| /* |
| * Copyright 2011 The LibYuv Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "libyuv/compare.h" |
| |
| #include <float.h> |
| #include <math.h> |
| #ifdef _OPENMP |
| #include <omp.h> |
| #endif |
| |
| #include "libyuv/basic_types.h" |
| #include "libyuv/compare_row.h" |
| #include "libyuv/cpu_id.h" |
| #include "libyuv/row.h" |
| #include "libyuv/video_common.h" |
| |
| #ifdef __cplusplus |
| namespace libyuv { |
| extern "C" { |
| #endif |
| |
| // hash seed of 5381 recommended. |
| LIBYUV_API |
| uint32_t HashDjb2(const uint8_t* src, uint64_t count, uint32_t seed) { |
| const int kBlockSize = 1 << 15; // 32768; |
| int remainder; |
| uint32_t (*HashDjb2_SSE)(const uint8_t* src, int count, uint32_t seed) = |
| HashDjb2_C; |
| #if defined(HAS_HASHDJB2_SSE41) |
| if (TestCpuFlag(kCpuHasSSE41)) { |
| HashDjb2_SSE = HashDjb2_SSE41; |
| } |
| #endif |
| #if defined(HAS_HASHDJB2_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| HashDjb2_SSE = HashDjb2_AVX2; |
| } |
| #endif |
| |
| while (count >= (uint64_t)(kBlockSize)) { |
| seed = HashDjb2_SSE(src, kBlockSize, seed); |
| src += kBlockSize; |
| count -= kBlockSize; |
| } |
| remainder = (int)count & ~15; |
| if (remainder) { |
| seed = HashDjb2_SSE(src, remainder, seed); |
| src += remainder; |
| count -= remainder; |
| } |
| remainder = (int)count & 15; |
| if (remainder) { |
| seed = HashDjb2_C(src, remainder, seed); |
| } |
| return seed; |
| } |
| |
| static uint32_t ARGBDetectRow_C(const uint8_t* argb, int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| if (argb[0] != 255) { // First byte is not Alpha of 255, so not ARGB. |
| return FOURCC_BGRA; |
| } |
| if (argb[3] != 255) { // Fourth byte is not Alpha of 255, so not BGRA. |
| return FOURCC_ARGB; |
| } |
| if (argb[4] != 255) { // Second pixel first byte is not Alpha of 255. |
| return FOURCC_BGRA; |
| } |
| if (argb[7] != 255) { // Second pixel fourth byte is not Alpha of 255. |
| return FOURCC_ARGB; |
| } |
| argb += 8; |
| } |
| if (width & 1) { |
| if (argb[0] != 255) { // First byte is not Alpha of 255, so not ARGB. |
| return FOURCC_BGRA; |
| } |
| if (argb[3] != 255) { // 4th byte is not Alpha of 255, so not BGRA. |
| return FOURCC_ARGB; |
| } |
| } |
| return 0; |
| } |
| |
| // Scan an opaque argb image and return fourcc based on alpha offset. |
| // Returns FOURCC_ARGB, FOURCC_BGRA, or 0 if unknown. |
| LIBYUV_API |
| uint32_t ARGBDetect(const uint8_t* argb, |
| int stride_argb, |
| int width, |
| int height) { |
| uint32_t fourcc = 0; |
| int h; |
| |
| // Coalesce rows. |
| if (stride_argb == width * 4) { |
| width *= height; |
| height = 1; |
| stride_argb = 0; |
| } |
| for (h = 0; h < height && fourcc == 0; ++h) { |
| fourcc = ARGBDetectRow_C(argb, width); |
| argb += stride_argb; |
| } |
| return fourcc; |
| } |
| |
| // NEON version accumulates in 16 bit shorts which overflow at 65536 bytes. |
| // So actual maximum is 1 less loop, which is 64436 - 32 bytes. |
| |
| LIBYUV_API |
| uint64_t ComputeHammingDistance(const uint8_t* src_a, |
| const uint8_t* src_b, |
