor is a weight factor that corrects for local rate control drift. | 
|  | double rc_factor = 1.0; | 
|  | if (rc->rate_error_estimate > 0) { | 
|  | rc_factor = AOMMAX(RC_FACTOR_MIN, | 
|  | (double)(100 - rc->rate_error_estimate) / 100.0); | 
|  | } else { | 
|  | rc_factor = AOMMIN(RC_FACTOR_MAX, | 
|  | (double)(100 - rc->rate_error_estimate) / 100.0); | 
|  | } | 
|  | tmp_q = get_twopass_worst_quality( | 
|  | cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone), | 
|  | vbr_group_bits_per_frame, twopass->kfgroup_inter_fraction * rc_factor); | 
|  | rc->active_worst_quality = AOMMAX(tmp_q, rc->active_worst_quality >> 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Calculate the extra bits to be used for boosted frame(s) | 
|  | gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost, | 
|  | gf_group_bits); | 
|  |  | 
|  | // Adjust KF group bits and error remaining. | 
|  | twopass->kf_group_error_left -= (int64_t)gf_group_err; | 
|  |  | 
|  | // Set up the structure of this Group-Of-Pictures (same as GF_GROUP) | 
|  | av1_gop_setup_structure(cpi, frame_params); | 
|  |  | 
|  | // Allocate bits to each of the frames in the GF group. | 
|  | allocate_gf_group_bits(cpi, gf_group_bits, gf_arf_bits, frame_params); | 
|  |  | 
|  | // Reset the file position. | 
|  | reset_fpf_position(twopass, start_pos); | 
|  |  | 
|  | // Calculate a section intra ratio used in setting max loop filter. | 
|  | if (frame_params->frame_type != KEY_FRAME) { | 
|  | twopass->section_intra_rating = calculate_section_intra_ratio( | 
|  | start_pos, twopass->stats_buf_ctx->stats_in_end, | 
|  | rc->baseline_gf_interval); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Minimum % intra coding observed in first pass (1.0 = 100%) | 
|  | #define MIN_INTRA_LEVEL 0.25 | 
|  | // Minimum ratio between the % of intra coding and inter coding in the first | 
|  | // pass after discounting neutral blocks (discounting neutral blocks in this | 
|  | // way helps catch scene cuts in clips with very flat areas or letter box | 
|  | // format clips with image padding. | 
|  | #define INTRA_VS_INTER_THRESH 2.0 | 
|  | // Hard threshold where the first pass chooses intra for almost all blocks. | 
|  | // In such a case even if the frame is not a scene cut coding a key frame | 
|  | // may be a good option. | 
|  | #define VERY_LOW_INTER_THRESH 0.05 | 
|  | // Maximum threshold for the relative ratio of intra error score vs best | 
|  | // inter error score. | 
|  | #define KF_II_ERR_THRESHOLD 2.5 | 
|  | // In real scene cuts there is almost always a sharp change in the intra | 
|  | // or inter error score. | 
|  | #define ERR_CHANGE_THRESHOLD 0.4 | 
|  | // For real scene cuts we expect an improvment in the intra inter error | 
|  | // ratio in the next frame. | 
|  | #define II_IMPROVEMENT_THRESHOLD 3.5 | 
|  | #define KF_II_MAX 128.0 | 
|  |  | 
|  | // Threshold for use of the lagging second reference frame. High second ref | 
|  | // usage may point to a transient event like a flash or occlusion rather than | 
|  | // a real scene cut. | 
|  | // We adapt the threshold based on number of frames in this key-frame group so | 
|  | // far. | 
|  | static double get_second_ref_usage_thresh(int frame_count_so_far) { | 
|  | const int adapt_upto = 32; | 
|  | const double min_second_ref_usage_thresh = 0.085; | 
|  | const double second_ref_usage_thresh_max_delta = 0.035; | 
|  | if (frame_count_so_far >= adapt_upto) { | 
|  | return min_second_ref_usage_thresh + second_ref_usage_thresh_max_delta; | 
|  | } | 
|  | return min_second_ref_usage_thresh + | 
|  | ((double)frame_count_so_far / (adapt_upto - 1)) * | 
|  | second_ref_usage_thresh_max_delta; | 
|  | } | 
|  |  | 
|  | static int test_candidate_kf(TWO_PASS *twopass, | 
|  | const FIRSTPASS_STATS *last_frame, | 
|  | const FIRSTPASS_STATS *this_frame, | 
|  | const FIRSTPASS_STATS *next_frame, | 
|  | int frame_count_so_far) { | 
|  | int is_viable_kf = 0; | 
|  | double pcnt_intra = 1.0 - this_frame->pcnt_inter; | 
|  | double modified_pcnt_inter = | 
|  | this_frame->pcnt_inter - this_frame->pcnt_neutral; | 
|  | const double second_ref_usage_thresh = | 
|  | get_second_ref_usage_thresh(frame_count_so_far); | 
|  |  | 
|  | // Does the frame satisfy the primary criteria of a key frame? | 
|  | // See above for an explanation of the test criteria. | 
|  | // If so, then examine how well it predicts subsequent frames. | 
|  | if (frame_count_so_far >= 3 && | 
|  | (this_frame->pcnt_second_ref < second_ref_usage_thresh) && | 
|  | (next_frame->pcnt_second_ref < second_ref_usage_thresh) && | 
|  | ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) || | 
|  | ((pcnt_intra > MIN_INTRA_LEVEL) && | 
