blob: 62270280b898a83e9137e47a8dc2057aa128215c [file] [log] [blame]
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/arm/sum_neon.h"
#include "aom_dsp/arm/transpose_neon.h"
#include "av1/common/restoration.h"
#include "av1/encoder/arm/neon/pickrst_neon.h"
#include "av1/encoder/pickrst.h"
int64_t av1_lowbd_pixel_proj_error_neon(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
int i, j, k;
const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
const int32x4_t zero = vdupq_n_s32(0);
uint64x2_t sum64 = vreinterpretq_u64_s32(zero);
const uint8_t *src = src8;
const uint8_t *dat = dat8;
int64_t err = 0;
if (params->r[0] > 0 && params->r[1] > 0) {
for (i = 0; i < height; ++i) {
int32x4_t err0 = zero;
for (j = 0; j <= width - 8; j += 8) {
const uint8x8_t d0 = vld1_u8(&dat[j]);
const uint8x8_t s0 = vld1_u8(&src[j]);
const int16x8_t flt0_16b =
vcombine_s16(vqmovn_s32(vld1q_s32(&flt0[j])),
vqmovn_s32(vld1q_s32(&flt0[j + 4])));
const int16x8_t flt1_16b =
vcombine_s16(vqmovn_s32(vld1q_s32(&flt1[j])),
vqmovn_s32(vld1q_s32(&flt1[j + 4])));
const int16x8_t u0 =
vreinterpretq_s16_u16(vshll_n_u8(d0, SGRPROJ_RST_BITS));
const int16x8_t flt0_0_sub_u = vsubq_s16(flt0_16b, u0);
const int16x8_t flt1_0_sub_u = vsubq_s16(flt1_16b, u0);
const int16x4_t flt0_16b_sub_u_lo = vget_low_s16(flt0_0_sub_u);
const int16x4_t flt0_16b_sub_u_hi = vget_high_s16(flt0_0_sub_u);
const int16x4_t flt1_16b_sub_u_lo = vget_low_s16(flt1_0_sub_u);
const int16x4_t flt1_16b_sub_u_hi = vget_high_s16(flt1_0_sub_u);
int32x4_t v0 = vmull_n_s16(flt0_16b_sub_u_lo, (int16_t)xq[0]);
v0 = vmlal_n_s16(v0, flt1_16b_sub_u_lo, (int16_t)xq[1]);
int32x4_t v1 = vmull_n_s16(flt0_16b_sub_u_hi, (int16_t)xq[0]);
v1 = vmlal_n_s16(v1, flt1_16b_sub_u_hi, (int16_t)xq[1]);
const int16x4_t vr0 = vqrshrn_n_s32(v0, 11);
const int16x4_t vr1 = vqrshrn_n_s32(v1, 11);
const int16x8_t e0 = vaddq_s16(vcombine_s16(vr0, vr1),
vreinterpretq_s16_u16(vsubl_u8(d0, s0)));
const int16x4_t e0_lo = vget_low_s16(e0);
const int16x4_t e0_hi = vget_high_s16(e0);
err0 = vmlal_s16(err0, e0_lo, e0_lo);
err0 = vmlal_s16(err0, e0_hi, e0_hi);
}
for (k = j; k < width; ++k) {
const int32_t u = dat[k] << SGRPROJ_RST_BITS;
int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
const int32_t e = ROUND_POWER_OF_TWO(v, 11) + dat[k] - src[k];
err += e * e;
}
dat += dat_stride;
src += src_stride;
flt0 += flt0_stride;
flt1 += flt1_stride;
sum64 = vpadalq_u32(sum64, vreinterpretq_u32_s32(err0));
}
} else if (params->r[0] > 0 || params->r[1] > 0) {
const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
for (i = 0; i < height; ++i) {
int32x4_t err0 = zero;
for (j = 0; j <= width - 8; j += 8) {
const uint8x8_t d0 = vld1_u8(&dat[j]);
const uint8x8_t s0 = vld1_u8(&src[j]);
const uint16x8_t d0s0 = vsubl_u8(d0, s0);
const uint16x8x2_t d0w =
vzipq_u16(vmovl_u8(d0), vreinterpretq_u16_s32(zero));
const int32x4_t flt_16b_lo = vld1q_s32(&flt[j]);
const int32x4_t flt_16b_hi = vld1q_s32(&flt[j + 4]);
int32x4_t v0 = vmulq_n_s32(flt_16b_lo, xq_active);
v0 = vmlsq_n_s32(v0, vreinterpretq_s32_u16(d0w.val[0]),
xq_active * (1 << SGRPROJ_RST_BITS));
int32x4_t v1 = vmulq_n_s32(flt_16b_hi, xq_active);
v1 = vmlsq_n_s32(v1, vreinterpretq_s32_u16(d0w.val[1]),
xq_active * (1 << SGRPROJ_RST_BITS));
const int16x4_t vr0 = vqrshrn_n_s32(v0, 11);
const int16x4_t vr1 = vqrshrn_n_s32(v1, 11);
const int16x8_t e0 =
vaddq_s16(vcombine_s16(vr0, vr1), vreinterpretq_s16_u16(d0s0));
const int16x4_t e0_lo = vget_low_s16(e0);
const int16x4_t e0_hi = vget_high_s16(e0);
err0 = vmlal_s16(err0, e0_lo, e0_lo);
err0 = vmlal_s16(err0, e0_hi, e0_hi);
}
for (k = j; k < width; ++k) {
const int32_t u = dat[k] << SGRPROJ_RST_BITS;
int32_t v = xq_active * (flt[k] - u);
const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
err += e * e;
}
dat += dat_stride;
src += src_stride;
flt += flt_stride;
sum64 = vpadalq_u32(sum64, vreinterpretq_u32_s32(err0));
}
} else {
uint32x4_t err0 = vreinterpretq_u32_s32(zero);
for (i = 0; i < height; ++i) {
for (j = 0; j <= width - 16; j += 16) {
const uint8x16_t d = vld1q_u8(&dat[j]);
const uint8x16_t s = vld1q_u8(&src[j]);
const uint8x16_t diff = vabdq_u8(d, s);
const uint8x8_t diff0 = vget_low_u8(diff);
const uint8x8_t diff1 = vget_high_u8(diff);
err0 = vpadalq_u16(err0, vmull_u8(diff0, diff0));
err0 = vpadalq_u16(err0, vmull_u8(diff1, diff1));
}
for (k = j; k < width; ++k) {
const int32_t e = dat[k] - src[k];
err += e * e;
}
dat += dat_stride;
src += src_stride;
}
sum64 = vpaddlq_u32(err0);
}
#if AOM_ARCH_AARCH64
err += vaddvq_u64(sum64);
#else
err += vget_lane_u64(vadd_u64(vget_low_u64(sum64), vget_high_u64(sum64)), 0);
#endif // AOM_ARCH_AARCH64
return err;
}
static INLINE uint8_t find_average_neon(const uint8_t *src, int src_stride,
int width, int height) {
uint64_t sum = 0;
if (width >= 16) {
int h = 0;
// We can accumulate up to 257 8-bit values in a 16-bit value, given
// that each 16-bit vector has 8 elements, that means we can process up to
// int(257*8/width) rows before we need to widen to 32-bit vector
// elements.
