| /* |
| * Copyright (c) 2022, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AOM_AV1_ENCODER_NONRD_OPT_H_ |
| #define AOM_AV1_ENCODER_NONRD_OPT_H_ |
| |
| #include "av1/encoder/rdopt_utils.h" |
| #include "av1/encoder/rdopt.h" |
| |
| #define RTC_INTER_MODES (4) |
| #define RTC_INTRA_MODES (4) |
| #define RTC_MODES (AOMMAX(RTC_INTER_MODES, RTC_INTRA_MODES)) |
| #define CALC_BIASED_RDCOST(rdcost) (7 * (rdcost) >> 3) |
| #define NUM_COMP_INTER_MODES_RT (6) |
| #define NUM_INTER_MODES 12 |
| #define CAP_TX_SIZE_FOR_BSIZE_GT32(tx_mode_search_type, bsize) \ |
| (((tx_mode_search_type) != ONLY_4X4 && (bsize) > BLOCK_32X32) ? true : false) |
| #define TX_SIZE_FOR_BSIZE_GT32 (TX_16X16) |
| #define FILTER_SEARCH_SIZE 2 |
| #if !CONFIG_REALTIME_ONLY |
| #define MOTION_MODE_SEARCH_SIZE 2 |
| #endif |
| |
| extern int g_pick_inter_mode_cnt; |
| /*!\cond */ |
| typedef struct { |
| uint8_t *data; |
| int stride; |
| int in_use; |
| } PRED_BUFFER; |
| |
| typedef struct { |
| PRED_BUFFER *best_pred; |
| PREDICTION_MODE best_mode; |
| TX_SIZE best_tx_size; |
| TX_TYPE tx_type; |
| MV_REFERENCE_FRAME best_ref_frame; |
| MV_REFERENCE_FRAME best_second_ref_frame; |
| uint8_t best_mode_skip_txfm; |
| uint8_t best_mode_initial_skip_flag; |
| int_interpfilters best_pred_filter; |
| MOTION_MODE best_motion_mode; |
| WarpedMotionParams wm_params; |
| int num_proj_ref; |
| uint8_t blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| PALETTE_MODE_INFO pmi; |
| int64_t best_sse; |
| } BEST_PICKMODE; |
| |
| typedef struct { |
| MV_REFERENCE_FRAME ref_frame; |
| PREDICTION_MODE pred_mode; |
| } REF_MODE; |
| |
| typedef struct { |
| MV_REFERENCE_FRAME ref_frame[2]; |
| PREDICTION_MODE pred_mode; |
| } COMP_REF_MODE; |
| |
| struct estimate_block_intra_args { |
| AV1_COMP *cpi; |
| MACROBLOCK *x; |
| PREDICTION_MODE mode; |
| int skippable; |
| RD_STATS *rdc; |
| unsigned int best_sad; |
| bool prune_mode_based_on_sad; |
| }; |
| /*!\endcond */ |
| |
| /*!\brief Structure to store parameters and statistics used in non-rd inter mode |
| * evaluation. |
| */ |
| typedef struct { |
| //! Structure to hold best inter mode data |
| BEST_PICKMODE best_pickmode; |
| //! Structure to RD cost of current mode |
| RD_STATS this_rdc; |
| //! Pointer to the RD Cost for the best mode found so far |
| RD_STATS best_rdc; |
| //! Distortion of chroma planes for all modes and reference frames |
| int64_t uv_dist[RTC_INTER_MODES][REF_FRAMES]; |
| //! Buffer to hold predicted block for all reference frames and planes |
| struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]; |
| //! Array to hold variance of all modes and reference frames |
| unsigned int vars[RTC_INTER_MODES][REF_FRAMES]; |
| //! Array to hold ref cost of single reference mode for all ref frames |
| unsigned int ref_costs_single[REF_FRAMES]; |
| //! Array to hold motion vector for all modes and reference frames |
| int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES]; |
| //! Array to hold best mv for all modes and reference frames |
| int_mv frame_mv_best[MB_MODE_COUNT][REF_FRAMES]; |
| //! Array to hold inter mode cost of single ref mode for all ref frames |
| int single_inter_mode_costs[RTC_INTER_MODES][REF_FRAMES]; |