|  | (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) && | 
|  | ((this_frame->intra_error / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < | 
|  | KF_II_ERR_THRESHOLD) && | 
|  | ((fabs(last_frame->coded_error - this_frame->coded_error) / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > | 
|  | ERR_CHANGE_THRESHOLD) || | 
|  | (fabs(last_frame->intra_error - this_frame->intra_error) / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > | 
|  | ERR_CHANGE_THRESHOLD) || | 
|  | ((next_frame->intra_error / | 
|  | DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > | 
|  | II_IMPROVEMENT_THRESHOLD))))) { | 
|  | int i; | 
|  | const FIRSTPASS_STATS *start_pos = twopass->stats_in; | 
|  | FIRSTPASS_STATS local_next_frame = *next_frame; | 
|  | double boost_score = 0.0; | 
|  | double old_boost_score = 0.0; | 
|  | double decay_accumulator = 1.0; | 
|  |  | 
|  | // Examine how well the key frame predicts subsequent frames. | 
|  | for (i = 0; i < SCENE_CUT_KEY_TEST_INTERVAL; ++i) { | 
|  | double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error / | 
|  | DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); | 
|  |  | 
|  | if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX; | 
|  |  | 
|  | // Cumulative effect of decay in prediction quality. | 
|  | if (local_next_frame.pcnt_inter > 0.85) | 
|  | decay_accumulator *= local_next_frame.pcnt_inter; | 
|  | else | 
|  | decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0; | 
|  |  | 
|  | // Keep a running total. | 
|  | boost_score += (decay_accumulator * next_iiratio); | 
|  |  | 
|  | // Test various breakout clauses. | 
|  | if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || | 
|  | (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < | 
|  | 0.20) && | 
|  | (next_iiratio < 3.0)) || | 
|  | ((boost_score - old_boost_score) < 3.0) || | 
|  | (local_next_frame.intra_error < 200)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | old_boost_score = boost_score; | 
|  |  | 
|  | // Get the next frame details | 
|  | if (EOF == input_stats(twopass, &local_next_frame)) break; | 
|  | } | 
|  |  | 
|  | // If there is tolerable prediction for at least the next 3 frames then | 
|  | // break out else discard this potential key frame and move on | 
|  | if (boost_score > 30.0 && (i > 3)) { | 
|  | is_viable_kf = 1; | 
|  | } else { | 
|  | // Reset the file position | 
|  | reset_fpf_position(twopass, start_pos); | 
|  |  | 
|  | is_viable_kf = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return is_viable_kf; | 
|  | } | 
|  |  | 
|  | #define FRAMES_TO_CHECK_DECAY 8 | 
|  | #define KF_MIN_FRAME_BOOST 80.0 | 
|  | #define KF_MAX_FRAME_BOOST 128.0 | 
|  | #define MIN_KF_BOOST 300          // Minimum boost for non-static KF interval | 
|  | #define MIN_STATIC_KF_BOOST 5400  // Minimum boost for static KF interval | 
|  |  | 
|  | static int get_projected_kf_boost(AV1_COMP *cpi) { | 
|  | /* | 
|  | * If num_stats_used_for_kf_boost >= frames_to_key, then | 
|  | * all stats needed for prior boost calculation are available. | 
|  | * Hence projecting the prior boost is not needed in this cases. | 
|  | */ | 
|  | if (cpi->rc.num_stats_used_for_kf_boost >= cpi->rc.frames_to_key) | 
|  | return cpi->rc.kf_boost; | 
|  |  | 
|  | // Get the current tpl factor (number of frames = frames_to_key). | 
|  | double tpl_factor = av1_get_kf_boost_projection_factor(cpi->rc.frames_to_key); | 
|  | // Get the tpl factor when number of frames = num_stats_used_for_kf_boost. | 
|  | double tpl_factor_num_stats = | 
|  | av1_get_kf_boost_projection_factor(cpi->rc.num_stats_used_for_kf_boost); | 
|  | int projected_kf_boost = | 
|  | (int)rint((tpl_factor * cpi->rc.kf_boost) / tpl_factor_num_stats); | 
|  | return projected_kf_boost; | 
|  | } | 
|  |  | 
|  | static int detect_app_forced_key(AV1_COMP *cpi) { | 
|  | if (cpi->oxcf.fwd_kf_enabled) cpi->rc.next_is_fwd_key = 1; | 
|  | int num_frames_to_app_forced_key = is_forced_keyframe_pending( | 
|  | cpi->lookahead, cpi->lookahead->max_sz, cpi->compressor_stage); | 
|  | if (num_frames_to_app_forced_key != -1) cpi->rc.next_is_fwd_key = 0; | 
|  | return num_frames_to_app_forced_key; | 
|  | } | 
|  |  | 
|  | static int define_kf_interval(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame, | 
|  | double *kf_group_err, | 
|  | int num_frames_to_detect_scenecut) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | double recent_loop_decay[FRAMES_TO_CHECK_DECAY]; | 
|  | FIRSTPASS_STATS last_frame; | 
|  | double decay_accumulator = 1.0; | 
|  | int i = 0, j; | 
|  | int frames_to_key = 1; | 
|  | int frames_since_key = rc->frames_since_key + 1; | 
|  | FRAME_INFO *const frame_info = &cpi->frame_info; | 