| int count) { |
| const int kBlockSize = 1 << 15; // 32768; |
| const int kSimdSize = 64; |
| // SIMD for multiple of 64, and C for remainder |
| int remainder = count & (kBlockSize - 1) & ~(kSimdSize - 1); |
| uint64_t diff = 0; |
| int i; |
| uint32_t (*HammingDistance)(const uint8_t* src_a, const uint8_t* src_b, |
| int count) = HammingDistance_C; |
| #if defined(HAS_HAMMINGDISTANCE_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| HammingDistance = HammingDistance_NEON; |
| } |
| #endif |
| #if defined(HAS_HAMMINGDISTANCE_SSSE3) |
| if (TestCpuFlag(kCpuHasSSSE3)) { |
| HammingDistance = HammingDistance_SSSE3; |
| } |
| #endif |
| #if defined(HAS_HAMMINGDISTANCE_SSE42) |
| if (TestCpuFlag(kCpuHasSSE42)) { |
| HammingDistance = HammingDistance_SSE42; |
| } |
| #endif |
| #if defined(HAS_HAMMINGDISTANCE_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| HammingDistance = HammingDistance_AVX2; |
| } |
| #endif |
| #if defined(HAS_HAMMINGDISTANCE_MMI) |
| if (TestCpuFlag(kCpuHasMMI)) { |
| HammingDistance = HammingDistance_MMI; |
| } |
| #endif |
| #if defined(HAS_HAMMINGDISTANCE_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| HammingDistance = HammingDistance_MSA; |
| } |
| #endif |
| |
| #ifdef _OPENMP |
| #pragma omp parallel for reduction(+ : diff) |
| #endif |
| for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) { |
| diff += HammingDistance(src_a + i, src_b + i, kBlockSize); |
| } |
| src_a += count & ~(kBlockSize - 1); |
| src_b += count & ~(kBlockSize - 1); |
| if (remainder) { |
| diff += HammingDistance(src_a, src_b, remainder); |
| src_a += remainder; |
| src_b += remainder; |
| } |
| remainder = count & (kSimdSize - 1); |
| if (remainder) { |
| diff += HammingDistance_C(src_a, src_b, remainder); |
| } |
| return diff; |
| } |
| |
| // TODO(fbarchard): Refactor into row function. |
| LIBYUV_API |
| uint64_t ComputeSumSquareError(const uint8_t* src_a, |
| const uint8_t* src_b, |
| int count) { |
| // SumSquareError returns values 0 to 65535 for each squared difference. |
| // Up to 65536 of those can be summed and remain within a uint32_t. |
| // After each block of 65536 pixels, accumulate into a uint64_t. |
| const int kBlockSize = 65536; |
| int remainder = count & (kBlockSize - 1) & ~31; |
| uint64_t sse = 0; |
| int i; |
| uint32_t (*SumSquareError)(const uint8_t* src_a, const uint8_t* src_b, |
| int count) = SumSquareError_C; |
| #if defined(HAS_SUMSQUAREERROR_NEON) |
| if (TestCpuFlag(kCpuHasNEON)) { |
| SumSquareError = SumSquareError_NEON; |
| } |
| #endif |
| #if defined(HAS_SUMSQUAREERROR_SSE2) |
| if (TestCpuFlag(kCpuHasSSE2)) { |
| // Note only used for multiples of 16 so count is not checked. |
| SumSquareError = SumSquareError_SSE2; |
| } |
| #endif |
| #if defined(HAS_SUMSQUAREERROR_AVX2) |
| if (TestCpuFlag(kCpuHasAVX2)) { |
| // Note only used for multiples of 32 so count is not checked. |
| SumSquareError = SumSquareError_AVX2; |
| } |
| #endif |
| #if defined(HAS_SUMSQUAREERROR_MMI) |
| if (TestCpuFlag(kCpuHasMMI)) { |
| SumSquareError = SumSquareError_MMI; |
| } |
| #endif |
