blob: 2381a3c1fb924883e25a6934ee555c00ae4b96f8 [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdint.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom/aom_codec.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/reconinter_enc.h"
typedef struct GF_PICTURE {
YV12_BUFFER_CONFIG *frame;
int ref_frame[7];
} GF_PICTURE;
static void get_quantize_error(MACROBLOCK *x, int plane, tran_low_t *coeff,
tran_low_t *qcoeff, tran_low_t *dqcoeff,
TX_SIZE tx_size, int64_t *recon_error,
int64_t *sse) {
const struct macroblock_plane *const p = &x->plane[plane];
const SCAN_ORDER *const scan_order = &av1_default_scan_orders[tx_size];
uint16_t eob;
int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
const int shift = tx_size == TX_32X32 ? 0 : 2;
av1_quantize_fp_32x32(coeff, pix_num, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, dqcoeff,
p->dequant_QTX, &eob, scan_order->scan,
scan_order->iscan);
*recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
*recon_error = AOMMAX(*recon_error, 1);
*sse = (*sse) >> shift;
*sse = AOMMAX(*sse, 1);
}
static void wht_fwd_txfm(int16_t *src_diff, int bw, tran_low_t *coeff,
TX_SIZE tx_size) {
switch (tx_size) {
case TX_8X8: aom_hadamard_8x8(src_diff, bw, coeff); break;
case TX_16X16: aom_hadamard_16x16(src_diff, bw, coeff); break;
case TX_32X32: aom_hadamard_32x32(src_diff, bw, coeff); break;
default: assert(0);
}
}
static uint32_t motion_compensated_prediction(AV1_COMP *cpi, ThreadData *td,
uint8_t *cur_frame_buf,
uint8_t *ref_frame_buf,
int stride, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
AV1_COMMON *cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv;
const SEARCH_METHODS search_method = NSTEP;
int step_param;
int sadpb = x->sadperbit16;
uint32_t bestsme = UINT_MAX;
int distortion;
uint32_t sse;
int cost_list[5];
const MvLimits tmp_mv_limits = x->mv_limits;
MV best_ref_mv1 = { 0, 0 };
MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
best_ref_mv1_full.col = best_ref_mv1.col >> 3;
best_ref_mv1_full.row = best_ref_mv1.row >> 3;
// Setup frame pointers
x->plane[0].src.buf = cur_frame_buf;
x->plane[0].src.stride = stride;
xd->plane[0].pre[0].buf = ref_frame_buf;
xd->plane[0].pre[0].stride = stride;
step_param = mv_sf->reduce_first_step_size;
step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2);
av1_set_mv_search_range(&x->mv_limits, &best_ref_mv1);
av1_full_pixel_search(cpi, x, bsize, &best_ref_mv1_full, step_param,
search_method, 0, sadpb, cond_cost_list(cpi, cost_list),
&best_ref_mv1, INT_MAX, 0, (MI_SIZE * mi_col),
(MI_SIZE * mi_row), 0, &cpi->ss_cfg[SS_CFG_SRC]);
/* restore UMV window */
x->mv_limits = tmp_mv_limits;
const int pw = block_size_wide[bsize];
const int ph = block_size_high[bsize];
bestsme = cpi->find_fractional_mv_step(
x, cm, mi_row, mi_col, &best_ref_mv1, cpi->common.allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize], 0, mv_sf->subpel_iters_per_step,
