|  | /* | 
|  | * Copyright (c) 2017, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  | #include <immintrin.h> | 
|  |  | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "av1/common/cfl.h" | 
|  |  | 
|  | #include "av1/common/x86/cfl_simd.h" | 
|  |  | 
|  | #define CFL_GET_SUBSAMPLE_FUNCTION_AVX2(sub, bd)                           \ | 
|  | CFL_SUBSAMPLE(avx2, sub, bd, 32, 32)                                     \ | 
|  | CFL_SUBSAMPLE(avx2, sub, bd, 32, 16)                                     \ | 
|  | CFL_SUBSAMPLE(avx2, sub, bd, 32, 8)                                      \ | 
|  | cfl_subsample_##bd##_fn cfl_get_luma_subsampling_##sub##_##bd##_avx2(    \ | 
|  | TX_SIZE tx_size) {                                                   \ | 
|  | static const cfl_subsample_##bd##_fn subfn_##sub[TX_SIZES_ALL] = {     \ | 
|  | subsample_##bd##_##sub##_4x4_ssse3,   /* 4x4 */                      \ | 
|  | subsample_##bd##_##sub##_8x8_ssse3,   /* 8x8 */                      \ | 
|  | subsample_##bd##_##sub##_16x16_ssse3, /* 16x16 */                    \ | 
|  | subsample_##bd##_##sub##_32x32_avx2,  /* 32x32 */                    \ | 
|  | NULL,                                 /* 64x64 (invalid CFL size) */ \ | 
|  | subsample_##bd##_##sub##_4x8_ssse3,   /* 4x8 */                      \ | 
|  | subsample_##bd##_##sub##_8x4_ssse3,   /* 8x4 */                      \ | 
|  | subsample_##bd##_##sub##_8x16_ssse3,  /* 8x16 */                     \ | 
|  | subsample_##bd##_##sub##_16x8_ssse3,  /* 16x8 */                     \ | 
|  | subsample_##bd##_##sub##_16x32_ssse3, /* 16x32 */                    \ | 
|  | subsample_##bd##_##sub##_32x16_avx2,  /* 32x16 */                    \ | 
|  | NULL,                                 /* 32x64 (invalid CFL size) */ \ | 
|  | NULL,                                 /* 64x32 (invalid CFL size) */ \ | 
|  | subsample_##bd##_##sub##_4x16_ssse3,  /* 4x16  */                    \ | 
|  | subsample_##bd##_##sub##_16x4_ssse3,  /* 16x4  */                    \ | 
|  | subsample_##bd##_##sub##_8x32_ssse3,  /* 8x32  */                    \ | 
|  | subsample_##bd##_##sub##_32x8_avx2,   /* 32x8  */                    \ | 
|  | NULL,                                 /* 16x64 (invalid CFL size) */ \ | 
|  | NULL,                                 /* 64x16 (invalid CFL size) */ \ | 
|  | };                                                                     \ | 
|  | return subfn_##sub[tx_size];                                           \ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more | 
|  | * precise version of a box filter 4:2:0 pixel subsampling in Q3. | 
|  | * | 
|  | * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the | 
|  | * active area is specified using width and height. | 
|  | * | 
|  | * Note: We don't need to worry about going over the active area, as long as we | 
|  | * stay inside the CfL prediction buffer. | 
|  | * | 
|  | * Note: For 4:2:0 luma subsampling, the width will never be greater than 16. | 
|  | */ | 
|  | static void cfl_luma_subsampling_420_lbd_avx2(const uint8_t *input, | 
