|  | /* | 
|  | * Copyright (c) 2018, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <immintrin.h> | 
|  | #include <smmintrin.h> | 
|  |  | 
|  | #include "aom_dsp/x86/synonyms.h" | 
|  | #include "aom_dsp/x86/synonyms_avx2.h" | 
|  | #include "aom_dsp/x86/sum_squares_sse2.h" | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  |  | 
|  | static uint64_t aom_sum_squares_2d_i16_nxn_avx2(const int16_t *src, int stride, | 
|  | int width, int height) { | 
|  | uint64_t result; | 
|  | __m256i v_acc_q = _mm256_setzero_si256(); | 
|  | const __m256i v_zext_mask_q = yy_set1_64_from_32i(0xffffffff); | 
|  | for (int col = 0; col < height; col += 4) { | 
|  | __m256i v_acc_d = _mm256_setzero_si256(); | 
|  | for (int row = 0; row < width; row += 16) { | 
|  | const int16_t *tempsrc = src + row; | 
|  | const __m256i v_val_0_w = | 
|  | _mm256_loadu_si256((const __m256i *)(tempsrc + 0 * stride)); | 
|  | const __m256i v_val_1_w = | 
|  | _mm256_loadu_si256((const __m256i *)(tempsrc + 1 * stride)); | 
|  | const __m256i v_val_2_w = | 
|  | _mm256_loadu_si256((const __m256i *)(tempsrc + 2 * stride)); | 
|  | const __m256i v_val_3_w = | 
|  | _mm256_loadu_si256((const __m256i *)(tempsrc + 3 * stride)); | 
|  |  | 
|  | const __m256i v_sq_0_d = _mm256_madd_epi16(v_val_0_w, v_val_0_w); | 
|  | const __m256i v_sq_1_d = _mm256_madd_epi16(v_val_1_w, v_val_1_w); | 
|  | const __m256i v_sq_2_d = _mm256_madd_epi16(v_val_2_w, v_val_2_w); | 
|  | const __m256i v_sq_3_d = _mm256_madd_epi16(v_val_3_w, v_val_3_w); | 
|  |  | 
|  | const __m256i v_sum_01_d = _mm256_add_epi32(v_sq_0_d, v_sq_1_d); | 
|  | const __m256i v_sum_23_d = _mm256_add_epi32(v_sq_2_d, v_sq_3_d); | 
|  | const __m256i v_sum_0123_d = _mm256_add_epi32(v_sum_01_d, v_sum_23_d); | 
|  |  | 
|  | v_acc_d = _mm256_add_epi32(v_acc_d, v_sum_0123_d); | 
|  | } | 
|  | v_acc_q = | 
|  | _mm256_add_epi64(v_acc_q, _mm256_and_si256(v_acc_d, v_zext_mask_q)); | 
|  | v_acc_q = _mm256_add_epi64(v_acc_q, _mm256_srli_epi64(v_acc_d, 32)); | 
|  | src += 4 * stride; | 
|  | } | 
|  | __m128i lower_64_2_Value = _mm256_castsi256_si128(v_acc_q); | 
|  | __m128i higher_64_2_Value = _mm256_extracti128_si256(v_acc_q, 1); | 
|  | __m128i result_64_2_int = _mm_add_epi64(lower_64_2_Value, higher_64_2_Value); | 
|  |  | 
|  | result_64_2_int = _mm_add_epi64( | 
|  | result_64_2_int, _mm_unpackhi_epi64(result_64_2_int, result_64_2_int)); | 
|  |  | 
|  | xx_storel_64(&result, result_64_2_int); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | uint64_t aom_sum_squares_2d_i16_avx2(const int16_t *src, int stride, int width, | 
|  | int height) { | 
|  | if (LIKELY(width == 4 && height == 4)) { | 
|  | return aom_sum_squares_2d_i16_4x4_sse2(src, stride); | 
|  | } else if (LIKELY(width == 4 && (height & 3) == 0)) { | 
|  | return aom_sum_squares_2d_i16_4xn_sse2(src, stride, height); | 
|  | } else if (LIKELY(width == 8 && (height & 3) == 0)) { | 
|  | return aom_sum_squares_2d_i16_nxn_sse2(src, stride, width, height); | 
|  | } else if (LIKELY(((width & 15) == 0) && ((height & 3) == 0))) { | 
|  | return aom_sum_squares_2d_i16_nxn_avx2(src, stride, width, height); | 
|  | } else { | 
