| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #ifndef AOM_AV1_COMMON_ONYXC_INT_H_ | 
 | #define AOM_AV1_COMMON_ONYXC_INT_H_ | 
 |  | 
 | #include "config/aom_config.h" | 
 | #include "config/av1_rtcd.h" | 
 |  | 
 | #include "aom/internal/aom_codec_internal.h" | 
 | #include "aom_util/aom_thread.h" | 
 | #include "av1/common/alloccommon.h" | 
 | #include "av1/common/av1_loopfilter.h" | 
 | #include "av1/common/entropy.h" | 
 | #include "av1/common/entropymode.h" | 
 | #include "av1/common/entropymv.h" | 
 | #include "av1/common/enums.h" | 
 | #include "av1/common/frame_buffers.h" | 
 | #include "av1/common/mv.h" | 
 | #include "av1/common/quant_common.h" | 
 | #include "av1/common/restoration.h" | 
 | #include "av1/common/tile_common.h" | 
 | #include "av1/common/timing.h" | 
 | #include "av1/common/odintrin.h" | 
 | #include "av1/encoder/hash_motion.h" | 
 | #include "aom_dsp/grain_synthesis.h" | 
 | #include "aom_dsp/grain_table.h" | 
 | #ifdef __cplusplus | 
 | extern "C" { | 
 | #endif | 
 |  | 
 | #if defined(__clang__) && defined(__has_warning) | 
 | #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough") | 
 | #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]]  // NOLINT | 
 | #endif | 
 | #elif defined(__GNUC__) && __GNUC__ >= 7 | 
 | #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough))  // NOLINT | 
 | #endif | 
 |  | 
 | #ifndef AOM_FALLTHROUGH_INTENDED | 
 | #define AOM_FALLTHROUGH_INTENDED \ | 
 |   do {                           \ | 
 |   } while (0) | 
 | #endif | 
 |  | 
 | #define CDEF_MAX_STRENGTHS 16 | 
 |  | 
 | /* Constant values while waiting for the sequence header */ | 
 | #define FRAME_ID_LENGTH 15 | 
 | #define DELTA_FRAME_ID_LENGTH 14 | 
 |  | 
 | #define FRAME_CONTEXTS (FRAME_BUFFERS + 1) | 
 | // Extra frame context which is always kept at default values | 
 | #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1) | 
 | #define PRIMARY_REF_BITS 3 | 
 | #define PRIMARY_REF_NONE 7 | 
 |  | 
 | #define NUM_PING_PONG_BUFFERS 2 | 
 |  | 
 | #define MAX_NUM_TEMPORAL_LAYERS 8 | 
 | #define MAX_NUM_SPATIAL_LAYERS 4 | 
 | /* clang-format off */ | 
 | // clang-format seems to think this is a pointer dereference and not a | 
 | // multiplication. | 
 | #define MAX_NUM_OPERATING_POINTS \ | 
 |   MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS | 
 | /* clang-format on*/ | 
 |  | 
 | // TODO(jingning): Turning this on to set up transform coefficient | 
 | // processing timer. | 
 | #define TXCOEFF_TIMER 0 | 
 | #define TXCOEFF_COST_TIMER 0 | 
 |  | 
 | enum { | 
 |   SINGLE_REFERENCE = 0, | 
 |   COMPOUND_REFERENCE = 1, | 
 |   REFERENCE_MODE_SELECT = 2, | 
 |   REFERENCE_MODES = 3, | 
 | } UENUM1BYTE(REFERENCE_MODE); | 
 |  | 
 | enum { | 
 |   /** | 
 |    * Frame context updates are disabled | 
 |    */ | 
 |   REFRESH_FRAME_CONTEXT_DISABLED, | 
 |   /** | 
 |    * Update frame context to values resulting from backward probability | 
 |    * updates based on entropy/counts in the decoded frame | 
 |    */ | 
 |   REFRESH_FRAME_CONTEXT_BACKWARD, | 
 | } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE); | 
 |  | 
 | #define MFMV_STACK_SIZE 3 | 
 | typedef struct { | 
 |   int_mv mfmv0; | 
 |   uint8_t ref_frame_offset; | 
 | } TPL_MV_REF; | 
 |  | 
 | typedef struct { | 
 |   int_mv mv; | 
 |   MV_REFERENCE_FRAME ref_frame; | 
 | } MV_REF; | 
 |  | 
 | // FIXME(jack.haughton@argondesign.com): This enum was originally in | 
 | // encoder/ratectrl.h, and is encoder specific. When we move to C++, this | 
 | // should go back there and BufferPool should be templatized. | 
 | enum { | 
 |   INTER_NORMAL = 0, | 
 |   INTER_LOW = 1, | 
 |   INTER_HIGH = 2, | 
 |   GF_ARF_LOW = 3, | 
 |   GF_ARF_STD = 4, | 
 |   KF_STD = 5, | 
 |   RATE_FACTOR_LEVELS = 6 | 
 | } UENUM1BYTE(RATE_FACTOR_LEVEL); | 
 |  | 
 | typedef struct RefCntBuffer { | 
 |   // For a RefCntBuffer, the following are reference-holding variables: | 
 |   // - cm->ref_frame_map[] | 
 |   // - cm->cur_frame | 
 |   // - cm->scaled_ref_buf[] (encoder only) | 
 |   // - cm->next_ref_frame_map[] (decoder only) | 
 |   // - pbi->output_frame_index[] (decoder only) | 
 |   // With that definition, 'ref_count' is the number of reference-holding | 
 |   // variables that are currently referencing this buffer. | 
 |   // For example: | 
 |   // - suppose this buffer is at index 'k' in the buffer pool, and | 
 |   // - Total 'n' of the variables / array elements above have value 'k' (that | 
 |   // is, they are pointing to buffer at index 'k'). | 
 |   // Then, pool->frame_bufs[k].ref_count = n. | 
 |   // TODO(david.turner@argondesign.com) Check whether this helpful comment is | 
 |   // still correct after we finish restructuring | 
 |   int ref_count; | 
 |  | 
 |   unsigned int order_hint; | 
 |   unsigned int ref_order_hints[INTER_REFS_PER_FRAME]; | 
 |  | 
 |   MV_REF *mvs; | 
 |   uint8_t *seg_map; | 
 |   struct segmentation seg; | 
 |   int mi_rows; | 
 |   int mi_cols; | 
 |   // Width and height give the size of the buffer (before any upscaling, unlike | 
 |   // the sizes that can be derived from the buf structure) | 
 |   int width; | 
 |   int height; | 
 |   WarpedMotionParams global_motion[REF_FRAMES]; | 
 |   int showable_frame;  // frame can be used as show existing frame in future | 
 |   int film_grain_params_present; | 
 |   aom_film_grain_t film_grain_params; | 
 |   aom_codec_frame_buffer_t raw_frame_buffer; | 
 |   YV12_BUFFER_CONFIG buf; | 
 |   hash_table hash_table; | 
 |   FRAME_TYPE frame_type; | 
 |  | 
 |   // Inter frame reference frame delta for loop filter | 
 |   int8_t ref_deltas[REF_FRAMES]; | 
 |  | 
 |   // 0 = ZERO_MV, MV | 
 |   int8_t mode_deltas[MAX_MODE_LF_DELTAS]; | 
 |  | 
 |   FRAME_CONTEXT frame_context; | 
 |   RATE_FACTOR_LEVEL frame_rf_level; | 
 | } RefCntBuffer; | 
 |  | 
 | typedef struct BufferPool { | 
 | // Protect BufferPool from being accessed by several FrameWorkers at | 
 | // the same time during frame parallel decode. | 
 | // TODO(hkuang): Try to use atomic variable instead of locking the whole pool. | 
 | // TODO(wtc): Remove this. See | 
 | // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630. | 
 | #if CONFIG_MULTITHREAD | 
 |   pthread_mutex_t pool_mutex; | 
 | #endif | 
 |  | 
 |   // Private data associated with the frame buffer callbacks. | 
 |   void *cb_priv; | 
 |  | 
 |   aom_get_frame_buffer_cb_fn_t get_fb_cb; | 
 |   aom_release_frame_buffer_cb_fn_t release_fb_cb; | 
 |  | 
 |   RefCntBuffer frame_bufs[FRAME_BUFFERS]; | 
 |  | 
 |   // Frame buffers allocated internally by the codec. | 
 |   InternalFrameBufferList int_frame_buffers; | 
 | } BufferPool; | 
 |  | 
 | typedef struct BitstreamLevel { | 
 |   uint8_t major; | 
 |   uint8_t minor; | 
 | } BitstreamLevel; | 
 |  | 
 | typedef struct { | 
 |   int cdef_pri_damping; | 
 |   int cdef_sec_damping; | 
 |   int nb_cdef_strengths; | 
 |   int cdef_strengths[CDEF_MAX_STRENGTHS]; | 
 |   int cdef_uv_strengths[CDEF_MAX_STRENGTHS]; | 
 |   int cdef_bits; | 
 | } CdefInfo; | 
 |  | 