|  | int input_stride, | 
|  | uint16_t *pred_buf_q3, int width, | 
|  | int height) { | 
|  | (void)width;                               // Forever 32 | 
|  | const __m256i twos = _mm256_set1_epi8(2);  // Thirty two twos | 
|  | const int luma_stride = input_stride << 1; | 
|  | __m256i *row = (__m256i *)pred_buf_q3; | 
|  | const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256; | 
|  | do { | 
|  | __m256i top = _mm256_loadu_si256((__m256i *)input); | 
|  | __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride)); | 
|  |  | 
|  | __m256i top_16x16 = _mm256_maddubs_epi16(top, twos); | 
|  | __m256i bot_16x16 = _mm256_maddubs_epi16(bot, twos); | 
|  | __m256i sum_16x16 = _mm256_add_epi16(top_16x16, bot_16x16); | 
|  |  | 
|  | _mm256_storeu_si256(row, sum_16x16); | 
|  |  | 
|  | input += luma_stride; | 
|  | } while ((row += CFL_BUF_LINE_I256) < row_end); | 
|  | } | 
|  |  | 
|  | CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, lbd) | 
|  |  | 
|  | /** | 
|  | * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more | 
|  | * precise version of a box filter 4:2:2 pixel subsampling in Q3. | 
|  | * | 
|  | * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the | 
|  | * active area is specified using width and height. | 
|  | * | 
|  | * Note: We don't need to worry about going over the active area, as long as we | 
|  | * stay inside the CfL prediction buffer. | 
|  | */ | 
|  | static void cfl_luma_subsampling_422_lbd_avx2(const uint8_t *input, | 
|  | int input_stride, | 
|  | uint16_t *pred_buf_q3, int width, | 
|  | int height) { | 
|  | (void)width;                                // Forever 32 | 
|  | const __m256i fours = _mm256_set1_epi8(4);  // Thirty two fours | 
|  | __m256i *row = (__m256i *)pred_buf_q3; | 
|  | const __m256i *row_end = row + height * CFL_BUF_LINE_I256; | 
|  | do { | 
|  | __m256i top = _mm256_loadu_si256((__m256i *)input); | 
|  | __m256i top_16x16 = _mm256_maddubs_epi16(top, fours); | 
|  | _mm256_storeu_si256(row, top_16x16); | 
|  | input += input_stride; | 
|  | } while ((row += CFL_BUF_LINE_I256) < row_end); | 
|  | } | 
|  |  | 
|  | CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, lbd) | 
|  |  | 
|  | /** | 
|  | * Multiplies the pixels by 8 (scaling in Q3). The AVX2 subsampling is only | 
|  | * performed on block of width 32. | 
|  | * | 
|  | * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the | 
|  | * active area is specified using width and height. | 
|  | * | 
|  | * Note: We don't need to worry about going over the active area, as long as we | 
|  | * stay inside the CfL prediction buffer. | 
|  | */ | 
|  | static void cfl_luma_subsampling_444_lbd_avx2(const uint8_t *input, | 
|  | int input_stride, | 
|  | uint16_t *pred_buf_q3, int width, | 
|  | int height) { | 
|  | (void)width;  // Forever 32 | 
|  | __m256i *row = (__m256i *)pred_buf_q3; | 
|  | const __m256i *row_end = row + height * CFL_BUF_LINE_I256; | 
|  | const __m256i zeros = _mm256_setzero_si256(); | 
|  | do { | 
|  | __m256i top = _mm256_loadu_si256((__m256i *)input); | 
