|  | /* | 
|  | * Copyright (c) 2017, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "aom_dsp/noise_util.h" | 
|  | #include "aom_dsp/fft_common.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  |  | 
|  | float aom_noise_psd_get_default_value(int block_size, float factor) { | 
|  | return (factor * factor / 10000) * block_size * block_size / 8; | 
|  | } | 
|  |  | 
|  | // Internal representation of noise transform. It keeps track of the | 
|  | // transformed data and a temporary working buffer to use during the | 
|  | // transform. | 
|  | struct aom_noise_tx_t { | 
|  | float *tx_block; | 
|  | float *temp; | 
|  | int block_size; | 
|  | void (*fft)(const float *, float *, float *); | 
|  | void (*ifft)(const float *, float *, float *); | 
|  | }; | 
|  |  | 
|  | struct aom_noise_tx_t *aom_noise_tx_malloc(int block_size) { | 
|  | struct aom_noise_tx_t *noise_tx = | 
|  | (struct aom_noise_tx_t *)aom_malloc(sizeof(struct aom_noise_tx_t)); | 
|  | if (!noise_tx) return NULL; | 
|  | memset(noise_tx, 0, sizeof(*noise_tx)); | 
|  | switch (block_size) { | 
|  | case 2: | 
|  | noise_tx->fft = aom_fft2x2_float; | 
|  | noise_tx->ifft = aom_ifft2x2_float; | 
|  | break; | 
|  | case 4: | 
|  | noise_tx->fft = aom_fft4x4_float; | 
|  | noise_tx->ifft = aom_ifft4x4_float; | 
|  | break; | 
|  | case 8: | 
|  | noise_tx->fft = aom_fft8x8_float; | 
|  | noise_tx->ifft = aom_ifft8x8_float; | 
|  | break; | 
|  | case 16: | 
|  | noise_tx->fft = aom_fft16x16_float; | 
|  | noise_tx->ifft = aom_ifft16x16_float; | 
|  | break; | 
|  | case 32: | 
|  | noise_tx->fft = aom_fft32x32_float; | 
|  | noise_tx->ifft = aom_ifft32x32_float; | 
|  | break; | 
|  | default: | 
|  | aom_free(noise_tx); | 
|  | fprintf(stderr, "Unsupported block size %d\n", block_size); | 
|  | return NULL; | 
|  | } | 
|  | noise_tx->block_size = block_size; | 
|  | noise_tx->tx_block = (float *)aom_memalign( | 
|  | 32, 2 * sizeof(*noise_tx->tx_block) * block_size * block_size); | 
|  | noise_tx->temp = (float *)aom_memalign( | 
|  | 32, 2 * sizeof(*noise_tx->temp) * block_size * block_size); | 
|  | if (!noise_tx->tx_block || !noise_tx->temp) { | 
|  | aom_noise_tx_free(noise_tx); | 
|  | return NULL; | 
|  | } | 
|  | // Clear the buffers up front. Some outputs of the forward transform are | 
|  | // real only (the imaginary component will never be touched) | 
|  | memset(noise_tx->tx_block, 0, | 
|  | 2 * sizeof(*noise_tx->tx_block) * block_size * block_size); | 
|  | memset(noise_tx->temp, 0, | 
|  | 2 * sizeof(*noise_tx->temp) * block_size * block_size); | 
|  | return noise_tx; | 
|  | } | 
|  |  | 
|  | void aom_noise_tx_forward(struct aom_noise_tx_t *noise_tx, const float *data) { | 
|  | noise_tx->fft(data, noise_tx->temp, noise_tx->tx_block); | 
|  | } | 
|  |  | 
|  | void aom_noise_tx_filter(struct aom_noise_tx_t *noise_tx, const float *psd) { | 
|  | const int block_size = noise_tx->block_size; | 
|  | const float kBeta = 1.1f; | 
|  | const float kEps = 1e-6f; | 
|  | for (int y = 0; y < block_size; ++y) { | 
|  | for (int x = 0; x < block_size; ++x) { | 
|  | int i = y * block_size + x; | 
|  | float *c = noise_tx->tx_block + 2 * i; | 
|  | const float p = c[0] * c[0] + c[1] * c[1]; | 
|  | if (p > kBeta * psd[i] && p > 1e-6) { | 
|  | noise_tx->tx_block[2 * i + 0] *= (p - psd[i]) / AOMMAX(p, kEps); | 
|  | noise_tx->tx_block[2 * i + 1] *= (p - psd[i]) / AOMMAX(p, kEps); | 
|  | } else { | 
|  | noise_tx->tx_block[2 * i + 0] *= (kBeta - 1.0f) / kBeta; | 
|  | noise_tx->tx_block[2 * i + 1] *= (kBeta - 1.0f) / kBeta; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void aom_noise_tx_inverse(struct aom_noise_tx_t *noise_tx, float *data) { | 