cond_cost_list(cpi, cost_list), NULL, NULL, &distortion, &sse, NULL, NULL,
0, 0, pw, ph, 1, 1);
return bestsme;
}
static void mode_estimation(AV1_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
struct scale_factors *sf, GF_PICTURE *gf_picture,
int frame_idx, int16_t *src_diff, tran_low_t *coeff,
tran_low_t *qcoeff, tran_low_t *dqcoeff, int mi_row,
int mi_col, BLOCK_SIZE bsize, TX_SIZE tx_size,
YV12_BUFFER_CONFIG *ref_frame[], uint8_t *predictor,
TplDepStats *tpl_stats) {
AV1_COMMON *cm = &cpi->common;
ThreadData *td = &cpi->td;
const int bw = 4 << mi_size_wide_log2[bsize];
const int bh = 4 << mi_size_high_log2[bsize];
const int pix_num = bw * bh;
int best_rf_idx = -1;
int_mv best_mv;
int64_t best_inter_cost = INT64_MAX;
int64_t inter_cost;
int rf_idx;
const InterpFilters kernel =
av1_make_interp_filters(EIGHTTAP_REGULAR, EIGHTTAP_REGULAR);
int64_t best_intra_cost = INT64_MAX;
int64_t intra_cost;
PREDICTION_MODE mode;
int mb_y_offset = mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE;
MB_MODE_INFO mi_above, mi_left;
memset(tpl_stats, 0, sizeof(*tpl_stats));
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
xd->mb_to_bottom_edge = ((cm->mi_rows - 1 - mi_row) * MI_SIZE) * 8;
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
xd->mb_to_right_edge = ((cm->mi_cols - 1 - mi_col) * MI_SIZE) * 8;
xd->above_mbmi = (mi_row > 0) ? &mi_above : NULL;
xd->left_mbmi = (mi_col > 0) ? &mi_left : NULL;
// Intra prediction search
for (mode = DC_PRED; mode <= PAETH_PRED; ++mode) {
uint8_t *src, *dst;
int src_stride, dst_stride;
src = xd->cur_buf->y_buffer + mb_y_offset;
src_stride = xd->cur_buf->y_stride;
dst = &predictor[0];
dst_stride = bw;
xd->mi[0]->sb_type = bsize;
xd->mi[0]->ref_frame[0] = INTRA_FRAME;
av1_predict_intra_block(
cm, xd, block_size_wide[bsize], block_size_high[bsize], tx_size, mode,
0, 0, FILTER_INTRA_MODES, src, src_stride, dst, dst_stride, 0, 0, 0);
if (is_cur_buf_hbd(xd)) {
aom_highbd_subtract_block(bh, bw, src_diff, bw, src, src_stride, dst,
dst_stride, xd->bd);
} else {
aom_subtract_block(bh, bw, src_diff, bw, src, src_stride, dst,
dst_stride);
}
wht_fwd_txfm(src_diff, bw, coeff, tx_size);
intra_cost = aom_satd(coeff, pix_num);
if (intra_cost < best_intra_cost) best_intra_cost = intra_cost;
}
// Motion compensated prediction
best_mv.as_int = 0;
(void)mb_y_offset;
// Motion estimation column boundary
x->mv_limits.col_min = -((mi_col * MI_SIZE) + (17 - 2 * AOM_INTERP_EXTEND));
x->mv_limits.col_max =
((cm->mi_cols - 1 - mi_col) * MI_SIZE) + (17 - 2 * AOM_INTERP_EXTEND);
for (rf_idx = 0; rf_idx < 7; ++rf_idx) {
if (ref_frame[rf_idx] == NULL) continue;
motion_compensated_prediction(cpi, td, xd->cur_buf->y_buffer + mb_y_offset,
ref_frame[rf_idx]->y_buffer + mb_y_offset,
xd->cur_buf->y_stride, bsize, mi_row, mi_col);
// TODO(jingning): Not yet support high bit-depth in the next three
// steps.