|  | top = _mm256_permute4x64_epi64(top, _MM_SHUFFLE(3, 1, 2, 0)); | 
|  |  | 
|  | __m256i row_lo = _mm256_unpacklo_epi8(top, zeros); | 
|  | row_lo = _mm256_slli_epi16(row_lo, 3); | 
|  | __m256i row_hi = _mm256_unpackhi_epi8(top, zeros); | 
|  | row_hi = _mm256_slli_epi16(row_hi, 3); | 
|  |  | 
|  | _mm256_storeu_si256(row, row_lo); | 
|  | _mm256_storeu_si256(row + 1, row_hi); | 
|  |  | 
|  | input += input_stride; | 
|  | } while ((row += CFL_BUF_LINE_I256) < row_end); | 
|  | } | 
|  |  | 
|  | CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, lbd) | 
|  |  | 
|  | /** | 
|  | * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more | 
|  | * precise version of a box filter 4:2:0 pixel subsampling in Q3. | 
|  | * | 
|  | * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the | 
|  | * active area is specified using width and height. | 
|  | * | 
|  | * Note: We don't need to worry about going over the active area, as long as we | 
|  | * stay inside the CfL prediction buffer. | 
|  | * | 
|  | * Note: For 4:2:0 luma subsampling, the width will never be greater than 16. | 
|  | */ | 
|  | static void cfl_luma_subsampling_420_hbd_avx2(const uint16_t *input, | 
|  | int input_stride, | 
|  | uint16_t *pred_buf_q3, int width, | 
|  | int height) { | 
|  | (void)width;  // Forever 32 | 
|  | const int luma_stride = input_stride << 1; | 
|  | __m256i *row = (__m256i *)pred_buf_q3; | 
|  | const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256; | 
|  | do { | 
|  | __m256i top = _mm256_loadu_si256((__m256i *)input); | 
|  | __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride)); | 
|  | __m256i sum = _mm256_add_epi16(top, bot); | 
|  |  | 
|  | __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); | 
|  | __m256i bot_1 = _mm256_loadu_si256((__m256i *)(input + 16 + input_stride)); | 
|  | __m256i sum_1 = _mm256_add_epi16(top_1, bot_1); | 
|  |  | 
|  | __m256i hsum = _mm256_hadd_epi16(sum, sum_1); | 
|  | hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0)); | 
|  | hsum = _mm256_add_epi16(hsum, hsum); | 
|  |  | 
|  | _mm256_storeu_si256(row, hsum); | 
|  |  | 
|  | input += luma_stride; | 
|  | } while ((row += CFL_BUF_LINE_I256) < row_end); | 
|  | } | 
|  |  | 
|  | CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, hbd) | 
|  |  | 
|  | /** | 
|  | * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more | 
|  | * precise version of a box filter 4:2:2 pixel subsampling in Q3. | 
|  | * | 
|  | * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the | 
|  | * active area is specified using width and height. | 
|  | * | 
|  | * Note: We don't need to worry about going over the active area, as long as we | 
|  | * stay inside the CfL prediction buffer. | 
|  | * | 
|  | */ | 
|  | static void cfl_luma_subsampling_422_hbd_avx2(const uint16_t *input, | 
|  | int input_stride, | 
|  | uint16_t *pred_buf_q3, int width, | 
|  | int height) { | 
|  | (void)width;  // Forever 32 | 
|  | __m256i *row = (__m256i *)pred_buf_q3; | 
|  | const __m256i *row_end = row + height * CFL_BUF_LINE_I256; | 
|  | do { | 
|  | __m256i top = _mm256_loadu_si256((__m256i *)input); | 