| #if defined(HAS_SUMSQUAREERROR_MSA) |
| if (TestCpuFlag(kCpuHasMSA)) { |
| SumSquareError = SumSquareError_MSA; |
| } |
| #endif |
| #ifdef _OPENMP |
| #pragma omp parallel for reduction(+ : sse) |
| #endif |
| for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) { |
| sse += SumSquareError(src_a + i, src_b + i, kBlockSize); |
| } |
| src_a += count & ~(kBlockSize - 1); |
| src_b += count & ~(kBlockSize - 1); |
| if (remainder) { |
| sse += SumSquareError(src_a, src_b, remainder); |
| src_a += remainder; |
| src_b += remainder; |
| } |
| remainder = count & 31; |
| if (remainder) { |
| sse += SumSquareError_C(src_a, src_b, remainder); |
| } |
| return sse; |
| } |
| |
| LIBYUV_API |
| uint64_t ComputeSumSquareErrorPlane(const uint8_t* src_a, |
| int stride_a, |
| const uint8_t* src_b, |
| int stride_b, |
| int width, |
| int height) { |
| uint64_t sse = 0; |
| int h; |
| // Coalesce rows. |
| if (stride_a == width && stride_b == width) { |
| width *= height; |
| height = 1; |
| stride_a = stride_b = 0; |
| } |
| for (h = 0; h < height; ++h) { |
| sse += ComputeSumSquareError(src_a, src_b, width); |
| src_a += stride_a; |
| src_b += stride_b; |
| } |
| return sse; |
| } |
| |
| LIBYUV_API |
| double SumSquareErrorToPsnr(uint64_t sse, uint64_t count) { |
| double psnr; |
| if (sse > 0) { |
| double mse = (double)count / (double)sse; |
| psnr = 10.0 * log10(255.0 * 255.0 * mse); |
| } else { |
| psnr = kMaxPsnr; // Limit to prevent divide by 0 |
| } |
| |
| if (psnr > kMaxPsnr) { |
| psnr = kMaxPsnr; |
| } |
| |
| return psnr; |
| } |
| |
| LIBYUV_API |
| double CalcFramePsnr(const uint8_t* src_a, |
| int stride_a, |
| const uint8_t* src_b, |
| int stride_b, |
| int width, |
| int height) { |
| const uint64_t samples = (uint64_t)width * (uint64_t)height; |
| const uint64_t sse = ComputeSumSquareErrorPlane(src_a, stride_a, src_b, |
| stride_b, width, height); |
| return SumSquareErrorToPsnr(sse, samples); |
| } |
| |
| LIBYUV_API |
| double I420Psnr(const uint8_t* src_y_a, |
| int stride_y_a, |
| const uint8_t* src_u_a, |
| int stride_u_a, |
| const uint8_t* src_v_a, |
| int stride_v_a, |
| const uint8_t* src_y_b, |
| int stride_y_b, |
| const uint8_t* src_u_b, |
| int stride_u_b, |
| const uint8_t* src_v_b, |
| int stride_v_b, |
| int width, |
| int height) { |
| const uint64_t sse_y = ComputeSumSquareErrorPlane( |
| src_y_a, stride_y_a, src_y_b, stride_y_b, width, height); |
| const int width_uv = (width + 1) >> 1; |
| const int height_uv = (height + 1) >> 1; |
| const uint64_t sse_u = ComputeSumSquareErrorPlane( |
| src_u_a, stride_u_a, src_u_b, stride_u_b, width_uv, height_uv); |
| const uint64_t sse_v = ComputeSumSquareErrorPlane( |
| src_v_a, stride_v_a, src_v_b, stride_v_b, width_uv, height_uv); |
| const uint64_t samples = (uint64_t)width * (uint64_t)height + |
| 2 * ((uint64_t)width_uv * (uint64_t)height_uv); |
| const uint64_t sse = sse_y + sse_u + sse_v; |
| return SumSquareErrorToPsnr(sse, samples); |
| } |
| |
| static const int64_t cc1 = 26634; // (64^2*(.01*255)^2 |