| //! Array to hold use reference frame mask for each reference frame |
| int use_ref_frame_mask[REF_FRAMES]; |
| //! Array to hold flags of evaluated modes for each reference frame |
| uint8_t mode_checked[MB_MODE_COUNT][REF_FRAMES]; |
| } InterModeSearchStateNonrd; |
| |
| static const uint8_t b_width_log2_lookup[BLOCK_SIZES] = { 0, 0, 1, 1, 1, 2, |
| 2, 2, 3, 3, 3, 4, |
| 4, 4, 5, 5 }; |
| static const uint8_t b_height_log2_lookup[BLOCK_SIZES] = { 0, 1, 0, 1, 2, 1, |
| 2, 3, 2, 3, 4, 3, |
| 4, 5, 4, 5 }; |
| |
| static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED, |
| SMOOTH_PRED }; |
| |
| static const PREDICTION_MODE inter_mode_list[] = { NEARESTMV, NEARMV, GLOBALMV, |
| NEWMV }; |
| |
| static const THR_MODES mode_idx[REF_FRAMES][RTC_MODES] = { |
| { THR_DC, THR_V_PRED, THR_H_PRED, THR_SMOOTH }, |
| { THR_NEARESTMV, THR_NEARMV, THR_GLOBALMV, THR_NEWMV }, |
| { THR_NEARESTL2, THR_NEARL2, THR_GLOBALL2, THR_NEWL2 }, |
| { THR_NEARESTL3, THR_NEARL3, THR_GLOBALL3, THR_NEWL3 }, |
| { THR_NEARESTG, THR_NEARG, THR_GLOBALG, THR_NEWG }, |
| { THR_NEARESTB, THR_NEARB, THR_GLOBALB, THR_NEWB }, |
| { THR_NEARESTA2, THR_NEARA2, THR_GLOBALA2, THR_NEWA2 }, |
| { THR_NEARESTA, THR_NEARA, THR_GLOBALA, THR_NEWA }, |
| }; |
| |
| // GLOBALMV in the set below is in fact ZEROMV as we don't do global ME in RT |
| // mode |
| static const REF_MODE ref_mode_set[NUM_INTER_MODES] = { |
| { LAST_FRAME, NEARESTMV }, { LAST_FRAME, NEARMV }, |
| { LAST_FRAME, GLOBALMV }, { LAST_FRAME, NEWMV }, |
| { GOLDEN_FRAME, NEARESTMV }, { GOLDEN_FRAME, NEARMV }, |
| { GOLDEN_FRAME, GLOBALMV }, { GOLDEN_FRAME, NEWMV }, |
| { ALTREF_FRAME, NEARESTMV }, { ALTREF_FRAME, NEARMV }, |
| { ALTREF_FRAME, GLOBALMV }, { ALTREF_FRAME, NEWMV }, |
| }; |
| |
| static const COMP_REF_MODE comp_ref_mode_set[NUM_COMP_INTER_MODES_RT] = { |
| { { LAST_FRAME, GOLDEN_FRAME }, GLOBAL_GLOBALMV }, |
| { { LAST_FRAME, GOLDEN_FRAME }, NEAREST_NEARESTMV }, |
| { { LAST_FRAME, LAST2_FRAME }, GLOBAL_GLOBALMV }, |
| { { LAST_FRAME, LAST2_FRAME }, NEAREST_NEARESTMV }, |
| { { LAST_FRAME, ALTREF_FRAME }, GLOBAL_GLOBALMV }, |
| { { LAST_FRAME, ALTREF_FRAME }, NEAREST_NEARESTMV }, |
| }; |
| |
| static const int_interpfilters filters_ref_set[9] = { |
| [0].as_filters = { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR }, |
| [1].as_filters = { EIGHTTAP_SMOOTH, EIGHTTAP_SMOOTH }, |
| [2].as_filters = { EIGHTTAP_REGULAR, EIGHTTAP_SMOOTH }, |
| [3].as_filters = { EIGHTTAP_SMOOTH, EIGHTTAP_REGULAR }, |
| [4].as_filters = { MULTITAP_SHARP, MULTITAP_SHARP }, |
| [5].as_filters = { EIGHTTAP_REGULAR, MULTITAP_SHARP }, |
| [6].as_filters = { MULTITAP_SHARP, EIGHTTAP_REGULAR }, |
| [7].as_filters = { EIGHTTAP_SMOOTH, MULTITAP_SHARP }, |
| [8].as_filters = { MULTITAP_SHARP, EIGHTTAP_SMOOTH } |
| }; |
| |
| enum { |
| // INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV), |
| INTER_NEAREST = (1 << NEARESTMV), |
| INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV), |
| INTER_NEAREST_NEAR = (1 << NEARESTMV) | (1 << NEARMV), |
| INTER_NEAR_NEW = (1 << NEARMV) | (1 << NEWMV), |
| }; |
| |
| // The original scan order (default_scan_8x8) is modified according to the extra |