|  | __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); | 
|  | __m256i hsum = _mm256_hadd_epi16(top, top_1); | 
|  | hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0)); | 
|  | hsum = _mm256_slli_epi16(hsum, 2); | 
|  |  | 
|  | _mm256_storeu_si256(row, hsum); | 
|  |  | 
|  | input += input_stride; | 
|  | } while ((row += CFL_BUF_LINE_I256) < row_end); | 
|  | } | 
|  |  | 
|  | CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, hbd) | 
|  |  | 
|  | static void cfl_luma_subsampling_444_hbd_avx2(const uint16_t *input, | 
|  | int input_stride, | 
|  | uint16_t *pred_buf_q3, int width, | 
|  | int height) { | 
|  | (void)width;  // Forever 32 | 
|  | __m256i *row = (__m256i *)pred_buf_q3; | 
|  | const __m256i *row_end = row + height * CFL_BUF_LINE_I256; | 
|  | do { | 
|  | __m256i top = _mm256_loadu_si256((__m256i *)input); | 
|  | __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); | 
|  | _mm256_storeu_si256(row, _mm256_slli_epi16(top, 3)); | 
|  | _mm256_storeu_si256(row + 1, _mm256_slli_epi16(top_1, 3)); | 
|  | input += input_stride; | 
|  | } while ((row += CFL_BUF_LINE_I256) < row_end); | 
|  | } | 
|  |  | 
|  | CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, hbd) | 
|  |  | 
|  | static INLINE __m256i predict_unclipped(const __m256i *input, __m256i alpha_q12, | 
|  | __m256i alpha_sign, __m256i dc_q0) { | 
|  | __m256i ac_q3 = _mm256_loadu_si256(input); | 
|  | __m256i ac_sign = _mm256_sign_epi16(alpha_sign, ac_q3); | 
|  | __m256i scaled_luma_q0 = | 
|  | _mm256_mulhrs_epi16(_mm256_abs_epi16(ac_q3), alpha_q12); | 
|  | scaled_luma_q0 = _mm256_sign_epi16(scaled_luma_q0, ac_sign); | 
|  | return _mm256_add_epi16(scaled_luma_q0, dc_q0); | 
|  | } | 
|  |  | 
|  | static INLINE void cfl_predict_lbd_avx2(const int16_t *pred_buf_q3, | 
|  | uint8_t *dst, int dst_stride, | 
|  | int alpha_q3, int width, int height) { | 
|  | (void)width; | 
|  | const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3); | 
|  | const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9); | 
|  | const __m256i dc_q0 = _mm256_set1_epi16(*dst); | 
|  | __m256i *row = (__m256i *)pred_buf_q3; | 
|  | const __m256i *row_end = row + height * CFL_BUF_LINE_I256; | 
|  |  | 
|  | do { | 
|  | __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0); | 
|  | __m256i next = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0); | 
|  | res = _mm256_packus_epi16(res, next); | 
|  | res = _mm256_permute4x64_epi64(res, _MM_SHUFFLE(3, 1, 2, 0)); | 
|  | _mm256_storeu_si256((__m256i *)dst, res); | 
|  | dst += dst_stride; | 
|  | } while ((row += CFL_BUF_LINE_I256) < row_end); | 
|  | } | 
|  |  | 
|  | CFL_PREDICT_X(avx2, 32, 8, lbd); | 
|  | CFL_PREDICT_X(avx2, 32, 16, lbd); | 
|  | CFL_PREDICT_X(avx2, 32, 32, lbd); | 
|  |  | 
|  | cfl_predict_lbd_fn get_predict_lbd_fn_avx2(TX_SIZE tx_size) { | 
|  | static const cfl_predict_lbd_fn pred[TX_SIZES_ALL] = { | 
|  | predict_lbd_4x4_ssse3,   /* 4x4 */ | 
|  | predict_lbd_8x8_ssse3,   /* 8x8 */ | 
|  | predict_lbd_16x16_ssse3, /* 16x16 */ | 
|  | predict_lbd_32x32_avx2,  /* 32x32 */ | 