 | typedef struct { | 
 |   int delta_q_present_flag; | 
 |   // Resolution of delta quant | 
 |   int delta_q_res; | 
 |   int delta_lf_present_flag; | 
 |   // Resolution of delta lf level | 
 |   int delta_lf_res; | 
 |   // This is a flag for number of deltas of loop filter level | 
 |   // 0: use 1 delta, for y_vertical, y_horizontal, u, and v | 
 |   // 1: use separate deltas for each filter level | 
 |   int delta_lf_multi; | 
 | } DeltaQInfo; | 
 |  | 
 | typedef struct { | 
 |   int enable_order_hint;           // 0 - disable order hint, and related tools | 
 |   int order_hint_bits_minus_1;     // dist_wtd_comp, ref_frame_mvs, | 
 |                                    // frame_sign_bias | 
 |                                    // if 0, enable_dist_wtd_comp and | 
 |                                    // enable_ref_frame_mvs must be set as 0. | 
 |   int enable_dist_wtd_comp;        // 0 - disable dist-wtd compound modes | 
 |                                    // 1 - enable it | 
 |   int enable_ref_frame_mvs;        // 0 - disable ref frame mvs | 
 |                                    // 1 - enable it | 
 | } OrderHintInfo; | 
 |  | 
 | // Sequence header structure. | 
 | // Note: All syntax elements of sequence_header_obu that need to be | 
 | // bit-identical across multiple sequence headers must be part of this struct, | 
 | // so that consistency is checked by are_seq_headers_consistent() function. | 
 | typedef struct SequenceHeader { | 
 |   int num_bits_width; | 
 |   int num_bits_height; | 
 |   int max_frame_width; | 
 |   int max_frame_height; | 
 |   int frame_id_numbers_present_flag; | 
 |   int frame_id_length; | 
 |   int delta_frame_id_length; | 
 |   BLOCK_SIZE sb_size;  // Size of the superblock used for this frame | 
 |   int mib_size;        // Size of the superblock in units of MI blocks | 
 |   int mib_size_log2;   // Log 2 of above. | 
 |  | 
 |   OrderHintInfo order_hint_info; | 
 |  | 
 |   int force_screen_content_tools;  // 0 - force off | 
 |                                    // 1 - force on | 
 |                                    // 2 - adaptive | 
 |   int force_integer_mv;            // 0 - Not to force. MV can be in 1/4 or 1/8 | 
 |                                    // 1 - force to integer | 
 |                                    // 2 - adaptive | 
 |   int still_picture;               // Video is a single frame still picture | 
 |   int reduced_still_picture_hdr;   // Use reduced header for still picture | 
 |   int enable_filter_intra;         // enables/disables filterintra | 
 |   int enable_intra_edge_filter;    // enables/disables corner/edge/upsampling | 
 |   int enable_interintra_compound;  // enables/disables interintra_compound | 
 |   int enable_masked_compound;      // enables/disables masked compound | 
 |   int enable_dual_filter;          // 0 - disable dual interpolation filter | 
 |                                    // 1 - enable vert/horiz filter selection | 
 |   int enable_warped_motion;        // 0 - disable warped motion for sequence | 
 |                                    // 1 - enable it for the sequence | 
 |   int enable_superres;     // 0 - Disable superres for the sequence, and disable | 
 |                            //     transmitting per-frame superres enabled flag. | 
 |                            // 1 - Enable superres for the sequence, and also | 
 |                            //     enable per-frame flag to denote if superres is | 
 |                            //     enabled for that frame. | 
 |   int enable_cdef;         // To turn on/off CDEF | 
 |   int enable_restoration;  // To turn on/off loop restoration | 
 |   BITSTREAM_PROFILE profile; | 
 |  | 
 |   // Operating point info. | 
 |   int operating_points_cnt_minus_1; | 
 |   int operating_point_idc[MAX_NUM_OPERATING_POINTS]; | 
 |   int display_model_info_present_flag; | 
 |   int decoder_model_info_present_flag; | 
 |   BitstreamLevel level[MAX_NUM_OPERATING_POINTS]; | 
 |   uint8_t tier[MAX_NUM_OPERATING_POINTS];  // seq_tier in the spec. One bit: 0 | 
 |                                            // or 1. | 
 |  | 
 |   // Color config. | 
 |   aom_bit_depth_t bit_depth;  // AOM_BITS_8 in profile 0 or 1, | 
 |                               // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3. | 
 |   int use_highbitdepth;       // If true, we need to use 16bit frame buffers. | 
 |   int monochrome;             // Monochorme video | 
 |   aom_color_primaries_t color_primaries; | 
 |   aom_transfer_characteristics_t transfer_characteristics; | 
 |   aom_matrix_coefficients_t matrix_coefficients; | 
 |   int color_range; | 
 |   int subsampling_x;          // Chroma subsampling for x | 
 |   int subsampling_y;          // Chroma subsampling for y | 
 |   aom_chroma_sample_position_t chroma_sample_position; | 
 |   int separate_uv_delta_q; | 
 |  | 
 |   int film_grain_params_present; | 
 | } SequenceHeader; | 
 |  | 
 | typedef struct { | 
 |     int skip_mode_allowed; | 
 |     int skip_mode_flag; | 
 |     int ref_frame_idx_0; | 
 |     int ref_frame_idx_1; | 
 | } SkipModeInfo; | 
 |  | 
 | typedef struct { | 
 |   FRAME_TYPE frame_type; | 
 |   REFERENCE_MODE reference_mode; | 
 |  | 
 |   unsigned int order_hint; | 
 |   unsigned int frame_number; | 
 |   SkipModeInfo skip_mode_info; | 
 |   int refresh_frame_flags;  // Which ref frames are overwritten by this frame | 
 | } CurrentFrame; | 
 |  | 
 | typedef struct AV1Common { | 
 |   CurrentFrame current_frame; | 
 |   struct aom_internal_error_info error; | 
 |   int width; | 
 |   int height; | 
 |   int render_width; | 
 |   int render_height; | 
 |   int timing_info_present; | 
 |   aom_timing_info_t timing_info; | 
 |   int buffer_removal_time_present; | 
 |   aom_dec_model_info_t buffer_model; | 
 |   aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1]; | 
 |   aom_op_timing_info_t op_frame_timing[MAX_NUM_OPERATING_POINTS + 1]; | 
 |   uint32_t frame_presentation_time; | 
 |  | 
 |   int context_update_tile_id; | 
 |  | 
 |   // Scale of the current frame with respect to itself. | 
 |   struct scale_factors sf_identity; | 
 |  | 
 |   RefCntBuffer *prev_frame; | 
 |  | 
 |   // TODO(hkuang): Combine this with cur_buf in macroblockd. | 
 |   RefCntBuffer *cur_frame; | 
 |  | 
 |   // For encoder, we have a two-level mapping from reference frame type to the | 
 |   // corresponding buffer in the buffer pool: | 
 |   // * 'remapped_ref_idx[i - 1]' maps reference type ‘i’ (range: LAST_FRAME ... | 
 |   // EXTREF_FRAME) to a remapped index ‘j’ (in range: 0 ... REF_FRAMES - 1) | 
 |   // * Later, 'cm->ref_frame_map[j]' maps the remapped index ‘j’ to a pointer to | 
 |   // the reference counted buffer structure RefCntBuffer, taken from the buffer | 
 |   // pool cm->buffer_pool->frame_bufs. | 
 |   // | 
 |   // LAST_FRAME,                        ...,      EXTREF_FRAME | 
 |   //      |                                           | | 
 |   //      v                                           v | 