| // transpose in hadamard c implementation, i.e., aom_hadamard_lp_8x8_c and |
| // aom_hadamard_8x8_c. |
| DECLARE_ALIGNED(16, static const int16_t, default_scan_8x8_transpose[64]) = { |
| 0, 8, 1, 2, 9, 16, 24, 17, 10, 3, 4, 11, 18, 25, 32, 40, |
| 33, 26, 19, 12, 5, 6, 13, 20, 27, 34, 41, 48, 56, 49, 42, 35, |
| 28, 21, 14, 7, 15, 22, 29, 36, 43, 50, 57, 58, 51, 44, 37, 30, |
| 23, 31, 38, 45, 52, 59, 60, 53, 46, 39, 47, 54, 61, 62, 55, 63 |
| }; |
| |
| // The original scan order (av1_default_iscan_8x8) is modified to match |
| // hadamard AVX2 implementation, i.e., aom_hadamard_lp_8x8_avx2 and |
| // aom_hadamard_8x8_avx2. Since hadamard AVX2 implementation will modify the |
| // order of coefficients, such that the normal scan order is no longer |
| // guaranteed to scan low coefficients first, therefore we modify the scan order |
| // accordingly. |
| // Note that this one has to be used together with default_scan_8x8_transpose. |
| DECLARE_ALIGNED(16, static const int16_t, |
| av1_default_iscan_8x8_transpose[64]) = { |
| 0, 2, 3, 9, 10, 20, 21, 35, 1, 4, 8, 11, 19, 22, 34, 36, |
| 5, 7, 12, 18, 23, 33, 37, 48, 6, 13, 17, 24, 32, 38, 47, 49, |
| 14, 16, 25, 31, 39, 46, 50, 57, 15, 26, 30, 40, 45, 51, 56, 58, |
| 27, 29, 41, 44, 52, 55, 59, 62, 28, 42, 43, 53, 54, 60, 61, 63 |
| }; |
| |
| // The original scan order (default_scan_16x16) is modified according to the |
| // extra transpose in hadamard c implementation in lp case, i.e., |
| // aom_hadamard_lp_16x16_c. |
| DECLARE_ALIGNED(16, static const int16_t, |
| default_scan_lp_16x16_transpose[256]) = { |
| 0, 8, 2, 4, 10, 16, 24, 18, 12, 6, 64, 14, 20, 26, 32, |
| 40, 34, 28, 22, 72, 66, 68, 74, 80, 30, 36, 42, 48, 56, 50, |
| 44, 38, 88, 82, 76, 70, 128, 78, 84, 90, 96, 46, 52, 58, 1, |
| 9, 3, 60, 54, 104, 98, 92, 86, 136, 130, 132, 138, 144, 94, 100, |
| 106, 112, 62, 5, 11, 17, 25, 19, 13, 7, 120, 114, 108, 102, 152, |
| 146, 140, 134, 192, 142, 148, 154, 160, 110, 116, 122, 65, 15, 21, 27, |
| 33, 41, 35, 29, 23, 73, 67, 124, 118, 168, 162, 156, 150, 200, 194, |
| 196, 202, 208, 158, 164, 170, 176, 126, 69, 75, 81, 31, 37, 43, 49, |
| 57, 51, 45, 39, 89, 83, 77, 71, 184, 178, 172, 166, 216, 210, 204, |
| 198, 206, 212, 218, 224, 174, 180, 186, 129, 79, 85, 91, 97, 47, 53, |
| 59, 61, 55, 105, 99, 93, 87, 137, 131, 188, 182, 232, 226, 220, 214, |
| 222, 228, 234, 240, 190, 133, 139, 145, 95, 101, 107, 113, 63, 121, 115, |
| 109, 103, 153, 147, 141, 135, 248, 242, 236, 230, 238, 244, 250, 193, 143, |
| 149, 155, 161, 111, 117, 123, 125, 119, 169, 163, 157, 151, 201, 195, 252, |
| 246, 254, 197, 203, 209, 159, 165, 171, 177, 127, 185, 179, 173, 167, 217, |
| 211, 205, 199, 207, 213, 219, 225, 175, 181, 187, 189, 183, 233, 227, 221, |
| 215, 223, 229, 235, 241, 191, 249, 243, 237, 231, 239, 245, 251, 253, 247, |
| 255 |
| }; |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| // The original scan order (default_scan_16x16) is modified according to the |
| // extra shift in hadamard c implementation in fp case, i.e., |
| // aom_hadamard_16x16_c. Note that 16x16 lp and fp hadamard generate different |
| // outputs, so we handle them separately. |
| DECLARE_ALIGNED(16, static const int16_t, |
| default_scan_fp_16x16_transpose[256]) = { |