|  | int num_stats_used_for_kf_boost = 1; | 
|  | int scenecut_detected = 0; | 
|  |  | 
|  | int num_frames_to_next_key = detect_app_forced_key(cpi); | 
|  |  | 
|  | if (num_frames_to_detect_scenecut == 0) { | 
|  | if (num_frames_to_next_key != -1) | 
|  | return num_frames_to_next_key; | 
|  | else | 
|  | return rc->frames_to_key; | 
|  | } | 
|  |  | 
|  | if (num_frames_to_next_key != -1) | 
|  | num_frames_to_detect_scenecut = | 
|  | AOMMIN(num_frames_to_detect_scenecut, num_frames_to_next_key); | 
|  |  | 
|  | // Initialize the decay rates for the recent frames to check | 
|  | for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0; | 
|  |  | 
|  | i = 0; | 
|  | while (twopass->stats_in < twopass->stats_buf_ctx->stats_in_end && | 
|  | frames_to_key < num_frames_to_detect_scenecut) { | 
|  | // Accumulate total number of stats available till next key frame | 
|  | num_stats_used_for_kf_boost++; | 
|  |  | 
|  | // Accumulate kf group error. | 
|  | if (kf_group_err != NULL) | 
|  | *kf_group_err += | 
|  | calculate_modified_err(frame_info, twopass, oxcf, this_frame); | 
|  |  | 
|  | // Load the next frame's stats. | 
|  | last_frame = *this_frame; | 
|  | input_stats(twopass, this_frame); | 
|  |  | 
|  | // Provided that we are not at the end of the file... | 
|  | if (cpi->rc.enable_scenecut_detection && cpi->oxcf.auto_key && | 
|  | twopass->stats_in < twopass->stats_buf_ctx->stats_in_end) { | 
|  | double loop_decay_rate; | 
|  |  | 
|  | // Check for a scene cut. | 
|  | if (test_candidate_kf(twopass, &last_frame, this_frame, twopass->stats_in, | 
|  | frames_since_key)) { | 
|  | scenecut_detected = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // How fast is the prediction quality decaying? | 
|  | loop_decay_rate = | 
|  | get_prediction_decay_rate(frame_info, twopass->stats_in); | 
|  |  | 
|  | // We want to know something about the recent past... rather than | 
|  | // as used elsewhere where we are concerned with decay in prediction | 
|  | // quality since the last GF or KF. | 
|  | recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate; | 
|  | decay_accumulator = 1.0; | 
|  | for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) | 
|  | decay_accumulator *= recent_loop_decay[j]; | 
|  |  | 
|  | // Special check for transition or high motion followed by a | 
|  | // static scene. | 
|  | if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i, | 
|  | loop_decay_rate, decay_accumulator)) { | 
|  | scenecut_detected = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Step on to the next frame. | 
|  | ++frames_to_key; | 
|  | ++frames_since_key; | 
|  |  | 
|  | // If we don't have a real key frame within the next two | 
|  | // key_freq intervals then break out of the loop. | 
|  | if (frames_to_key >= 2 * cpi->oxcf.key_freq) break; | 
|  | } else { | 
|  | ++frames_to_key; | 
|  | ++frames_since_key; | 
|  | } | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | if (kf_group_err != NULL) | 
|  | rc->num_stats_used_for_kf_boost = num_stats_used_for_kf_boost; | 
|  |  | 
|  | if (cpi->lap_enabled && !scenecut_detected) | 
|  | frames_to_key = num_frames_to_next_key; | 
|  |  | 
|  | return frames_to_key; | 
|  | } | 
|  |  | 
|  | static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &cpi->gf_group; | 
|  | FRAME_INFO *const frame_info = &cpi->frame_info; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | CurrentFrame *const current_frame = &cm->current_frame; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const FIRSTPASS_STATS first_frame = *this_frame; | 
|  | FIRSTPASS_STATS next_frame; | 
|  | av1_zero(next_frame); | 
|  |  | 
|  | rc->frames_since_key = 0; | 
|  |  | 
|  | // Reset the GF group data structures. | 
|  | av1_zero(*gf_group); | 
|  |  | 
|  | // Clear the alt ref active flag and last group multi arf flags as they | 
|  | // can never be set for a key frame. | 
|  | rc->source_alt_ref_active = 0; | 
|  |  | 
|  | // KF is always a GF so clear frames till next gf counter. | 
|  | rc->frames_till_gf_update_due = 0; | 
|  |  | 
|  | rc->frames_to_key = 1; | 
|  |  | 
|  | if (has_no_stats_stage(cpi)) { | 
|  | int num_frames_to_app_forced_key = detect_app_forced_key(cpi); | 
|  | rc->this_key_frame_forced = | 
|  | current_frame->frame_number != 0 && rc->frames_to_key == 0; | 
|  | if (num_frames_to_app_forced_key != -1) | 
|  | rc->frames_to_key = num_frames_to_app_forced_key; | 
|  | else | 
|  | rc->frames_to_key = cpi->oxcf.key_freq; | 
|  | rc->frames_to_key = AOMMAX(1, rc->frames_to_key); | 
|  | correct_frames_to_key(cpi); | 
|  | rc->kf_boost = DEFAULT_KF_BOOST; | 
|  | rc->source_alt_ref_active = 0; | 
|  | gf_group->update_type[0] = KF_UPDATE; | 
|  | return; | 