|  | NULL,                    /* 64x64 (invalid CFL size) */ | 
|  | predict_lbd_4x8_ssse3,   /* 4x8 */ | 
|  | predict_lbd_8x4_ssse3,   /* 8x4 */ | 
|  | predict_lbd_8x16_ssse3,  /* 8x16 */ | 
|  | predict_lbd_16x8_ssse3,  /* 16x8 */ | 
|  | predict_lbd_16x32_ssse3, /* 16x32 */ | 
|  | predict_lbd_32x16_avx2,  /* 32x16 */ | 
|  | NULL,                    /* 32x64 (invalid CFL size) */ | 
|  | NULL,                    /* 64x32 (invalid CFL size) */ | 
|  | predict_lbd_4x16_ssse3,  /* 4x16  */ | 
|  | predict_lbd_16x4_ssse3,  /* 16x4  */ | 
|  | predict_lbd_8x32_ssse3,  /* 8x32  */ | 
|  | predict_lbd_32x8_avx2,   /* 32x8  */ | 
|  | NULL,                    /* 16x64 (invalid CFL size) */ | 
|  | NULL,                    /* 64x16 (invalid CFL size) */ | 
|  | }; | 
|  | // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the | 
|  | // function pointer array out of bounds. | 
|  | return pred[tx_size % TX_SIZES_ALL]; | 
|  | } | 
|  |  | 
|  | static __m256i highbd_max_epi16(int bd) { | 
|  | const __m256i neg_one = _mm256_set1_epi16(-1); | 
|  | // (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd) | 
|  | return _mm256_xor_si256(_mm256_slli_epi16(neg_one, bd), neg_one); | 
|  | } | 
|  |  | 
|  | static __m256i highbd_clamp_epi16(__m256i u, __m256i zero, __m256i max) { | 
|  | return _mm256_max_epi16(_mm256_min_epi16(u, max), zero); | 
|  | } | 
|  |  | 
|  | static INLINE void cfl_predict_hbd_avx2(const int16_t *pred_buf_q3, | 
|  | uint16_t *dst, int dst_stride, | 
|  | int alpha_q3, int bd, int width, | 
|  | int height) { | 
|  | // Use SSSE3 version for smaller widths | 
|  | assert(width == 16 || width == 32); | 
|  | const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3); | 
|  | const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9); | 
|  | const __m256i dc_q0 = _mm256_loadu_si256((__m256i *)dst); | 
|  | const __m256i max = highbd_max_epi16(bd); | 
|  |  | 
|  | __m256i *row = (__m256i *)pred_buf_q3; | 
|  | const __m256i *row_end = row + height * CFL_BUF_LINE_I256; | 
|  | do { | 
|  | const __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0); | 
|  | _mm256_storeu_si256((__m256i *)dst, | 
|  | highbd_clamp_epi16(res, _mm256_setzero_si256(), max)); | 
|  | if (width == 32) { | 
|  | const __m256i res_1 = | 
|  | predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0); | 
|  | _mm256_storeu_si256( | 
|  | (__m256i *)(dst + 16), | 
|  | highbd_clamp_epi16(res_1, _mm256_setzero_si256(), max)); | 
|  | } | 
|  | dst += dst_stride; | 
|  | } while ((row += CFL_BUF_LINE_I256) < row_end); | 
|  | } | 
|  |  | 
|  | CFL_PREDICT_X(avx2, 16, 4, hbd) | 
|  | CFL_PREDICT_X(avx2, 16, 8, hbd) | 
|  | CFL_PREDICT_X(avx2, 16, 16, hbd) | 
|  | CFL_PREDICT_X(avx2, 16, 32, hbd) | 
|  | CFL_PREDICT_X(avx2, 32, 8, hbd) | 
|  | CFL_PREDICT_X(avx2, 32, 16, hbd) | 
|  | CFL_PREDICT_X(avx2, 32, 32, hbd) | 
|  |  | 
|  | cfl_predict_hbd_fn get_predict_hbd_fn_avx2(TX_SIZE tx_size) { | 
|  | static const cfl_predict_hbd_fn pred[TX_SIZES_ALL] = { | 
|  | predict_hbd_4x4_ssse3,  /* 4x4 */ | 
|  | predict_hbd_8x8_ssse3,  /* 8x8 */ | 