int h_overflow = 257 * 8 / width;
int h_limit = height > h_overflow ? h_overflow : height;
uint32x4_t avg_u32 = vdupq_n_u32(0);
do {
uint16x8_t avg_u16 = vdupq_n_u16(0);
do {
int j = width;
const uint8_t *src_ptr = src;
do {
uint8x16_t s = vld1q_u8(src_ptr);
avg_u16 = vpadalq_u8(avg_u16, s);
j -= 16;
src_ptr += 16;
} while (j >= 16);
if (j >= 8) {
uint8x8_t s = vld1_u8(src_ptr);
avg_u16 = vaddw_u8(avg_u16, s);
j -= 8;
src_ptr += 8;
}
// Scalar tail case.
while (j > 0) {
sum += src[width - j];
j--;
}
src += src_stride;
} while (++h < h_limit);
avg_u32 = vpadalq_u16(avg_u32, avg_u16);
h_limit += h_overflow;
h_limit = height > h_overflow ? h_overflow : height;
} while (h < height);
return (uint8_t)((horizontal_long_add_u32x4(avg_u32) + sum) /
(width * height));
}
if (width >= 8) {
int h = 0;
// We can accumulate up to 257 8-bit values in a 16-bit value, given
// that each 16-bit vector has 4 elements, that means we can process up to
// int(257*4/width) rows before we need to widen to 32-bit vector
// elements.
int h_overflow = 257 * 4 / width;
int h_limit = height > h_overflow ? h_overflow : height;
uint32x2_t avg_u32 = vdup_n_u32(0);
do {
uint16x4_t avg_u16 = vdup_n_u16(0);
do {
int j = width;
const uint8_t *src_ptr = src;
uint8x8_t s = vld1_u8(src_ptr);
avg_u16 = vpadal_u8(avg_u16, s);
j -= 8;
src_ptr += 8;
// Scalar tail case.
while (j > 0) {
sum += src[width - j];
j--;
}
src += src_stride;
} while (++h < h_limit);
avg_u32 = vpadal_u16(avg_u32, avg_u16);
h_limit += h_overflow;
h_limit = height > h_overflow ? h_overflow : height;
} while (h < height);
return (uint8_t)((horizontal_long_add_u32x2(avg_u32) + sum) /
(width * height));
}
int i = height;
do {
int j = 0;
do {
sum += src[j];
} while (++j < width);
src += src_stride;
} while (--i != 0);
return (uint8_t)(sum / (width * height));
}
static INLINE void compute_sub_avg(const uint8_t *buf, int buf_stride, int avg,
int16_t *buf_avg, int buf_avg_stride,
int width, int height,
int downsample_factor) {
uint8x8_t avg_u8 = vdup_n_u8(avg);
if (width > 8) {
int i = 0;
do {
int j = width;
const uint8_t *buf_ptr = buf;
int16_t *buf_avg_ptr = buf_avg;
do {
uint8x8_t d = vld1_u8(buf_ptr);
vst1q_s16(buf_avg_ptr, vreinterpretq_s16_u16(vsubl_u8(d, avg_u8)));
j -= 8;
buf_ptr += 8;
buf_avg_ptr += 8;
} while (j >= 8);
while (j > 0) {
*buf_avg_ptr = (int16_t)buf[width - j] - (int16_t)avg;
buf_avg_ptr++;
j--;
}
buf += buf_stride;
buf_avg += buf_avg_stride;
i += downsample_factor;
} while (i < height);
} else {
// For width < 8, don't use Neon.
for (int i = 0; i < height; i = i + downsample_factor) {
for (int j = 0; j < width; j++) {
buf_avg[j] = (int16_t)buf[j] - (int16_t)avg;
}
buf += buf_stride;
buf_avg += buf_avg_stride;
}
}
}
static INLINE void compute_H_one_col(int16x8_t *dgd, int col, int64_t *H,
const int wiener_win,
const int wiener_win2, int32x4_t df_s32) {
for (int row0 = 0; row0 < wiener_win; row0++) {
for (int row1 = row0; row1 < wiener_win; row1++) {
int auto_cov_idx =
(col * wiener_win + row0) * wiener_win2 + (col * wiener_win) + row1;
int32x4_t auto_cov =
vmull_s16(vget_low_s16(dgd[row0]), vget_low_s16(dgd[row1]));
auto_cov = vmlal_s16(auto_cov, vget_high_s16(dgd[row0]),
vget_high_s16(dgd[row1]));
auto_cov = vshlq_s32(auto_cov, df_s32);
H[auto_cov_idx] += horizontal_long_add_s32x4(auto_cov);
}
}
}
static INLINE void compute_H_one_col_last_row(int16x8_t *dgd, int col,
int64_t *H, const int wiener_win,
const int wiener_win2,
int last_row_df) {
for (int row0 = 0; row0 < wiener_win; row0++) {
for (int row1 = row0; row1 < wiener_win; row1++) {
int auto_cov_idx =
(col * wiener_win + row0) * wiener_win2 + (col * wiener_win) + row1;
int32x4_t auto_cov =
vmull_s16(vget_low_s16(dgd[row0]), vget_low_s16(dgd[row1]));
auto_cov = vmlal_s16(auto_cov, vget_high_s16(dgd[row0]),
vget_high_s16(dgd[row1]));
auto_cov = vmulq_n_s32(auto_cov, last_row_df);
H[auto_cov_idx] += horizontal_long_add_s32x4(auto_cov);
}
}
}
// When we load 8 values of int16_t type and need less than 8 values for
// processing, the below mask is used to make the extra values zero.
const int16_t av1_neon_mask_16bit[16] = {
-1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0,
};
// This function computes two matrices: the cross-correlation between the src
// buffer and dgd buffer (M), and the auto-covariance of the dgd buffer (H).
//
// M is of size 7 * 7. It needs to be filled such that multiplying one element
// from src with each element of a row of the wiener window will fill one
// column of M. However this is not very convenient in terms of memory
// accesses, as it means we do contiguous loads of dgd but strided stores to M.
// As a result, we use an intermediate matrix M_trn which is instead filled
// such that one row of the wiener window gives one row of M_trn. Once fully
// computed, M_trn is then transposed to return M.