 |   // remapped_ref_idx[LAST_FRAME - 1],  ...,  remapped_ref_idx[EXTREF_FRAME - 1] | 
 |   //      |                                           | | 
 |   //      v                                           v | 
 |   // ref_frame_map[],                   ...,     ref_frame_map[] | 
 |   // | 
 |   // Note: INTRA_FRAME always refers to the current frame, so there's no need to | 
 |   // have a remapped index for the same. | 
 |   int remapped_ref_idx[REF_FRAMES]; | 
 |  | 
 |   struct scale_factors ref_scale_factors[REF_FRAMES]; | 
 |  | 
 |   // For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to | 
 |   // the buffer in the buffer pool ‘cm->buffer_pool.frame_bufs’. | 
 |   // For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps | 
 |   // remapped reference index 'j' (that is, original reference type 'i') to | 
 |   // a pointer to the buffer in the buffer pool ‘cm->buffer_pool.frame_bufs’. | 
 |   RefCntBuffer *ref_frame_map[REF_FRAMES]; | 
 |  | 
 |   // Prepare ref_frame_map for the next frame. | 
 |   // Only used in frame parallel decode. | 
 |   RefCntBuffer *next_ref_frame_map[REF_FRAMES]; | 
 |  | 
 |   int show_frame; | 
 |   int showable_frame;  // frame can be used as show existing frame in future | 
 |   int show_existing_frame; | 
 |   int reset_decoder_state; | 
 |  | 
 |   uint8_t disable_cdf_update; | 
 |   int allow_high_precision_mv; | 
 |   int cur_frame_force_integer_mv;  // 0 the default in AOM, 1 only integer | 
 |  | 
 |   int allow_screen_content_tools; | 
 |   int allow_intrabc; | 
 |   int allow_warped_motion; | 
 |  | 
 |   // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in | 
 |   // MB_MODE_INFO (8-pixel) units. | 
 |   int MBs; | 
 |   int mb_rows, mi_rows; | 
 |   int mb_cols, mi_cols; | 
 |   int mi_stride; | 
 |  | 
 |   /* profile settings */ | 
 |   TX_MODE tx_mode; | 
 |  | 
 | #if CONFIG_ENTROPY_STATS | 
 |   int coef_cdf_category; | 
 | #endif | 
 |  | 
 |   int base_qindex; | 
 |   int y_dc_delta_q; | 
 |   int u_dc_delta_q; | 
 |   int v_dc_delta_q; | 
 |   int u_ac_delta_q; | 
 |   int v_ac_delta_q; | 
 |  | 
 |   // The dequantizers below are true dequantizers used only in the | 
 |   // dequantization process.  They have the same coefficient | 
 |   // shift/scale as TX. | 
 |   int16_t y_dequant_QTX[MAX_SEGMENTS][2]; | 
 |   int16_t u_dequant_QTX[MAX_SEGMENTS][2]; | 
 |   int16_t v_dequant_QTX[MAX_SEGMENTS][2]; | 
 |  | 
 |   // Global quant matrix tables | 
 |   const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; | 
 |   const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; | 
 |  | 
 |   // Local quant matrix tables for each frame | 
 |   const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
 |   const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
 |   const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
 |  | 
 |   // Encoder | 
 |   int using_qmatrix; | 
 |   int qm_y; | 
 |   int qm_u; | 
 |   int qm_v; | 
 |   int min_qmlevel; | 
 |   int max_qmlevel; | 
 |  | 
 |   /* We allocate a MB_MODE_INFO struct for each macroblock, together with | 
 |      an extra row on top and column on the left to simplify prediction. */ | 
 |   int mi_alloc_size; | 
 |   MB_MODE_INFO *mip; /* Base of allocated array */ | 
 |   MB_MODE_INFO *mi;  /* Corresponds to upper left visible macroblock */ | 
 |  | 
 |   // TODO(agrange): Move prev_mi into encoder structure. | 
 |   // prev_mip and prev_mi will only be allocated in encoder. | 
 |   MB_MODE_INFO *prev_mip; /* MB_MODE_INFO array 'mip' from last decoded frame */ | 
 |   MB_MODE_INFO *prev_mi;  /* 'mi' from last frame (points into prev_mip) */ | 
 |  | 
 |   // Separate mi functions between encoder and decoder. | 
 |   int (*alloc_mi)(struct AV1Common *cm, int mi_size); | 
 |   void (*free_mi)(struct AV1Common *cm); | 
 |   void (*setup_mi)(struct AV1Common *cm); | 
 |  | 
 |   // Grid of pointers to 8x8 MB_MODE_INFO structs.  Any 8x8 not in the visible | 
 |   // area will be NULL. | 
 |   MB_MODE_INFO **mi_grid_base; | 
 |   MB_MODE_INFO **mi_grid_visible; | 
 |   MB_MODE_INFO **prev_mi_grid_base; | 
 |   MB_MODE_INFO **prev_mi_grid_visible; | 
 |  | 
 |   // Whether to use previous frames' motion vectors for prediction. | 
 |   int allow_ref_frame_mvs; | 
 |  | 
 |   uint8_t *last_frame_seg_map; | 
 |  | 
 |   InterpFilter interp_filter; | 
 |  | 
 |   int switchable_motion_mode; | 
 |  | 
 |   loop_filter_info_n lf_info; | 
 |   // The denominator of the superres scale; the numerator is fixed. | 
 |   uint8_t superres_scale_denominator; | 
 |   int superres_upscaled_width; | 
 |   int superres_upscaled_height; | 
 |   RestorationInfo rst_info[MAX_MB_PLANE]; | 
 |  | 
 |   // Pointer to a scratch buffer used by self-guided restoration | 
 |   int32_t *rst_tmpbuf; | 
 |   RestorationLineBuffers *rlbs; | 
 |  | 
 |   // Output of loop restoration | 
 |   YV12_BUFFER_CONFIG rst_frame; | 
 |  | 
 |   // Flag signaling how frame contexts should be updated at the end of | 
 |   // a frame decode | 
 |   REFRESH_FRAME_CONTEXT_MODE refresh_frame_context; | 
 |  | 
 |   int ref_frame_sign_bias[REF_FRAMES]; /* Two state 0, 1 */ | 
 |  | 
 |   struct loopfilter lf; | 
 |   struct segmentation seg; | 
 |   int coded_lossless;  // frame is fully lossless at the coded resolution. | 
 |   int all_lossless;    // frame is fully lossless at the upscaled resolution. | 
 |  | 
 |   int reduced_tx_set_used; | 
 |  | 
 |   // Context probabilities for reference frame prediction | 
 |   MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS]; | 
 |   MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS]; | 
 |  | 
 |   FRAME_CONTEXT *fc;              /* this frame entropy */ | 
 |   FRAME_CONTEXT *default_frame_context; | 
 |   int primary_ref_frame; | 
 |  | 
 |   int error_resilient_mode; | 
 |   int force_primary_ref_none; | 
 |  | 
 |   int tile_cols, tile_rows; | 
 |  | 
 |   int max_tile_width_sb; | 
 |   int min_log2_tile_cols; | 
 |   int max_log2_tile_cols; | 
 |   int max_log2_tile_rows; | 
 |   int min_log2_tile_rows; | 
 |   int min_log2_tiles; | 
 |   int max_tile_height_sb; | 
 |   int uniform_tile_spacing_flag; | 
 |   int log2_tile_cols;                        // only valid for uniform tiles | 
 |   int log2_tile_rows;                        // only valid for uniform tiles | 
 |   int tile_col_start_sb[MAX_TILE_COLS + 1];  // valid for 0 <= i <= tile_cols | 
 |   int tile_row_start_sb[MAX_TILE_ROWS + 1];  // valid for 0 <= i <= tile_rows | 
 |   int tile_width, tile_height;               // In MI units | 
 |  | 
 |   unsigned int large_scale_tile; | 
 |   unsigned int single_tile_decoding; | 
 |  | 
 |   int byte_alignment; | 
 |   int skip_loop_filter; | 
 |   int skip_film_grain; | 
 |  | 
 |   // External BufferPool passed from outside. | 
 |   BufferPool *buffer_pool; | 
 |  | 
 |   PARTITION_CONTEXT **above_seg_context; | 
 |   ENTROPY_CONTEXT **above_context[MAX_MB_PLANE]; | 
 |   TXFM_CONTEXT **above_txfm_context; | 
 |   WarpedMotionParams global_motion[REF_FRAMES]; | 
 |   aom_film_grain_t film_grain_params; | 