| 0, 4, 2, 8, 6, 16, 20, 18, 12, 10, 64, 14, 24, 22, 32, |
| 36, 34, 28, 26, 68, 66, 72, 70, 80, 30, 40, 38, 48, 52, 50, |
| 44, 42, 84, 82, 76, 74, 128, 78, 88, 86, 96, 46, 56, 54, 1, |
| 5, 3, 60, 58, 100, 98, 92, 90, 132, 130, 136, 134, 144, 94, 104, |
| 102, 112, 62, 9, 7, 17, 21, 19, 13, 11, 116, 114, 108, 106, 148, |
| 146, 140, 138, 192, 142, 152, 150, 160, 110, 120, 118, 65, 15, 25, 23, |
| 33, 37, 35, 29, 27, 69, 67, 124, 122, 164, 162, 156, 154, 196, 194, |
| 200, 198, 208, 158, 168, 166, 176, 126, 73, 71, 81, 31, 41, 39, 49, |
| 53, 51, 45, 43, 85, 83, 77, 75, 180, 178, 172, 170, 212, 210, 204, |
| 202, 206, 216, 214, 224, 174, 184, 182, 129, 79, 89, 87, 97, 47, 57, |
| 55, 61, 59, 101, 99, 93, 91, 133, 131, 188, 186, 228, 226, 220, 218, |
| 222, 232, 230, 240, 190, 137, 135, 145, 95, 105, 103, 113, 63, 117, 115, |
| 109, 107, 149, 147, 141, 139, 244, 242, 236, 234, 238, 248, 246, 193, 143, |
| 153, 151, 161, 111, 121, 119, 125, 123, 165, 163, 157, 155, 197, 195, 252, |
| 250, 254, 201, 199, 209, 159, 169, 167, 177, 127, 181, 179, 173, 171, 213, |
| 211, 205, 203, 207, 217, 215, 225, 175, 185, 183, 189, 187, 229, 227, 221, |
| 219, 223, 233, 231, 241, 191, 245, 243, 237, 235, 239, 249, 247, 253, 251, |
| 255 |
| }; |
| #endif |
| |
| // The original scan order (av1_default_iscan_16x16) is modified to match |
| // hadamard AVX2 implementation, i.e., aom_hadamard_lp_16x16_avx2. |
| // Since hadamard AVX2 implementation will modify the order of coefficients, |
| // such that the normal scan order is no longer guaranteed to scan low |
| // coefficients first, therefore we modify the scan order accordingly. Note that |
| // this one has to be used together with default_scan_lp_16x16_transpose. |
| DECLARE_ALIGNED(16, static const int16_t, |
| av1_default_iscan_lp_16x16_transpose[256]) = { |
| 0, 44, 2, 46, 3, 63, 9, 69, 1, 45, 4, 64, 8, 68, 11, |
| 87, 5, 65, 7, 67, 12, 88, 18, 94, 6, 66, 13, 89, 17, 93, |
| 24, 116, 14, 90, 16, 92, 25, 117, 31, 123, 15, 91, 26, 118, 30, |
| 122, 41, 148, 27, 119, 29, 121, 42, 149, 48, 152, 28, 120, 43, 150, |
| 47, 151, 62, 177, 10, 86, 20, 96, 21, 113, 35, 127, 19, 95, 22, |
| 114, 34, 126, 37, 144, 23, 115, 33, 125, 38, 145, 52, 156, 32, 124, |
| 39, 146, 51, 155, 58, 173, 40, 147, 50, 154, 59, 174, 73, 181, 49, |
| 153, 60, 175, 72, 180, 83, 198, 61, 176, 71, 179, 84, 199, 98, 202, |
| 70, 178, 85, 200, 97, 201, 112, 219, 36, 143, 54, 158, 55, 170, 77, |
| 185, 53, 157, 56, 171, 76, 184, 79, 194, 57, 172, 75, 183, 80, 195, |
| 102, 206, 74, 182, 81, 196, 101, 205, 108, 215, 82, 197, 100, 204, 109, |
| 216, 131, 223, 99, 203, 110, 217, 130, 222, 140, 232, 111, 218, 129, 221, |
| 141, 233, 160, 236, 128, 220, 142, 234, 159, 235, 169, 245, 78, 193, 104, |
| 208, 105, 212, 135, 227, 103, 207, 106, 213, 134, 226, 136, 228, 107, 214, |
| 133, 225, 137, 229, 164, 240, 132, 224, 138, 230, 163, 239, 165, 241, 139, |
| 231, 162, 238, 166, 242, 189, 249, 161, 237, 167, 243, 188, 248, 190, 250, |
| 168, 244, 187, 247, 191, 251, 210, 254, 186, 246, 192, 252, 209, 253, 211, |
| 255 |
| }; |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| // The original scan order (av1_default_iscan_16x16) is modified to match |
