|  | /* | 
|  | * Copyright (c) 2017, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include "config/aom_config.h" | 
|  | #include "config/aom_scale_rtcd.h" | 
|  |  | 
|  | #include "aom/aom_codec.h" | 
|  | #include "aom_dsp/bitreader_buffer.h" | 
|  | #include "aom_ports/mem_ops.h" | 
|  |  | 
|  | #include "av1/common/common.h" | 
|  | #include "av1/common/obu_util.h" | 
|  | #include "av1/common/timing.h" | 
|  | #include "av1/decoder/decoder.h" | 
|  | #include "av1/decoder/decodeframe.h" | 
|  | #include "av1/decoder/obu.h" | 
|  |  | 
|  | // Picture prediction structures (0-12 are predefined) in scalability metadata. | 
|  | enum { | 
|  | SCALABILITY_L1T2 = 0, | 
|  | SCALABILITY_L1T3 = 1, | 
|  | SCALABILITY_L2T1 = 2, | 
|  | SCALABILITY_L2T2 = 3, | 
|  | SCALABILITY_L2T3 = 4, | 
|  | SCALABILITY_S2T1 = 5, | 
|  | SCALABILITY_S2T2 = 6, | 
|  | SCALABILITY_S2T3 = 7, | 
|  | SCALABILITY_L2T1h = 8, | 
|  | SCALABILITY_L2T2h = 9, | 
|  | SCALABILITY_L2T3h = 10, | 
|  | SCALABILITY_S2T1h = 11, | 
|  | SCALABILITY_S2T2h = 12, | 
|  | SCALABILITY_S2T3h = 13, | 
|  | SCALABILITY_SS = 14 | 
|  | } UENUM1BYTE(SCALABILITY_STRUCTURES); | 
|  |  | 
|  | aom_codec_err_t aom_get_num_layers_from_operating_point_idc( | 
|  | int operating_point_idc, unsigned int *number_spatial_layers, | 
|  | unsigned int *number_temporal_layers) { | 
|  | // derive number of spatial/temporal layers from operating_point_idc | 
|  |  | 
|  | if (!number_spatial_layers || !number_temporal_layers) | 
|  | return AOM_CODEC_INVALID_PARAM; | 
|  |  | 
|  | if (operating_point_idc == 0) { | 
|  | *number_temporal_layers = 1; | 
|  | *number_spatial_layers = 1; | 
|  | } else { | 
|  | *number_spatial_layers = 0; | 
|  | *number_temporal_layers = 0; | 
|  | for (int j = 0; j < MAX_NUM_SPATIAL_LAYERS; j++) { | 
|  | *number_spatial_layers += | 
|  | (operating_point_idc >> (j + MAX_NUM_TEMPORAL_LAYERS)) & 0x1; | 
|  | } | 
|  | for (int j = 0; j < MAX_NUM_TEMPORAL_LAYERS; j++) { | 
|  | *number_temporal_layers += (operating_point_idc >> j) & 0x1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return AOM_CODEC_OK; | 
|  | } | 
|  |  | 
|  | static int is_obu_in_current_operating_point(AV1Decoder *pbi, | 
|  | ObuHeader obu_header) { | 
|  | if (!pbi->current_operating_point) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if ((pbi->current_operating_point >> obu_header.temporal_layer_id) & 0x1 && | 
|  | (pbi->current_operating_point >> (obu_header.spatial_layer_id + 8)) & | 
|  | 0x1) { | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int byte_alignment(AV1_COMMON *const cm, | 
|  | struct aom_read_bit_buffer *const rb) { | 
|  | while (rb->bit_offset & 7) { | 
|  | if (aom_rb_read_bit(rb)) { | 
|  | cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static uint32_t read_temporal_delimiter_obu() { return 0; } | 
|  |  | 
|  | // Returns a boolean that indicates success. | 
|  | static int read_bitstream_level(BitstreamLevel *bl, | 
|  | struct aom_read_bit_buffer *rb) { | 
|  | const uint8_t seq_level_idx = aom_rb_read_literal(rb, LEVEL_BITS); | 
|  | if (!is_valid_seq_level_idx(seq_level_idx)) return 0; | 
|  | bl->major = (seq_level_idx >> LEVEL_MINOR_BITS) + LEVEL_MAJOR_MIN; | 
|  | bl->minor = seq_level_idx & ((1 << LEVEL_MINOR_BITS) - 1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Returns whether two sequence headers are consistent with each other. | 
|  | // TODO(huisu,wtc@google.com): make sure the code matches the spec exactly. | 
|  | static int are_seq_headers_consistent(const SequenceHeader *seq_params_old, | 
|  | const SequenceHeader *seq_params_new) { | 
|  | return !memcmp(seq_params_old, seq_params_new, sizeof(SequenceHeader)); | 
|  | } | 
|  |  | 
|  | // On success, sets pbi->sequence_header_ready to 1 and returns the number of | 
|  | // bytes read from 'rb'. | 
|  | // On failure, sets pbi->common.error.error_code and returns 0. | 
|  | static uint32_t read_sequence_header_obu(AV1Decoder *pbi, | 
|  | struct aom_read_bit_buffer *rb) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | const uint32_t saved_bit_offset = rb->bit_offset; | 
|  |  | 
|  | // Verify rb has been configured to report errors. | 
|  | assert(rb->error_handler); | 
|  |  | 
|  | // Use a local variable to store the information as we decode. At the end, | 
|  | // if no errors have occurred, cm->seq_params is updated. | 
|  | SequenceHeader sh = cm->seq_params; | 