| static const int64_t cc2 = 239708; // (64^2*(.03*255)^2 |
| |
| static double Ssim8x8_C(const uint8_t* src_a, |
| int stride_a, |
| const uint8_t* src_b, |
| int stride_b) { |
| int64_t sum_a = 0; |
| int64_t sum_b = 0; |
| int64_t sum_sq_a = 0; |
| int64_t sum_sq_b = 0; |
| int64_t sum_axb = 0; |
| |
| int i; |
| for (i = 0; i < 8; ++i) { |
| int j; |
| for (j = 0; j < 8; ++j) { |
| sum_a += src_a[j]; |
| sum_b += src_b[j]; |
| sum_sq_a += src_a[j] * src_a[j]; |
| sum_sq_b += src_b[j] * src_b[j]; |
| sum_axb += src_a[j] * src_b[j]; |
| } |
| |
| src_a += stride_a; |
| src_b += stride_b; |
| } |
| |
| { |
| const int64_t count = 64; |
| // scale the constants by number of pixels |
| const int64_t c1 = (cc1 * count * count) >> 12; |
| const int64_t c2 = (cc2 * count * count) >> 12; |
| |
| const int64_t sum_a_x_sum_b = sum_a * sum_b; |
| |
| const int64_t ssim_n = (2 * sum_a_x_sum_b + c1) * |
| (2 * count * sum_axb - 2 * sum_a_x_sum_b + c2); |
| |
| const int64_t sum_a_sq = sum_a * sum_a; |
| const int64_t sum_b_sq = sum_b * sum_b; |
| |
| const int64_t ssim_d = |
| (sum_a_sq + sum_b_sq + c1) * |
| (count * sum_sq_a - sum_a_sq + count * sum_sq_b - sum_b_sq + c2); |
| |
| if (ssim_d == 0.0) { |
| return DBL_MAX; |
| } |
| return ssim_n * 1.0 / ssim_d; |
| } |
| } |
| |
| // We are using a 8x8 moving window with starting location of each 8x8 window |
| // on the 4x4 pixel grid. Such arrangement allows the windows to overlap |
| // block boundaries to penalize blocking artifacts. |
| LIBYUV_API |
| double CalcFrameSsim(const uint8_t* src_a, |
| int stride_a, |
| const uint8_t* src_b, |
| int stride_b, |
| int width, |
| int height) { |
| int samples = 0; |
| double ssim_total = 0; |
| double (*Ssim8x8)(const uint8_t* src_a, int stride_a, const uint8_t* src_b, |
| int stride_b) = Ssim8x8_C; |
| |
| // sample point start with each 4x4 location |
| int i; |
| for (i = 0; i < height - 8; i += 4) { |
| int j; |
| for (j = 0; j < width - 8; j += 4) { |
| ssim_total += Ssim8x8(src_a + j, stride_a, src_b + j, stride_b); |
| samples++; |
| } |
| |
| src_a += stride_a * 4; |
| src_b += stride_b * 4; |
| } |
| |
| ssim_total /= samples; |
| return ssim_total; |
| } |
| |
| LIBYUV_API |
| double I420Ssim(const uint8_t* src_y_a, |
| int stride_y_a, |
| const uint8_t* src_u_a, |
| int stride_u_a, |
| const uint8_t* src_v_a, |
| int stride_v_a, |
| const uint8_t* src_y_b, |
| int stride_y_b, |
| const uint8_t* src_u_b, |
| int stride_u_b, |
| const uint8_t* src_v_b, |
| int stride_v_b, |
| int width, |
| int height) { |
| const double ssim_y = |
| CalcFrameSsim(src_y_a, stride_y_a, src_y_b, stride_y_b, width, height); |
| const int width_uv = (width + 1) >> 1; |
| const int height_uv = (height + 1) >> 1; |
| const double ssim_u = CalcFrameSsim(src_u_a, stride_u_a, src_u_b, stride_u_b, |
| width_uv, height_uv); |
| const double ssim_v = CalcFrameSsim(src_v_a, stride_v_a, src_v_b, stride_v_b, |
| width_uv, height_uv); |
| return ssim_y * 0.8 + 0.1 * (ssim_u + ssim_v); |
| } |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| } // namespace libyuv |
| #endif |