| // hadamard AVX2 implementation, i.e., aom_hadamard_16x16_avx2. |
| // Since hadamard AVX2 implementation will modify the order of coefficients, |
| // such that the normal scan order is no longer guaranteed to scan low |
| // coefficients first, therefore we modify the scan order accordingly. Note that |
| // this one has to be used together with default_scan_fp_16x16_transpose. |
| DECLARE_ALIGNED(16, static const int16_t, |
| av1_default_iscan_fp_16x16_transpose[256]) = { |
| 0, 44, 2, 46, 1, 45, 4, 64, 3, 63, 9, 69, 8, 68, 11, |
| 87, 5, 65, 7, 67, 6, 66, 13, 89, 12, 88, 18, 94, 17, 93, |
| 24, 116, 14, 90, 16, 92, 15, 91, 26, 118, 25, 117, 31, 123, 30, |
| 122, 41, 148, 27, 119, 29, 121, 28, 120, 43, 150, 42, 149, 48, 152, |
| 47, 151, 62, 177, 10, 86, 20, 96, 19, 95, 22, 114, 21, 113, 35, |
| 127, 34, 126, 37, 144, 23, 115, 33, 125, 32, 124, 39, 146, 38, 145, |
| 52, 156, 51, 155, 58, 173, 40, 147, 50, 154, 49, 153, 60, 175, 59, |
| 174, 73, 181, 72, 180, 83, 198, 61, 176, 71, 179, 70, 178, 85, 200, |
| 84, 199, 98, 202, 97, 201, 112, 219, 36, 143, 54, 158, 53, 157, 56, |
| 171, 55, 170, 77, 185, 76, 184, 79, 194, 57, 172, 75, 183, 74, 182, |
| 81, 196, 80, 195, 102, 206, 101, 205, 108, 215, 82, 197, 100, 204, 99, |
| 203, 110, 217, 109, 216, 131, 223, 130, 222, 140, 232, 111, 218, 129, 221, |
| 128, 220, 142, 234, 141, 233, 160, 236, 159, 235, 169, 245, 78, 193, 104, |
| 208, 103, 207, 106, 213, 105, 212, 135, 227, 134, 226, 136, 228, 107, 214, |
| 133, 225, 132, 224, 138, 230, 137, 229, 164, 240, 163, 239, 165, 241, 139, |
| 231, 162, 238, 161, 237, 167, 243, 166, 242, 189, 249, 188, 248, 190, 250, |
| 168, 244, 187, 247, 186, 246, 192, 252, 191, 251, 210, 254, 209, 253, 211, |
| 255 |
| }; |
| #endif |
| |
| // For entropy coding, IDTX shares the scan orders of the other 2D-transforms, |
| // but the fastest way to calculate the IDTX transform (i.e. no transposes) |
| // results in coefficients that are a transposition of the entropy coding |
| // versions. These tables are used as substitute for the scan order for the |
| // faster version of IDTX. |
| |
| // Must be used together with av1_fast_idtx_iscan_4x4 |
| DECLARE_ALIGNED(16, static const int16_t, |
| av1_fast_idtx_scan_4x4[16]) = { 0, 1, 4, 8, 5, 2, 3, 6, |
| 9, 12, 13, 10, 7, 11, 14, 15 }; |
| |
| // Must be used together with av1_fast_idtx_scan_4x4 |
| DECLARE_ALIGNED(16, static const int16_t, |
| av1_fast_idtx_iscan_4x4[16]) = { 0, 1, 5, 6, 2, 4, 7, 12, |
| 3, 8, 11, 13, 9, 10, 14, 15 }; |
| |
| static const SCAN_ORDER av1_fast_idtx_scan_order_4x4 = { |
| av1_fast_idtx_scan_4x4, av1_fast_idtx_iscan_4x4 |
| }; |
| |
| // Must be used together with av1_fast_idtx_iscan_8x8 |
| DECLARE_ALIGNED(16, static const int16_t, av1_fast_idtx_scan_8x8[64]) = { |
| 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, |
| 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, |
| 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, |
| 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 |
| }; |
| |
| // Must be used together with av1_fast_idtx_scan_8x8 |
| DECLARE_ALIGNED(16, static const int16_t, av1_fast_idtx_iscan_8x8[64]) = { |
| 0, 1, 5, 6, 14, 15, 27, 28, 2, 4, 7, 13, 16, 26, 29, 42, |