 |  | 
 |   CdefInfo cdef_info; | 
 |   DeltaQInfo delta_q_info;  // Delta Q and Delta LF parameters | 
 |  | 
 |   int num_tg; | 
 |   SequenceHeader seq_params; | 
 |   int current_frame_id; | 
 |   int ref_frame_id[REF_FRAMES]; | 
 |   int valid_for_referencing[REF_FRAMES]; | 
 |   TPL_MV_REF *tpl_mvs; | 
 |   int tpl_mvs_mem_size; | 
 |   // TODO(jingning): This can be combined with sign_bias later. | 
 |   int8_t ref_frame_side[REF_FRAMES]; | 
 |  | 
 |   int is_annexb; | 
 |  | 
 |   int temporal_layer_id; | 
 |   int spatial_layer_id; | 
 |   unsigned int number_temporal_layers; | 
 |   unsigned int number_spatial_layers; | 
 |   int num_allocated_above_context_mi_col; | 
 |   int num_allocated_above_contexts; | 
 |   int num_allocated_above_context_planes; | 
 |  | 
 | #if TXCOEFF_TIMER | 
 |   int64_t cum_txcoeff_timer; | 
 |   int64_t txcoeff_timer; | 
 |   int txb_count; | 
 | #endif | 
 |  | 
 | #if TXCOEFF_COST_TIMER | 
 |   int64_t cum_txcoeff_cost_timer; | 
 |   int64_t txcoeff_cost_timer; | 
 |   int64_t txcoeff_cost_count; | 
 | #endif | 
 |   const cfg_options_t *options; | 
 |   int is_decoding; | 
 | } AV1_COMMON; | 
 |  | 
 | // TODO(hkuang): Don't need to lock the whole pool after implementing atomic | 
 | // frame reference count. | 
 | static void lock_buffer_pool(BufferPool *const pool) { | 
 | #if CONFIG_MULTITHREAD | 
 |   pthread_mutex_lock(&pool->pool_mutex); | 
 | #else | 
 |   (void)pool; | 
 | #endif | 
 | } | 
 |  | 
 | static void unlock_buffer_pool(BufferPool *const pool) { | 
 | #if CONFIG_MULTITHREAD | 
 |   pthread_mutex_unlock(&pool->pool_mutex); | 
 | #else | 
 |   (void)pool; | 
 | #endif | 
 | } | 
 |  | 
 | static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) { | 
 |   if (index < 0 || index >= REF_FRAMES) return NULL; | 
 |   if (cm->ref_frame_map[index] == NULL) return NULL; | 
 |   return &cm->ref_frame_map[index]->buf; | 
 | } | 
 |  | 
 | static INLINE int get_free_fb(AV1_COMMON *cm) { | 
 |   RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; | 
 |   int i; | 
 |  | 
 |   lock_buffer_pool(cm->buffer_pool); | 
 |   for (i = 0; i < FRAME_BUFFERS; ++i) | 
 |     if (frame_bufs[i].ref_count == 0) break; | 
 |  | 
 |   if (i != FRAME_BUFFERS) { | 
 |     if (frame_bufs[i].buf.use_external_reference_buffers) { | 
 |       // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the | 
 |       // external reference buffers. Restore the buffer pointers to point to the | 
 |       // internally allocated memory. | 
 |       YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf; | 
 |       ybf->y_buffer = ybf->store_buf_adr[0]; | 
 |       ybf->u_buffer = ybf->store_buf_adr[1]; | 
 |       ybf->v_buffer = ybf->store_buf_adr[2]; | 
 |       ybf->use_external_reference_buffers = 0; | 
 |     } | 
 |  | 
 |     frame_bufs[i].ref_count = 1; | 
 |   } else { | 
 |     // We should never run out of free buffers. If this assertion fails, there | 
 |     // is a reference leak. | 
 |     assert(0 && "Ran out of free frame buffers. Likely a reference leak."); | 
 |     // Reset i to be INVALID_IDX to indicate no free buffer found. | 
 |     i = INVALID_IDX; | 
 |   } | 
 |  | 
 |   unlock_buffer_pool(cm->buffer_pool); | 
 |   return i; | 
 | } | 
 |  | 
 | // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref | 
 | // counts accordingly. | 
 | static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr, | 
 |                                        RefCntBuffer *rhs_ptr) { | 
 |   RefCntBuffer *const old_ptr = *lhs_ptr; | 
 |   if (old_ptr != NULL) { | 
 |     assert(old_ptr->ref_count > 0); | 
 |     // One less reference to the buffer at 'old_ptr', so decrease ref count. | 
 |     --old_ptr->ref_count; | 
 |   } | 
 |  | 
 |   *lhs_ptr = rhs_ptr; | 
 |   // One more reference to the buffer at 'rhs_ptr', so increase ref count. | 
 |   ++rhs_ptr->ref_count; | 
 | } | 
 |  | 
 | static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) { | 
 |   return cm->current_frame.frame_type == KEY_FRAME || | 
 |       cm->current_frame.frame_type == INTRA_ONLY_FRAME; | 
 | } | 
 |  | 
 | static INLINE int frame_is_sframe(const AV1_COMMON *cm) { | 
 |   return cm->current_frame.frame_type == S_FRAME; | 
 | } | 
 |  | 
 | // These functions take a reference frame label between LAST_FRAME and | 
 | // EXTREF_FRAME inclusive.  Note that this is different to the indexing | 
 | // previously used by the frame_refs[] array. | 
 | static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm, | 
 |                                         const MV_REFERENCE_FRAME ref_frame) { | 
 |   return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME) | 
 |              ? cm->remapped_ref_idx[ref_frame - LAST_FRAME] | 
 |              : INVALID_IDX; | 
 | } | 
 |  | 
 | static INLINE RefCntBuffer *get_ref_frame_buf( | 
 |     const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { | 
 |   const int map_idx = get_ref_frame_map_idx(cm, ref_frame); | 
 |   return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL; | 
 | } | 
 |  | 
 | // Both const and non-const versions of this function are provided so that it | 
 | // can be used with a const AV1_COMMON if needed. | 
 | static INLINE const struct scale_factors *get_ref_scale_factors_const( | 
 |     const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { | 
 |   const int map_idx = get_ref_frame_map_idx(cm, ref_frame); | 
 |   return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL; | 
 | } | 
 |  | 
 | static INLINE struct scale_factors *get_ref_scale_factors( | 
 |     AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { | 
 |   const int map_idx = get_ref_frame_map_idx(cm, ref_frame); | 
 |   return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL; | 
 | } | 
 |  | 
 | static INLINE RefCntBuffer *get_primary_ref_frame_buf( | 
 |     const AV1_COMMON *const cm) { | 
 |   if (cm->primary_ref_frame == PRIMARY_REF_NONE) return NULL; | 
 |   const int map_idx = get_ref_frame_map_idx(cm, cm->primary_ref_frame + 1); | 
 |   return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL; | 
 | } | 
 |  | 
 | // Returns 1 if this frame might allow mvs from some reference frame. | 
 | static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) { | 
 |   return !cm->error_resilient_mode && | 
 |     cm->seq_params.order_hint_info.enable_ref_frame_mvs && | 
 |     cm->seq_params.order_hint_info.enable_order_hint && | 
 |     !frame_is_intra_only(cm); | 
 | } | 
 |  | 
 | // Returns 1 if this frame might use warped_motion | 
 | static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) { | 
 |   return !cm->error_resilient_mode && !frame_is_intra_only(cm) && | 
 |          cm->seq_params.enable_warped_motion; | 
 | } | 
 |  | 
 | static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) { | 
 |   const int buf_rows = buf->mi_rows; | 
 |   const int buf_cols = buf->mi_cols; | 
 |  | 
 |   if (buf->mvs == NULL || buf_rows != cm->mi_rows || buf_cols != cm->mi_cols) { | 
 |     aom_free(buf->mvs); | 
