| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "third_party/googletest/src/googletest/include/gtest/gtest.h" |
| |
| #include "./av1_rtcd.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "test/acm_random.h" |
| #include "test/av1_txfm_test.h" |
| #include "test/clear_system_state.h" |
| #include "test/register_state_check.h" |
| #include "test/util.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/scan.h" |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/inv_txfm.h" |
| |
| using libaom_test::ACMRandom; |
| |
| namespace { |
| |
| typedef void (*IdctFunc)(const tran_low_t *in, tran_low_t *out); |
| |
| typedef std::tr1::tuple<IdctFunc, int, int> IdctParam; |
| class AV1InvTxfm : public ::testing::TestWithParam<IdctParam> { |
| public: |
| virtual void SetUp() { |
| inv_txfm_ = GET_PARAM(0); |
| txfm_size_ = GET_PARAM(1); |
| max_error_ = GET_PARAM(2); |
| } |
| |
| void RunInvAccuracyCheck() { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 5000; |
| for (int ti = 0; ti < count_test_block; ++ti) { |
| tran_low_t input[64]; |
| double ref_input[64]; |
| for (int ni = 0; ni < txfm_size_; ++ni) { |
| input[ni] = rnd.Rand8() - rnd.Rand8(); |
| ref_input[ni] = static_cast<double>(input[ni]); |
| } |
| |
| tran_low_t output[64]; |
| inv_txfm_(input, output); |
| |
| double ref_output[64]; |
| libaom_test::reference_idct_1d(ref_input, ref_output, txfm_size_); |
| |
| for (int ni = 0; ni < txfm_size_; ++ni) { |
| EXPECT_LE( |
| abs(output[ni] - static_cast<tran_low_t>(round(ref_output[ni]))), |
| max_error_); |
| } |
| } |
| } |
| |
| private: |
| double max_error_; |
| int txfm_size_; |
| IdctFunc inv_txfm_; |
| }; |
| |
| TEST_P(AV1InvTxfm, RunInvAccuracyCheck) { RunInvAccuracyCheck(); } |
| |
| INSTANTIATE_TEST_CASE_P(C, AV1InvTxfm, |
| ::testing::Values(IdctParam(&aom_idct4_c, 4, 1), |
| IdctParam(&aom_idct8_c, 8, 2), |
| IdctParam(&aom_idct16_c, 16, 4), |
| IdctParam(&aom_idct32_c, 32, 6))); |
| |
| #if CONFIG_AV1_ENCODER |
| typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride); |
| typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride); |
| typedef std::tr1::tuple<FwdTxfmFunc, InvTxfmFunc, InvTxfmFunc, TX_SIZE, int> |
| PartialInvTxfmParam; |
| const int kMaxNumCoeffs = 1024; |
| class AV1PartialIDctTest |
| : public ::testing::TestWithParam<PartialInvTxfmParam> { |
| public: |
| virtual ~AV1PartialIDctTest() {} |
| virtual void SetUp() { |
| ftxfm_ = GET_PARAM(0); |
| full_itxfm_ = GET_PARAM(1); |
| partial_itxfm_ = GET_PARAM(2); |
| tx_size_ = GET_PARAM(3); |
| last_nonzero_ = GET_PARAM(4); |
| } |
| |
| virtual void TearDown() { libaom_test::ClearSystemState(); } |
| |
| protected: |
| int last_nonzero_; |
| TX_SIZE tx_size_; |
| FwdTxfmFunc ftxfm_; |
| InvTxfmFunc full_itxfm_; |
| InvTxfmFunc partial_itxfm_; |
| }; |
| |
| static MB_MODE_INFO get_mbmi() { |
| MB_MODE_INFO mbmi; |
| mbmi.ref_frame[0] = LAST_FRAME; |
| assert(is_inter_block(&mbmi)); |
| return mbmi; |
| } |
| |
| TEST_P(AV1PartialIDctTest, RunQuantCheck) { |
| int size; |
| switch (tx_size_) { |
| case TX_4X4: size = 4; break; |
| case TX_8X8: size = 8; break; |
| case TX_16X16: size = 16; break; |
| case TX_32X32: size = 32; break; |
| default: FAIL() << "Wrong Size!"; break; |
| } |
| DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]); |
| |
| const int count_test_block = 1000; |
| const int block_size = size * size; |
| |
| DECLARE_ALIGNED(16, int16_t, input_extreme_block[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kMaxNumCoeffs]); |
| |
| int max_error = 0; |
| for (int m = 0; m < count_test_block; ++m) { |
| // clear out destination buffer |
| memset(dst1, 0, sizeof(*dst1) * block_size); |
| memset(dst2, 0, sizeof(*dst2) * block_size); |
| memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size); |
| memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size); |
| |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| |
| for (int n = 0; n < count_test_block; ++n) { |