//
// H is of size 49 * 49. It is filled by multiplying every pair of elements of
// the wiener window together. Since it is a symmetric matrix, we only compute
// the upper triangle, and then copy it down to the lower one. Here we fill it
// by taking each different pair of columns, and multiplying all the elements of
// the first one with all the elements of the second one, with a special case
// when multiplying a column by itself.
static INLINE void compute_stats_win7_neon(int16_t *dgd_avg, int dgd_avg_stride,
int16_t *src_avg, int src_avg_stride,
int width, int v_start, int v_end,
int64_t *M, int64_t *H,
int downsample_factor,
int last_row_downsample_factor) {
const int wiener_win = 7;
const int wiener_win2 = wiener_win * wiener_win;
// The downsample factor can be either 1 or 4, so instead of multiplying the
// values by 1 or 4, we can left shift by 0 or 2 respectively, which is
// faster. (This doesn't apply to the last row where we can scale the values
// by 1, 2 or 3, so we keep the multiplication).
const int downsample_shift = downsample_factor >> 1;
const int16x8_t df_s16 = vdupq_n_s16(downsample_shift);
const int32x4_t df_s32 = vdupq_n_s32(downsample_shift);
const int16x8_t mask = vld1q_s16(&av1_neon_mask_16bit[8] - (width % 8));
// We use an intermediate matrix that will be transposed to get M.
int64_t M_trn[49];
memset(M_trn, 0, sizeof(M_trn));
int h = v_start;
do {
// Cross-correlation (M).
for (int row = 0; row < wiener_win; row++) {
int16x8_t dgd0 = vld1q_s16(dgd_avg + row * dgd_avg_stride);
int j = 0;
while (j <= width - 8) {
int16x8_t dgd1 = vld1q_s16(dgd_avg + row * dgd_avg_stride + j + 8);
// Load src and scale based on downsampling factor.
int16x8_t s = vshlq_s16(vld1q_s16(src_avg + j), df_s16);
// Compute all the elements of one row of M.
compute_M_one_row_win7(s, dgd0, dgd1, M_trn, wiener_win, row);
dgd0 = dgd1;
j += 8;
}
// Process remaining elements without Neon.
while (j < width) {
int16_t s = src_avg[j] * downsample_factor;
int16_t d0 = dgd_avg[row * dgd_avg_stride + 0 + j];
int16_t d1 = dgd_avg[row * dgd_avg_stride + 1 + j];
int16_t d2 = dgd_avg[row * dgd_avg_stride + 2 + j];
int16_t d3 = dgd_avg[row * dgd_avg_stride + 3 + j];
int16_t d4 = dgd_avg[row * dgd_avg_stride + 4 + j];
int16_t d5 = dgd_avg[row * dgd_avg_stride + 5 + j];
int16_t d6 = dgd_avg[row * dgd_avg_stride + 6 + j];
M_trn[row * wiener_win + 0] += d0 * s;
M_trn[row * wiener_win + 1] += d1 * s;
M_trn[row * wiener_win + 2] += d2 * s;
M_trn[row * wiener_win + 3] += d3 * s;
M_trn[row * wiener_win + 4] += d4 * s;
M_trn[row * wiener_win + 5] += d5 * s;
M_trn[row * wiener_win + 6] += d6 * s;
j++;
}
}
// Auto-covariance (H).
int j = 0;
while (j <= width - 8) {
for (int col0 = 0; col0 < wiener_win; col0++) {
int16x8_t dgd0[7];
dgd0[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col0);
dgd0[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col0);
dgd0[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col0);
dgd0[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col0);
dgd0[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col0);
dgd0[5] = vld1q_s16(dgd_avg + 5 * dgd_avg_stride + j + col0);
dgd0[6] = vld1q_s16(dgd_avg + 6 * dgd_avg_stride + j + col0);
// Perform computation of the first column with itself (28 elements).
// For the first column this will fill the upper triangle of the 7x7
// matrix at the top left of the H matrix. For the next columns this
// will fill the upper triangle of the other 7x7 matrices around H's
// diagonal.
compute_H_one_col(dgd0, col0, H, wiener_win, wiener_win2, df_s32);
// All computation next to the matrix diagonal has already been done.
for (int col1 = col0 + 1; col1 < wiener_win; col1++) {
// Load second column and scale based on downsampling factor.
int16x8_t dgd1[7];
dgd1[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col1);
dgd1[0] = vshlq_s16(dgd1[0], df_s16);
dgd1[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col1);
dgd1[1] = vshlq_s16(dgd1[1], df_s16);
dgd1[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col1);
dgd1[2] = vshlq_s16(dgd1[2], df_s16);
dgd1[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col1);
dgd1[3] = vshlq_s16(dgd1[3], df_s16);
dgd1[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col1);
dgd1[4] = vshlq_s16(dgd1[4], df_s16);
dgd1[5] = vld1q_s16(dgd_avg + 5 * dgd_avg_stride + j + col1);
dgd1[5] = vshlq_s16(dgd1[5], df_s16);
dgd1[6] = vld1q_s16(dgd_avg + 6 * dgd_avg_stride + j + col1);
dgd1[6] = vshlq_s16(dgd1[6], df_s16);
// Compute all elements from the combination of both columns (49
// elements).
compute_H_two_cols(dgd0, dgd1, col0, col1, H, wiener_win,
wiener_win2);
}
}
j += 8;
}
if (j < width) {
// Process remaining columns using a mask to discard excess elements.
for (int col0 = 0; col0 < wiener_win; col0++) {
// Load first column.
int16x8_t dgd0[7];
dgd0[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col0);
dgd0[0] = vandq_s16(dgd0[0], mask);
dgd0[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col0);
dgd0[1] = vandq_s16(dgd0[1], mask);
dgd0[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col0);
dgd0[2] = vandq_s16(dgd0[2], mask);
dgd0[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col0);
dgd0[3] = vandq_s16(dgd0[3], mask);
dgd0[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col0);
dgd0[4] = vandq_s16(dgd0[4], mask);
dgd0[5] = vld1q_s16(dgd_avg + 5 * dgd_avg_stride + j + col0);
dgd0[5] = vandq_s16(dgd0[5], mask);
dgd0[6] = vld1q_s16(dgd_avg + 6 * dgd_avg_stride + j + col0);
dgd0[6] = vandq_s16(dgd0[6], mask);
// Perform computation of the first column with itself (28 elements).
// For the first column this will fill the upper triangle of the 7x7
// matrix at the top left of the H matrix. For the next columns this
// will fill the upper triangle of the other 7x7 matrices around H's
// diagonal.
compute_H_one_col(dgd0, col0, H, wiener_win, wiener_win2, df_s32);
// All computation next to the matrix diagonal has already been done.
for (int col1 = col0 + 1; col1 < wiener_win; col1++) {
// Load second column and scale based on downsampling factor.
int16x8_t dgd1[7];
dgd1[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col1);
dgd1[0] = vshlq_s16(dgd1[0], df_s16);
dgd1[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col1);
dgd1[1] = vshlq_s16(dgd1[1], df_s16);
dgd1[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col1);
dgd1[2] = vshlq_s16(dgd1[2], df_s16);
dgd1[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col1);
dgd1[3] = vshlq_s16(dgd1[3], df_s16);
dgd1[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col1);
dgd1[4] = vshlq_s16(dgd1[4], df_s16);
dgd1[5] = vld1q_s16(dgd_avg + 5 * dgd_avg_stride + j + col1);
dgd1[5] = vshlq_s16(dgd1[5], df_s16);
dgd1[6] = vld1q_s16(dgd_avg + 6 * dgd_avg_stride + j + col1);
dgd1[6] = vshlq_s16(dgd1[6], df_s16);
// Compute all elements from the combination of both columns (49
// elements).
compute_H_two_cols(dgd0, dgd1, col0, col1, H, wiener_win,
wiener_win2);
}
}
}
dgd_avg += downsample_factor * dgd_avg_stride;
src_avg += src_avg_stride;
h += downsample_factor;
} while (h <= v_end - downsample_factor);
if (h < v_end) {
// The last row is scaled by a different downsample factor, so process
// separately.