 |     buf->mi_rows = cm->mi_rows; | 
 |     buf->mi_cols = cm->mi_cols; | 
 |     CHECK_MEM_ERROR(cm, buf->mvs, | 
 |                     (MV_REF *)aom_calloc( | 
 |                         ((cm->mi_rows + 1) >> 1) * ((cm->mi_cols + 1) >> 1), | 
 |                         sizeof(*buf->mvs))); | 
 |     aom_free(buf->seg_map); | 
 |     CHECK_MEM_ERROR(cm, buf->seg_map, | 
 |                     (uint8_t *)aom_calloc(cm->mi_rows * cm->mi_cols, | 
 |                                           sizeof(*buf->seg_map))); | 
 |   } | 
 |  | 
 |   const int mem_size = | 
 |       ((cm->mi_rows + MAX_MIB_SIZE) >> 1) * (cm->mi_stride >> 1); | 
 |   int realloc = cm->tpl_mvs == NULL; | 
 |   if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size; | 
 |  | 
 |   if (realloc) { | 
 |     aom_free(cm->tpl_mvs); | 
 |     CHECK_MEM_ERROR(cm, cm->tpl_mvs, | 
 |                     (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs))); | 
 |     cm->tpl_mvs_mem_size = mem_size; | 
 |   } | 
 | } | 
 |  | 
 | void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params); | 
 |  | 
 | static INLINE int av1_num_planes(const AV1_COMMON *cm) { | 
 |   return cm->seq_params.monochrome ? 1 : MAX_MB_PLANE; | 
 | } | 
 |  | 
 | static INLINE void av1_init_above_context(AV1_COMMON *cm, MACROBLOCKD *xd, | 
 |                                           const int tile_row) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   for (int i = 0; i < num_planes; ++i) { | 
 |     xd->above_context[i] = cm->above_context[i][tile_row]; | 
 |   } | 
 |   xd->above_seg_context = cm->above_seg_context[tile_row]; | 
 |   xd->above_txfm_context = cm->above_txfm_context[tile_row]; | 
 | } | 
 |  | 
 | static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd, | 
 |                                         tran_low_t *dqcoeff) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   for (int i = 0; i < num_planes; ++i) { | 
 |     xd->plane[i].dqcoeff = dqcoeff; | 
 |  | 
 |     if (xd->plane[i].plane_type == PLANE_TYPE_Y) { | 
 |       memcpy(xd->plane[i].seg_dequant_QTX, cm->y_dequant_QTX, | 
 |              sizeof(cm->y_dequant_QTX)); | 
 |       memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix)); | 
 |  | 
 |     } else { | 
 |       if (i == AOM_PLANE_U) { | 
 |         memcpy(xd->plane[i].seg_dequant_QTX, cm->u_dequant_QTX, | 
 |                sizeof(cm->u_dequant_QTX)); | 
 |         memcpy(xd->plane[i].seg_iqmatrix, cm->u_iqmatrix, | 
 |                sizeof(cm->u_iqmatrix)); | 
 |       } else { | 
 |         memcpy(xd->plane[i].seg_dequant_QTX, cm->v_dequant_QTX, | 
 |                sizeof(cm->v_dequant_QTX)); | 
 |         memcpy(xd->plane[i].seg_iqmatrix, cm->v_iqmatrix, | 
 |                sizeof(cm->v_iqmatrix)); | 
 |       } | 
 |     } | 
 |   } | 
 |   xd->mi_stride = cm->mi_stride; | 
 |   xd->error_info = &cm->error; | 
 |   cfl_init(&xd->cfl, &cm->seq_params); | 
 | } | 
 |  | 
 | static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col, | 
 |                                     const int num_planes) { | 
 |   int i; | 
 |   int row_offset = mi_row; | 
 |   int col_offset = mi_col; | 
 |   for (i = 0; i < num_planes; ++i) { | 
 |     struct macroblockd_plane *const pd = &xd->plane[i]; | 
 |     // Offset the buffer pointer | 
 |     const BLOCK_SIZE bsize = xd->mi[0]->sb_type; | 
 |     if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1)) | 
 |       row_offset = mi_row - 1; | 
 |     if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1)) | 
 |       col_offset = mi_col - 1; | 
 |     int above_idx = col_offset; | 
 |     int left_idx = row_offset & MAX_MIB_MASK; | 
 |     pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x]; | 
 |     pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y]; | 
 |   } | 
 | } | 
 |  | 
 | static INLINE int calc_mi_size(int len) { | 
 |   // len is in mi units. Align to a multiple of SBs. | 
 |   return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2); | 
 | } | 
 |  | 
 | static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, | 
 |                                 const int num_planes) { | 
 |   int i; | 
 |   for (i = 0; i < num_planes; i++) { | 
 |     xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x; | 
 |     xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y; | 
 |  | 
 |     xd->plane[i].width = AOMMAX(xd->plane[i].width, 4); | 
 |     xd->plane[i].height = AOMMAX(xd->plane[i].height, 4); | 
 |   } | 
 | } | 
 |  | 
 | static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, | 
 |                                   int mi_row, int bh, int mi_col, int bw, | 
 |                                   int mi_rows, int mi_cols) { | 
 |   xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); | 
 |   xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8; | 
 |   xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); | 
 |   xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8; | 
 |  | 
 |   // Are edges available for intra prediction? | 
 |   xd->up_available = (mi_row > tile->mi_row_start); | 
 |  | 
 |   const int ss_x = xd->plane[1].subsampling_x; | 
 |   const int ss_y = xd->plane[1].subsampling_y; | 
 |  | 
 |   xd->left_available = (mi_col > tile->mi_col_start); | 
 |   xd->chroma_up_available = xd->up_available; | 
 |   xd->chroma_left_available = xd->left_available; | 
 |   if (ss_x && bw < mi_size_wide[BLOCK_8X8]) | 
 |     xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start; | 
 |   if (ss_y && bh < mi_size_high[BLOCK_8X8]) | 
 |     xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start; | 
 |   if (xd->up_available) { | 
 |     xd->above_mbmi = xd->mi[-xd->mi_stride]; | 
 |   } else { | 
 |     xd->above_mbmi = NULL; | 
 |   } | 
 |  | 
 |   if (xd->left_available) { | 
 |     xd->left_mbmi = xd->mi[-1]; | 
 |   } else { | 
 |     xd->left_mbmi = NULL; | 
 |   } | 
 |  | 
 |   const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) && | 
 |                          ((mi_col & 0x01) || !(bw & 0x01) || !ss_x); | 
 |   if (chroma_ref) { | 
 |     // To help calculate the "above" and "left" chroma blocks, note that the | 
 |     // current block may cover multiple luma blocks (eg, if partitioned into | 
 |     // 4x4 luma blocks). | 
 |     // First, find the top-left-most luma block covered by this chroma block | 
 |     MB_MODE_INFO **base_mi = | 
 |         &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)]; | 
 |  | 
 |     // Then, we consider the luma region covered by the left or above 4x4 chroma | 
 |     // prediction. We want to point to the chroma reference block in that | 
 |     // region, which is the bottom-right-most mi unit. | 
 |     // This leads to the following offsets: | 
 |     MB_MODE_INFO *chroma_above_mi = | 
 |         xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL; | 
 |     xd->chroma_above_mbmi = chroma_above_mi; | 
 |  | 
 |     MB_MODE_INFO *chroma_left_mi = | 
 |         xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL; | 
 |     xd->chroma_left_mbmi = chroma_left_mi; | 