|  | predict_hbd_16x16_avx2, /* 16x16 */ | 
|  | predict_hbd_32x32_avx2, /* 32x32 */ | 
|  | NULL,                   /* 64x64 (invalid CFL size) */ | 
|  | predict_hbd_4x8_ssse3,  /* 4x8 */ | 
|  | predict_hbd_8x4_ssse3,  /* 8x4 */ | 
|  | predict_hbd_8x16_ssse3, /* 8x16 */ | 
|  | predict_hbd_16x8_avx2,  /* 16x8 */ | 
|  | predict_hbd_16x32_avx2, /* 16x32 */ | 
|  | predict_hbd_32x16_avx2, /* 32x16 */ | 
|  | NULL,                   /* 32x64 (invalid CFL size) */ | 
|  | NULL,                   /* 64x32 (invalid CFL size) */ | 
|  | predict_hbd_4x16_ssse3, /* 4x16  */ | 
|  | predict_hbd_16x4_avx2,  /* 16x4  */ | 
|  | predict_hbd_8x32_ssse3, /* 8x32  */ | 
|  | predict_hbd_32x8_avx2,  /* 32x8  */ | 
|  | NULL,                   /* 16x64 (invalid CFL size) */ | 
|  | NULL,                   /* 64x16 (invalid CFL size) */ | 
|  | }; | 
|  | // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the | 
|  | // function pointer array out of bounds. | 
|  | return pred[tx_size % TX_SIZES_ALL]; | 
|  | } | 
|  |  | 
|  | // Returns a vector where all the (32-bits) elements are the sum of all the | 
|  | // lanes in a. | 
|  | static INLINE __m256i fill_sum_epi32(__m256i a) { | 
|  | // Given that a == [A, B, C, D, E, F, G, H] | 
|  | a = _mm256_hadd_epi32(a, a); | 
|  | // Given that A' == A + B, C' == C + D, E' == E + F, G' == G + H | 
|  | // a == [A', C', A', C', E', G', E', G'] | 
|  | a = _mm256_permute4x64_epi64(a, _MM_SHUFFLE(3, 1, 2, 0)); | 
|  | // a == [A', C', E', G', A', C', E', G'] | 
|  | a = _mm256_hadd_epi32(a, a); | 
|  | // Given that A'' == A' + C' and E'' == E' + G' | 
|  | // a == [A'', E'', A'', E'', A'', E'', A'', E''] | 
|  | return _mm256_hadd_epi32(a, a); | 
|  | // Given that A''' == A'' + E'' | 
|  | // a == [A''', A''', A''', A''', A''', A''', A''', A'''] | 
|  | } | 
|  |  | 
|  | static INLINE __m256i _mm256_addl_epi16(__m256i a) { | 
|  | return _mm256_add_epi32(_mm256_unpacklo_epi16(a, _mm256_setzero_si256()), | 
|  | _mm256_unpackhi_epi16(a, _mm256_setzero_si256())); | 
|  | } | 
|  |  | 
|  | static INLINE void subtract_average_avx2(const uint16_t *src_ptr, | 
|  | int16_t *dst_ptr, int width, | 
|  | int height, int round_offset, | 
|  | int num_pel_log2) { | 
|  | // Use SSE2 version for smaller widths | 
|  | assert(width == 16 || width == 32); | 
|  |  | 
|  | const __m256i *src = (__m256i *)src_ptr; | 
|  | const __m256i *const end = src + height * CFL_BUF_LINE_I256; | 
|  | // To maximize usage of the AVX2 registers, we sum two rows per loop | 
|  | // iteration | 
|  | const int step = 2 * CFL_BUF_LINE_I256; | 
|  |  | 
|  | __m256i sum = _mm256_setzero_si256(); | 
|  | // For width 32, we use a second sum accumulator to reduce accumulator | 
|  | // dependencies in the loop. | 
|  | __m256i sum2; | 
|  | if (width == 32) sum2 = _mm256_setzero_si256(); | 
|  |  | 
|  | do { | 
|  | // Add top row to the bottom row | 
|  | __m256i l0 = _mm256_add_epi16(_mm256_loadu_si256(src), | 
|  | _mm256_loadu_si256(src + CFL_BUF_LINE_I256)); | 
|  | sum = _mm256_add_epi32(sum, _mm256_addl_epi16(l0)); | 