// Cross-correlation (M).
for (int row = 0; row < 7; row++) {
int16x8_t dgd0 = vld1q_s16(dgd_avg + row * dgd_avg_stride);
int j = 0;
while (j <= width - 8) {
int16x8_t dgd1 = vld1q_s16(dgd_avg + row * dgd_avg_stride + j + 8);
// Load src vector and scale based on downsampling factor.
int16x8_t s =
vmulq_n_s16(vld1q_s16(src_avg + j), last_row_downsample_factor);
// Compute all the elements of one row of M.
compute_M_one_row_win7(s, dgd0, dgd1, M_trn, wiener_win, row);
dgd0 = dgd1;
j += 8;
}
// Process remaining elements without Neon.
while (j < width) {
int16_t s = src_avg[j];
int16_t d0 = dgd_avg[row * dgd_avg_stride + 0 + j];
int16_t d1 = dgd_avg[row * dgd_avg_stride + 1 + j];
int16_t d2 = dgd_avg[row * dgd_avg_stride + 2 + j];
int16_t d3 = dgd_avg[row * dgd_avg_stride + 3 + j];
int16_t d4 = dgd_avg[row * dgd_avg_stride + 4 + j];
int16_t d5 = dgd_avg[row * dgd_avg_stride + 5 + j];
int16_t d6 = dgd_avg[row * dgd_avg_stride + 6 + j];
M_trn[row * wiener_win + 0] += d0 * s * last_row_downsample_factor;
M_trn[row * wiener_win + 1] += d1 * s * last_row_downsample_factor;
M_trn[row * wiener_win + 2] += d2 * s * last_row_downsample_factor;
M_trn[row * wiener_win + 3] += d3 * s * last_row_downsample_factor;
M_trn[row * wiener_win + 4] += d4 * s * last_row_downsample_factor;
M_trn[row * wiener_win + 5] += d5 * s * last_row_downsample_factor;
M_trn[row * wiener_win + 6] += d6 * s * last_row_downsample_factor;
j++;
}
}
// Auto-covariance (H).
int j = 0;
while (j <= width - 8) {
int col0 = 0;
do {
// Load first column.
int16x8_t dgd0[7];
dgd0[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col0);
dgd0[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col0);
dgd0[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col0);
dgd0[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col0);
dgd0[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col0);
dgd0[5] = vld1q_s16(dgd_avg + 5 * dgd_avg_stride + j + col0);
dgd0[6] = vld1q_s16(dgd_avg + 6 * dgd_avg_stride + j + col0);
// Perform computation of the first column with itself (28 elements).
// For the first column this will fill the upper triangle of the 7x7
// matrix at the top left of the H matrix. For the next columns this
// will fill the upper triangle of the other 7x7 matrices around H's
// diagonal.
compute_H_one_col_last_row(dgd0, col0, H, wiener_win, wiener_win2,
last_row_downsample_factor);
// All computation next to the matrix diagonal has already been done.
for (int col1 = col0 + 1; col1 < wiener_win; col1++) {
// Load second column and scale based on downsampling factor.
int16x8_t dgd1[7];
dgd1[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col1);
dgd1[0] = vmulq_n_s16(dgd1[0], last_row_downsample_factor);
dgd1[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col1);
dgd1[1] = vmulq_n_s16(dgd1[1], last_row_downsample_factor);
dgd1[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col1);
dgd1[2] = vmulq_n_s16(dgd1[2], last_row_downsample_factor);
dgd1[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col1);
dgd1[3] = vmulq_n_s16(dgd1[3], last_row_downsample_factor);
dgd1[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col1);
dgd1[4] = vmulq_n_s16(dgd1[4], last_row_downsample_factor);
dgd1[5] = vld1q_s16(dgd_avg + 5 * dgd_avg_stride + j + col1);
dgd1[5] = vmulq_n_s16(dgd1[5], last_row_downsample_factor);
dgd1[6] = vld1q_s16(dgd_avg + 6 * dgd_avg_stride + j + col1);
dgd1[6] = vmulq_n_s16(dgd1[6], last_row_downsample_factor);
// Compute all elements from the combination of both columns (49
// elements).
compute_H_two_cols(dgd0, dgd1, col0, col1, H, wiener_win,
wiener_win2);
}
} while (++col0 < wiener_win);
j += 8;
}
// Process remaining columns using a mask to discard excess elements.
if (j < width) {
int col0 = 0;
do {
// Load first column.
int16x8_t dgd0[7];
dgd0[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col0);
dgd0[0] = vandq_s16(dgd0[0], mask);
dgd0[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col0);
dgd0[1] = vandq_s16(dgd0[1], mask);
dgd0[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col0);
dgd0[2] = vandq_s16(dgd0[2], mask);
dgd0[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col0);
dgd0[3] = vandq_s16(dgd0[3], mask);
dgd0[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col0);
dgd0[4] = vandq_s16(dgd0[4], mask);
dgd0[5] = vld1q_s16(dgd_avg + 5 * dgd_avg_stride + j + col0);
dgd0[5] = vandq_s16(dgd0[5], mask);
dgd0[6] = vld1q_s16(dgd_avg + 6 * dgd_avg_stride + j + col0);
dgd0[6] = vandq_s16(dgd0[6], mask);
// Perform computation of the first column with itself (15 elements).
// For the first column this will fill the upper triangle of the 7x7
// matrix at the top left of the H matrix. For the next columns this
// will fill the upper triangle of the other 7x7 matrices around H's
// diagonal.
compute_H_one_col_last_row(dgd0, col0, H, wiener_win, wiener_win2,
last_row_downsample_factor);
// All computation next to the matrix diagonal has already been done.
for (int col1 = col0 + 1; col1 < wiener_win; col1++) {
// Load second column and scale based on downsampling factor.
int16x8_t dgd1[7];
dgd1[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col1);
dgd1[0] = vmulq_n_s16(dgd1[0], last_row_downsample_factor);
dgd1[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col1);
dgd1[1] = vmulq_n_s16(dgd1[1], last_row_downsample_factor);
dgd1[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col1);
dgd1[2] = vmulq_n_s16(dgd1[2], last_row_downsample_factor);
dgd1[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col1);
dgd1[3] = vmulq_n_s16(dgd1[3], last_row_downsample_factor);
dgd1[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col1);
dgd1[4] = vmulq_n_s16(dgd1[4], last_row_downsample_factor);
dgd1[5] = vld1q_s16(dgd_avg + 5 * dgd_avg_stride + j + col1);
dgd1[5] = vmulq_n_s16(dgd1[5], last_row_downsample_factor);
dgd1[6] = vld1q_s16(dgd_avg + 6 * dgd_avg_stride + j + col1);
dgd1[6] = vmulq_n_s16(dgd1[6], last_row_downsample_factor);
// Compute all elements from the combination of both columns (49
// elements).
compute_H_two_cols(dgd0, dgd1, col0, col1, H, wiener_win,
wiener_win2);
}
} while (++col0 < wiener_win);
}
}
// Transpose M_trn.
transpose_M_win7(M, M_trn, 7);
// Copy upper triangle of H in the lower one.
copy_upper_triangle(H, wiener_win2);
}
// This function computes two matrices: the cross-correlation between the src
// buffer and dgd buffer (M), and the auto-covariance of the dgd buffer (H).