ConvolveParams conv_params = get_conv_params(0, 0, xd->bd);
WarpTypesAllowed warp_types;
memset(&warp_types, 0, sizeof(WarpTypesAllowed));
av1_build_inter_predictor(
ref_frame[rf_idx]->y_buffer + mb_y_offset, ref_frame[rf_idx]->y_stride,
&predictor[0], bw, &x->best_mv.as_mv, sf, bw, bh, &conv_params, kernel,
&warp_types, mi_col * MI_SIZE, mi_row * MI_SIZE, 0, 0, MV_PRECISION_Q3,
mi_col * MI_SIZE, mi_row * MI_SIZE, xd, 0);
if (is_cur_buf_hbd(xd)) {
aom_highbd_subtract_block(
bh, bw, src_diff, bw, xd->cur_buf->y_buffer + mb_y_offset,
xd->cur_buf->y_stride, &predictor[0], bw, xd->bd);
} else {
aom_subtract_block(bh, bw, src_diff, bw,
xd->cur_buf->y_buffer + mb_y_offset,
xd->cur_buf->y_stride, &predictor[0], bw);
}
wht_fwd_txfm(src_diff, bw, coeff, tx_size);
inter_cost = aom_satd(coeff, pix_num);
if (inter_cost < best_inter_cost) {
int64_t recon_error, sse;
best_rf_idx = rf_idx;
best_inter_cost = inter_cost;
best_mv.as_int = x->best_mv.as_int;
get_quantize_error(x, 0, coeff, qcoeff, dqcoeff, tx_size, &recon_error,
&sse);
}
}
best_intra_cost = AOMMAX(best_intra_cost, 1);
best_inter_cost = AOMMIN(best_intra_cost, best_inter_cost);
tpl_stats->inter_cost = best_inter_cost << TPL_DEP_COST_SCALE_LOG2;
tpl_stats->intra_cost = best_intra_cost << TPL_DEP_COST_SCALE_LOG2;
tpl_stats->mc_dep_cost = tpl_stats->intra_cost + tpl_stats->mc_flow;
tpl_stats->ref_frame_index = gf_picture[frame_idx].ref_frame[best_rf_idx];
tpl_stats->mv.as_int = best_mv.as_int;
}
static int round_floor(int ref_pos, int bsize_pix) {
int round;
if (ref_pos < 0)
round = -(1 + (-ref_pos - 1) / bsize_pix);
else
round = ref_pos / bsize_pix;
return round;
}
static int get_overlap_area(int grid_pos_row, int grid_pos_col, int ref_pos_row,
int ref_pos_col, int block, BLOCK_SIZE bsize) {
int width = 0, height = 0;
int bw = 4 << mi_size_wide_log2[bsize];
int bh = 4 << mi_size_high_log2[bsize];
switch (block) {
case 0:
width = grid_pos_col + bw - ref_pos_col;
height = grid_pos_row + bh - ref_pos_row;
break;
case 1:
width = ref_pos_col + bw - grid_pos_col;
height = grid_pos_row + bh - ref_pos_row;
break;
case 2:
width = grid_pos_col + bw - ref_pos_col;
height = ref_pos_row + bh - grid_pos_row;
break;
case 3:
width = ref_pos_col + bw - grid_pos_col;
height = ref_pos_row + bh - grid_pos_row;
break;
default: assert(0);
}
return width * height;
}
static void tpl_model_update_b(TplDepFrame *tpl_frame, TplDepStats *tpl_stats,
int mi_row, int mi_col, const BLOCK_SIZE bsize) {
TplDepFrame *ref_tpl_frame = &tpl_frame[tpl_stats->ref_frame_index];
TplDepStats *ref_stats = ref_tpl_frame->tpl_stats_ptr;
MV mv = tpl_stats->mv.as_mv;
int mv_row = mv.row >> 3;
int mv_col = mv.col >> 3;
int ref_pos_row = mi_row * MI_SIZE + mv_row;
int ref_pos_col = mi_col * MI_SIZE + mv_col;
const int bw = 4 << mi_size_wide_log2[bsize];
const int bh = 4 << mi_size_high_log2[bsize];
const int mi_height = mi_size_high[bsize];
const int mi_width = mi_size_wide[bsize];
const int pix_num = bw * bh;
// top-left on grid block location in pixel
int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh;
int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw;
int block;
for (block = 0; block < 4; ++block) {
int grid_pos_row = grid_pos_row_base + bh * (block >> 1);
int grid_pos_col = grid_pos_col_base + bw * (block & 0x01);
if (grid_pos_row >= 0 && grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE &&