|  | } | 
|  | int i; | 
|  | const FIRSTPASS_STATS *const start_position = twopass->stats_in; | 
|  | int kf_bits = 0; | 
|  | double zero_motion_accumulator = 1.0; | 
|  | double boost_score = 0.0; | 
|  | double kf_raw_err = 0.0; | 
|  | double kf_mod_err = 0.0; | 
|  | double kf_group_err = 0.0; | 
|  | double sr_accumulator = 0.0; | 
|  | int frames_to_key; | 
|  | // Is this a forced key frame by interval. | 
|  | rc->this_key_frame_forced = rc->next_key_frame_forced; | 
|  |  | 
|  | twopass->kf_group_bits = 0;        // Total bits available to kf group | 
|  | twopass->kf_group_error_left = 0;  // Group modified error score. | 
|  |  | 
|  | kf_raw_err = this_frame->intra_error; | 
|  | kf_mod_err = calculate_modified_err(frame_info, twopass, oxcf, this_frame); | 
|  |  | 
|  | frames_to_key = | 
|  | define_kf_interval(cpi, this_frame, &kf_group_err, oxcf->key_freq); | 
|  |  | 
|  | if (frames_to_key != -1) | 
|  | rc->frames_to_key = AOMMIN(oxcf->key_freq, frames_to_key); | 
|  | else | 
|  | rc->frames_to_key = oxcf->key_freq; | 
|  | rc->frames_to_key = AOMMAX(1, rc->frames_to_key); | 
|  |  | 
|  | if (cpi->lap_enabled) correct_frames_to_key(cpi); | 
|  |  | 
|  | // If there is a max kf interval set by the user we must obey it. | 
|  | // We already breakout of the loop above at 2x max. | 
|  | // This code centers the extra kf if the actual natural interval | 
|  | // is between 1x and 2x. | 
|  | if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) { | 
|  | FIRSTPASS_STATS tmp_frame = first_frame; | 
|  |  | 
|  | rc->frames_to_key /= 2; | 
|  |  | 
|  | // Reset to the start of the group. | 
|  | reset_fpf_position(twopass, start_position); | 
|  |  | 
|  | kf_group_err = 0.0; | 
|  |  | 
|  | // Rescan to get the correct error data for the forced kf group. | 
|  | for (i = 0; i < rc->frames_to_key; ++i) { | 
|  | kf_group_err += | 
|  | calculate_modified_err(frame_info, twopass, oxcf, &tmp_frame); | 
|  | if (EOF == input_stats(twopass, &tmp_frame)) break; | 
|  | } | 
|  | rc->next_key_frame_forced = 1; | 
|  | } else if ((twopass->stats_in == twopass->stats_buf_ctx->stats_in_end && | 
|  | is_stat_consumption_stage_twopass(cpi)) || | 
|  | rc->frames_to_key >= cpi->oxcf.key_freq) { | 
|  | rc->next_key_frame_forced = 1; | 
|  | } else { | 
|  | rc->next_key_frame_forced = 0; | 
|  | } | 
|  |  | 
|  | // Special case for the last key frame of the file. | 
|  | if (twopass->stats_in >= twopass->stats_buf_ctx->stats_in_end) { | 
|  | // Accumulate kf group error. | 
|  | kf_group_err += | 
|  | calculate_modified_err(frame_info, twopass, oxcf, this_frame); | 
|  | } | 
|  |  | 
|  | // Calculate the number of bits that should be assigned to the kf group. | 
|  | if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) { | 
|  | // Maximum number of bits for a single normal frame (not key frame). | 
|  | const int max_bits = frame_max_bits(rc, &cpi->oxcf); | 
|  |  | 
|  | // Maximum number of bits allocated to the key frame group. | 
|  | int64_t max_grp_bits; | 
|  |  | 
|  | // Default allocation based on bits left and relative | 
|  | // complexity of the section. | 
|  | twopass->kf_group_bits = (int64_t)( | 
|  | twopass->bits_left * (kf_group_err / twopass->modified_error_left)); | 
|  |  | 
|  | // Clip based on maximum per frame rate defined by the user. | 
|  | max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; | 
|  | if (twopass->kf_group_bits > max_grp_bits) | 
|  | twopass->kf_group_bits = max_grp_bits; | 
|  | } else { | 
|  | twopass->kf_group_bits = 0; | 
|  | } | 
|  | twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits); | 
|  |  | 
|  | // Reset the first pass file position. | 
|  | reset_fpf_position(twopass, start_position); | 
|  |  | 
|  | // Scan through the kf group collating various stats used to determine | 
|  | // how many bits to spend on it. | 
|  | boost_score = 0.0; | 
|  | const double kf_max_boost = | 
|  | cpi->oxcf.rc_mode == AOM_Q | 
|  | ? AOMMIN(AOMMAX(rc->frames_to_key * 2.0, KF_MIN_FRAME_BOOST), | 
|  | KF_MAX_FRAME_BOOST) | 
|  | : KF_MAX_FRAME_BOOST; | 
|  | for (i = 0; i < (rc->frames_to_key - 1); ++i) { | 
|  | if (EOF == input_stats(twopass, &next_frame)) break; | 
|  |  | 
|  | // Monitor for static sections. | 
|  | // For the first frame in kf group, the second ref indicator is invalid. | 
|  | if (i > 0) { | 
|  | zero_motion_accumulator = | 
|  | AOMMIN(zero_motion_accumulator, | 
|  | get_zero_motion_factor(frame_info, &next_frame)); | 
|  | } else { | 
|  | zero_motion_accumulator = next_frame.pcnt_inter - next_frame.pcnt_motion; | 
|  | } | 
|  |  | 
|  | // Not all frames in the group are necessarily used in calculating boost. | 