//
// M is of size 5 * 5. It needs to be filled such that multiplying one element
// from src with each element of a row of the wiener window will fill one
// column of M. However this is not very convenient in terms of memory
// accesses, as it means we do contiguous loads of dgd but strided stores to M.
// As a result, we use an intermediate matrix M_trn which is instead filled
// such that one row of the wiener window gives one row of M_trn. Once fully
// computed, M_trn is then transposed to return M.
//
// H is of size 25 * 25. It is filled by multiplying every pair of elements of
// the wiener window together. Since it is a symmetric matrix, we only compute
// the upper triangle, and then copy it down to the lower one. Here we fill it
// by taking each different pair of columns, and multiplying all the elements of
// the first one with all the elements of the second one, with a special case
// when multiplying a column by itself.
static INLINE void compute_stats_win5_neon(int16_t *dgd_avg, int dgd_avg_stride,
int16_t *src_avg, int src_avg_stride,
int width, int v_start, int v_end,
int64_t *M, int64_t *H,
int downsample_factor,
int last_row_downsample_factor) {
const int wiener_win = 5;
const int wiener_win2 = wiener_win * wiener_win;
// The downsample factor can be either 1 or 4, so instead of multiplying the
// values by 1 or 4, we can left shift by 0 or 2 respectively, which is
// faster. (This doesn't apply to the last row where we can scale the values
// by 1, 2 or 3, so we keep the multiplication).
const int downsample_shift = downsample_factor >> 1;
const int16x8_t df_s16 = vdupq_n_s16(downsample_shift);
const int32x4_t df_s32 = vdupq_n_s32(downsample_shift);
const int16x8_t mask = vld1q_s16(&av1_neon_mask_16bit[8] - (width % 8));
// We use an intermediate matrix that will be transposed to get M.
int64_t M_trn[25];
memset(M_trn, 0, sizeof(M_trn));
int h = v_start;
do {
// Cross-correlation (M).
for (int row = 0; row < wiener_win; row++) {
int16x8_t dgd0 = vld1q_s16(dgd_avg + row * dgd_avg_stride);
int j = 0;
while (j <= width - 8) {
int16x8_t dgd1 = vld1q_s16(dgd_avg + row * dgd_avg_stride + j + 8);
// Load src vector and scale based on downsampling factor.
int16x8_t s = vshlq_s16(vld1q_s16(src_avg + j), df_s16);
// Compute all the elements of one row of M.
compute_M_one_row_win5(s, dgd0, dgd1, M_trn, wiener_win, row);
dgd0 = dgd1;
j += 8;
}
// Process remaining elements without Neon.
while (j < width) {
int16_t s = src_avg[j];
int16_t d0 = dgd_avg[row * dgd_avg_stride + 0 + j];
int16_t d1 = dgd_avg[row * dgd_avg_stride + 1 + j];
int16_t d2 = dgd_avg[row * dgd_avg_stride + 2 + j];
int16_t d3 = dgd_avg[row * dgd_avg_stride + 3 + j];
int16_t d4 = dgd_avg[row * dgd_avg_stride + 4 + j];
M_trn[row * wiener_win + 0] += d0 * s * downsample_factor;
M_trn[row * wiener_win + 1] += d1 * s * downsample_factor;
M_trn[row * wiener_win + 2] += d2 * s * downsample_factor;
M_trn[row * wiener_win + 3] += d3 * s * downsample_factor;
M_trn[row * wiener_win + 4] += d4 * s * downsample_factor;
j++;
}
}
// Auto-covariance (H).
int j = 0;
while (j <= width - 8) {
for (int col0 = 0; col0 < wiener_win; col0++) {
// Load first column.
int16x8_t dgd0[5];
dgd0[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col0);
dgd0[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col0);
dgd0[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col0);
dgd0[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col0);
dgd0[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col0);
// Perform computation of the first column with itself (15 elements).
// For the first column this will fill the upper triangle of the 5x5
// matrix at the top left of the H matrix. For the next columns this
// will fill the upper triangle of the other 5x5 matrices around H's
// diagonal.
compute_H_one_col(dgd0, col0, H, wiener_win, wiener_win2, df_s32);
// All computation next to the matrix diagonal has already been done.
for (int col1 = col0 + 1; col1 < wiener_win; col1++) {
// Load second column and scale based on downsampling factor.
int16x8_t dgd1[5];
dgd1[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col1);
dgd1[0] = vshlq_s16(dgd1[0], df_s16);
dgd1[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col1);
dgd1[1] = vshlq_s16(dgd1[1], df_s16);
dgd1[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col1);
dgd1[2] = vshlq_s16(dgd1[2], df_s16);
dgd1[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col1);
dgd1[3] = vshlq_s16(dgd1[3], df_s16);
dgd1[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col1);
dgd1[4] = vshlq_s16(dgd1[4], df_s16);
// Compute all elements from the combination of both columns (25
// elements).
compute_H_two_cols(dgd0, dgd1, col0, col1, H, wiener_win,
wiener_win2);
}
}
j += 8;
}
// Process remaining columns using a mask to discard excess elements.
if (j < width) {
for (int col0 = 0; col0 < wiener_win; col0++) {
// Load first column.
int16x8_t dgd0[5];
dgd0[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col0);
dgd0[0] = vandq_s16(dgd0[0], mask);
dgd0[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col0);
dgd0[1] = vandq_s16(dgd0[1], mask);
dgd0[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col0);
dgd0[2] = vandq_s16(dgd0[2], mask);
dgd0[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col0);
dgd0[3] = vandq_s16(dgd0[3], mask);
dgd0[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col0);
dgd0[4] = vandq_s16(dgd0[4], mask);
// Perform computation of the first column with itself (15 elements).
// For the first column this will fill the upper triangle of the 5x5
// matrix at the top left of the H matrix. For the next columns this
// will fill the upper triangle of the other 5x5 matrices around H's
// diagonal.
compute_H_one_col(dgd0, col0, H, wiener_win, wiener_win2, df_s32);
// All computation next to the matrix diagonal has already been done.
for (int col1 = col0 + 1; col1 < wiener_win; col1++) {
// Load second column and scale based on downsampling factor.
int16x8_t dgd1[5];
dgd1[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col1);
dgd1[0] = vshlq_s16(dgd1[0], df_s16);
dgd1[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col1);
dgd1[1] = vshlq_s16(dgd1[1], df_s16);
dgd1[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col1);
dgd1[2] = vshlq_s16(dgd1[2], df_s16);
dgd1[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col1);
dgd1[3] = vshlq_s16(dgd1[3], df_s16);
dgd1[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col1);
dgd1[4] = vshlq_s16(dgd1[4], df_s16);
// Compute all elements from the combination of both columns (25
// elements).
compute_H_two_cols(dgd0, dgd1, col0, col1, H, wiener_win,
wiener_win2);
}
}
}
dgd_avg += downsample_factor * dgd_avg_stride;
src_avg += src_avg_stride;
h += downsample_factor;
} while (h <= v_end - downsample_factor);
if (h < v_end) {
// The last row is scaled by a different downsample factor, so process
// separately.