| // Initialize a test block with input range [-255, 255]. |
| if (n == 0) { |
| for (int j = 0; j < block_size; ++j) input_extreme_block[j] = 255; |
| } else if (n == 1) { |
| for (int j = 0; j < block_size; ++j) input_extreme_block[j] = -255; |
| } else { |
| for (int j = 0; j < block_size; ++j) { |
| input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255; |
| } |
| } |
| |
| ftxfm_(input_extreme_block, output_ref_block, size); |
| |
| // quantization with maximum allowed step sizes |
| test_coef_block1[0] = (output_ref_block[0] / 1336) * 1336; |
| MB_MODE_INFO mbmi = get_mbmi(); |
| for (int j = 1; j < last_nonzero_; ++j) |
| test_coef_block1[get_scan((const AV1_COMMON *)NULL, tx_size_, DCT_DCT, |
| &mbmi) |
| ->scan[j]] = (output_ref_block[j] / 1828) * 1828; |
| } |
| |
| ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size)); |
| ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block1, dst2, size)); |
| |
| for (int j = 0; j < block_size; ++j) { |
| const int diff = dst1[j] - dst2[j]; |
| const int error = diff * diff; |
| if (max_error < error) max_error = error; |
| } |
| } |
| |
| EXPECT_EQ(0, max_error) |
| << "Error: partial inverse transform produces different results"; |
| } |
| |
| TEST_P(AV1PartialIDctTest, ResultsMatch) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| int size; |
| switch (tx_size_) { |
| case TX_4X4: size = 4; break; |
| case TX_8X8: size = 8; break; |
| case TX_16X16: size = 16; break; |
| case TX_32X32: size = 32; break; |
| default: FAIL() << "Wrong Size!"; break; |
| } |
| DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]); |
| const int count_test_block = 1000; |
| const int max_coeff = 32766 / 4; |
| const int block_size = size * size; |
| int max_error = 0; |
| for (int i = 0; i < count_test_block; ++i) { |
| // clear out destination buffer |
| memset(dst1, 0, sizeof(*dst1) * block_size); |
| memset(dst2, 0, sizeof(*dst2) * block_size); |
| memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size); |
| memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size); |
| int max_energy_leftover = max_coeff * max_coeff; |
| for (int j = 0; j < last_nonzero_; ++j) { |
| int16_t coef = static_cast<int16_t>(sqrt(1.0 * max_energy_leftover) * |
| (rnd.Rand16() - 32768) / 65536); |
| max_energy_leftover -= coef * coef; |
| if (max_energy_leftover < 0) { |
| max_energy_leftover = 0; |
| coef = 0; |
| } |
| MB_MODE_INFO mbmi = get_mbmi(); |
| test_coef_block1[get_scan((const AV1_COMMON *)NULL, tx_size_, DCT_DCT, |
| &mbmi) |
| ->scan[j]] = coef; |
| } |
| |
| memcpy(test_coef_block2, test_coef_block1, |
| sizeof(*test_coef_block2) * block_size); |
| |
| ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size)); |
| ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block2, dst2, size)); |
| |
| for (int j = 0; j < block_size; ++j) { |
| const int diff = dst1[j] - dst2[j]; |
| const int error = diff * diff; |
| if (max_error < error) max_error = error; |
| } |
| } |
| |
| EXPECT_EQ(0, max_error) |
| << "Error: partial inverse transform produces different results"; |
| } |
| using std::tr1::make_tuple; |
| |
| INSTANTIATE_TEST_CASE_P( |
| C, AV1PartialIDctTest, |
| ::testing::Values(make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c, |
| &aom_idct32x32_34_add_c, TX_32X32, 34), |
| make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c, |
| &aom_idct32x32_1_add_c, TX_32X32, 1), |
| make_tuple(&aom_fdct16x16_c, &aom_idct16x16_256_add_c, |
| &aom_idct16x16_10_add_c, TX_16X16, 10), |
| make_tuple(&aom_fdct16x16_c, &aom_idct16x16_256_add_c, |
| &aom_idct16x16_1_add_c, TX_16X16, 1), |
| make_tuple(&aom_fdct8x8_c, &aom_idct8x8_64_add_c, |
| &aom_idct8x8_12_add_c, TX_8X8, 12), |
| make_tuple(&aom_fdct8x8_c, &aom_idct8x8_64_add_c, |
| &aom_idct8x8_1_add_c, TX_8X8, 1), |
| make_tuple(&aom_fdct4x4_c, &aom_idct4x4_16_add_c, |
| &aom_idct4x4_1_add_c, TX_4X4, 1))); |
| #endif // CONFIG_AV1_ENCODER |
| } // namespace |