|  | SequenceHeader *const seq_params = &sh; | 
|  |  | 
|  | seq_params->profile = av1_read_profile(rb); | 
|  | if (seq_params->profile > CONFIG_MAX_DECODE_PROFILE) { | 
|  | cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Still picture or not | 
|  | seq_params->still_picture = aom_rb_read_bit(rb); | 
|  | seq_params->reduced_still_picture_hdr = aom_rb_read_bit(rb); | 
|  | // Video must have reduced_still_picture_hdr = 0 | 
|  | if (!seq_params->still_picture && seq_params->reduced_still_picture_hdr) { | 
|  | cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (seq_params->reduced_still_picture_hdr) { | 
|  | cm->timing_info_present = 0; | 
|  | seq_params->decoder_model_info_present_flag = 0; | 
|  | seq_params->display_model_info_present_flag = 0; | 
|  | seq_params->operating_points_cnt_minus_1 = 0; | 
|  | seq_params->operating_point_idc[0] = 0; | 
|  | if (!read_bitstream_level(&seq_params->level[0], rb)) { | 
|  | cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; | 
|  | return 0; | 
|  | } | 
|  | seq_params->tier[0] = 0; | 
|  | cm->op_params[0].decoder_model_param_present_flag = 0; | 
|  | cm->op_params[0].display_model_param_present_flag = 0; | 
|  | } else { | 
|  | cm->timing_info_present = aom_rb_read_bit(rb);  // timing_info_present_flag | 
|  | if (cm->timing_info_present) { | 
|  | av1_read_timing_info_header(cm, rb); | 
|  |  | 
|  | seq_params->decoder_model_info_present_flag = aom_rb_read_bit(rb); | 
|  | if (seq_params->decoder_model_info_present_flag) | 
|  | av1_read_decoder_model_info(cm, rb); | 
|  | } else { | 
|  | seq_params->decoder_model_info_present_flag = 0; | 
|  | } | 
|  | seq_params->display_model_info_present_flag = aom_rb_read_bit(rb); | 
|  | seq_params->operating_points_cnt_minus_1 = | 
|  | aom_rb_read_literal(rb, OP_POINTS_CNT_MINUS_1_BITS); | 
|  | for (int i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) { | 
|  | seq_params->operating_point_idc[i] = | 
|  | aom_rb_read_literal(rb, OP_POINTS_IDC_BITS); | 
|  | if (!read_bitstream_level(&seq_params->level[i], rb)) { | 
|  | cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; | 
|  | return 0; | 
|  | } | 
|  | // This is the seq_level_idx[i] > 7 check in the spec. seq_level_idx 7 | 
|  | // is equivalent to level 3.3. | 
|  | if (seq_params->level[i].major > 3) | 
|  | seq_params->tier[i] = aom_rb_read_bit(rb); | 
|  | else | 
|  | seq_params->tier[i] = 0; | 
|  | if (seq_params->decoder_model_info_present_flag) { | 
|  | cm->op_params[i].decoder_model_param_present_flag = aom_rb_read_bit(rb); | 
|  | if (cm->op_params[i].decoder_model_param_present_flag) | 
|  | av1_read_op_parameters_info(cm, rb, i); | 
|  | } else { | 
|  | cm->op_params[i].decoder_model_param_present_flag = 0; | 
|  | } | 
|  | if (cm->timing_info_present && | 
|  | (cm->timing_info.equal_picture_interval || | 
|  | cm->op_params[i].decoder_model_param_present_flag)) { | 
|  | cm->op_params[i].bitrate = max_level_bitrate( | 
|  | seq_params->profile, | 
|  | major_minor_to_seq_level_idx(seq_params->level[i]), | 
|  | seq_params->tier[i]); | 
|  | // Level with seq_level_idx = 31 returns a high "dummy" bitrate to pass | 
|  | // the check | 
|  | if (cm->op_params[i].bitrate == 0) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "AV1 does not support this combination of " | 
|  | "profile, level, and tier."); | 
|  | // Buffer size in bits/s is bitrate in bits/s * 1 s | 
|  | cm->op_params[i].buffer_size = cm->op_params[i].bitrate; | 
|  | } | 
|  | if (cm->timing_info_present && cm->timing_info.equal_picture_interval && | 
|  | !cm->op_params[i].decoder_model_param_present_flag) { | 
|  | // When the decoder_model_parameters are not sent for this op, set | 
|  | // the default ones that can be used with the resource availability mode | 
|  | cm->op_params[i].decoder_buffer_delay = 70000; | 
|  | cm->op_params[i].encoder_buffer_delay = 20000; | 
|  | cm->op_params[i].low_delay_mode_flag = 0; | 
|  | } | 
|  |  | 
|  | if (seq_params->display_model_info_present_flag) { | 
|  | cm->op_params[i].display_model_param_present_flag = aom_rb_read_bit(rb); | 
|  | if (cm->op_params[i].display_model_param_present_flag) { | 
|  | cm->op_params[i].initial_display_delay = | 
|  | aom_rb_read_literal(rb, 4) + 1; | 
|  | if (cm->op_params[i].initial_display_delay > 10) | 
|  | aom_internal_error( | 
|  | &cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "AV1 does not support more than 10 decoded frames delay"); | 