// Cross-correlation (M).
for (int row = 0; row < wiener_win; row++) {
int16x8_t dgd0 = vld1q_s16(dgd_avg + row * dgd_avg_stride);
int j = 0;
while (j <= width - 8) {
int16x8_t dgd1 = vld1q_s16(dgd_avg + row * dgd_avg_stride + j + 8);
// Load src vector and scale based on downsampling factor.
int16x8_t s =
vmulq_n_s16(vld1q_s16(src_avg + j), last_row_downsample_factor);
// Compute all the elements of one row of M.
compute_M_one_row_win5(s, dgd0, dgd1, M_trn, wiener_win, row);
dgd0 = dgd1;
j += 8;
}
// Process remaining elements without Neon.
while (j < width) {
int16_t s = src_avg[j];
int16_t d0 = dgd_avg[row * dgd_avg_stride + 0 + j];
int16_t d1 = dgd_avg[row * dgd_avg_stride + 1 + j];
int16_t d2 = dgd_avg[row * dgd_avg_stride + 2 + j];
int16_t d3 = dgd_avg[row * dgd_avg_stride + 3 + j];
int16_t d4 = dgd_avg[row * dgd_avg_stride + 4 + j];
M_trn[row * wiener_win + 0] += d0 * s * last_row_downsample_factor;
M_trn[row * wiener_win + 1] += d1 * s * last_row_downsample_factor;
M_trn[row * wiener_win + 2] += d2 * s * last_row_downsample_factor;
M_trn[row * wiener_win + 3] += d3 * s * last_row_downsample_factor;
M_trn[row * wiener_win + 4] += d4 * s * last_row_downsample_factor;
j++;
}
}
// Auto-covariance (H).
int j = 0;
while (j <= width - 8) {
for (int col0 = 0; col0 < wiener_win; col0++) {
// Load first column.
int16x8_t dgd0[5];
dgd0[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col0);
dgd0[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col0);
dgd0[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col0);
dgd0[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col0);
dgd0[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col0);
// Perform computation of the first column with itself (15 elements).
// For the first column this will fill the upper triangle of the 5x5
// matrix at the top left of the H matrix. For the next columns this
// will fill the upper triangle of the other 5x5 matrices around H's
// diagonal.
compute_H_one_col_last_row(dgd0, col0, H, wiener_win, wiener_win2,
last_row_downsample_factor);
// All computation next to the matrix diagonal has already been done.
for (int col1 = col0 + 1; col1 < wiener_win; col1++) {
// Load second column and scale based on downsampling factor.
int16x8_t dgd1[5];
dgd1[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col1);
dgd1[0] = vmulq_n_s16(dgd1[0], last_row_downsample_factor);
dgd1[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col1);
dgd1[1] = vmulq_n_s16(dgd1[1], last_row_downsample_factor);
dgd1[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col1);
dgd1[2] = vmulq_n_s16(dgd1[2], last_row_downsample_factor);
dgd1[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col1);
dgd1[3] = vmulq_n_s16(dgd1[3], last_row_downsample_factor);
dgd1[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col1);
dgd1[4] = vmulq_n_s16(dgd1[4], last_row_downsample_factor);
// Compute all elements from the combination of both columns (25
// elements).
compute_H_two_cols(dgd0, dgd1, col0, col1, H, wiener_win,
wiener_win2);
}
}
j += 8;
}
// Process remaining columns using a mask to discard excess elements.
if (j < width) {
for (int col0 = 0; col0 < wiener_win; col0++) {
// Load first column.
int16x8_t dgd0[5];
dgd0[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col0);
dgd0[0] = vandq_s16(dgd0[0], mask);
dgd0[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col0);
dgd0[1] = vandq_s16(dgd0[1], mask);
dgd0[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col0);
dgd0[2] = vandq_s16(dgd0[2], mask);
dgd0[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col0);
dgd0[3] = vandq_s16(dgd0[3], mask);
dgd0[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col0);
dgd0[4] = vandq_s16(dgd0[4], mask);
// Perform computation of the first column with itself (15 elements).
// For the first column this will fill the upper triangle of the 5x5
// matrix at the top left of the H matrix. For the next columns this
// will fill the upper triangle of the other 5x5 matrices around H's
// diagonal.
compute_H_one_col_last_row(dgd0, col0, H, wiener_win, wiener_win2,
last_row_downsample_factor);
// All computation next to the matrix diagonal has already been done.
for (int col1 = col0 + 1; col1 < wiener_win; col1++) {
// Load second column and scale based on downsampling factor.
int16x8_t dgd1[5];
dgd1[0] = vld1q_s16(dgd_avg + 0 * dgd_avg_stride + j + col1);
dgd1[0] = vmulq_n_s16(dgd1[0], last_row_downsample_factor);
dgd1[1] = vld1q_s16(dgd_avg + 1 * dgd_avg_stride + j + col1);
dgd1[1] = vmulq_n_s16(dgd1[1], last_row_downsample_factor);
dgd1[2] = vld1q_s16(dgd_avg + 2 * dgd_avg_stride + j + col1);
dgd1[2] = vmulq_n_s16(dgd1[2], last_row_downsample_factor);
dgd1[3] = vld1q_s16(dgd_avg + 3 * dgd_avg_stride + j + col1);
dgd1[3] = vmulq_n_s16(dgd1[3], last_row_downsample_factor);
dgd1[4] = vld1q_s16(dgd_avg + 4 * dgd_avg_stride + j + col1);
dgd1[4] = vmulq_n_s16(dgd1[4], last_row_downsample_factor);
// Compute all elements from the combination of both columns (25
// elements).
compute_H_two_cols(dgd0, dgd1, col0, col1, H, wiener_win,
wiener_win2);
}
}
}
}
// Transpose M_trn.
transpose_M_win5(M, M_trn, 5);
// Copy upper triangle of H in the lower one.
copy_upper_triangle(H, wiener_win2);
}
void av1_compute_stats_neon(int wiener_win, const uint8_t *dgd,
const uint8_t *src, int16_t *dgd_avg,
int16_t *src_avg, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
int src_stride, int64_t *M, int64_t *H,
int use_downsampled_wiener_stats) {
assert(wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA);
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = wiener_win >> 1;
const int32_t width = h_end - h_start;
const int32_t height = v_end - v_start;
const uint8_t *dgd_start = &dgd[v_start * dgd_stride + h_start];
memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);
uint8_t avg = find_average_neon(dgd_start, dgd_stride, width, height);
assert(WIENER_STATS_DOWNSAMPLE_FACTOR == 4);
int downsample_factor =
use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
int dgd_avg_stride = width + 2 * wiener_halfwin;
int src_avg_stride = width;
// Compute (dgd - avg) and store it in dgd_avg.