|  | if ((sr_accumulator < (kf_raw_err * 1.50)) && | 
|  | (i <= (rc->max_gf_interval * 4))) { | 
|  | double frame_boost; | 
|  | double zm_factor; | 
|  |  | 
|  | // Factor 0.75-1.25 based on how much of frame is static. | 
|  | zm_factor = (0.75 + (zero_motion_accumulator / 2.0)); | 
|  |  | 
|  | if (i < 2) sr_accumulator = 0.0; | 
|  | frame_boost = calc_kf_frame_boost(rc, frame_info, &next_frame, | 
|  | &sr_accumulator, kf_max_boost); | 
|  | boost_score += frame_boost * zm_factor; | 
|  | } | 
|  | } | 
|  |  | 
|  | reset_fpf_position(twopass, start_position); | 
|  |  | 
|  | // Store the zero motion percentage | 
|  | twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); | 
|  |  | 
|  | // Calculate a section intra ratio used in setting max loop filter. | 
|  | twopass->section_intra_rating = calculate_section_intra_ratio( | 
|  | start_position, twopass->stats_buf_ctx->stats_in_end, rc->frames_to_key); | 
|  |  | 
|  | rc->kf_boost = (int)boost_score; | 
|  |  | 
|  | if (cpi->lap_enabled) { | 
|  | rc->kf_boost = get_projected_kf_boost(cpi); | 
|  | } | 
|  |  | 
|  | // Special case for static / slide show content but don't apply | 
|  | // if the kf group is very short. | 
|  | if ((zero_motion_accumulator > STATIC_KF_GROUP_FLOAT_THRESH) && | 
|  | (rc->frames_to_key > 8)) { | 
|  | rc->kf_boost = AOMMAX(rc->kf_boost, MIN_STATIC_KF_BOOST); | 
|  | } else { | 
|  | // Apply various clamps for min and max boost | 
|  | rc->kf_boost = AOMMAX(rc->kf_boost, (rc->frames_to_key * 3)); | 
|  | rc->kf_boost = AOMMAX(rc->kf_boost, MIN_KF_BOOST); | 
|  | } | 
|  |  | 
|  | // Work out how many bits to allocate for the key frame itself. | 
|  | kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost, | 
|  | twopass->kf_group_bits); | 
|  | // printf("kf boost = %d kf_bits = %d kf_zeromotion_pct = %d\n", rc->kf_boost, | 
|  | //        kf_bits, twopass->kf_zeromotion_pct); | 
|  |  | 
|  | // Work out the fraction of the kf group bits reserved for the inter frames | 
|  | // within the group after discounting the bits for the kf itself. | 
|  | if (twopass->kf_group_bits) { | 
|  | twopass->kfgroup_inter_fraction = | 
|  | (double)(twopass->kf_group_bits - kf_bits) / | 
|  | (double)twopass->kf_group_bits; | 
|  | } else { | 
|  | twopass->kfgroup_inter_fraction = 1.0; | 
|  | } | 
|  |  | 
|  | twopass->kf_group_bits -= kf_bits; | 
|  |  | 
|  | // Save the bits to spend on the key frame. | 
|  | gf_group->bit_allocation[0] = kf_bits; | 
|  | gf_group->update_type[0] = KF_UPDATE; | 
|  |  | 
|  | // Note the total error score of the kf group minus the key frame itself. | 
|  | twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err); | 
|  |  | 
|  | // Adjust the count of total modified error left. | 
|  | // The count of bits left is adjusted elsewhere based on real coded frame | 
|  | // sizes. | 
|  | twopass->modified_error_left -= kf_group_err; | 
|  | } | 
|  |  | 
|  | static int is_skippable_frame(const AV1_COMP *cpi) { | 
|  | if (has_no_stats_stage(cpi)) return 0; | 
|  | // If the current frame does not have non-zero motion vector detected in the | 
|  | // first  pass, and so do its previous and forward frames, then this frame | 
|  | // can be skipped for partition check, and the partition size is assigned | 
|  | // according to the variance | 
|  | const TWO_PASS *const twopass = &cpi->twopass; | 
|  |  | 
|  | return (!frame_is_intra_only(&cpi->common) && | 
|  | twopass->stats_in - 2 > twopass->stats_buf_ctx->stats_in_start && | 
|  | twopass->stats_in < twopass->stats_buf_ctx->stats_in_end && | 
|  | (twopass->stats_in - 1)->pcnt_inter - | 
|  | (twopass->stats_in - 1)->pcnt_motion == | 
|  | 1 && | 
|  | (twopass->stats_in - 2)->pcnt_inter - | 
|  | (twopass->stats_in - 2)->pcnt_motion == | 
|  | 1 && | 
|  | twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1); | 
|  | } | 
|  |  | 
|  | #define ARF_STATS_OUTPUT 0 | 
|  | #if ARF_STATS_OUTPUT | 
|  | unsigned int arf_count = 0; | 
|  | #endif | 
|  | #define DEFAULT_GRP_WEIGHT 1.0 | 
|  |  | 
|  | static void process_first_pass_stats(AV1_COMP *cpi, | 
|  | FIRSTPASS_STATS *this_frame) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | CurrentFrame *const current_frame = &cm->current_frame; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  |  | 
|  | if (cpi->oxcf.rc_mode != AOM_Q && current_frame->frame_number == 0 && | 
|  | cpi->twopass.total_stats && cpi->twopass.total_left_stats) { | 
|  | const int frames_left = | 
|  | (int)(twopass->total_stats->count - current_frame->frame_number); | 
|  |  | 
|  | // Special case code for first frame. | 
|  | const int section_target_bandwidth = | 
|  | (int)(twopass->bits_left / frames_left); | 