|  | const int n = noise_tx->block_size * noise_tx->block_size; | 
|  | noise_tx->ifft(noise_tx->tx_block, noise_tx->temp, data); | 
|  | for (int i = 0; i < n; ++i) { | 
|  | data[i] /= n; | 
|  | } | 
|  | } | 
|  |  | 
|  | void aom_noise_tx_add_energy(const struct aom_noise_tx_t *noise_tx, | 
|  | float *psd) { | 
|  | const int block_size = noise_tx->block_size; | 
|  | for (int yb = 0; yb < block_size; ++yb) { | 
|  | for (int xb = 0; xb <= block_size / 2; ++xb) { | 
|  | float *c = noise_tx->tx_block + 2 * (yb * block_size + xb); | 
|  | psd[yb * block_size + xb] += c[0] * c[0] + c[1] * c[1]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void aom_noise_tx_free(struct aom_noise_tx_t *noise_tx) { | 
|  | if (!noise_tx) return; | 
|  | aom_free(noise_tx->tx_block); | 
|  | aom_free(noise_tx->temp); | 
|  | aom_free(noise_tx); | 
|  | } | 
|  |  | 
|  | double aom_normalized_cross_correlation(const double *a, const double *b, | 
|  | int n) { | 
|  | double c = 0; | 
|  | double a_len = 0; | 
|  | double b_len = 0; | 
|  | for (int i = 0; i < n; ++i) { | 
|  | a_len += a[i] * a[i]; | 
|  | b_len += b[i] * b[i]; | 
|  | c += a[i] * b[i]; | 
|  | } | 
|  | return c / (sqrt(a_len) * sqrt(b_len)); | 
|  | } | 
|  |  | 
|  | int aom_noise_data_validate(const double *data, int w, int h) { | 
|  | const double kVarianceThreshold = 2; | 
|  | const double kMeanThreshold = 2; | 
|  |  | 
|  | int x = 0, y = 0; | 
|  | int ret_value = 1; | 
|  | double var = 0, mean = 0; | 
|  | double *mean_x, *mean_y, *var_x, *var_y; | 
|  |  | 
|  | // Check that noise variance is not increasing in x or y | 
|  | // and that the data is zero mean. | 
|  | mean_x = (double *)aom_malloc(sizeof(*mean_x) * w); | 
|  | var_x = (double *)aom_malloc(sizeof(*var_x) * w); | 
|  | mean_y = (double *)aom_malloc(sizeof(*mean_x) * h); | 
|  | var_y = (double *)aom_malloc(sizeof(*var_y) * h); | 
|  |  | 
|  | memset(mean_x, 0, sizeof(*mean_x) * w); | 
|  | memset(var_x, 0, sizeof(*var_x) * w); | 
|  | memset(mean_y, 0, sizeof(*mean_y) * h); | 
|  | memset(var_y, 0, sizeof(*var_y) * h); | 
|  |  | 
|  | for (y = 0; y < h; ++y) { | 
|  | for (x = 0; x < w; ++x) { | 
|  | const double d = data[y * w + x]; | 
|  | var_x[x] += d * d; | 
|  | var_y[y] += d * d; | 
|  | mean_x[x] += d; | 
|  | mean_y[y] += d; | 
|  | var += d * d; | 
|  | mean += d; | 
|  | } | 
|  | } | 
|  | mean /= (w * h); | 
|  | var = var / (w * h) - mean * mean; | 
|  |  | 
|  | for (y = 0; y < h; ++y) { | 
|  | mean_y[y] /= h; | 
|  | var_y[y] = var_y[y] / h - mean_y[y] * mean_y[y]; | 
|  | if (fabs(var_y[y] - var) >= kVarianceThreshold) { | 
|  | fprintf(stderr, "Variance distance too large %f %f\n", var_y[y], var); | 
|  | ret_value = 0; | 
|  | break; | 
|  | } | 
|  | if (fabs(mean_y[y] - mean) >= kMeanThreshold) { | 
|  | fprintf(stderr, "Mean distance too large %f %f\n", mean_y[y], mean); | 
|  | ret_value = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (x = 0; x < w; ++x) { | 
|  | mean_x[x] /= w; | 
|  | var_x[x] = var_x[x] / w - mean_x[x] * mean_x[x]; | 
|  | if (fabs(var_x[x] - var) >= kVarianceThreshold) { | 
|  | fprintf(stderr, "Variance distance too large %f %f\n", var_x[x], var); | 
|  | ret_value = 0; | 
|  | break; | 
|  | } | 
|  | if (fabs(mean_x[x] - mean) >= kMeanThreshold) { | 
|  | fprintf(stderr, "Mean distance too large %f %f\n", mean_x[x], mean); | 
|  | ret_value = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_free(mean_x); | 
|  | aom_free(mean_y); | 
|  | aom_free(var_x); | 
|  | aom_free(var_y); | 
|  |  | 
|  | return ret_value; | 
|  | } |