// The wiener window will slide along the dgd frame, centered on each pixel.
// For the top left pixel and all the pixels on the side of the frame this
// means half of the window will be outside of the frame. As such the actual
// buffer that we need to subtract the avg from will be 2 * wiener_halfwin
// wider and 2 * wiener_halfwin higher than the original dgd buffer.
const int vert_offset = v_start - wiener_halfwin;
const int horiz_offset = h_start - wiener_halfwin;
const uint8_t *dgd_win = dgd + horiz_offset + vert_offset * dgd_stride;
compute_sub_avg(dgd_win, dgd_stride, avg, dgd_avg, dgd_avg_stride,
width + 2 * wiener_halfwin, height + 2 * wiener_halfwin, 1);
// Compute (src - avg), downsample if necessary and store in src-avg.
const uint8_t *src_start = src + h_start + v_start * src_stride;
compute_sub_avg(src_start, src_stride * downsample_factor, avg, src_avg,
src_avg_stride, width, height, downsample_factor);
// Since the height is not necessarily a multiple of the downsample factor,
// the last line of src will be scaled according to how many rows remain.
int last_row_downsample_factor =
use_downsampled_wiener_stats ? height % downsample_factor : 1;
if (wiener_win == WIENER_WIN) {
compute_stats_win7_neon(dgd_avg, dgd_avg_stride, src_avg, src_avg_stride,
width, v_start, v_end, M, H, downsample_factor,
last_row_downsample_factor);
} else {
compute_stats_win5_neon(dgd_avg, dgd_avg_stride, src_avg, src_avg_stride,
width, v_start, v_end, M, H, downsample_factor,
last_row_downsample_factor);
}
}
static INLINE void calc_proj_params_r0_r1_neon(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
assert(width % 8 == 0);
const int size = width * height;
int64x2_t h00_lo = vdupq_n_s64(0);
int64x2_t h00_hi = vdupq_n_s64(0);
int64x2_t h11_lo = vdupq_n_s64(0);
int64x2_t h11_hi = vdupq_n_s64(0);
int64x2_t h01_lo = vdupq_n_s64(0);
int64x2_t h01_hi = vdupq_n_s64(0);
int64x2_t c0_lo = vdupq_n_s64(0);
int64x2_t c0_hi = vdupq_n_s64(0);
int64x2_t c1_lo = vdupq_n_s64(0);
int64x2_t c1_hi = vdupq_n_s64(0);
do {
const uint8_t *src_ptr = src8;
const uint8_t *dat_ptr = dat8;
int32_t *flt0_ptr = flt0;
int32_t *flt1_ptr = flt1;
int w = width;
do {
uint8x8_t s = vld1_u8(src_ptr);
uint8x8_t d = vld1_u8(dat_ptr);
int32x4_t f0_lo = vld1q_s32(flt0_ptr);
int32x4_t f0_hi = vld1q_s32(flt0_ptr + 4);
int32x4_t f1_lo = vld1q_s32(flt1_ptr);
int32x4_t f1_hi = vld1q_s32(flt1_ptr + 4);
int16x8_t u = vreinterpretq_s16_u16(vshll_n_u8(d, SGRPROJ_RST_BITS));
int16x8_t s_s16 = vreinterpretq_s16_u16(vshll_n_u8(s, SGRPROJ_RST_BITS));
int32x4_t s_lo = vsubl_s16(vget_low_s16(s_s16), vget_low_s16(u));
int32x4_t s_hi = vsubl_s16(vget_high_s16(s_s16), vget_high_s16(u));
f0_lo = vsubw_s16(f0_lo, vget_low_s16(u));
f0_hi = vsubw_s16(f0_hi, vget_high_s16(u));
f1_lo = vsubw_s16(f1_lo, vget_low_s16(u));
f1_hi = vsubw_s16(f1_hi, vget_high_s16(u));
h00_lo = vmlal_s32(h00_lo, vget_low_s32(f0_lo), vget_low_s32(f0_lo));
h00_lo = vmlal_s32(h00_lo, vget_high_s32(f0_lo), vget_high_s32(f0_lo));
h00_hi = vmlal_s32(h00_hi, vget_low_s32(f0_hi), vget_low_s32(f0_hi));
h00_hi = vmlal_s32(h00_hi, vget_high_s32(f0_hi), vget_high_s32(f0_hi));
h11_lo = vmlal_s32(h11_lo, vget_low_s32(f1_lo), vget_low_s32(f1_lo));
h11_lo = vmlal_s32(h11_lo, vget_high_s32(f1_lo), vget_high_s32(f1_lo));
h11_hi = vmlal_s32(h11_hi, vget_low_s32(f1_hi), vget_low_s32(f1_hi));
h11_hi = vmlal_s32(h11_hi, vget_high_s32(f1_hi), vget_high_s32(f1_hi));
h01_lo = vmlal_s32(h01_lo, vget_low_s32(f0_lo), vget_low_s32(f1_lo));
h01_lo = vmlal_s32(h01_lo, vget_high_s32(f0_lo), vget_high_s32(f1_lo));
h01_hi = vmlal_s32(h01_hi, vget_low_s32(f0_hi), vget_low_s32(f1_hi));
h01_hi = vmlal_s32(h01_hi, vget_high_s32(f0_hi), vget_high_s32(f1_hi));
c0_lo = vmlal_s32(c0_lo, vget_low_s32(f0_lo), vget_low_s32(s_lo));
c0_lo = vmlal_s32(c0_lo, vget_high_s32(f0_lo), vget_high_s32(s_lo));
c0_hi = vmlal_s32(c0_hi, vget_low_s32(f0_hi), vget_low_s32(s_hi));
c0_hi = vmlal_s32(c0_hi, vget_high_s32(f0_hi), vget_high_s32(s_hi));
c1_lo = vmlal_s32(c1_lo, vget_low_s32(f1_lo), vget_low_s32(s_lo));
c1_lo = vmlal_s32(c1_lo, vget_high_s32(f1_lo), vget_high_s32(s_lo));
c1_hi = vmlal_s32(c1_hi, vget_low_s32(f1_hi), vget_low_s32(s_hi));
c1_hi = vmlal_s32(c1_hi, vget_high_s32(f1_hi), vget_high_s32(s_hi));
src_ptr += 8;
dat_ptr += 8;
flt0_ptr += 8;
flt1_ptr += 8;
w -= 8;
} while (w != 0);
src8 += src_stride;
dat8 += dat_stride;
flt0 += flt0_stride;
flt1 += flt1_stride;
} while (--height != 0);
H[0][0] = horizontal_add_s64x2(vaddq_s64(h00_lo, h00_hi)) / size;
H[0][1] = horizontal_add_s64x2(vaddq_s64(h01_lo, h01_hi)) / size;
H[1][1] = horizontal_add_s64x2(vaddq_s64(h11_lo, h11_hi)) / size;
H[1][0] = H[0][1];
C[0] = horizontal_add_s64x2(vaddq_s64(c0_lo, c0_hi)) / size;
C[1] = horizontal_add_s64x2(vaddq_s64(c1_lo, c1_hi)) / size;