grid_pos_col >= 0 && grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) {
int overlap_area = get_overlap_area(
grid_pos_row, grid_pos_col, ref_pos_row, ref_pos_col, block, bsize);
int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height;
int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width;
int64_t mc_flow = tpl_stats->mc_dep_cost -
(tpl_stats->mc_dep_cost * tpl_stats->inter_cost) /
tpl_stats->intra_cost;
int idx, idy;
for (idy = 0; idy < mi_height; ++idy) {
for (idx = 0; idx < mi_width; ++idx) {
TplDepStats *des_stats =
&ref_stats[(ref_mi_row + idy) * ref_tpl_frame->stride +
(ref_mi_col + idx)];
des_stats->mc_flow += (mc_flow * overlap_area) / pix_num;
assert(overlap_area >= 0);
}
}
}
}
}
static void tpl_model_update(TplDepFrame *tpl_frame, TplDepStats *tpl_stats,
int mi_row, int mi_col, const BLOCK_SIZE bsize) {
int idx, idy;
const int mi_height = mi_size_high[bsize];
const int mi_width = mi_size_wide[bsize];
for (idy = 0; idy < mi_height; ++idy) {
for (idx = 0; idx < mi_width; ++idx) {
TplDepStats *tpl_ptr =
&tpl_stats[(mi_row + idy) * tpl_frame->stride + (mi_col + idx)];
tpl_model_update_b(tpl_frame, tpl_ptr, mi_row + idy, mi_col + idx,
BLOCK_4X4);
}
}
}
static void tpl_model_store(TplDepStats *tpl_stats, int mi_row, int mi_col,
BLOCK_SIZE bsize, int stride,
const TplDepStats *src_stats) {
const int mi_height = mi_size_high[bsize];
const int mi_width = mi_size_wide[bsize];
int idx, idy;
int64_t intra_cost = src_stats->intra_cost / (mi_height * mi_width);
int64_t inter_cost = src_stats->inter_cost / (mi_height * mi_width);
TplDepStats *tpl_ptr;
intra_cost = AOMMAX(1, intra_cost);
inter_cost = AOMMAX(1, inter_cost);
for (idy = 0; idy < mi_height; ++idy) {
tpl_ptr = &tpl_stats[(mi_row + idy) * stride + mi_col];
for (idx = 0; idx < mi_width; ++idx) {
tpl_ptr->intra_cost = intra_cost;
tpl_ptr->inter_cost = inter_cost;
tpl_ptr->mc_dep_cost = tpl_ptr->intra_cost + tpl_ptr->mc_flow;
tpl_ptr->ref_frame_index = src_stats->ref_frame_index;
tpl_ptr->mv.as_int = src_stats->mv.as_int;
++tpl_ptr;
}
}
}
static void mc_flow_dispenser(AV1_COMP *cpi, GF_PICTURE *gf_picture,
int frame_idx) {
TplDepFrame *tpl_frame = &cpi->tpl_stats[frame_idx];
YV12_BUFFER_CONFIG *this_frame = gf_picture[frame_idx].frame;
YV12_BUFFER_CONFIG *ref_frame[7] = {
NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
AV1_COMMON *cm = &cpi->common;
struct scale_factors sf;
int rdmult, idx;
ThreadData *td = &cpi->td;
MACROBLOCK *x = &td->mb;
MACROBLOCKD *xd = &x->e_mbd;
int mi_row, mi_col;
DECLARE_ALIGNED(32, uint16_t, predictor16[32 * 32 * 3]);
DECLARE_ALIGNED(32, uint8_t, predictor8[32 * 32 * 3]);
uint8_t *predictor;
DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]);
DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]);
DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]);
DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]);
const BLOCK_SIZE bsize = BLOCK_32X32;
const TX_SIZE tx_size = max_txsize_lookup[bsize];
const int mi_height = mi_size_high[bsize];
const int mi_width = mi_size_wide[bsize];
// Setup scaling factor
av1_setup_scale_factors_for_frame(
&sf, this_frame->y_crop_width, this_frame->y_crop_height,
this_frame->y_crop_width, this_frame->y_crop_height);
if (is_cur_buf_hbd(xd))
predictor = CONVERT_TO_BYTEPTR(predictor16);
else
predictor = predictor8;
// Prepare reference frame pointers. If any reference frame slot is
// unavailable, the pointer will be set to Null.