| 3, 8, 12, 17, 25, 30, 41, 43, 9, 11, 18, 24, 31, 40, 44, 53, |
| 10, 19, 23, 32, 39, 45, 52, 54, 20, 22, 33, 38, 46, 51, 55, 60, |
| 21, 34, 37, 47, 50, 56, 59, 61, 35, 36, 48, 49, 57, 58, 62, 63 |
| }; |
| |
| static const SCAN_ORDER av1_fast_idtx_scan_order_8x8 = { |
| av1_fast_idtx_scan_8x8, av1_fast_idtx_iscan_8x8 |
| }; |
| |
| // Must be used together with av1_fast_idtx_iscan_16x16 |
| DECLARE_ALIGNED(16, static const int16_t, av1_fast_idtx_scan_16x16[256]) = { |
| 0, 1, 16, 32, 17, 2, 3, 18, 33, 48, 64, 49, 34, 19, 4, |
| 5, 20, 35, 50, 65, 80, 96, 81, 66, 51, 36, 21, 6, 7, 22, |
| 37, 52, 67, 82, 97, 112, 128, 113, 98, 83, 68, 53, 38, 23, 8, |
| 9, 24, 39, 54, 69, 84, 99, 114, 129, 144, 160, 145, 130, 115, 100, |
| 85, 70, 55, 40, 25, 10, 11, 26, 41, 56, 71, 86, 101, 116, 131, |
| 146, 161, 176, 192, 177, 162, 147, 132, 117, 102, 87, 72, 57, 42, 27, |
| 12, 13, 28, 43, 58, 73, 88, 103, 118, 133, 148, 163, 178, 193, 208, |
| 224, 209, 194, 179, 164, 149, 134, 119, 104, 89, 74, 59, 44, 29, 14, |
| 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, |
| 240, 241, 226, 211, 196, 181, 166, 151, 136, 121, 106, 91, 76, 61, 46, |
| 31, 47, 62, 77, 92, 107, 122, 137, 152, 167, 182, 197, 212, 227, 242, |
| 243, 228, 213, 198, 183, 168, 153, 138, 123, 108, 93, 78, 63, 79, 94, |
| 109, 124, 139, 154, 169, 184, 199, 214, 229, 244, 245, 230, 215, 200, 185, |
| 170, 155, 140, 125, 110, 95, 111, 126, 141, 156, 171, 186, 201, 216, 231, |
| 246, 247, 232, 217, 202, 187, 172, 157, 142, 127, 143, 158, 173, 188, 203, |
| 218, 233, 248, 249, 234, 219, 204, 189, 174, 159, 175, 190, 205, 220, 235, |
| 250, 251, 236, 221, 206, 191, 207, 222, 237, 252, 253, 238, 223, 239, 254, |
| 255 |
| }; |
| |
| // Must be used together with av1_fast_idtx_scan_16x16 |
| DECLARE_ALIGNED(16, static const int16_t, av1_fast_idtx_iscan_16x16[256]) = { |
| 0, 1, 5, 6, 14, 15, 27, 28, 44, 45, 65, 66, 90, 91, 119, |
| 120, 2, 4, 7, 13, 16, 26, 29, 43, 46, 64, 67, 89, 92, 118, |
| 121, 150, 3, 8, 12, 17, 25, 30, 42, 47, 63, 68, 88, 93, 117, |
| 122, 149, 151, 9, 11, 18, 24, 31, 41, 48, 62, 69, 87, 94, 116, |
| 123, 148, 152, 177, 10, 19, 23, 32, 40, 49, 61, 70, 86, 95, 115, |
| 124, 147, 153, 176, 178, 20, 22, 33, 39, 50, 60, 71, 85, 96, 114, |
| 125, 146, 154, 175, 179, 200, 21, 34, 38, 51, 59, 72, 84, 97, 113, |
| 126, 145, 155, 174, 180, 199, 201, 35, 37, 52, 58, 73, 83, 98, 112, |
| 127, 144, 156, 173, 181, 198, 202, 219, 36, 53, 57, 74, 82, 99, 111, |
| 128, 143, 157, 172, 182, 197, 203, 218, 220, 54, 56, 75, 81, 100, 110, |
| 129, 142, 158, 171, 183, 196, 204, 217, 221, 234, 55, 76, 80, 101, 109, |
| 130, 141, 159, 170, 184, 195, 205, 216, 222, 233, 235, 77, 79, 102, 108, |
| 131, 140, 160, 169, 185, 194, 206, 215, 223, 232, 236, 245, 78, 103, 107, |
| 132, 139, 161, 168, 186, 193, 207, 214, 224, 231, 237, 244, 246, 104, 106, |
| 133, 138, 162, 167, 187, 192, 208, 213, 225, 230, 238, 243, 247, 252, 105, |
| 134, 137, 163, 166, 188, 191, 209, 212, 226, 229, 239, 242, 248, 251, 253, |
| 135, 136, 164, 165, 189, 190, 210, 211, 227, 228, 240, 241, 249, 250, 254, |
| 255 |
| }; |
| |
| // Indicates the blocks for which RD model should be based on special logic |