|  | return aom_sum_squares_2d_i16_c(src, stride, width, height); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Accumulate sum of 16-bit elements in the vector | 
|  | static AOM_INLINE int32_t mm256_accumulate_epi16(__m256i vec_a) { | 
|  | __m128i vtmp1 = _mm256_extracti128_si256(vec_a, 1); | 
|  | __m128i vtmp2 = _mm256_castsi256_si128(vec_a); | 
|  | vtmp1 = _mm_add_epi16(vtmp1, vtmp2); | 
|  | vtmp2 = _mm_srli_si128(vtmp1, 8); | 
|  | vtmp1 = _mm_add_epi16(vtmp1, vtmp2); | 
|  | vtmp2 = _mm_srli_si128(vtmp1, 4); | 
|  | vtmp1 = _mm_add_epi16(vtmp1, vtmp2); | 
|  | vtmp2 = _mm_srli_si128(vtmp1, 2); | 
|  | vtmp1 = _mm_add_epi16(vtmp1, vtmp2); | 
|  | return _mm_extract_epi16(vtmp1, 0); | 
|  | } | 
|  |  | 
|  | // Accumulate sum of 32-bit elements in the vector | 
|  | static AOM_INLINE int32_t mm256_accumulate_epi32(__m256i vec_a) { | 
|  | __m128i vtmp1 = _mm256_extracti128_si256(vec_a, 1); | 
|  | __m128i vtmp2 = _mm256_castsi256_si128(vec_a); | 
|  | vtmp1 = _mm_add_epi32(vtmp1, vtmp2); | 
|  | vtmp2 = _mm_srli_si128(vtmp1, 8); | 
|  | vtmp1 = _mm_add_epi32(vtmp1, vtmp2); | 
|  | vtmp2 = _mm_srli_si128(vtmp1, 4); | 
|  | vtmp1 = _mm_add_epi32(vtmp1, vtmp2); | 
|  | return _mm_cvtsi128_si32(vtmp1); | 
|  | } | 
|  |  | 
|  | uint64_t aom_var_2d_u8_avx2(uint8_t *src, int src_stride, int width, | 
|  | int height) { | 
|  | uint8_t *srcp; | 
|  | uint64_t s = 0, ss = 0; | 
|  | __m256i vzero = _mm256_setzero_si256(); | 
|  | __m256i v_acc_sum = vzero; | 
|  | __m256i v_acc_sqs = vzero; | 
|  | int i, j; | 
|  |  | 
|  | // Process 32 elements in a row | 
|  | for (i = 0; i < width - 31; i += 32) { | 
|  | srcp = src + i; | 
|  | // Process 8 columns at a time | 
|  | for (j = 0; j < height - 7; j += 8) { | 
|  | __m256i vsrc[8]; | 
|  | for (int k = 0; k < 8; k++) { | 
|  | vsrc[k] = _mm256_loadu_si256((__m256i *)srcp); | 
|  | srcp += src_stride; | 
|  | } | 
|  | for (int k = 0; k < 8; k++) { | 
|  | __m256i vsrc0 = _mm256_unpacklo_epi8(vsrc[k], vzero); | 
|  | __m256i vsrc1 = _mm256_unpackhi_epi8(vsrc[k], vzero); | 
|  | v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc0); | 
|  | v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc1); | 
|  |  | 
|  | __m256i vsqs0 = _mm256_madd_epi16(vsrc0, vsrc0); | 
|  | __m256i vsqs1 = _mm256_madd_epi16(vsrc1, vsrc1); | 
|  | v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0); | 
|  | v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs1); | 
|  | } | 
|  |  | 
|  | // Update total sum and clear the vectors | 
|  | s += mm256_accumulate_epi16(v_acc_sum); | 
|  | ss += mm256_accumulate_epi32(v_acc_sqs); | 
|  | v_acc_sum = vzero; | 
|  | v_acc_sqs = vzero; | 
|  | } | 
|  |  | 
|  | // Process remaining rows (height not a multiple of 8) | 
|  | for (; j < height; j++) { | 
|  | __m256i vsrc = _mm256_loadu_si256((__m256i *)srcp); | 
|  | __m256i vsrc0 = _mm256_unpacklo_epi8(vsrc, vzero); | 
|  | __m256i vsrc1 = _mm256_unpackhi_epi8(vsrc, vzero); | 
|  | v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc0); | 
|  | v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc1); | 
|  |  | 
|  | __m256i vsqs0 = _mm256_madd_epi16(vsrc0, vsrc0); | 
|  | __m256i vsqs1 = _mm256_madd_epi16(vsrc1, vsrc1); | 