for (idx = 0; idx < 7; ++idx) {
int rf_idx = gf_picture[frame_idx].ref_frame[idx];
if (rf_idx != -1) ref_frame[idx] = gf_picture[rf_idx].frame;
}
xd->mi = cm->mi_grid_visible;
xd->mi[0] = cm->mi;
xd->cur_buf = this_frame;
// Get rd multiplier set up.
rdmult = (int)av1_compute_rd_mult(cpi, tpl_frame->base_qindex);
if (rdmult < 1) rdmult = 1;
set_error_per_bit(x, rdmult);
av1_initialize_me_consts(cpi, x, tpl_frame->base_qindex);
tpl_frame->is_valid = 1;
cm->base_qindex = tpl_frame->base_qindex;
av1_frame_init_quantizer(cpi);
for (mi_row = 0; mi_row < cm->mi_rows; mi_row += mi_height) {
// Motion estimation row boundary
x->mv_limits.row_min = -((mi_row * MI_SIZE) + (17 - 2 * AOM_INTERP_EXTEND));
x->mv_limits.row_max =
(cm->mi_rows - 1 - mi_row) * MI_SIZE + (17 - 2 * AOM_INTERP_EXTEND);
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += mi_width) {
TplDepStats tpl_stats;
mode_estimation(cpi, x, xd, &sf, gf_picture, frame_idx, src_diff, coeff,
qcoeff, dqcoeff, mi_row, mi_col, bsize, tx_size,
ref_frame, predictor, &tpl_stats);
// Motion flow dependency dispenser.
tpl_model_store(tpl_frame->tpl_stats_ptr, mi_row, mi_col, bsize,
tpl_frame->stride, &tpl_stats);
tpl_model_update(cpi->tpl_stats, tpl_frame->tpl_stats_ptr, mi_row, mi_col,
bsize);
}
}
}
static void init_gop_frames_for_tpl(AV1_COMP *cpi, GF_PICTURE *gf_picture,
const GF_GROUP *gf_group,
int *tpl_group_frames,
const EncodeFrameInput *const frame_input) {
AV1_COMMON *cm = &cpi->common;
const SequenceHeader *const seq_params = &cm->seq_params;
int frame_idx = 0;
int i;
int gld_index = -1;
int lst_index = -1;
int extend_frame_count = 0;
int frame_gop_offset = 0;
int pframe_qindex = cpi->tpl_stats[2].base_qindex;
RefCntBuffer *frame_bufs = cm->buffer_pool->frame_bufs;
int recon_frame_index[INTER_REFS_PER_FRAME + 1] = { -1, -1, -1, -1,
-1, -1, -1, -1 };
for (i = 0; i < FRAME_BUFFERS && frame_idx < INTER_REFS_PER_FRAME + 1; ++i) {
if (frame_bufs[i].ref_count == 0) {
alloc_frame_mvs(cm, &frame_bufs[i]);
if (aom_realloc_frame_buffer(
&frame_bufs[i].buf, cm->width, cm->height,
seq_params->subsampling_x, seq_params->subsampling_y,
seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
cm->byte_alignment, NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
recon_frame_index[frame_idx] = i;
++frame_idx;
}
}
for (i = 0; i < INTER_REFS_PER_FRAME + 1; ++i) {
assert(recon_frame_index[i] >= 0);
cpi->tpl_recon_frames[i] = &frame_bufs[recon_frame_index[i]].buf;
}
*tpl_group_frames = 0;
// Initialize Golden reference frame.