 |   } | 
 |  | 
 |   xd->n4_h = bh; | 
 |   xd->n4_w = bw; | 
 |   xd->is_sec_rect = 0; | 
 |   if (xd->n4_w < xd->n4_h) { | 
 |     // Only mark is_sec_rect as 1 for the last block. | 
 |     // For PARTITION_VERT_4, it would be (0, 0, 0, 1); | 
 |     // For other partitions, it would be (0, 1). | 
 |     if (!((mi_col + xd->n4_w) & (xd->n4_h - 1))) xd->is_sec_rect = 1; | 
 |   } | 
 |  | 
 |   if (xd->n4_w > xd->n4_h) | 
 |     if (mi_row & (xd->n4_w - 1)) xd->is_sec_rect = 1; | 
 | } | 
 |  | 
 | static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx, | 
 |                                            const MB_MODE_INFO *above_mi, | 
 |                                            const MB_MODE_INFO *left_mi) { | 
 |   const PREDICTION_MODE above = av1_above_block_mode(above_mi); | 
 |   const PREDICTION_MODE left = av1_left_block_mode(left_mi); | 
 |   const int above_ctx = intra_mode_context[above]; | 
 |   const int left_ctx = intra_mode_context[left]; | 
 |   return tile_ctx->kf_y_cdf[above_ctx][left_ctx]; | 
 | } | 
 |  | 
 | static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row, | 
 |                                             int mi_col, BLOCK_SIZE subsize, | 
 |                                             BLOCK_SIZE bsize) { | 
 |   PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; | 
 |   PARTITION_CONTEXT *const left_ctx = | 
 |       xd->left_seg_context + (mi_row & MAX_MIB_MASK); | 
 |  | 
 |   const int bw = mi_size_wide[bsize]; | 
 |   const int bh = mi_size_high[bsize]; | 
 |   memset(above_ctx, partition_context_lookup[subsize].above, bw); | 
 |   memset(left_ctx, partition_context_lookup[subsize].left, bh); | 
 | } | 
 |  | 
 | static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize, | 
 |                                       int subsampling_x, int subsampling_y) { | 
 |   const int bw = mi_size_wide[bsize]; | 
 |   const int bh = mi_size_high[bsize]; | 
 |   int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) && | 
 |                 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x); | 
 |   return ref_pos; | 
 | } | 
 |  | 
 | static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x, | 
 |                                             int subsampling_y) { | 
 |   BLOCK_SIZE bs = bsize; | 
 |   switch (bsize) { | 
 |     case BLOCK_4X4: | 
 |       if (subsampling_x == 1 && subsampling_y == 1) | 
 |         bs = BLOCK_8X8; | 
 |       else if (subsampling_x == 1) | 
 |         bs = BLOCK_8X4; | 
 |       else if (subsampling_y == 1) | 
 |         bs = BLOCK_4X8; | 
 |       break; | 
 |     case BLOCK_4X8: | 
 |       if (subsampling_x == 1 && subsampling_y == 1) | 
 |         bs = BLOCK_8X8; | 
 |       else if (subsampling_x == 1) | 
 |         bs = BLOCK_8X8; | 
 |       else if (subsampling_y == 1) | 
 |         bs = BLOCK_4X8; | 
 |       break; | 
 |     case BLOCK_8X4: | 
 |       if (subsampling_x == 1 && subsampling_y == 1) | 
 |         bs = BLOCK_8X8; | 
 |       else if (subsampling_x == 1) | 
 |         bs = BLOCK_8X4; | 
 |       else if (subsampling_y == 1) | 
 |         bs = BLOCK_8X8; | 
 |       break; | 
 |     case BLOCK_4X16: | 
 |       if (subsampling_x == 1 && subsampling_y == 1) | 
 |         bs = BLOCK_8X16; | 
 |       else if (subsampling_x == 1) | 
 |         bs = BLOCK_8X16; | 
 |       else if (subsampling_y == 1) | 
 |         bs = BLOCK_4X16; | 
 |       break; | 
 |     case BLOCK_16X4: | 
 |       if (subsampling_x == 1 && subsampling_y == 1) | 
 |         bs = BLOCK_16X8; | 
 |       else if (subsampling_x == 1) | 
 |         bs = BLOCK_16X4; | 
 |       else if (subsampling_y == 1) | 
 |         bs = BLOCK_16X8; | 
 |       break; | 
 |     default: break; | 
 |   } | 
 |   return bs; | 
 | } | 
 |  | 
 | static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf, | 
 |                                             size_t element) { | 
 |   assert(cdf != NULL); | 
 |   return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element]; | 
 | } | 
 |  | 
 | static INLINE void partition_gather_horz_alike(aom_cdf_prob *out, | 
 |                                                const aom_cdf_prob *const in, | 
 |                                                BLOCK_SIZE bsize) { | 
 |   (void)bsize; | 
 |   out[0] = CDF_PROB_TOP; | 
 |   out[0] -= cdf_element_prob(in, PARTITION_HORZ); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_SPLIT); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_HORZ_B); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_VERT_A); | 
 |   if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4); | 
 |   out[0] = AOM_ICDF(out[0]); | 
 |   out[1] = AOM_ICDF(CDF_PROB_TOP); | 
 | } | 
 |  | 
 | static INLINE void partition_gather_vert_alike(aom_cdf_prob *out, | 
 |                                                const aom_cdf_prob *const in, | 
 |                                                BLOCK_SIZE bsize) { | 
 |   (void)bsize; | 
 |   out[0] = CDF_PROB_TOP; | 
 |   out[0] -= cdf_element_prob(in, PARTITION_VERT); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_SPLIT); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_VERT_A); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_VERT_B); | 
 |   if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4); | 
 |   out[0] = AOM_ICDF(out[0]); | 
 |   out[1] = AOM_ICDF(CDF_PROB_TOP); | 
 | } | 
 |  | 
 | static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row, | 
 |                                                 int mi_col, BLOCK_SIZE subsize, | 
 |                                                 BLOCK_SIZE bsize, | 
 |                                                 PARTITION_TYPE partition) { | 
 |   if (bsize >= BLOCK_8X8) { | 
 |     const int hbs = mi_size_wide[bsize] / 2; | 
 |     BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); | 
 |     switch (partition) { | 
 |       case PARTITION_SPLIT: | 
 |         if (bsize != BLOCK_8X8) break; | 
 |         AOM_FALLTHROUGH_INTENDED; | 
 |       case PARTITION_NONE: | 
 |       case PARTITION_HORZ: | 
 |       case PARTITION_VERT: | 
 |       case PARTITION_HORZ_4: | 
 |       case PARTITION_VERT_4: | 
 |         update_partition_context(xd, mi_row, mi_col, subsize, bsize); | 
 |         break; | 
 |       case PARTITION_HORZ_A: | 
 |         update_partition_context(xd, mi_row, mi_col, bsize2, subsize); | 
 |         update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); | 
 |         break; | 
 |       case PARTITION_HORZ_B: | 
 |         update_partition_context(xd, mi_row, mi_col, subsize, subsize); | 
 |         update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); | 
 |         break; | 
 |       case PARTITION_VERT_A: | 
 |         update_partition_context(xd, mi_row, mi_col, bsize2, subsize); | 
 |         update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); | 
 |         break; | 
 |       case PARTITION_VERT_B: | 
 |         update_partition_context(xd, mi_row, mi_col, subsize, subsize); | 
 |         update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); | 