|  | v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0); | 
|  | v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs1); | 
|  |  | 
|  | srcp += src_stride; | 
|  | } | 
|  |  | 
|  | // Update total sum and clear the vectors | 
|  | s += mm256_accumulate_epi16(v_acc_sum); | 
|  | ss += mm256_accumulate_epi32(v_acc_sqs); | 
|  | v_acc_sum = vzero; | 
|  | v_acc_sqs = vzero; | 
|  | } | 
|  |  | 
|  | // Process the remaining area using C | 
|  | srcp = src; | 
|  | for (int k = 0; k < height; k++) { | 
|  | for (int m = i; m < width; m++) { | 
|  | uint8_t val = srcp[m]; | 
|  | s += val; | 
|  | ss += val * val; | 
|  | } | 
|  | srcp += src_stride; | 
|  | } | 
|  | return (ss - s * s / (width * height)); | 
|  | } | 
|  |  | 
|  | uint64_t aom_var_2d_u16_avx2(uint8_t *src, int src_stride, int width, | 
|  | int height) { | 
|  | uint16_t *srcp1 = CONVERT_TO_SHORTPTR(src), *srcp; | 
|  | uint64_t s = 0, ss = 0; | 
|  | __m256i vzero = _mm256_setzero_si256(); | 
|  | __m256i v_acc_sum = vzero; | 
|  | __m256i v_acc_sqs = vzero; | 
|  | int i, j; | 
|  |  | 
|  | // Process 16 elements in a row | 
|  | for (i = 0; i < width - 15; i += 16) { | 
|  | srcp = srcp1 + i; | 
|  | // Process 8 columns at a time | 
|  | for (j = 0; j < height - 8; j += 8) { | 
|  | __m256i vsrc[8]; | 
|  | for (int k = 0; k < 8; k++) { | 
|  | vsrc[k] = _mm256_loadu_si256((__m256i *)srcp); | 
|  | srcp += src_stride; | 
|  | } | 
|  | for (int k = 0; k < 8; k++) { | 
|  | __m256i vsrc0 = _mm256_unpacklo_epi16(vsrc[k], vzero); | 
|  | __m256i vsrc1 = _mm256_unpackhi_epi16(vsrc[k], vzero); | 
|  | v_acc_sum = _mm256_add_epi32(vsrc0, v_acc_sum); | 
|  | v_acc_sum = _mm256_add_epi32(vsrc1, v_acc_sum); | 
|  |  | 
|  | __m256i vsqs0 = _mm256_madd_epi16(vsrc[k], vsrc[k]); | 
|  | v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0); | 
|  | } | 
|  |  | 
|  | // Update total sum and clear the vectors | 
|  | s += mm256_accumulate_epi32(v_acc_sum); | 
|  | ss += mm256_accumulate_epi32(v_acc_sqs); | 
|  | v_acc_sum = vzero; | 
|  | v_acc_sqs = vzero; | 
|  | } | 
|  |  | 
|  | // Process remaining rows (height not a multiple of 8) | 
|  | for (; j < height; j++) { | 
|  | __m256i vsrc = _mm256_loadu_si256((__m256i *)srcp); | 
|  | __m256i vsrc0 = _mm256_unpacklo_epi16(vsrc, vzero); | 
|  | __m256i vsrc1 = _mm256_unpackhi_epi16(vsrc, vzero); | 
|  | v_acc_sum = _mm256_add_epi32(vsrc0, v_acc_sum); | 
|  | v_acc_sum = _mm256_add_epi32(vsrc1, v_acc_sum); | 
|  |  | 
|  | __m256i vsqs0 = _mm256_madd_epi16(vsrc, vsrc); | 
|  | v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0); | 
|  | srcp += src_stride; | 
|  | } | 
|  |  | 
|  | // Update total sum and clear the vectors | 
|  | s += mm256_accumulate_epi32(v_acc_sum); | 
|  | ss += mm256_accumulate_epi32(v_acc_sqs); | 
|  | v_acc_sum = vzero; | 
|  | v_acc_sqs = vzero; | 
|  | } | 
|  |  | 
|  | // Process the remaining area using C | 
|  | srcp = srcp1; | 
|  | for (int k = 0; k < height; k++) { | 
|  | for (int m = i; m < width; m++) { | 
|  | uint16_t val = srcp[m]; | 
|  | s += val; | 
|  | ss += val * val; | 
|  | } | 
|  | srcp += src_stride; | 
|  | } | 
|  | return (ss - s * s / (width * height)); | 
|  | } |