| static INLINE int get_model_rd_flag(const AV1_COMP *cpi, const MACROBLOCKD *xd, |
| BLOCK_SIZE bsize) { |
| const int large_block = bsize >= BLOCK_32X32; |
| const AV1_COMMON *const cm = &cpi->common; |
| return cpi->oxcf.rc_cfg.mode == AOM_CBR && large_block && |
| !cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) && |
| cm->quant_params.base_qindex && |
| cm->seq_params->bit_depth == AOM_BITS_8; |
| } |
| /*!\brief Finds predicted motion vectors for a block. |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * Finds predicted motion vectors for a block from a certain reference frame. |
| * First, it fills reference MV stack, then picks the test from the stack and |
| * predicts the final MV for a block for each mode. |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] x Pointer to structure holding all the |
| * data for the current macroblock |
| * \param[in] ref_frame Reference frame for which to find |
| * ref MVs |
| * \param[in] frame_mv Predicted MVs for a block |
| * \param[in] yv12_mb Buffer to hold predicted block |
| * \param[in] bsize Current block size |
| * \param[in] force_skip_low_temp_var Flag indicating possible mode search |
| * prune for low temporal variance block |
| * \param[in] skip_pred_mv Flag indicating to skip av1_mv_pred |
| * |
| * \remark Nothing is returned. Instead, predicted MVs are placed into |
| * \c frame_mv array |
| */ |
| static INLINE void find_predictors(AV1_COMP *cpi, MACROBLOCK *x, |
| MV_REFERENCE_FRAME ref_frame, |
| int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], |
| struct buf_2d yv12_mb[8][MAX_MB_PLANE], |
| BLOCK_SIZE bsize, |
| int force_skip_low_temp_var, |
| int skip_pred_mv) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame); |
| const int num_planes = av1_num_planes(cm); |
| |
| x->pred_mv_sad[ref_frame] = INT_MAX; |
| x->pred_mv0_sad[ref_frame] = INT_MAX; |
| x->pred_mv1_sad[ref_frame] = INT_MAX; |
| frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; |
| // TODO(kyslov) this needs various further optimizations. to be continued.. |
| assert(yv12 != NULL); |
| if (yv12 != NULL) { |
| const struct scale_factors *const sf = |
| get_ref_scale_factors_const(cm, ref_frame); |
| av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes); |
| av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, |
| xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs, |
| mbmi_ext->mode_context); |
| // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and |
| // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs. |
| av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame); |
| av1_find_best_ref_mvs_from_stack( |
| cm->features.allow_high_precision_mv, mbmi_ext, ref_frame, |
| &frame_mv[NEARESTMV][ref_frame], &frame_mv[NEARMV][ref_frame], 0); |
| frame_mv[GLOBALMV][ref_frame] = mbmi_ext->global_mvs[ref_frame]; |
| // Early exit for non-LAST frame if force_skip_low_temp_var is set. |
| if (!av1_is_scaled(sf) && bsize >= BLOCK_8X8 && !skip_pred_mv && |
| !(force_skip_low_temp_var && ref_frame != LAST_FRAME)) { |
| av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, |
| bsize); |
| } |
| } |
| if (cm->features.switchable_motion_mode) { |
| av1_count_overlappable_neighbors(cm, xd); |
| } |
| mbmi->num_proj_ref = 1; |
| } |
| |
| static INLINE void init_mbmi_nonrd(MB_MODE_INFO *mbmi, |
| PREDICTION_MODE pred_mode, |
| MV_REFERENCE_FRAME ref_frame0, |
| MV_REFERENCE_FRAME ref_frame1, |
| const AV1_COMMON *cm) { |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| mbmi->ref_mv_idx = 0; |
| mbmi->mode = pred_mode; |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->ref_frame[0] = ref_frame0; |
| mbmi->ref_frame[1] = ref_frame1; |
| pmi->palette_size[PLANE_TYPE_Y] = 0; |
| pmi->palette_size[PLANE_TYPE_UV] = 0; |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->num_proj_ref = 1; |
| mbmi->interintra_mode = 0; |
| set_default_interp_filters(mbmi, cm->features.interp_filter); |
| } |
| |
| static INLINE void init_estimate_block_intra_args( |
| struct estimate_block_intra_args *args, AV1_COMP *cpi, MACROBLOCK *x) { |
| args->cpi = cpi; |
| args->x = x; |
| args->mode = DC_PRED; |
| args->skippable = 1; |
| args->rdc = 0; |
| args->best_sad = UINT_MAX; |
| args->prune_mode_based_on_sad = false; |
| } |
| |
| static INLINE int get_pred_buffer(PRED_BUFFER *p, int len) { |
| for (int buf_idx = 0; buf_idx < len; buf_idx++) { |
| if (!p[buf_idx].in_use) { |
| p[buf_idx].in_use = 1; |
| return buf_idx; |
| } |
| } |
| return -1; |
| } |
| |
| static INLINE void free_pred_buffer(PRED_BUFFER *p) { |
| if (p != NULL) p->in_use = 0; |
| } |
| |
| #if CONFIG_INTERNAL_STATS |
| static INLINE void store_coding_context_nonrd(MACROBLOCK *x, |
| PICK_MODE_CONTEXT *ctx, |
| int mode_index) { |
| #else |
| static INLINE void store_coding_context_nonrd(MACROBLOCK *x, |
| PICK_MODE_CONTEXT *ctx) { |
| #endif // CONFIG_INTERNAL_STATS |
| MACROBLOCKD *const xd = &x->e_mbd; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| |
| // Take a snapshot of the coding context so it can be |
| // restored if we decide to encode this way |
| ctx->rd_stats.skip_txfm = txfm_info->skip_txfm; |
| |
| ctx->skippable = txfm_info->skip_txfm; |
| #if CONFIG_INTERNAL_STATS |
| ctx->best_mode_index = mode_index; |
| #endif // CONFIG_INTERNAL_STATS |
| ctx->mic = *xd->mi[0]; |
| ctx->skippable = txfm_info->skip_txfm; |
| av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext, |
| av1_ref_frame_type(xd->mi[0]->ref_frame)); |
| } |
| |
| void av1_block_yrd(MACROBLOCK *x, RD_STATS *this_rdc, int *skippable, |
| BLOCK_SIZE bsize, TX_SIZE tx_size); |
| |
| void av1_block_yrd_idtx(MACROBLOCK *x, const uint8_t *const pred_buf, |
| int pred_stride, RD_STATS *this_rdc, int *skippable, |
| BLOCK_SIZE bsize, TX_SIZE tx_size); |
| |
| int64_t av1_model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| RD_STATS *this_rdc, int start_plane, |
| int stop_plane); |
| |
| void av1_estimate_block_intra(int plane, int block, int row, int col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg); |
| |
| void av1_estimate_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| int best_early_term, unsigned int ref_cost_intra, |
| int reuse_prediction, struct buf_2d *orig_dst, |
| PRED_BUFFER *tmp_buffers, |
| PRED_BUFFER **this_mode_pred, RD_STATS *best_rdc, |
| BEST_PICKMODE *best_pickmode, |
| PICK_MODE_CONTEXT *ctx); |
| |
| #endif // AOM_AV1_ENCODER_NONRD_OPT_H_ |