 |         break; | 
 |       default: assert(0 && "Invalid partition type"); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row, | 
 |                                           int mi_col, BLOCK_SIZE bsize) { | 
 |   const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; | 
 |   const PARTITION_CONTEXT *left_ctx = | 
 |       xd->left_seg_context + (mi_row & MAX_MIB_MASK); | 
 |   // Minimum partition point is 8x8. Offset the bsl accordingly. | 
 |   const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8]; | 
 |   int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; | 
 |  | 
 |   assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]); | 
 |   assert(bsl >= 0); | 
 |  | 
 |   return (left * 2 + above) + bsl * PARTITION_PLOFFSET; | 
 | } | 
 |  | 
 | // Return the number of elements in the partition CDF when | 
 | // partitioning the (square) block with luma block size of bsize. | 
 | static INLINE int partition_cdf_length(BLOCK_SIZE bsize) { | 
 |   if (bsize <= BLOCK_8X8) | 
 |     return PARTITION_TYPES; | 
 |   else if (bsize == BLOCK_128X128) | 
 |     return EXT_PARTITION_TYPES - 2; | 
 |   else | 
 |     return EXT_PARTITION_TYPES; | 
 | } | 
 |  | 
 | static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize, | 
 |                                  int plane) { | 
 |   int max_blocks_wide = block_size_wide[bsize]; | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |  | 
 |   if (xd->mb_to_right_edge < 0) | 
 |     max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x); | 
 |  | 
 |   // Scale the width in the transform block unit. | 
 |   return max_blocks_wide >> tx_size_wide_log2[0]; | 
 | } | 
 |  | 
 | static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize, | 
 |                                  int plane) { | 
 |   int max_blocks_high = block_size_high[bsize]; | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |  | 
 |   if (xd->mb_to_bottom_edge < 0) | 
 |     max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y); | 
 |  | 
 |   // Scale the height in the transform block unit. | 
 |   return max_blocks_high >> tx_size_high_log2[0]; | 
 | } | 
 |  | 
 | static INLINE int max_intra_block_width(const MACROBLOCKD *xd, | 
 |                                         BLOCK_SIZE plane_bsize, int plane, | 
 |                                         TX_SIZE tx_size) { | 
 |   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane) | 
 |                               << tx_size_wide_log2[0]; | 
 |   return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]); | 
 | } | 
 |  | 
 | static INLINE int max_intra_block_height(const MACROBLOCKD *xd, | 
 |                                          BLOCK_SIZE plane_bsize, int plane, | 
 |                                          TX_SIZE tx_size) { | 
 |   const int max_blocks_high = max_block_high(xd, plane_bsize, plane) | 
 |                               << tx_size_high_log2[0]; | 
 |   return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]); | 
 | } | 
 |  | 
 | static INLINE void av1_zero_above_context(AV1_COMMON *const cm, const MACROBLOCKD *xd, | 
 |   int mi_col_start, int mi_col_end, const int tile_row) { | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   const int width = mi_col_end - mi_col_start; | 
 |   const int aligned_width = | 
 |     ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2); | 
 |  | 
 |   const int offset_y = mi_col_start; | 
 |   const int width_y = aligned_width; | 
 |   const int offset_uv = offset_y >> seq_params->subsampling_x; | 
 |   const int width_uv = width_y >> seq_params->subsampling_x; | 
 |  | 
 |   av1_zero_array(cm->above_context[0][tile_row] + offset_y, width_y); | 
 |   if (num_planes > 1) { | 
 |     if (cm->above_context[1][tile_row] && cm->above_context[2][tile_row]) { | 
 |       av1_zero_array(cm->above_context[1][tile_row] + offset_uv, width_uv); | 
 |       av1_zero_array(cm->above_context[2][tile_row] + offset_uv, width_uv); | 
 |     } else { | 
 |       aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Invalid value of planes"); | 
 |     } | 
 |   } | 
 |  | 
 |   av1_zero_array(cm->above_seg_context[tile_row] + mi_col_start, aligned_width); | 
 |  | 
 |   memset(cm->above_txfm_context[tile_row] + mi_col_start, | 
 |     tx_size_wide[TX_SIZES_LARGEST], | 
 |     aligned_width * sizeof(TXFM_CONTEXT)); | 
 | } | 
 |  | 
 | static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) { | 
 |   av1_zero(xd->left_context); | 
 |   av1_zero(xd->left_seg_context); | 
 |  | 
 |   memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST], | 
 |          sizeof(xd->left_txfm_context_buffer)); | 
 | } | 
 |  | 
 | // Disable array-bounds checks as the TX_SIZE enum contains values larger than | 
 | // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround | 
 | // infeasible. The assert is enough for static analysis and this or other tools | 
 | // asan, valgrind would catch oob access at runtime. | 
 | #if defined(__GNUC__) && __GNUC__ >= 4 | 
 | #pragma GCC diagnostic ignored "-Warray-bounds" | 
 | #endif | 
 |  | 
 | #if defined(__GNUC__) && __GNUC__ >= 4 | 
 | #pragma GCC diagnostic warning "-Warray-bounds" | 
 | #endif | 
 |  | 
 | static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) { | 
 |   int i; | 
 |   for (i = 0; i < len; ++i) txfm_ctx[i] = txs; | 
 | } | 
 |  | 
 | static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip, | 
 |                                  const MACROBLOCKD *xd) { | 
 |   uint8_t bw = tx_size_wide[tx_size]; | 
 |   uint8_t bh = tx_size_high[tx_size]; | 
 |  | 
 |   if (skip) { | 
 |     bw = n4_w * MI_SIZE; | 
 |     bh = n4_h * MI_SIZE; | 
 |   } | 
 |  | 
 |   set_txfm_ctx(xd->above_txfm_context, bw, n4_w); | 
 |   set_txfm_ctx(xd->left_txfm_context, bh, n4_h); | 
 | } | 
 |  | 
 | static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx, | 
 |                                          TXFM_CONTEXT *left_ctx, | 
 |                                          TX_SIZE tx_size, TX_SIZE txb_size) { | 
 |   BLOCK_SIZE bsize = txsize_to_bsize[txb_size]; | 
 |   int bh = mi_size_high[bsize]; | 
 |   int bw = mi_size_wide[bsize]; | 
 |   uint8_t txw = tx_size_wide[tx_size]; | 
 |   uint8_t txh = tx_size_high[tx_size]; | 
 |   int i; | 
 |   for (i = 0; i < bh; ++i) left_ctx[i] = txh; | 
 |   for (i = 0; i < bw; ++i) above_ctx[i] = txw; | 
 | } | 
 |  | 
 | static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) { | 
 |   switch (tx_dim) { | 
 |     case 128: | 
 |     case 64: return TX_64X64; break; | 
 |     case 32: return TX_32X32; break; | 
 |     case 16: return TX_16X16; break; | 
 |     case 8: return TX_8X8; break; | 
 |     default: return TX_4X4; | 
 |   } | 
 | } | 
 |  | 
 | static INLINE TX_SIZE get_tx_size(int width, int height) { | 
 |   if (width == height) { | 
 |     return get_sqr_tx_size(width); | 
 |   } | 
 |   if (width < height) { | 
 |     if (width + width == height) { | 
 |       switch (width) { | 
 |         case 4: return TX_4X8; break; | 