|  | if (width == 32) { /* Don't worry, this if it gets optimized out. */ | 
|  | // Add the second part of the top row to the second part of the bottom row | 
|  | __m256i l1 = | 
|  | _mm256_add_epi16(_mm256_loadu_si256(src + 1), | 
|  | _mm256_loadu_si256(src + 1 + CFL_BUF_LINE_I256)); | 
|  | sum2 = _mm256_add_epi32(sum2, _mm256_addl_epi16(l1)); | 
|  | } | 
|  | src += step; | 
|  | } while (src < end); | 
|  | // Combine both sum accumulators | 
|  | if (width == 32) sum = _mm256_add_epi32(sum, sum2); | 
|  |  | 
|  | __m256i fill = fill_sum_epi32(sum); | 
|  |  | 
|  | __m256i avg_epi16 = _mm256_srli_epi32( | 
|  | _mm256_add_epi32(fill, _mm256_set1_epi32(round_offset)), num_pel_log2); | 
|  | avg_epi16 = _mm256_packs_epi32(avg_epi16, avg_epi16); | 
|  |  | 
|  | // Store and subtract loop | 
|  | src = (__m256i *)src_ptr; | 
|  | __m256i *dst = (__m256i *)dst_ptr; | 
|  | do { | 
|  | _mm256_storeu_si256(dst, | 
|  | _mm256_sub_epi16(_mm256_loadu_si256(src), avg_epi16)); | 
|  | if (width == 32) { | 
|  | _mm256_storeu_si256( | 
|  | dst + 1, _mm256_sub_epi16(_mm256_loadu_si256(src + 1), avg_epi16)); | 
|  | } | 
|  | src += CFL_BUF_LINE_I256; | 
|  | dst += CFL_BUF_LINE_I256; | 
|  | } while (src < end); | 
|  | } | 
|  |  | 
|  | // Declare wrappers for AVX2 sizes | 
|  | CFL_SUB_AVG_X(avx2, 16, 4, 32, 6) | 
|  | CFL_SUB_AVG_X(avx2, 16, 8, 64, 7) | 
|  | CFL_SUB_AVG_X(avx2, 16, 16, 128, 8) | 
|  | CFL_SUB_AVG_X(avx2, 16, 32, 256, 9) | 
|  | CFL_SUB_AVG_X(avx2, 32, 8, 128, 8) | 
|  | CFL_SUB_AVG_X(avx2, 32, 16, 256, 9) | 
|  | CFL_SUB_AVG_X(avx2, 32, 32, 512, 10) | 
|  |  | 
|  | // Based on the observation that for small blocks AVX2 does not outperform | 
|  | // SSE2, we call the SSE2 code for block widths 4 and 8. | 
|  | cfl_subtract_average_fn get_subtract_average_fn_avx2(TX_SIZE tx_size) { | 
|  | static const cfl_subtract_average_fn sub_avg[TX_SIZES_ALL] = { | 
|  | subtract_average_4x4_sse2,   /* 4x4 */ | 
|  | subtract_average_8x8_sse2,   /* 8x8 */ | 
|  | subtract_average_16x16_avx2, /* 16x16 */ | 
|  | subtract_average_32x32_avx2, /* 32x32 */ | 
|  | NULL,                        /* 64x64 (invalid CFL size) */ | 
|  | subtract_average_4x8_sse2,   /* 4x8 */ | 
|  | subtract_average_8x4_sse2,   /* 8x4 */ | 
|  | subtract_average_8x16_sse2,  /* 8x16 */ | 
|  | subtract_average_16x8_avx2,  /* 16x8 */ | 
|  | subtract_average_16x32_avx2, /* 16x32 */ | 
|  | subtract_average_32x16_avx2, /* 32x16 */ | 
|  | NULL,                        /* 32x64 (invalid CFL size) */ | 
|  | NULL,                        /* 64x32 (invalid CFL size) */ | 
|  | subtract_average_4x16_sse2,  /* 4x16 */ | 
|  | subtract_average_16x4_avx2,  /* 16x4 */ | 
|  | subtract_average_8x32_sse2,  /* 8x32 */ | 
|  | subtract_average_32x8_avx2,  /* 32x8 */ | 
|  | NULL,                        /* 16x64 (invalid CFL size) */ | 
|  | NULL,                        /* 64x16 (invalid CFL size) */ | 
|  | }; | 
|  | // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to | 
|  | // index the function pointer array out of bounds. | 
|  | return sub_avg[tx_size % TX_SIZES_ALL]; | 
|  | } |