RefCntBuffer *ref_buf = get_ref_frame_buf(cm, GOLDEN_FRAME);
gf_picture[0].frame = &ref_buf->buf;
for (i = 0; i < 7; ++i) gf_picture[0].ref_frame[i] = -1;
gld_index = 0;
++*tpl_group_frames;
// Initialize base layer ARF frame
gf_picture[1].frame = frame_input->source;
gf_picture[1].ref_frame[0] = gld_index;
// TODO(yuec) Need o figure out full AV1 reference model
for (i = 1; i < 7; ++i) gf_picture[1].ref_frame[i] = -1;
++*tpl_group_frames;
// Initialize P frames
for (frame_idx = 2; frame_idx < MAX_LAG_BUFFERS; ++frame_idx) {
struct lookahead_entry *buf;
frame_gop_offset = gf_group->frame_gop_index[frame_idx];
buf = av1_lookahead_peek(cpi->lookahead, frame_gop_offset - 1);
if (buf == NULL) break;
gf_picture[frame_idx].frame = &buf->img;
gf_picture[frame_idx].ref_frame[0] = gld_index;
gf_picture[frame_idx].ref_frame[1] = lst_index;
gf_picture[frame_idx].ref_frame[2] = 1;
for (i = 3; i < 7; ++i) gf_picture[frame_idx].ref_frame[i] = -1;
++*tpl_group_frames;
lst_index = frame_idx;
if (frame_idx == gf_group->size) break;
}
gld_index = frame_idx;
lst_index = AOMMAX(0, frame_idx - 1);
++frame_idx;
++frame_gop_offset;
// Extend two frames outside the current gf group.
for (; frame_idx < MAX_LAG_BUFFERS && extend_frame_count < 2; ++frame_idx) {
struct lookahead_entry *buf =
av1_lookahead_peek(cpi->lookahead, frame_gop_offset - 1);
if (buf == NULL) break;
cpi->tpl_stats[frame_idx].base_qindex = pframe_qindex;
gf_picture[frame_idx].frame = &buf->img;
gf_picture[frame_idx].ref_frame[0] = gld_index;
gf_picture[frame_idx].ref_frame[1] = lst_index;
for (i = 2; i < 7; ++i) gf_picture[frame_idx].ref_frame[i] = -1;
lst_index = frame_idx;
++*tpl_group_frames;
++extend_frame_count;
++frame_gop_offset;
}
}
static void init_tpl_stats(AV1_COMP *cpi) {
int frame_idx;
for (frame_idx = 0; frame_idx < MAX_LAG_BUFFERS; ++frame_idx) {
TplDepFrame *tpl_frame = &cpi->tpl_stats[frame_idx];
memset(tpl_frame->tpl_stats_ptr, 0,
tpl_frame->height * tpl_frame->width *
sizeof(*tpl_frame->tpl_stats_ptr));
tpl_frame->is_valid = 0;
}
}
void av1_tpl_setup_stats(AV1_COMP *cpi,
const EncodeFrameInput *const frame_input) {
GF_PICTURE gf_picture[MAX_LAG_BUFFERS];
const GF_GROUP *gf_group = &cpi->twopass.gf_group;
int tpl_group_frames = 0;
int frame_idx;
init_gop_frames_for_tpl(cpi, gf_picture, gf_group, &tpl_group_frames,
frame_input);
init_tpl_stats(cpi);
// Backward propagation from tpl_group_frames to 1.
for (frame_idx = tpl_group_frames - 1; frame_idx > 0; --frame_idx)
mc_flow_dispenser(cpi, gf_picture, frame_idx);
}