 |         case 8: return TX_8X16; break; | 
 |         case 16: return TX_16X32; break; | 
 |         case 32: return TX_32X64; break; | 
 |       } | 
 |     } else { | 
 |       switch (width) { | 
 |         case 4: return TX_4X16; break; | 
 |         case 8: return TX_8X32; break; | 
 |         case 16: return TX_16X64; break; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     if (height + height == width) { | 
 |       switch (height) { | 
 |         case 4: return TX_8X4; break; | 
 |         case 8: return TX_16X8; break; | 
 |         case 16: return TX_32X16; break; | 
 |         case 32: return TX_64X32; break; | 
 |       } | 
 |     } else { | 
 |       switch (height) { | 
 |         case 4: return TX_16X4; break; | 
 |         case 8: return TX_32X8; break; | 
 |         case 16: return TX_64X16; break; | 
 |       } | 
 |     } | 
 |   } | 
 |   assert(0); | 
 |   return TX_4X4; | 
 | } | 
 |  | 
 | static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx, | 
 |                                          const TXFM_CONTEXT *const left_ctx, | 
 |                                          BLOCK_SIZE bsize, TX_SIZE tx_size) { | 
 |   const uint8_t txw = tx_size_wide[tx_size]; | 
 |   const uint8_t txh = tx_size_high[tx_size]; | 
 |   const int above = *above_ctx < txw; | 
 |   const int left = *left_ctx < txh; | 
 |   int category = TXFM_PARTITION_CONTEXTS; | 
 |  | 
 |   // dummy return, not used by others. | 
 |   if (tx_size <= TX_4X4) return 0; | 
 |  | 
 |   TX_SIZE max_tx_size = | 
 |       get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize])); | 
 |  | 
 |   if (max_tx_size >= TX_8X8) { | 
 |     category = | 
 |         (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) + | 
 |         (TX_SIZES - 1 - max_tx_size) * 2; | 
 |   } | 
 |   assert(category != TXFM_PARTITION_CONTEXTS); | 
 |   return category * 3 + above + left; | 
 | } | 
 |  | 
 | // Compute the next partition in the direction of the sb_type stored in the mi | 
 | // array, starting with bsize. | 
 | static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm, | 
 |                                            int mi_row, int mi_col, | 
 |                                            BLOCK_SIZE bsize) { | 
 |   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return PARTITION_INVALID; | 
 |  | 
 |   const int offset = mi_row * cm->mi_stride + mi_col; | 
 |   MB_MODE_INFO **mi = cm->mi_grid_visible + offset; | 
 |   const BLOCK_SIZE subsize = mi[0]->sb_type; | 
 |  | 
 |   if (subsize == bsize) return PARTITION_NONE; | 
 |  | 
 |   const int bhigh = mi_size_high[bsize]; | 
 |   const int bwide = mi_size_wide[bsize]; | 
 |   const int sshigh = mi_size_high[subsize]; | 
 |   const int sswide = mi_size_wide[subsize]; | 
 |  | 
 |   if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < cm->mi_rows && | 
 |       mi_col + bhigh / 2 < cm->mi_cols) { | 
 |     // In this case, the block might be using an extended partition | 
 |     // type. | 
 |     const MB_MODE_INFO *const mbmi_right = mi[bwide / 2]; | 
 |     const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * cm->mi_stride]; | 
 |  | 
 |     if (sswide == bwide) { | 
 |       // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or | 
 |       // PARTITION_HORZ_B. To distinguish the latter two, check if the lower | 
 |       // half was split. | 
 |       if (sshigh * 4 == bhigh) return PARTITION_HORZ_4; | 
 |       assert(sshigh * 2 == bhigh); | 
 |  | 
 |       if (mbmi_below->sb_type == subsize) | 
 |         return PARTITION_HORZ; | 
 |       else | 
 |         return PARTITION_HORZ_B; | 
 |     } else if (sshigh == bhigh) { | 
 |       // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or | 
 |       // PARTITION_VERT_B. To distinguish the latter two, check if the right | 
 |       // half was split. | 
 |       if (sswide * 4 == bwide) return PARTITION_VERT_4; | 
 |       assert(sswide * 2 == bhigh); | 
 |  | 
 |       if (mbmi_right->sb_type == subsize) | 
 |         return PARTITION_VERT; | 
 |       else | 
 |         return PARTITION_VERT_B; | 
 |     } else { | 
 |       // Smaller width and smaller height. Might be PARTITION_SPLIT or could be | 
 |       // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both | 
 |       // dimensions, we immediately know this is a split (which will recurse to | 
 |       // get to subsize). Otherwise look down and to the right. With | 
 |       // PARTITION_VERT_A, the right block will have height bhigh; with | 
 |       // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise | 
 |       // it's PARTITION_SPLIT. | 
 |       if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT; | 
 |  | 
 |       if (mi_size_wide[mbmi_below->sb_type] == bwide) return PARTITION_HORZ_A; | 
 |       if (mi_size_high[mbmi_right->sb_type] == bhigh) return PARTITION_VERT_A; | 
 |  | 
 |       return PARTITION_SPLIT; | 
 |     } | 
 |   } | 
 |   const int vert_split = sswide < bwide; | 
 |   const int horz_split = sshigh < bhigh; | 
 |   const int split_idx = (vert_split << 1) | horz_split; | 
 |   assert(split_idx != 0); | 
 |  | 
 |   static const PARTITION_TYPE base_partitions[4] = { | 
 |     PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT | 
 |   }; | 
 |  | 
 |   return base_partitions[split_idx]; | 
 | } | 
 |  | 
 | static INLINE void set_sb_size(SequenceHeader *const seq_params, | 
 |                                BLOCK_SIZE sb_size) { | 
 |   seq_params->sb_size = sb_size; | 
 |   seq_params->mib_size = mi_size_wide[seq_params->sb_size]; | 
 |   seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size]; | 
 | } | 
 |  | 
 | // Returns true if the frame is fully lossless at the coded resolution. | 
 | // Note: If super-resolution is used, such a frame will still NOT be lossless at | 
 | // the upscaled resolution. | 
 | static INLINE int is_coded_lossless(const AV1_COMMON *cm, | 
 |                                     const MACROBLOCKD *xd) { | 
 |   int coded_lossless = 1; | 
 |   if (cm->seg.enabled) { | 
 |     for (int i = 0; i < MAX_SEGMENTS; ++i) { | 
 |       if (!xd->lossless[i]) { | 
 |         coded_lossless = 0; | 
 |         break; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     coded_lossless = xd->lossless[0]; | 
 |   } | 
 |   return coded_lossless; | 
 | } | 
 |  | 
 | static INLINE int is_valid_seq_level_idx(uint8_t seq_level_idx) { | 
 |   return seq_level_idx < 24 || seq_level_idx == 31; | 
 | } | 
 |  | 
 | static INLINE uint8_t major_minor_to_seq_level_idx(BitstreamLevel bl) { | 
 |   assert(bl.major >= LEVEL_MAJOR_MIN && bl.major <= LEVEL_MAJOR_MAX); | 
 |   // Since bl.minor is unsigned a comparison will return a warning: | 
 |   // comparison is always true due to limited range of data type | 
 |   assert(LEVEL_MINOR_MIN == 0); | 
 |   assert(bl.minor <= LEVEL_MINOR_MAX); | 
 |   return ((bl.major - LEVEL_MAJOR_MIN) << LEVEL_MINOR_BITS) + bl.minor; | 
 | } | 
 |  | 
 | #ifdef __cplusplus | 
 | }  // extern "C" | 
 | #endif | 
 |  | 
 | #endif  // AOM_AV1_COMMON_ONYXC_INT_H_ |