|  | const double section_length = twopass->total_left_stats->count; | 
|  | const double section_error = | 
|  | twopass->total_left_stats->coded_error / section_length; | 
|  | const double section_intra_skip = | 
|  | twopass->total_left_stats->intra_skip_pct / section_length; | 
|  | const double section_inactive_zone = | 
|  | (twopass->total_left_stats->inactive_zone_rows * 2) / | 
|  | ((double)cm->mb_rows * section_length); | 
|  | const int tmp_q = get_twopass_worst_quality( | 
|  | cpi, section_error, section_intra_skip + section_inactive_zone, | 
|  | section_target_bandwidth, DEFAULT_GRP_WEIGHT); | 
|  |  | 
|  | rc->active_worst_quality = tmp_q; | 
|  | rc->ni_av_qi = tmp_q; | 
|  | rc->last_q[INTER_FRAME] = tmp_q; | 
|  | rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->seq_params.bit_depth); | 
|  | rc->avg_frame_qindex[INTER_FRAME] = tmp_q; | 
|  | rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2; | 
|  | rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME]; | 
|  | } | 
|  |  | 
|  | int err = 0; | 
|  | if (cpi->lap_enabled) { | 
|  | err = input_stats_lap(twopass, this_frame); | 
|  | } else { | 
|  | err = input_stats(twopass, this_frame); | 
|  | } | 
|  | if (err == EOF) return; | 
|  |  | 
|  | { | 
|  | const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) | 
|  | ? cpi->initial_mbs | 
|  | : cpi->common.MBs; | 
|  | // The multiplication by 256 reverses a scaling factor of (>> 8) | 
|  | // applied when combining MB error values for the frame. | 
|  | twopass->mb_av_energy = log((this_frame->intra_error / num_mbs) + 1.0); | 
|  | twopass->frame_avg_haar_energy = | 
|  | log((this_frame->frame_avg_wavelet_energy / num_mbs) + 1.0); | 
|  | } | 
|  |  | 
|  | // Update the total stats remaining structure. | 
|  | if (twopass->total_left_stats) | 
|  | subtract_stats(twopass->total_left_stats, this_frame); | 
|  |  | 
|  | // Set the frame content type flag. | 
|  | if (this_frame->intra_skip_pct >= FC_ANIMATION_THRESH) | 
|  | twopass->fr_content_type = FC_GRAPHICS_ANIMATION; | 
|  | else | 
|  | twopass->fr_content_type = FC_NORMAL; | 
|  | } | 
|  |  | 
|  | static void setup_target_rate(AV1_COMP *cpi) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | GF_GROUP *const gf_group = &cpi->gf_group; | 
|  |  | 
|  | int target_rate = gf_group->bit_allocation[gf_group->index]; | 
|  |  | 
|  | if (has_no_stats_stage(cpi)) { | 
|  | av1_rc_set_frame_target(cpi, target_rate, cpi->common.width, | 
|  | cpi->common.height); | 
|  | } | 
|  |  | 
|  | rc->base_frame_target = target_rate; | 
|  | } | 
|  |  | 
|  | void av1_get_second_pass_params(AV1_COMP *cpi, | 
|  | EncodeFrameParams *const frame_params, | 
|  | unsigned int frame_flags) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &cpi->gf_group; | 
|  |  | 
|  | if (is_stat_consumption_stage(cpi) && !twopass->stats_in) return; | 
|  |  | 
|  | if (rc->frames_till_gf_update_due > 0 && !(frame_flags & FRAMEFLAGS_KEY)) { | 
|  | assert(gf_group->index < gf_group->size); | 
|  | const int update_type = gf_group->update_type[gf_group->index]; | 
|  |  | 
|  | setup_target_rate(cpi); | 
|  |  | 
|  | // If this is an arf frame then we dont want to read the stats file or | 
|  | // advance the input pointer as we already have what we need. | 
|  | if (update_type == ARF_UPDATE || update_type == INTNL_ARF_UPDATE) { | 
|  | if (cpi->no_show_kf) { | 
|  | assert(update_type == ARF_UPDATE); | 
|  | frame_params->frame_type = KEY_FRAME; | 
|  | } else { | 
|  | frame_params->frame_type = INTER_FRAME; | 
|  | } | 
|  |  | 
|  | // Do the firstpass stats indicate that this frame is skippable for the | 
|  | // partition search? | 
|  | if (cpi->sf.allow_partition_search_skip && | 
|  | is_stat_consumption_stage_twopass(cpi)) { | 
|  | cpi->partition_search_skippable_frame = is_skippable_frame(cpi); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | if (cpi->oxcf.rc_mode == AOM_Q) rc->active_worst_quality = cpi->oxcf.cq_level; | 
|  | FIRSTPASS_STATS this_frame; | 
|  | av1_zero(this_frame); | 
|  | // call above fn | 
|  | if (is_stat_consumption_stage(cpi)) { | 
|  | process_first_pass_stats(cpi, &this_frame); | 
|  | } else { | 
|  | rc->active_worst_quality = cpi->oxcf.cq_level; | 
|  | } | 
|  |  | 
|  | // Keyframe and section processing. | 
|  | if (rc->frames_to_key == 0 || (frame_flags & FRAMEFLAGS_KEY)) { | 
|  | FIRSTPASS_STATS this_frame_copy; | 
|  | this_frame_copy = this_frame; | 
|  | frame_params->frame_type = KEY_FRAME; | 
|  | // Define next KF group and assign bits to it. | 
|  | find_next_key_frame(cpi, &this_frame); | 
|  | this_frame = this_frame_copy; | 
|  | } else { | 
|  | frame_params->frame_type = INTER_FRAME; | 
|  | } | 
|  |  | 