|  | } else { | 
|  | cm->op_params[i].initial_display_delay = 10; | 
|  | } | 
|  | } else { | 
|  | cm->op_params[i].display_model_param_present_flag = 0; | 
|  | cm->op_params[i].initial_display_delay = 10; | 
|  | } | 
|  | } | 
|  | } | 
|  | // This decoder supports all levels.  Choose operating point provided by | 
|  | // external means | 
|  | int operating_point = pbi->operating_point; | 
|  | if (operating_point < 0 || | 
|  | operating_point > seq_params->operating_points_cnt_minus_1) | 
|  | operating_point = 0; | 
|  | pbi->current_operating_point = | 
|  | seq_params->operating_point_idc[operating_point]; | 
|  | if (aom_get_num_layers_from_operating_point_idc( | 
|  | pbi->current_operating_point, &cm->number_spatial_layers, | 
|  | &cm->number_temporal_layers) != AOM_CODEC_OK) { | 
|  | cm->error.error_code = AOM_CODEC_ERROR; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | av1_read_sequence_header(cm, rb, seq_params); | 
|  |  | 
|  | av1_read_color_config(rb, pbi->allow_lowbitdepth, seq_params, &cm->error); | 
|  | if (!(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0) && | 
|  | !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) && | 
|  | !(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 0)) { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Only 4:4:4, 4:2:2 and 4:2:0 are currently supported, " | 
|  | "%d %d subsampling is not supported.\n", | 
|  | seq_params->subsampling_x, seq_params->subsampling_y); | 
|  | } | 
|  |  | 
|  | seq_params->film_grain_params_present = aom_rb_read_bit(rb); | 
|  |  | 
|  | if (av1_check_trailing_bits(pbi, rb) != 0) { | 
|  | // cm->error.error_code is already set. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // If a sequence header has been decoded before, we check if the new | 
|  | // one is consistent with the old one. | 
|  | if (pbi->sequence_header_ready) { | 
|  | if (!are_seq_headers_consistent(&cm->seq_params, seq_params)) | 
|  | pbi->sequence_header_changed = 1; | 
|  | } | 
|  |  | 
|  | cm->seq_params = *seq_params; | 
|  | pbi->sequence_header_ready = 1; | 
|  |  | 
|  | return ((rb->bit_offset - saved_bit_offset + 7) >> 3); | 
|  | } | 
|  |  | 
|  | // On success, returns the frame header size. On failure, calls | 
|  | // aom_internal_error and does not return. | 
|  | static uint32_t read_frame_header_obu(AV1Decoder *pbi, | 
|  | struct aom_read_bit_buffer *rb, | 
|  | const uint8_t *data, | 
|  | const uint8_t **p_data_end, | 
|  | int trailing_bits_present) { | 
|  | return av1_decode_frame_headers_and_setup(pbi, rb, data, p_data_end, | 
|  | trailing_bits_present); | 
|  | } | 
|  |  | 
|  | // On success, returns the tile group header size. On failure, calls | 
|  | // aom_internal_error() and returns -1. | 
|  | static int32_t read_tile_group_header(AV1Decoder *pbi, | 
|  | struct aom_read_bit_buffer *rb, | 
|  | int *start_tile, int *end_tile, | 
|  | int tile_start_implicit) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | uint32_t saved_bit_offset = rb->bit_offset; | 
|  | int tile_start_and_end_present_flag = 0; | 
|  | const int num_tiles = pbi->common.tile_rows * pbi->common.tile_cols; | 
|  |  | 
|  | if (!pbi->common.large_scale_tile && num_tiles > 1) { | 
|  | tile_start_and_end_present_flag = aom_rb_read_bit(rb); | 
|  | if (tile_start_implicit && tile_start_and_end_present_flag) { | 
|  | aom_internal_error( | 
|  | &cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "For OBU_FRAME type obu tile_start_and_end_present_flag must be 0"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | if (pbi->common.large_scale_tile || num_tiles == 1 || | 
|  | !tile_start_and_end_present_flag) { | 
|  | *start_tile = 0; | 
|  | *end_tile = num_tiles - 1; | 
|  | } else { | 
|  | int tile_bits = cm->log2_tile_rows + cm->log2_tile_cols; | 
|  | *start_tile = aom_rb_read_literal(rb, tile_bits); | 
|  | *end_tile = aom_rb_read_literal(rb, tile_bits); | 
|  | } | 
|  | if (*start_tile > *end_tile) { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
|  | "tg_end must be greater than or equal to tg_start"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return ((rb->bit_offset - saved_bit_offset + 7) >> 3); | 
|  | } | 
|  |  | 
|  | // On success, returns the tile group OBU size. On failure, sets | 
|  | // pbi->common.error.error_code and returns 0. | 
|  | static uint32_t read_one_tile_group_obu( | 