}
static INLINE void calc_proj_params_r0_neon(const uint8_t *src8, int width,
int height, int src_stride,
const uint8_t *dat8, int dat_stride,
int32_t *flt0, int flt0_stride,
int64_t H[2][2], int64_t C[2]) {
assert(width % 8 == 0);
const int size = width * height;
int64x2_t h00_lo = vdupq_n_s64(0);
int64x2_t h00_hi = vdupq_n_s64(0);
int64x2_t c0_lo = vdupq_n_s64(0);
int64x2_t c0_hi = vdupq_n_s64(0);
do {
const uint8_t *src_ptr = src8;
const uint8_t *dat_ptr = dat8;
int32_t *flt0_ptr = flt0;
int w = width;
do {
uint8x8_t s = vld1_u8(src_ptr);
uint8x8_t d = vld1_u8(dat_ptr);
int32x4_t f0_lo = vld1q_s32(flt0_ptr);
int32x4_t f0_hi = vld1q_s32(flt0_ptr + 4);
int16x8_t u = vreinterpretq_s16_u16(vshll_n_u8(d, SGRPROJ_RST_BITS));
int16x8_t s_s16 = vreinterpretq_s16_u16(vshll_n_u8(s, SGRPROJ_RST_BITS));
int32x4_t s_lo = vsubl_s16(vget_low_s16(s_s16), vget_low_s16(u));
int32x4_t s_hi = vsubl_s16(vget_high_s16(s_s16), vget_high_s16(u));
f0_lo = vsubw_s16(f0_lo, vget_low_s16(u));
f0_hi = vsubw_s16(f0_hi, vget_high_s16(u));
h00_lo = vmlal_s32(h00_lo, vget_low_s32(f0_lo), vget_low_s32(f0_lo));
h00_lo = vmlal_s32(h00_lo, vget_high_s32(f0_lo), vget_high_s32(f0_lo));
h00_hi = vmlal_s32(h00_hi, vget_low_s32(f0_hi), vget_low_s32(f0_hi));
h00_hi = vmlal_s32(h00_hi, vget_high_s32(f0_hi), vget_high_s32(f0_hi));
c0_lo = vmlal_s32(c0_lo, vget_low_s32(f0_lo), vget_low_s32(s_lo));
c0_lo = vmlal_s32(c0_lo, vget_high_s32(f0_lo), vget_high_s32(s_lo));
c0_hi = vmlal_s32(c0_hi, vget_low_s32(f0_hi), vget_low_s32(s_hi));
c0_hi = vmlal_s32(c0_hi, vget_high_s32(f0_hi), vget_high_s32(s_hi));
src_ptr += 8;
dat_ptr += 8;
flt0_ptr += 8;
w -= 8;
} while (w != 0);
src8 += src_stride;
dat8 += dat_stride;
flt0 += flt0_stride;
} while (--height != 0);
H[0][0] = horizontal_add_s64x2(vaddq_s64(h00_lo, h00_hi)) / size;
C[0] = horizontal_add_s64x2(vaddq_s64(c0_lo, c0_hi)) / size;
}
static INLINE void calc_proj_params_r1_neon(const uint8_t *src8, int width,
int height, int src_stride,
const uint8_t *dat8, int dat_stride,
int32_t *flt1, int flt1_stride,
int64_t H[2][2], int64_t C[2]) {
assert(width % 8 == 0);
const int size = width * height;
int64x2_t h11_lo = vdupq_n_s64(0);
int64x2_t h11_hi = vdupq_n_s64(0);
int64x2_t c1_lo = vdupq_n_s64(0);
int64x2_t c1_hi = vdupq_n_s64(0);
do {
const uint8_t *src_ptr = src8;
const uint8_t *dat_ptr = dat8;
int32_t *flt1_ptr = flt1;
int w = width;
do {
uint8x8_t s = vld1_u8(src_ptr);
uint8x8_t d = vld1_u8(dat_ptr);
int32x4_t f1_lo = vld1q_s32(flt1_ptr);
int32x4_t f1_hi = vld1q_s32(flt1_ptr + 4);
int16x8_t u = vreinterpretq_s16_u16(vshll_n_u8(d, SGRPROJ_RST_BITS));
int16x8_t s_s16 = vreinterpretq_s16_u16(vshll_n_u8(s, SGRPROJ_RST_BITS));
int32x4_t s_lo = vsubl_s16(vget_low_s16(s_s16), vget_low_s16(u));
int32x4_t s_hi = vsubl_s16(vget_high_s16(s_s16), vget_high_s16(u));
f1_lo = vsubw_s16(f1_lo, vget_low_s16(u));
f1_hi = vsubw_s16(f1_hi, vget_high_s16(u));
h11_lo = vmlal_s32(h11_lo, vget_low_s32(f1_lo), vget_low_s32(f1_lo));
h11_lo = vmlal_s32(h11_lo, vget_high_s32(f1_lo), vget_high_s32(f1_lo));
h11_hi = vmlal_s32(h11_hi, vget_low_s32(f1_hi), vget_low_s32(f1_hi));
h11_hi = vmlal_s32(h11_hi, vget_high_s32(f1_hi), vget_high_s32(f1_hi));
c1_lo = vmlal_s32(c1_lo, vget_low_s32(f1_lo), vget_low_s32(s_lo));
c1_lo = vmlal_s32(c1_lo, vget_high_s32(f1_lo), vget_high_s32(s_lo));
c1_hi = vmlal_s32(c1_hi, vget_low_s32(f1_hi), vget_low_s32(s_hi));
c1_hi = vmlal_s32(c1_hi, vget_high_s32(f1_hi), vget_high_s32(s_hi));
src_ptr += 8;
dat_ptr += 8;
flt1_ptr += 8;
w -= 8;
} while (w != 0);
src8 += src_stride;
dat8 += dat_stride;
flt1 += flt1_stride;
} while (--height != 0);
H[1][1] = horizontal_add_s64x2(vaddq_s64(h11_lo, h11_hi)) / size;
C[1] = horizontal_add_s64x2(vaddq_s64(c1_lo, c1_hi)) / size;
}
// The function calls 3 subfunctions for the following cases :
// 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements
// of C and H need to be computed.
// 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are
// non-zero and need to be computed.
// 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are
// non-zero and need to be computed.
void av1_calc_proj_params_neon(const uint8_t *src8, int width, int height,
int src_stride, const uint8_t *dat8,
int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int64_t H[2][2],
int64_t C[2], const sgr_params_type *params) {
if ((params->r[0] > 0) && (params->r[1] > 0)) {
calc_proj_params_r0_r1_neon(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, H, C);
} else if (params->r[0] > 0) {
calc_proj_params_r0_neon(src8, width, height, src_stride, dat8, dat_stride,
flt0, flt0_stride, H, C);
} else if (params->r[1] > 0) {
calc_proj_params_r1_neon(src8, width, height, src_stride, dat8, dat_stride,
flt1, flt1_stride, H, C);
}
}