|  | // Define a new GF/ARF group. (Should always enter here for key frames). | 
|  | if (rc->frames_till_gf_update_due == 0) { | 
|  | assert(cpi->common.current_frame.frame_number == 0 || | 
|  | gf_group->index == gf_group->size); | 
|  | const FIRSTPASS_STATS *const start_position = twopass->stats_in; | 
|  | int num_frames_to_detect_scenecut, frames_to_key; | 
|  | if (cpi->lap_enabled && cpi->rc.enable_scenecut_detection) | 
|  | num_frames_to_detect_scenecut = MAX_GF_INTERVAL + 1; | 
|  | else | 
|  | num_frames_to_detect_scenecut = 0; | 
|  | frames_to_key = define_kf_interval(cpi, &this_frame, NULL, | 
|  | num_frames_to_detect_scenecut); | 
|  | reset_fpf_position(twopass, start_position); | 
|  | if (frames_to_key != -1) | 
|  | rc->frames_to_key = AOMMIN(rc->frames_to_key, frames_to_key); | 
|  | if (cpi->lap_enabled) correct_frames_to_key(cpi); | 
|  | define_gf_group(cpi, &this_frame, frame_params); | 
|  | rc->frames_till_gf_update_due = rc->baseline_gf_interval; | 
|  | cpi->num_gf_group_show_frames = 0; | 
|  | assert(gf_group->index == 0); | 
|  |  | 
|  | #if ARF_STATS_OUTPUT | 
|  | { | 
|  | FILE *fpfile; | 
|  | fpfile = fopen("arf.stt", "a"); | 
|  | ++arf_count; | 
|  | fprintf(fpfile, "%10d %10d %10d %10d %10d\n", | 
|  | cpi->common.current_frame.frame_number, | 
|  | rc->frames_till_gf_update_due, rc->kf_boost, arf_count, | 
|  | rc->gfu_boost); | 
|  |  | 
|  | fclose(fpfile); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | assert(gf_group->index < gf_group->size); | 
|  |  | 
|  | // Do the firstpass stats indicate that this frame is skippable for the | 
|  | // partition search? | 
|  | if (cpi->sf.allow_partition_search_skip && | 
|  | is_stat_consumption_stage_twopass(cpi)) { | 
|  | cpi->partition_search_skippable_frame = is_skippable_frame(cpi); | 
|  | } | 
|  |  | 
|  | setup_target_rate(cpi); | 
|  | } | 
|  |  | 
|  | void av1_init_second_pass(AV1_COMP *cpi) { | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | FRAME_INFO *const frame_info = &cpi->frame_info; | 
|  | double frame_rate; | 
|  | FIRSTPASS_STATS *stats; | 
|  |  | 
|  | twopass->total_stats = aom_calloc(1, sizeof(FIRSTPASS_STATS)); | 
|  | twopass->total_left_stats = aom_calloc(1, sizeof(FIRSTPASS_STATS)); | 
|  | av1_twopass_zero_stats(twopass->total_stats); | 
|  | av1_twopass_zero_stats(twopass->total_left_stats); | 
|  |  | 
|  | if (!twopass->stats_buf_ctx->stats_in_end) return; | 
|  |  | 
|  | stats = twopass->total_stats; | 
|  |  | 
|  | *stats = *twopass->stats_buf_ctx->stats_in_end; | 
|  | *twopass->total_left_stats = *stats; | 
|  |  | 
|  | frame_rate = 10000000.0 * stats->count / stats->duration; | 
|  | // Each frame can have a different duration, as the frame rate in the source | 
|  | // isn't guaranteed to be constant. The frame rate prior to the first frame | 
|  | // encoded in the second pass is a guess. However, the sum duration is not. | 
|  | // It is calculated based on the actual durations of all frames from the | 
|  | // first pass. | 
|  | av1_new_framerate(cpi, frame_rate); | 
|  | twopass->bits_left = | 
|  | (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0); | 
|  |  | 
|  | // This variable monitors how far behind the second ref update is lagging. | 
|  | twopass->sr_update_lag = 1; | 
|  |  | 
|  | // Scan the first pass file and calculate a modified total error based upon | 
|  | // the bias/power function used to allocate bits. | 
|  | { | 
|  | const double avg_error = | 
|  | stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count); | 
|  | const FIRSTPASS_STATS *s = twopass->stats_in; | 
|  | double modified_error_total = 0.0; | 
|  | twopass->modified_error_min = | 
|  | (avg_error * oxcf->two_pass_vbrmin_section) / 100; | 
|  | twopass->modified_error_max = | 
|  | (avg_error * oxcf->two_pass_vbrmax_section) / 100; | 
|  | while (s < twopass->stats_buf_ctx->stats_in_end) { | 
|  | modified_error_total += | 
|  | calculate_modified_err(frame_info, twopass, oxcf, s); | 
|  | ++s; | 
|  | } | 
|  | twopass->modified_error_left = modified_error_total; | 
|  | } | 
|  |  | 
|  | // Reset the vbr bits off target counters | 
|  | cpi->rc.vbr_bits_off_target = 0; | 
|  | cpi->rc.vbr_bits_off_target_fast = 0; | 
|  |  | 
|  | cpi->rc.rate_error_estimate = 0; | 
|  |  | 
|  | // Static sequence monitor variables. | 
|  | twopass->kf_zeromotion_pct = 100; | 
|  | twopass->last_kfgroup_zeromotion_pct = 100; | 
|  | } | 
|  |  | 
|  | void av1_init_single_pass_lap(AV1_COMP *cpi) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  |  | 
|  | twopass->total_stats = NULL; | 
|  | twopass->total_left_stats = NULL; | 
|  |  | 
|  | if (!twopass->stats_buf_ctx->stats_in_end) return; | 
|  |  | 