|  | AV1Decoder *pbi, struct aom_read_bit_buffer *rb, int is_first_tg, | 
|  | const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end, | 
|  | int *is_last_tg, int tile_start_implicit) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | int start_tile, end_tile; | 
|  | int32_t header_size, tg_payload_size; | 
|  |  | 
|  | assert((rb->bit_offset & 7) == 0); | 
|  | assert(rb->bit_buffer + aom_rb_bytes_read(rb) == data); | 
|  |  | 
|  | header_size = read_tile_group_header(pbi, rb, &start_tile, &end_tile, | 
|  | tile_start_implicit); | 
|  | if (header_size == -1 || byte_alignment(cm, rb)) return 0; | 
|  | data += header_size; | 
|  | av1_decode_tg_tiles_and_wrapup(pbi, data, data_end, p_data_end, start_tile, | 
|  | end_tile, is_first_tg); | 
|  |  | 
|  | tg_payload_size = (uint32_t)(*p_data_end - data); | 
|  |  | 
|  | // TODO(shan):  For now, assume all tile groups received in order | 
|  | *is_last_tg = end_tile == cm->tile_rows * cm->tile_cols - 1; | 
|  | return header_size + tg_payload_size; | 
|  | } | 
|  |  | 
|  | static void alloc_tile_list_buffer(AV1Decoder *pbi) { | 
|  | // The resolution of the output frame is read out from the bitstream. The data | 
|  | // are stored in the order of Y plane, U plane and V plane. As an example, for | 
|  | // image format 4:2:0, the output frame of U plane and V plane is 1/4 of the | 
|  | // output frame. | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | int tile_width, tile_height; | 
|  | av1_get_uniform_tile_size(cm, &tile_width, &tile_height); | 
|  | const int tile_width_in_pixels = tile_width * MI_SIZE; | 
|  | const int tile_height_in_pixels = tile_height * MI_SIZE; | 
|  | const int output_frame_width = | 
|  | (pbi->output_frame_width_in_tiles_minus_1 + 1) * tile_width_in_pixels; | 
|  | const int output_frame_height = | 
|  | (pbi->output_frame_height_in_tiles_minus_1 + 1) * tile_height_in_pixels; | 
|  | // The output frame is used to store the decoded tile list. The decoded tile | 
|  | // list has to fit into 1 output frame. | 
|  | assert((pbi->tile_count_minus_1 + 1) <= | 
|  | (pbi->output_frame_width_in_tiles_minus_1 + 1) * | 
|  | (pbi->output_frame_height_in_tiles_minus_1 + 1)); | 
|  |  | 
|  | // Allocate the tile list output buffer. | 
|  | // Note: if cm->seq_params.use_highbitdepth is 1 and cm->seq_params.bit_depth | 
|  | // is 8, we could allocate less memory, namely, 8 bits/pixel. | 
|  | if (aom_alloc_frame_buffer(&pbi->tile_list_outbuf, output_frame_width, | 
|  | output_frame_height, cm->seq_params.subsampling_x, | 
|  | cm->seq_params.subsampling_y, | 
|  | (cm->seq_params.use_highbitdepth && | 
|  | (cm->seq_params.bit_depth > AOM_BITS_8)), | 
|  | 0, cm->byte_alignment)) | 
|  | aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate the tile list output buffer"); | 
|  | } | 
|  |  | 
|  | static void yv12_tile_copy(const YV12_BUFFER_CONFIG *src, int hstart1, | 
|  | int hend1, int vstart1, int vend1, | 
|  | YV12_BUFFER_CONFIG *dst, int hstart2, int vstart2, | 
|  | int plane) { | 
|  | const int src_stride = (plane > 0) ? src->strides[1] : src->strides[0]; | 
|  | const int dst_stride = (plane > 0) ? dst->strides[1] : dst->strides[0]; | 
|  | int row, col; | 
|  |  | 
|  | assert(src->flags & YV12_FLAG_HIGHBITDEPTH); | 
|  | assert(!(dst->flags & YV12_FLAG_HIGHBITDEPTH)); | 
|  |  | 
|  | const uint16_t *src16 = | 
|  | CONVERT_TO_SHORTPTR(src->buffers[plane] + vstart1 * src_stride + hstart1); | 
|  | uint8_t *dst8 = dst->buffers[plane] + vstart2 * dst_stride + hstart2; | 
|  |  | 
|  | for (row = vstart1; row < vend1; ++row) { | 
|  | for (col = 0; col < (hend1 - hstart1); ++col) *dst8++ = (uint8_t)(*src16++); | 
|  | src16 += src_stride - (hend1 - hstart1); | 
|  | dst8 += dst_stride - (hend1 - hstart1); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void copy_decoded_tile_to_tile_list_buffer(AV1Decoder *pbi, | 
|  | int tile_idx) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | int tile_width, tile_height; | 
|  | av1_get_uniform_tile_size(cm, &tile_width, &tile_height); | 
|  | const int tile_width_in_pixels = tile_width * MI_SIZE; | 
|  | const int tile_height_in_pixels = tile_height * MI_SIZE; | 
|  | const int ssy = cm->seq_params.subsampling_y; | 
|  | const int ssx = cm->seq_params.subsampling_x; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  |  | 
|  | YV12_BUFFER_CONFIG *cur_frame = &cm->cur_frame->buf; | 
|  | const int tr = tile_idx / (pbi->output_frame_width_in_tiles_minus_1 + 1); | 
|  | const int tc = tile_idx % (pbi->output_frame_width_in_tiles_minus_1 + 1); | 
|  | int plane; | 
|  |  | 
|  | // Copy decoded tile to the tile list output buffer. | 
|  | for (plane = 0; plane < num_planes; ++plane) { | 
|  | const int shift_x = plane > 0 ? ssx : 0; | 
|  | const int shift_y = plane > 0 ? ssy : 0; | 
|  | const int h = tile_height_in_pixels >> shift_y; | 
|  | const int w = tile_width_in_pixels >> shift_x; | 
|  |  | 
|  | // src offset | 
|  | int vstart1 = pbi->dec_tile_row * h; | 
|  | int vend1 = vstart1 + h; | 
|  | int hstart1 = pbi->dec_tile_col * w; | 
|  | int hend1 = hstart1 + w; | 
|  | // dst offset | 
|  | int vstart2 = tr * h; | 
|  | int hstart2 = tc * w; | 
|  |  | 
|  | if (cm->seq_params.use_highbitdepth && | 
|  | cm->seq_params.bit_depth == AOM_BITS_8) { | 
|  | yv12_tile_copy(cur_frame, hstart1, hend1, vstart1, vend1, | 
|  | &pbi->tile_list_outbuf, hstart2, vstart2, plane); | 
|  | } else { | 
|  | switch (plane) { | 
|  | case 0: | 
|  | aom_yv12_partial_copy_y(cur_frame, hstart1, hend1, vstart1, vend1, | 
|  | &pbi->tile_list_outbuf, hstart2, vstart2); | 
|  | break; | 
|  | case 1: | 
|  | aom_yv12_partial_copy_u(cur_frame, hstart1, hend1, vstart1, vend1, | 
|  | &pbi->tile_list_outbuf, hstart2, vstart2); | 
|  | break; | 
|  | case 2: | 
|  | aom_yv12_partial_copy_v(cur_frame, hstart1, hend1, vstart1, vend1, | 
|  | &pbi->tile_list_outbuf, hstart2, vstart2); | 
|  | break; | 
|  | default: assert(0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only called while large_scale_tile = 1. | 
|  | // | 
|  | // On success, returns the tile list OBU size. On failure, sets | 
|  | // pbi->common.error.error_code and returns 0. | 
|  | static uint32_t read_and_decode_one_tile_list(AV1Decoder *pbi, | 
|  | struct aom_read_bit_buffer *rb, | 
|  | const uint8_t *data, | 
|  | const uint8_t *data_end, | 
|  | const uint8_t **p_data_end, | 
|  | int *frame_decoding_finished) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | uint32_t tile_list_payload_size = 0; | 
|  | const int num_tiles = cm->tile_cols * cm->tile_rows; | 
|  | const int start_tile = 0; | 
|  | const int end_tile = num_tiles - 1; | 
|  | int i = 0; | 
|  |  | 
|  | // Process the tile list info. | 
|  | pbi->output_frame_width_in_tiles_minus_1 = aom_rb_read_literal(rb, 8); | 
|  | pbi->output_frame_height_in_tiles_minus_1 = aom_rb_read_literal(rb, 8); | 
|  | pbi->tile_count_minus_1 = aom_rb_read_literal(rb, 16); | 
|  | if (pbi->tile_count_minus_1 > MAX_TILES - 1) { | 
|  | cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Allocate output frame buffer for the tile list. | 
|  | alloc_tile_list_buffer(pbi); | 
|  |  | 
|  | uint32_t tile_list_info_bytes = 4; | 
|  | tile_list_payload_size += tile_list_info_bytes; | 
|  | data += tile_list_info_bytes; | 
|  |  | 
|  | int tile_idx = 0; | 
|  | for (i = 0; i <= pbi->tile_count_minus_1; i++) { | 
|  | // Process 1 tile. | 
|  | // Reset the bit reader. | 
|  | rb->bit_offset = 0; | 
|  | rb->bit_buffer = data; | 
|  |  | 
|  | // Read out the tile info. | 
|  | uint32_t tile_info_bytes = 5; | 
|  | // Set reference for each tile. | 
|  | int ref_idx = aom_rb_read_literal(rb, 8); | 
|  | if (ref_idx >= MAX_EXTERNAL_REFERENCES) { | 
|  | cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
|  | return 0; | 
|  | } | 
|  | av1_set_reference_dec(cm, 0, 1, &pbi->ext_refs.refs[ref_idx]); | 
|  |  | 
|  | pbi->dec_tile_row = aom_rb_read_literal(rb, 8); | 
|  | pbi->dec_tile_col = aom_rb_read_literal(rb, 8); | 
|  | if (pbi->dec_tile_row < 0 || pbi->dec_tile_col < 0 || | 
|  | pbi->dec_tile_row >= cm->tile_rows || | 
|  | pbi->dec_tile_col >= cm->tile_cols) { | 
|  | cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pbi->coded_tile_data_size = aom_rb_read_literal(rb, 16) + 1; | 
|  | data += tile_info_bytes; | 
|  | if ((size_t)(data_end - data) < pbi->coded_tile_data_size) { | 
|  | cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | av1_decode_tg_tiles_and_wrapup(pbi, data, data + pbi->coded_tile_data_size, | 
|  | p_data_end, start_tile, end_tile, 0); | 
|  | uint32_t tile_payload_size = (uint32_t)(*p_data_end - data); | 
|  |  | 
|  | tile_list_payload_size += tile_info_bytes + tile_payload_size; | 
|  |  | 
|  | // Update data ptr for next tile decoding. | 
|  | data = *p_data_end; | 
|  | assert(data <= data_end); | 
|  |  | 
|  | // Copy the decoded tile to the tile list output buffer. | 
|  | copy_decoded_tile_to_tile_list_buffer(pbi, tile_idx); | 
|  | tile_idx++; | 
|  | } | 
|  |  | 
|  | *frame_decoding_finished = 1; | 
|  | return tile_list_payload_size; | 
|  | } | 
|  |  | 
|  | static void read_metadata_itut_t35(const uint8_t *data, size_t sz) { | 
|  | struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; | 
|  | for (size_t i = 0; i < sz; i++) { | 
|  | aom_rb_read_literal(&rb, 8); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void read_metadata_hdr_cll(const uint8_t *data, size_t sz) { | 
|  | struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; | 
|  | aom_rb_read_literal(&rb, 16);  // max_cll | 
|  | aom_rb_read_literal(&rb, 16);  // max_fall | 
|  | } | 
|  |  | 
|  | static void read_metadata_hdr_mdcv(const uint8_t *data, size_t sz) { | 
|  | struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; | 
|  | for (int i = 0; i < 3; i++) { | 
|  | aom_rb_read_literal(&rb, 16);  // primary_i_chromaticity_x | 
|  | aom_rb_read_literal(&rb, 16);  // primary_i_chromaticity_y | 
|  | } | 
|  |  | 
|  | aom_rb_read_literal(&rb, 16);  // white_point_chromaticity_x | 
|  | aom_rb_read_literal(&rb, 16);  // white_point_chromaticity_y | 
|  |  | 
|  | aom_rb_read_unsigned_literal(&rb, 32);  // luminance_max | 
|  | aom_rb_read_unsigned_literal(&rb, 32);  // luminance_min | 
|  | } | 
|  |  | 
|  | static void scalability_structure(struct aom_read_bit_buffer *rb) { | 
|  | int spatial_layers_cnt = aom_rb_read_literal(rb, 2); | 
|  | int spatial_layer_dimensions_present_flag = aom_rb_read_bit(rb); | 
|  | int spatial_layer_description_present_flag = aom_rb_read_bit(rb); | 
|  | int temporal_group_description_present_flag = aom_rb_read_bit(rb); | 
|  | aom_rb_read_literal(rb, 3);  // reserved | 
|  |  | 
|  | if (spatial_layer_dimensions_present_flag) { | 
|  | int i; | 
|  | for (i = 0; i < spatial_layers_cnt + 1; i++) { | 
|  | aom_rb_read_literal(rb, 16); | 
|  | aom_rb_read_literal(rb, 16); | 
|  | } | 
|  | } | 
|  | if (spatial_layer_description_present_flag) { | 
|  | int i; | 
|  | for (i = 0; i < spatial_layers_cnt + 1; i++) { | 
|  | aom_rb_read_literal(rb, 8); | 
|  | } | 
|  | } | 
|  | if (temporal_group_description_present_flag) { | 
|  | int i, j, temporal_group_size; | 
|  | temporal_group_size = aom_rb_read_literal(rb, 8); | 
|  | for (i = 0; i < temporal_group_size; i++) { | 
|  | aom_rb_read_literal(rb, 3); | 
|  | aom_rb_read_bit(rb); | 
|  | aom_rb_read_bit(rb); | 
|  | int temporal_group_ref_cnt = aom_rb_read_literal(rb, 3); | 
|  | for (j = 0; j < temporal_group_ref_cnt; j++) { | 
|  | aom_rb_read_literal(rb, 8); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void read_metadata_scalability(const uint8_t *data, size_t sz) { | 
|  | struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; | 
|  | int scalability_mode_idc = aom_rb_read_literal(&rb, 8); | 
|  | if (scalability_mode_idc == SCALABILITY_SS) { | 
|  | scalability_structure(&rb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void read_metadata_timecode(const uint8_t *data, size_t sz) { | 
|  | struct aom_read_bit_buffer rb = { data, data + sz, 0, NULL, NULL }; | 
|  | aom_rb_read_literal(&rb, 5);                     // counting_type f(5) | 
|  | int full_timestamp_flag = aom_rb_read_bit(&rb);  // full_timestamp_flag f(1) | 
|  | aom_rb_read_bit(&rb);                            // discontinuity_flag (f1) | 
|  | aom_rb_read_bit(&rb);                            // cnt_dropped_flag f(1) | 
|  | aom_rb_read_literal(&rb, 9);                     // n_frames f(9) | 
|  | if (full_timestamp_flag) { | 
|  | aom_rb_read_literal(&rb, 6);  // seconds_value f(6) | 
|  | aom_rb_read_literal(&rb, 6);  // minutes_value f(6) | 
|  | aom_rb_read_literal(&rb, 5);  // hours_value f(5) | 
|  | } else { | 
|  | int seconds_flag = aom_rb_read_bit(&rb);  // seconds_flag f(1) | 
|  | if (seconds_flag) { | 
|  | aom_rb_read_literal(&rb, 6);              // seconds_value f(6) | 
|  | int minutes_flag = aom_rb_read_bit(&rb);  // minutes_flag f(1) | 
|  | if (minutes_flag) { | 
|  | aom_rb_read_literal(&rb, 6);            // minutes_value f(6) | 
|  | int hours_flag = aom_rb_read_bit(&rb);  // hours_flag f(1) | 
|  | if (hours_flag) { | 
|  | aom_rb_read_literal(&rb, 5);  // hours_value f(5) | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // time_offset_length f(5) | 
|  | int time_offset_length = aom_rb_read_literal(&rb, 5); | 
|  | if (time_offset_length) { | 
|  | aom_rb_read_literal(&rb, time_offset_length);  // f(time_offset_length) | 
|  | } | 
|  | } | 
|  |  | 
|  | // Not fully implemented. Always succeeds and returns sz. | 
|  | static size_t read_metadata(const uint8_t *data, size_t sz) { | 
|  | size_t type_length; | 
|  | uint64_t type_value; | 
|  | OBU_METADATA_TYPE metadata_type; | 
|  | if (aom_uleb_decode(data, sz, &type_value, &type_length) < 0) { | 
|  | return sz; | 
|  | } | 
|  | metadata_type = (OBU_METADATA_TYPE)type_value; | 
|  | if (metadata_type == OBU_METADATA_TYPE_ITUT_T35) { | 
|  | read_metadata_itut_t35(data + type_length, sz - type_length); | 
|  | } else if (metadata_type == OBU_METADATA_TYPE_HDR_CLL) { | 
|  | read_metadata_hdr_cll(data + type_length, sz - type_length); | 
|  | } else if (metadata_type == OBU_METADATA_TYPE_HDR_MDCV) { | 
|  | read_metadata_hdr_mdcv(data + type_length, sz - type_length); | 
|  | } else if (metadata_type == OBU_METADATA_TYPE_SCALABILITY) { | 
|  | read_metadata_scalability(data + type_length, sz - type_length); | 
|  | } else if (metadata_type == OBU_METADATA_TYPE_TIMECODE) { | 
|  | read_metadata_timecode(data + type_length, sz - type_length); | 
|  | } | 
|  |  | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | // On success, returns a boolean that indicates whether the decoding of the | 
|  | // current frame is finished. On failure, sets cm->error.error_code and | 
|  | // returns -1. | 
|  | int aom_decode_frame_from_obus(struct AV1Decoder *pbi, const uint8_t *data, | 
|  | const uint8_t *data_end, | 
|  | const uint8_t **p_data_end) { | 
|  | AV1_COMMON *const cm = &pbi->common; | 
|  | int frame_decoding_finished = 0; | 
|  | int is_first_tg_obu_received = 1; | 
|  | uint32_t frame_header_size = 0; | 
|  | ObuHeader obu_header; | 
|  | memset(&obu_header, 0, sizeof(obu_header)); | 
|  | pbi->seen_frame_header = 0; | 
|  |  | 
|  | if (data_end < data) { | 
|  | cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Reset pbi->camera_frame_header_ready to 0 if cm->large_scale_tile = 0. | 
|  | if (!cm->large_scale_tile) pbi->camera_frame_header_ready = 0; | 
|  |  | 
|  | // decode frame as a series of OBUs | 
|  | while (!frame_decoding_finished && cm->error.error_code == AOM_CODEC_OK) { | 
|  | struct aom_read_bit_buffer rb; | 
|  | size_t payload_size = 0; | 
|  | size_t decoded_payload_size = 0; | 
|  | size_t obu_payload_offset = 0; | 
|  | size_t bytes_read = 0; | 
|  | const size_t bytes_available = data_end - data; | 
|  |  | 
|  | if (bytes_available == 0 && !pbi->seen_frame_header) { | 
|  | *p_data_end = data; | 
|  | cm->error.error_code = AOM_CODEC_OK; | 
|  | break; | 
|  | } | 
|  |  | 
|  | aom_codec_err_t status = | 
|  | aom_read_obu_header_and_size(data, bytes_available, cm->is_annexb, | 
|  | &obu_header, &payload_size, &bytes_read); | 
|  |  | 
|  | if (status != AOM_CODEC_OK) { | 
|  | cm->error.error_code = status; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Record obu size header information. | 
|  | pbi->obu_size_hdr.data = data + obu_header.size; | 
|  | pbi->obu_size_hdr.size = bytes_read - obu_header.size; | 
|  |  | 
|  | // Note: aom_read_obu_header_and_size() takes care of checking that this | 
|  | // doesn't cause 'data' to advance past 'data_end'. | 
|  | data += bytes_read; | 
|  |  | 
|  | if ((size_t)(data_end - data) < payload_size) { | 
|  | cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | cm->temporal_layer_id = obu_header.temporal_layer_id; | 
|  | cm->spatial_layer_id = obu_header.spatial_layer_id; | 
|  |  | 
|  | if (obu_header.type != OBU_TEMPORAL_DELIMITER && | 
|  | obu_header.type != OBU_SEQUENCE_HEADER && | 
|  | obu_header.type != OBU_PADDING) { | 
|  | // don't decode obu if it's not in current operating mode | 
|  | if (!is_obu_in_current_operating_point(pbi, obu_header)) { | 
|  | data += payload_size; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_init_read_bit_buffer(pbi, &rb, data, data + payload_size); | 
|  |  | 
|  | switch (obu_header.type) { | 
|  | case OBU_TEMPORAL_DELIMITER: | 
|  | decoded_payload_size = read_temporal_delimiter_obu(); | 
|  | pbi->seen_frame_header = 0; | 
|  | break; | 
|  | case OBU_SEQUENCE_HEADER: | 
|  | decoded_payload_size = read_sequence_header_obu(pbi, &rb); | 
|  | if (cm->error.error_code != AOM_CODEC_OK) return -1; | 
|  | break; | 
|  | case OBU_FRAME_HEADER: | 
|  | case OBU_REDUNDANT_FRAME_HEADER: | 
|  | case OBU_FRAME: | 
|  | // Only decode first frame header received | 
|  | if (!pbi->seen_frame_header || | 
|  | (cm->large_scale_tile && !pbi->camera_frame_header_ready)) { | 
|  | frame_header_size = read_frame_header_obu( | 
|  | pbi, &rb, data, p_data_end, obu_header.type != OBU_FRAME); | 
|  | pbi->seen_frame_header = 1; | 
|  | if (!pbi->ext_tile_debug && cm->large_scale_tile) | 
|  | pbi->camera_frame_header_ready = 1; | 
|  | } else { | 
|  | // TODO(wtc): Verify that the frame_header_obu is identical to the | 
|  | // original frame_header_obu. For now just skip frame_header_size | 
|  | // bytes in the bit buffer. | 
|  | if (frame_header_size > payload_size) { | 
|  | cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
|  | return -1; | 
|  | } | 
|  | assert(rb.bit_offset == 0); | 
|  | rb.bit_offset = 8 * frame_header_size; | 
|  | } | 
|  |  | 
|  | decoded_payload_size = frame_header_size; | 
|  | pbi->frame_header_size = frame_header_size; | 
|  |  | 
|  | if (cm->show_existing_frame) { | 
|  | if (obu_header.type == OBU_FRAME) { | 
|  | cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; | 
|  | return -1; | 
|  | } | 
|  | frame_decoding_finished = 1; | 
|  | pbi->seen_frame_header = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // In large scale tile coding, decode the common camera frame header | 
|  | // before any tile list OBU. | 
|  | if (!pbi->ext_tile_debug && pbi->camera_frame_header_ready) { | 
|  | frame_decoding_finished = 1; | 
|  | // Skip the rest of the frame data. | 
|  | decoded_payload_size = payload_size; | 
|  | // Update data_end. | 
|  | *p_data_end = data_end; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (obu_header.type != OBU_FRAME) break; | 
|  | obu_payload_offset = frame_header_size; | 
|  | // Byte align the reader before reading the tile group. | 
|  | // byte_alignment() has set cm->error.error_code if it returns -1. | 
|  | if (byte_alignment(cm, &rb)) return -1; | 
|  | AOM_FALLTHROUGH_INTENDED;  // fall through to read tile group. | 
|  | case OBU_TILE_GROUP: | 
|  | if (!pbi->seen_frame_header) { | 
|  | cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
|  | return -1; | 
|  | } | 
|  | if (obu_payload_offset > payload_size) { | 
|  | cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
|  | return -1; | 
|  | } | 
|  | decoded_payload_size += read_one_tile_group_obu( | 
|  | pbi, &rb, is_first_tg_obu_received, data + obu_payload_offset, | 
|  | data + payload_size, p_data_end, &frame_decoding_finished, | 
|  | obu_header.type == OBU_FRAME); | 
|  | if (cm->error.error_code != AOM_CODEC_OK) return -1; | 
|  | is_first_tg_obu_received = 0; | 
|  | if (frame_decoding_finished) pbi->seen_frame_header = 0; | 
|  | break; | 
|  | case OBU_METADATA: | 
|  | decoded_payload_size = read_metadata(data, payload_size); | 
|  | break; | 
|  | case OBU_TILE_LIST: | 
|  | if (CONFIG_NORMAL_TILE_MODE) { | 
|  | cm->error.error_code = AOM_CODEC_UNSUP_BITSTREAM; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // This OBU type is purely for the large scale tile coding mode. | 
|  | // The common camera frame header has to be already decoded. | 
|  | if (!pbi->camera_frame_header_ready) { | 
|  | cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | cm->large_scale_tile = 1; | 
|  | av1_set_single_tile_decoding_mode(cm); | 
|  | decoded_payload_size = | 
|  | read_and_decode_one_tile_list(pbi, &rb, data, data + payload_size, | 
|  | p_data_end, &frame_decoding_finished); | 
|  | if (cm->error.error_code != AOM_CODEC_OK) return -1; | 
|  | break; | 
|  | case OBU_PADDING: | 
|  | default: | 
|  | // Skip unrecognized OBUs | 
|  | decoded_payload_size = payload_size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check that the signalled OBU size matches the actual amount of data read | 
|  | if (decoded_payload_size > payload_size) { | 
|  | cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // If there are extra padding bytes, they should all be zero | 
|  | while (decoded_payload_size < payload_size) { | 
|  | uint8_t padding_byte = data[decoded_payload_size++]; | 
|  | if (padding_byte != 0) { | 
|  | cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | data += payload_size; | 
|  | } | 
|  |  | 
|  | if (cm->error.error_code != AOM_CODEC_OK) return -1; | 
|  | return frame_decoding_finished; | 
|  | } |