|  | // This variable monitors how far behind the second ref update is lagging. | 
|  | twopass->sr_update_lag = 1; | 
|  |  | 
|  | twopass->bits_left = 0; | 
|  | twopass->modified_error_min = 0.0; | 
|  | twopass->modified_error_max = 0.0; | 
|  | twopass->modified_error_left = 0.0; | 
|  |  | 
|  | // Reset the vbr bits off target counters | 
|  | cpi->rc.vbr_bits_off_target = 0; | 
|  | cpi->rc.vbr_bits_off_target_fast = 0; | 
|  |  | 
|  | cpi->rc.rate_error_estimate = 0; | 
|  |  | 
|  | // Static sequence monitor variables. | 
|  | twopass->kf_zeromotion_pct = 100; | 
|  | twopass->last_kfgroup_zeromotion_pct = 100; | 
|  | } | 
|  |  | 
|  | #define MINQ_ADJ_LIMIT 48 | 
|  | #define MINQ_ADJ_LIMIT_CQ 20 | 
|  | #define HIGH_UNDERSHOOT_RATIO 2 | 
|  | void av1_twopass_postencode_update(AV1_COMP *cpi) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | const int bits_used = rc->base_frame_target; | 
|  |  | 
|  | // VBR correction is done through rc->vbr_bits_off_target. Based on the | 
|  | // sign of this value, a limited % adjustment is made to the target rate | 
|  | // of subsequent frames, to try and push it back towards 0. This method | 
|  | // is designed to prevent extreme behaviour at the end of a clip | 
|  | // or group of frames. | 
|  | rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size; | 
|  | twopass->bits_left = AOMMAX(twopass->bits_left - bits_used, 0); | 
|  |  | 
|  | // Calculate the pct rc error. | 
|  | if (rc->total_actual_bits) { | 
|  | rc->rate_error_estimate = | 
|  | (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits); | 
|  | rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100); | 
|  | } else { | 
|  | rc->rate_error_estimate = 0; | 
|  | } | 
|  |  | 
|  | if (cpi->common.current_frame.frame_type != KEY_FRAME) { | 
|  | twopass->kf_group_bits -= bits_used; | 
|  | twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct; | 
|  | } | 
|  | twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0); | 
|  |  | 
|  | // If the rate control is drifting consider adjustment to min or maxq. | 
|  | if ((cpi->oxcf.rc_mode != AOM_Q) && !cpi->rc.is_src_frame_alt_ref) { | 
|  | const int maxq_adj_limit = rc->worst_quality - rc->active_worst_quality; | 
|  | const int minq_adj_limit = | 
|  | (cpi->oxcf.rc_mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT); | 
|  |  | 
|  | // Undershoot. | 
|  | if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) { | 
|  | --twopass->extend_maxq; | 
|  | if (rc->rolling_target_bits >= rc->rolling_actual_bits) | 
|  | ++twopass->extend_minq; | 
|  | // Overshoot. | 
|  | } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) { | 
|  | --twopass->extend_minq; | 
|  | if (rc->rolling_target_bits < rc->rolling_actual_bits) | 
|  | ++twopass->extend_maxq; | 
|  | } else { | 
|  | // Adjustment for extreme local overshoot. | 
|  | if (rc->projected_frame_size > (2 * rc->base_frame_target) && | 
|  | rc->projected_frame_size > (2 * rc->avg_frame_bandwidth)) | 
|  | ++twopass->extend_maxq; | 
|  |  | 
|  | // Unwind undershoot or overshoot adjustment. | 
|  | if (rc->rolling_target_bits < rc->rolling_actual_bits) | 
|  | --twopass->extend_minq; | 
|  | else if (rc->rolling_target_bits > rc->rolling_actual_bits) | 
|  | --twopass->extend_maxq; | 
|  | } | 
|  |  | 
|  | twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit); | 
|  | twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit); | 
|  |  | 
|  | // If there is a big and undexpected undershoot then feed the extra | 
|  | // bits back in quickly. One situation where this may happen is if a | 
|  | // frame is unexpectedly almost perfectly predicted by the ARF or GF | 
|  | // but not very well predcited by the previous frame. | 
|  | if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) { | 
|  | int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO; | 
|  | if (rc->projected_frame_size < fast_extra_thresh) { | 
|  | rc->vbr_bits_off_target_fast += | 
|  | fast_extra_thresh - rc->projected_frame_size; | 
|  | rc->vbr_bits_off_target_fast = | 
|  | AOMMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth)); | 
|  |  | 
|  | // Fast adaptation of minQ if necessary to use up the extra bits. | 
|  | if (rc->avg_frame_bandwidth) { | 
|  | twopass->extend_minq_fast = | 
|  | (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth); | 
|  | } | 
|  | twopass->extend_minq_fast = AOMMIN( | 
|  | twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); | 
|  | } else if (rc->vbr_bits_off_target_fast) { | 
|  | twopass->extend_minq_fast = AOMMIN( | 
|  | twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); | 
|  | } else { | 
|  | twopass->extend_minq_fast = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } |