| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| |
| #include "./aom_config.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "./av1_rtcd.h" |
| #include "aom_dsp/fwd_txfm.h" |
| #include "aom_ports/mem.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/av1_fwd_txfm1d.h" |
| #include "av1/common/av1_fwd_txfm1d_cfg.h" |
| #include "av1/common/idct.h" |
| #if CONFIG_DAALA_TX4 || CONFIG_DAALA_TX8 || CONFIG_DAALA_TX16 || \ |
| CONFIG_DAALA_TX32 || CONFIG_DAALA_TX64 |
| #include "av1/common/daala_tx.h" |
| #endif |
| |
| static INLINE void range_check(const tran_low_t *input, const int size, |
| const int bit) { |
| #if 0 // CONFIG_COEFFICIENT_RANGE_CHECKING |
| // TODO(angiebird): the range_check is not used because the bit range |
| // in fdct# is not correct. Since we are going to merge in a new version |
| // of fdct# from nextgenv2, we won't fix the incorrect bit range now. |
| int i; |
| for (i = 0; i < size; ++i) { |
| assert(abs(input[i]) < (1 << bit)); |
| } |
| #else |
| (void)input; |
| (void)size; |
| (void)bit; |
| #endif |
| } |
| |
| static void fdct4(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t temp; |
| tran_low_t step[4]; |
| |
| // stage 0 |
| range_check(input, 4, 14); |
| |
| // stage 1 |
| output[0] = input[0] + input[3]; |
| output[1] = input[1] + input[2]; |
| output[2] = input[1] - input[2]; |
| output[3] = input[0] - input[3]; |
| |
| range_check(output, 4, 15); |
| |
| // stage 2 |
| temp = output[0] * cospi_16_64 + output[1] * cospi_16_64; |
| step[0] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[1] * -cospi_16_64 + output[0] * cospi_16_64; |
| step[1] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[2] * cospi_24_64 + output[3] * cospi_8_64; |
| step[2] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[3] * cospi_24_64 + output[2] * -cospi_8_64; |
| step[3] = (tran_low_t)fdct_round_shift(temp); |
| |
| range_check(step, 4, 16); |
| |
| // stage 3 |
| output[0] = step[0]; |
| output[1] = step[2]; |
| output[2] = step[1]; |
| output[3] = step[3]; |
| |
| range_check(output, 4, 16); |
| } |
| |
| static void fdct8(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t temp; |
| tran_low_t step[8]; |
| |
| // stage 0 |
| range_check(input, 8, 13); |
| |
| // stage 1 |
| output[0] = input[0] + input[7]; |
| output[1] = input[1] + input[6]; |
| output[2] = input[2] + input[5]; |
| output[3] = input[3] + input[4]; |
| output[4] = input[3] - input[4]; |
| output[5] = input[2] - input[5]; |
| output[6] = input[1] - input[6]; |
| output[7] = input[0] - input[7]; |
| |
| range_check(output, 8, 14); |
| |
| // stage 2 |
| step[0] = output[0] + output[3]; |
| step[1] = output[1] + output[2]; |
| step[2] = output[1] - output[2]; |
| step[3] = output[0] - output[3]; |
| step[4] = output[4]; |
| temp = output[5] * -cospi_16_64 + output[6] * cospi_16_64; |
| step[5] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[6] * cospi_16_64 + output[5] * cospi_16_64; |
| step[6] = (tran_low_t)fdct_round_shift(temp); |
| step[7] = output[7]; |
| |
| range_check(step, 8, 15); |
| |
| // stage 3 |
| temp = step[0] * cospi_16_64 + step[1] * cospi_16_64; |
| output[0] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[1] * -cospi_16_64 + step[0] * cospi_16_64; |
| output[1] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[2] * cospi_24_64 + step[3] * cospi_8_64; |
| output[2] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[3] * cospi_24_64 + step[2] * -cospi_8_64; |
| output[3] = (tran_low_t)fdct_round_shift(temp); |
| output[4] = step[4] + step[5]; |
| output[5] = step[4] - step[5]; |
| output[6] = step[7] - step[6]; |
| output[7] = step[7] + step[6]; |
| |
| range_check(output, 8, 16); |
| |
| // stage 4 |
| step[0] = output[0]; |
| step[1] = output[1]; |
| step[2] = output[2]; |
| step[3] = output[3]; |
| temp = output[4] * cospi_28_64 + output[7] * cospi_4_64; |
| step[4] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[5] * cospi_12_64 + output[6] * cospi_20_64; |
| step[5] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[6] * cospi_12_64 + output[5] * -cospi_20_64; |
| step[6] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[7] * cospi_28_64 + output[4] * -cospi_4_64; |
| step[7] = (tran_low_t)fdct_round_shift(temp); |
| |
| range_check(step, 8, 16); |
| |
| // stage 5 |
| output[0] = step[0]; |
| output[1] = step[4]; |
| output[2] = step[2]; |
| output[3] = step[6]; |
| output[4] = step[1]; |
| output[5] = step[5]; |
| output[6] = step[3]; |
| output[7] = step[7]; |
| |
| range_check(output, 8, 16); |
| } |
| |
| static void fdct16(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t temp; |
| tran_low_t step[16]; |
| |
| // stage 0 |
| range_check(input, 16, 13); |
| |
| // stage 1 |
| output[0] = input[0] + input[15]; |
| output[1] = input[1] + input[14]; |
| output[2] = input[2] + input[13]; |
| output[3] = input[3] + input[12]; |
| output[4] = input[4] + input[11]; |
| output[5] = input[5] + input[10]; |
| output[6] = input[6] + input[9]; |
| output[7] = input[7] + input[8]; |
| output[8] = input[7] - input[8]; |
| output[9] = input[6] - input[9]; |
| output[10] = input[5] - input[10]; |
| output[11] = input[4] - input[11]; |
| output[12] = input[3] - input[12]; |
| output[13] = input[2] - input[13]; |
| output[14] = input[1] - input[14]; |
| output[15] = input[0] - input[15]; |
| |
| range_check(output, 16, 14); |
| |
| // stage 2 |
| step[0] = output[0] + output[7]; |
| step[1] = output[1] + output[6]; |
| step[2] = output[2] + output[5]; |
| step[3] = output[3] + output[4]; |
| step[4] = output[3] - output[4]; |
| step[5] = output[2] - output[5]; |
| step[6] = output[1] - output[6]; |
| step[7] = output[0] - output[7]; |
| step[8] = output[8]; |
| step[9] = output[9]; |
| temp = output[10] * -cospi_16_64 + output[13] * cospi_16_64; |
| step[10] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[11] * -cospi_16_64 + output[12] * cospi_16_64; |
| step[11] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[12] * cospi_16_64 + output[11] * cospi_16_64; |
| step[12] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[13] * cospi_16_64 + output[10] * cospi_16_64; |
| step[13] = (tran_low_t)fdct_round_shift(temp); |
| step[14] = output[14]; |
| step[15] = output[15]; |
| |
| range_check(step, 16, 15); |
| |
| // stage 3 |
| output[0] = step[0] + step[3]; |
| output[1] = step[1] + step[2]; |
| output[2] = step[1] - step[2]; |
| output[3] = step[0] - step[3]; |
| output[4] = step[4]; |
| temp = step[5] * -cospi_16_64 + step[6] * cospi_16_64; |
| output[5] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[6] * cospi_16_64 + step[5] * cospi_16_64; |
| output[6] = (tran_low_t)fdct_round_shift(temp); |
| output[7] = step[7]; |
| output[8] = step[8] + step[11]; |
| output[9] = step[9] + step[10]; |
| output[10] = step[9] - step[10]; |
| output[11] = step[8] - step[11]; |
| output[12] = step[15] - step[12]; |
| output[13] = step[14] - step[13]; |
| output[14] = step[14] + step[13]; |
| output[15] = step[15] + step[12]; |
| |
| range_check(output, 16, 16); |
| |
| // stage 4 |
| temp = output[0] * cospi_16_64 + output[1] * cospi_16_64; |
| step[0] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[1] * -cospi_16_64 + output[0] * cospi_16_64; |
| step[1] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[2] * cospi_24_64 + output[3] * cospi_8_64; |
| step[2] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[3] * cospi_24_64 + output[2] * -cospi_8_64; |
| step[3] = (tran_low_t)fdct_round_shift(temp); |
| step[4] = output[4] + output[5]; |
| step[5] = output[4] - output[5]; |
| step[6] = output[7] - output[6]; |
| step[7] = output[7] + output[6]; |
| step[8] = output[8]; |
| temp = output[9] * -cospi_8_64 + output[14] * cospi_24_64; |
| step[9] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[10] * -cospi_24_64 + output[13] * -cospi_8_64; |
| step[10] = (tran_low_t)fdct_round_shift(temp); |
| step[11] = output[11]; |
| step[12] = output[12]; |
| temp = output[13] * cospi_24_64 + output[10] * -cospi_8_64; |
| step[13] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[14] * cospi_8_64 + output[9] * cospi_24_64; |
| step[14] = (tran_low_t)fdct_round_shift(temp); |
| step[15] = output[15]; |
| |
| range_check(step, 16, 16); |
| |
| // stage 5 |
| output[0] = step[0]; |
| output[1] = step[1]; |
| output[2] = step[2]; |
| output[3] = step[3]; |
| temp = step[4] * cospi_28_64 + step[7] * cospi_4_64; |
| output[4] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[5] * cospi_12_64 + step[6] * cospi_20_64; |
| output[5] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[6] * cospi_12_64 + step[5] * -cospi_20_64; |
| output[6] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[7] * cospi_28_64 + step[4] * -cospi_4_64; |
| output[7] = (tran_low_t)fdct_round_shift(temp); |
| output[8] = step[8] + step[9]; |
| output[9] = step[8] - step[9]; |
| output[10] = step[11] - step[10]; |
| output[11] = step[11] + step[10]; |
| output[12] = step[12] + step[13]; |
| output[13] = step[12] - step[13]; |
| output[14] = step[15] - step[14]; |
| output[15] = step[15] + step[14]; |
| |
| range_check(output, 16, 16); |
| |
| // stage 6 |
| step[0] = output[0]; |
| step[1] = output[1]; |
| step[2] = output[2]; |
| step[3] = output[3]; |
| step[4] = output[4]; |
| step[5] = output[5]; |
| step[6] = output[6]; |
| step[7] = output[7]; |
| temp = output[8] * cospi_30_64 + output[15] * cospi_2_64; |
| step[8] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[9] * cospi_14_64 + output[14] * cospi_18_64; |
| step[9] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[10] * cospi_22_64 + output[13] * cospi_10_64; |
| step[10] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[11] * cospi_6_64 + output[12] * cospi_26_64; |
| step[11] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[12] * cospi_6_64 + output[11] * -cospi_26_64; |
| step[12] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[13] * cospi_22_64 + output[10] * -cospi_10_64; |
| step[13] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[14] * cospi_14_64 + output[9] * -cospi_18_64; |
| step[14] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[15] * cospi_30_64 + output[8] * -cospi_2_64; |
| step[15] = (tran_low_t)fdct_round_shift(temp); |
| |
| range_check(step, 16, 16); |
| |
| // stage 7 |
| output[0] = step[0]; |
| output[1] = step[8]; |
| output[2] = step[4]; |
| output[3] = step[12]; |
| output[4] = step[2]; |
| output[5] = step[10]; |
| output[6] = step[6]; |
| output[7] = step[14]; |
| output[8] = step[1]; |
| output[9] = step[9]; |
| output[10] = step[5]; |
| output[11] = step[13]; |
| output[12] = step[3]; |
| output[13] = step[11]; |
| output[14] = step[7]; |
| output[15] = step[15]; |
| |
| range_check(output, 16, 16); |
| } |
| |
| static void fdct32(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t temp; |
| tran_low_t step[32]; |
| |
| // stage 0 |
| range_check(input, 32, 14); |
| |
| // stage 1 |
| output[0] = input[0] + input[31]; |
| output[1] = input[1] + input[30]; |
| output[2] = input[2] + input[29]; |
| output[3] = input[3] + input[28]; |
| output[4] = input[4] + input[27]; |
| output[5] = input[5] + input[26]; |
| output[6] = input[6] + input[25]; |
| output[7] = input[7] + input[24]; |
| output[8] = input[8] + input[23]; |
| output[9] = input[9] + input[22]; |
| output[10] = input[10] + input[21]; |
| output[11] = input[11] + input[20]; |
| output[12] = input[12] + input[19]; |
| output[13] = input[13] + input[18]; |
| output[14] = input[14] + input[17]; |
| output[15] = input[15] + input[16]; |
| output[16] = input[15] - input[16]; |
| output[17] = input[14] - input[17]; |
| output[18] = input[13] - input[18]; |
| output[19] = input[12] - input[19]; |
| output[20] = input[11] - input[20]; |
| output[21] = input[10] - input[21]; |
| output[22] = input[9] - input[22]; |
| output[23] = input[8] - input[23]; |
| output[24] = input[7] - input[24]; |
| output[25] = input[6] - input[25]; |
| output[26] = input[5] - input[26]; |
| output[27] = input[4] - input[27]; |
| output[28] = input[3] - input[28]; |
| output[29] = input[2] - input[29]; |
| output[30] = input[1] - input[30]; |
| output[31] = input[0] - input[31]; |
| |
| range_check(output, 32, 15); |
| |
| // stage 2 |
| step[0] = output[0] + output[15]; |
| step[1] = output[1] + output[14]; |
| step[2] = output[2] + output[13]; |
| step[3] = output[3] + output[12]; |
| step[4] = output[4] + output[11]; |
| step[5] = output[5] + output[10]; |
| step[6] = output[6] + output[9]; |
| step[7] = output[7] + output[8]; |
| step[8] = output[7] - output[8]; |
| step[9] = output[6] - output[9]; |
| step[10] = output[5] - output[10]; |
| step[11] = output[4] - output[11]; |
| step[12] = output[3] - output[12]; |
| step[13] = output[2] - output[13]; |
| step[14] = output[1] - output[14]; |
| step[15] = output[0] - output[15]; |
| step[16] = output[16]; |
| step[17] = output[17]; |
| step[18] = output[18]; |
| step[19] = output[19]; |
| temp = output[20] * -cospi_16_64 + output[27] * cospi_16_64; |
| step[20] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[21] * -cospi_16_64 + output[26] * cospi_16_64; |
| step[21] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[22] * -cospi_16_64 + output[25] * cospi_16_64; |
| step[22] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[23] * -cospi_16_64 + output[24] * cospi_16_64; |
| step[23] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[24] * cospi_16_64 + output[23] * cospi_16_64; |
| step[24] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[25] * cospi_16_64 + output[22] * cospi_16_64; |
| step[25] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[26] * cospi_16_64 + output[21] * cospi_16_64; |
| step[26] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[27] * cospi_16_64 + output[20] * cospi_16_64; |
| step[27] = (tran_low_t)fdct_round_shift(temp); |
| step[28] = output[28]; |
| step[29] = output[29]; |
| step[30] = output[30]; |
| step[31] = output[31]; |
| |
| range_check(step, 32, 16); |
| |
| // stage 3 |
| output[0] = step[0] + step[7]; |
| output[1] = step[1] + step[6]; |
| output[2] = step[2] + step[5]; |
| output[3] = step[3] + step[4]; |
| output[4] = step[3] - step[4]; |
| output[5] = step[2] - step[5]; |
| output[6] = step[1] - step[6]; |
| output[7] = step[0] - step[7]; |
| output[8] = step[8]; |
| output[9] = step[9]; |
| temp = step[10] * -cospi_16_64 + step[13] * cospi_16_64; |
| output[10] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[11] * -cospi_16_64 + step[12] * cospi_16_64; |
| output[11] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[12] * cospi_16_64 + step[11] * cospi_16_64; |
| output[12] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[13] * cospi_16_64 + step[10] * cospi_16_64; |
| output[13] = (tran_low_t)fdct_round_shift(temp); |
| output[14] = step[14]; |
| output[15] = step[15]; |
| output[16] = step[16] + step[23]; |
| output[17] = step[17] + step[22]; |
| output[18] = step[18] + step[21]; |
| output[19] = step[19] + step[20]; |
| output[20] = step[19] - step[20]; |
| output[21] = step[18] - step[21]; |
| output[22] = step[17] - step[22]; |
| output[23] = step[16] - step[23]; |
| output[24] = step[31] - step[24]; |
| output[25] = step[30] - step[25]; |
| output[26] = step[29] - step[26]; |
| output[27] = step[28] - step[27]; |
| output[28] = step[28] + step[27]; |
| output[29] = step[29] + step[26]; |
| output[30] = step[30] + step[25]; |
| output[31] = step[31] + step[24]; |
| |
| range_check(output, 32, 17); |
| |
| // stage 4 |
| step[0] = output[0] + output[3]; |
| step[1] = output[1] + output[2]; |
| step[2] = output[1] - output[2]; |
| step[3] = output[0] - output[3]; |
| step[4] = output[4]; |
| temp = output[5] * -cospi_16_64 + output[6] * cospi_16_64; |
| step[5] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[6] * cospi_16_64 + output[5] * cospi_16_64; |
| step[6] = (tran_low_t)fdct_round_shift(temp); |
| step[7] = output[7]; |
| step[8] = output[8] + output[11]; |
| step[9] = output[9] + output[10]; |
| step[10] = output[9] - output[10]; |
| step[11] = output[8] - output[11]; |
| step[12] = output[15] - output[12]; |
| step[13] = output[14] - output[13]; |
| step[14] = output[14] + output[13]; |
| step[15] = output[15] + output[12]; |
| step[16] = output[16]; |
| step[17] = output[17]; |
| temp = output[18] * -cospi_8_64 + output[29] * cospi_24_64; |
| step[18] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[19] * -cospi_8_64 + output[28] * cospi_24_64; |
| step[19] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[20] * -cospi_24_64 + output[27] * -cospi_8_64; |
| step[20] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[21] * -cospi_24_64 + output[26] * -cospi_8_64; |
| step[21] = (tran_low_t)fdct_round_shift(temp); |
| step[22] = output[22]; |
| step[23] = output[23]; |
| step[24] = output[24]; |
| step[25] = output[25]; |
| temp = output[26] * cospi_24_64 + output[21] * -cospi_8_64; |
| step[26] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[27] * cospi_24_64 + output[20] * -cospi_8_64; |
| step[27] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[28] * cospi_8_64 + output[19] * cospi_24_64; |
| step[28] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[29] * cospi_8_64 + output[18] * cospi_24_64; |
| step[29] = (tran_low_t)fdct_round_shift(temp); |
| step[30] = output[30]; |
| step[31] = output[31]; |
| |
| range_check(step, 32, 18); |
| |
| // stage 5 |
| temp = step[0] * cospi_16_64 + step[1] * cospi_16_64; |
| output[0] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[1] * -cospi_16_64 + step[0] * cospi_16_64; |
| output[1] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[2] * cospi_24_64 + step[3] * cospi_8_64; |
| output[2] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[3] * cospi_24_64 + step[2] * -cospi_8_64; |
| output[3] = (tran_low_t)fdct_round_shift(temp); |
| output[4] = step[4] + step[5]; |
| output[5] = step[4] - step[5]; |
| output[6] = step[7] - step[6]; |
| output[7] = step[7] + step[6]; |
| output[8] = step[8]; |
| temp = step[9] * -cospi_8_64 + step[14] * cospi_24_64; |
| output[9] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[10] * -cospi_24_64 + step[13] * -cospi_8_64; |
| output[10] = (tran_low_t)fdct_round_shift(temp); |
| output[11] = step[11]; |
| output[12] = step[12]; |
| temp = step[13] * cospi_24_64 + step[10] * -cospi_8_64; |
| output[13] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[14] * cospi_8_64 + step[9] * cospi_24_64; |
| output[14] = (tran_low_t)fdct_round_shift(temp); |
| output[15] = step[15]; |
| output[16] = step[16] + step[19]; |
| output[17] = step[17] + step[18]; |
| output[18] = step[17] - step[18]; |
| output[19] = step[16] - step[19]; |
| output[20] = step[23] - step[20]; |
| output[21] = step[22] - step[21]; |
| output[22] = step[22] + step[21]; |
| output[23] = step[23] + step[20]; |
| output[24] = step[24] + step[27]; |
| output[25] = step[25] + step[26]; |
| output[26] = step[25] - step[26]; |
| output[27] = step[24] - step[27]; |
| output[28] = step[31] - step[28]; |
| output[29] = step[30] - step[29]; |
| output[30] = step[30] + step[29]; |
| output[31] = step[31] + step[28]; |
| |
| range_check(output, 32, 18); |
| |
| // stage 6 |
| step[0] = output[0]; |
| step[1] = output[1]; |
| step[2] = output[2]; |
| step[3] = output[3]; |
| temp = output[4] * cospi_28_64 + output[7] * cospi_4_64; |
| step[4] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[5] * cospi_12_64 + output[6] * cospi_20_64; |
| step[5] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[6] * cospi_12_64 + output[5] * -cospi_20_64; |
| step[6] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[7] * cospi_28_64 + output[4] * -cospi_4_64; |
| step[7] = (tran_low_t)fdct_round_shift(temp); |
| step[8] = output[8] + output[9]; |
| step[9] = output[8] - output[9]; |
| step[10] = output[11] - output[10]; |
| step[11] = output[11] + output[10]; |
| step[12] = output[12] + output[13]; |
| step[13] = output[12] - output[13]; |
| step[14] = output[15] - output[14]; |
| step[15] = output[15] + output[14]; |
| step[16] = output[16]; |
| temp = output[17] * -cospi_4_64 + output[30] * cospi_28_64; |
| step[17] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[18] * -cospi_28_64 + output[29] * -cospi_4_64; |
| step[18] = (tran_low_t)fdct_round_shift(temp); |
| step[19] = output[19]; |
| step[20] = output[20]; |
| temp = output[21] * -cospi_20_64 + output[26] * cospi_12_64; |
| step[21] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[22] * -cospi_12_64 + output[25] * -cospi_20_64; |
| step[22] = (tran_low_t)fdct_round_shift(temp); |
| step[23] = output[23]; |
| step[24] = output[24]; |
| temp = output[25] * cospi_12_64 + output[22] * -cospi_20_64; |
| step[25] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[26] * cospi_20_64 + output[21] * cospi_12_64; |
| step[26] = (tran_low_t)fdct_round_shift(temp); |
| step[27] = output[27]; |
| step[28] = output[28]; |
| temp = output[29] * cospi_28_64 + output[18] * -cospi_4_64; |
| step[29] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[30] * cospi_4_64 + output[17] * cospi_28_64; |
| step[30] = (tran_low_t)fdct_round_shift(temp); |
| step[31] = output[31]; |
| |
| range_check(step, 32, 18); |
| |
| // stage 7 |
| output[0] = step[0]; |
| output[1] = step[1]; |
| output[2] = step[2]; |
| output[3] = step[3]; |
| output[4] = step[4]; |
| output[5] = step[5]; |
| output[6] = step[6]; |
| output[7] = step[7]; |
| temp = step[8] * cospi_30_64 + step[15] * cospi_2_64; |
| output[8] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[9] * cospi_14_64 + step[14] * cospi_18_64; |
| output[9] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[10] * cospi_22_64 + step[13] * cospi_10_64; |
| output[10] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[11] * cospi_6_64 + step[12] * cospi_26_64; |
| output[11] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[12] * cospi_6_64 + step[11] * -cospi_26_64; |
| output[12] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[13] * cospi_22_64 + step[10] * -cospi_10_64; |
| output[13] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[14] * cospi_14_64 + step[9] * -cospi_18_64; |
| output[14] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[15] * cospi_30_64 + step[8] * -cospi_2_64; |
| output[15] = (tran_low_t)fdct_round_shift(temp); |
| output[16] = step[16] + step[17]; |
| output[17] = step[16] - step[17]; |
| output[18] = step[19] - step[18]; |
| output[19] = step[19] + step[18]; |
| output[20] = step[20] + step[21]; |
| output[21] = step[20] - step[21]; |
| output[22] = step[23] - step[22]; |
| output[23] = step[23] + step[22]; |
| output[24] = step[24] + step[25]; |
| output[25] = step[24] - step[25]; |
| output[26] = step[27] - step[26]; |
| output[27] = step[27] + step[26]; |
| output[28] = step[28] + step[29]; |
| output[29] = step[28] - step[29]; |
| output[30] = step[31] - step[30]; |
| output[31] = step[31] + step[30]; |
| |
| range_check(output, 32, 18); |
| |
| // stage 8 |
| step[0] = output[0]; |
| step[1] = output[1]; |
| step[2] = output[2]; |
| step[3] = output[3]; |
| step[4] = output[4]; |
| step[5] = output[5]; |
| step[6] = output[6]; |
| step[7] = output[7]; |
| step[8] = output[8]; |
| step[9] = output[9]; |
| step[10] = output[10]; |
| step[11] = output[11]; |
| step[12] = output[12]; |
| step[13] = output[13]; |
| step[14] = output[14]; |
| step[15] = output[15]; |
| temp = output[16] * cospi_31_64 + output[31] * cospi_1_64; |
| step[16] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[17] * cospi_15_64 + output[30] * cospi_17_64; |
| step[17] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[18] * cospi_23_64 + output[29] * cospi_9_64; |
| step[18] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[19] * cospi_7_64 + output[28] * cospi_25_64; |
| step[19] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[20] * cospi_27_64 + output[27] * cospi_5_64; |
| step[20] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[21] * cospi_11_64 + output[26] * cospi_21_64; |
| step[21] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[22] * cospi_19_64 + output[25] * cospi_13_64; |
| step[22] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[23] * cospi_3_64 + output[24] * cospi_29_64; |
| step[23] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[24] * cospi_3_64 + output[23] * -cospi_29_64; |
| step[24] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[25] * cospi_19_64 + output[22] * -cospi_13_64; |
| step[25] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[26] * cospi_11_64 + output[21] * -cospi_21_64; |
| step[26] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[27] * cospi_27_64 + output[20] * -cospi_5_64; |
| step[27] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[28] * cospi_7_64 + output[19] * -cospi_25_64; |
| step[28] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[29] * cospi_23_64 + output[18] * -cospi_9_64; |
| step[29] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[30] * cospi_15_64 + output[17] * -cospi_17_64; |
| step[30] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[31] * cospi_31_64 + output[16] * -cospi_1_64; |
| step[31] = (tran_low_t)fdct_round_shift(temp); |
| |
| range_check(step, 32, 18); |
| |
| // stage 9 |
| output[0] = step[0]; |
| output[1] = step[16]; |
| output[2] = step[8]; |
| output[3] = step[24]; |
| output[4] = step[4]; |
| output[5] = step[20]; |
| output[6] = step[12]; |
| output[7] = step[28]; |
| output[8] = step[2]; |
| output[9] = step[18]; |
| output[10] = step[10]; |
| output[11] = step[26]; |
| output[12] = step[6]; |
| output[13] = step[22]; |
| output[14] = step[14]; |
| output[15] = step[30]; |
| output[16] = step[1]; |
| output[17] = step[17]; |
| output[18] = step[9]; |
| output[19] = step[25]; |
| output[20] = step[5]; |
| output[21] = step[21]; |
| output[22] = step[13]; |
| output[23] = step[29]; |
| output[24] = step[3]; |
| output[25] = step[19]; |
| output[26] = step[11]; |
| output[27] = step[27]; |
| output[28] = step[7]; |
| output[29] = step[23]; |
| output[30] = step[15]; |
| output[31] = step[31]; |
| |
| range_check(output, 32, 18); |
| } |
| |
| #ifndef AV1_DCT_GTEST |
| static void fadst4(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t x0, x1, x2, x3; |
| tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; |
| |
| x0 = input[0]; |
| x1 = input[1]; |
| x2 = input[2]; |
| x3 = input[3]; |
| |
| if (!(x0 | x1 | x2 | x3)) { |
| output[0] = output[1] = output[2] = output[3] = 0; |
| return; |
| } |
| |
| s0 = sinpi_1_9 * x0; |
| s1 = sinpi_4_9 * x0; |
| s2 = sinpi_2_9 * x1; |
| s3 = sinpi_1_9 * x1; |
| s4 = sinpi_3_9 * x2; |
| s5 = sinpi_4_9 * x3; |
| s6 = sinpi_2_9 * x3; |
| s7 = x0 + x1 - x3; |
| |
| x0 = s0 + s2 + s5; |
| x1 = sinpi_3_9 * s7; |
| x2 = s1 - s3 + s6; |
| x3 = s4; |
| |
| s0 = x0 + x3; |
| s1 = x1; |
| s2 = x2 - x3; |
| s3 = x2 - x0 + x3; |
| |
| // 1-D transform scaling factor is sqrt(2). |
| output[0] = (tran_low_t)fdct_round_shift(s0); |
| output[1] = (tran_low_t)fdct_round_shift(s1); |
| output[2] = (tran_low_t)fdct_round_shift(s2); |
| output[3] = (tran_low_t)fdct_round_shift(s3); |
| } |
| |
| static void fadst8(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; |
| |
| tran_high_t x0 = input[7]; |
| tran_high_t x1 = input[0]; |
| tran_high_t x2 = input[5]; |
| tran_high_t x3 = input[2]; |
| tran_high_t x4 = input[3]; |
| tran_high_t x5 = input[4]; |
| tran_high_t x6 = input[1]; |
| tran_high_t x7 = input[6]; |
| |
| // stage 1 |
| s0 = cospi_2_64 * x0 + cospi_30_64 * x1; |
| s1 = cospi_30_64 * x0 - cospi_2_64 * x1; |
| s2 = cospi_10_64 * x2 + cospi_22_64 * x3; |
| s3 = cospi_22_64 * x2 - cospi_10_64 * x3; |
| s4 = cospi_18_64 * x4 + cospi_14_64 * x5; |
| s5 = cospi_14_64 * x4 - cospi_18_64 * x5; |
| s6 = cospi_26_64 * x6 + cospi_6_64 * x7; |
| s7 = cospi_6_64 * x6 - cospi_26_64 * x7; |
| |
| x0 = s0 + s4; |
| x1 = s1 + s5; |
| x2 = s2 + s6; |
| x3 = s3 + s7; |
| x4 = fdct_round_shift(s0 - s4); |
| x5 = fdct_round_shift(s1 - s5); |
| x6 = fdct_round_shift(s2 - s6); |
| x7 = fdct_round_shift(s3 - s7); |
| |
| // stage 2 |
| s0 = x0; |
| s1 = x1; |
| s2 = x2; |
| s3 = x3; |
| s4 = cospi_8_64 * x4 + cospi_24_64 * x5; |
| s5 = cospi_24_64 * x4 - cospi_8_64 * x5; |
| s6 = -cospi_24_64 * x6 + cospi_8_64 * x7; |
| s7 = cospi_8_64 * x6 + cospi_24_64 * x7; |
| |
| x0 = fdct_round_shift(s0 + s2); |
| x1 = fdct_round_shift(s1 + s3); |
| x2 = fdct_round_shift(s0 - s2); |
| x3 = fdct_round_shift(s1 - s3); |
| x4 = fdct_round_shift(s4 + s6); |
| x5 = fdct_round_shift(s5 + s7); |
| x6 = fdct_round_shift(s4 - s6); |
| x7 = fdct_round_shift(s5 - s7); |
| |
| // stage 3 |
| s2 = cospi_16_64 * (x2 + x3); |
| s3 = cospi_16_64 * (x2 - x3); |
| s6 = cospi_16_64 * (x6 + x7); |
| s7 = cospi_16_64 * (x6 - x7); |
| |
| x2 = fdct_round_shift(s2); |
| x3 = fdct_round_shift(s3); |
| x6 = fdct_round_shift(s6); |
| x7 = fdct_round_shift(s7); |
| |
| output[0] = (tran_low_t)x0; |
| output[1] = (tran_low_t)-x4; |
| output[2] = (tran_low_t)x6; |
| output[3] = (tran_low_t)-x2; |
| output[4] = (tran_low_t)x3; |
| output[5] = (tran_low_t)-x7; |
| output[6] = (tran_low_t)x5; |
| output[7] = (tran_low_t)-x1; |
| } |
| |
| static void fadst16(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8; |
| tran_high_t s9, s10, s11, s12, s13, s14, s15; |
| |
| tran_high_t x0 = input[15]; |
| tran_high_t x1 = input[0]; |
| tran_high_t x2 = input[13]; |
| tran_high_t x3 = input[2]; |
| tran_high_t x4 = input[11]; |
| tran_high_t x5 = input[4]; |
| tran_high_t x6 = input[9]; |
| tran_high_t x7 = input[6]; |
| tran_high_t x8 = input[7]; |
| tran_high_t x9 = input[8]; |
| tran_high_t x10 = input[5]; |
| tran_high_t x11 = input[10]; |
| tran_high_t x12 = input[3]; |
| tran_high_t x13 = input[12]; |
| tran_high_t x14 = input[1]; |
| tran_high_t x15 = input[14]; |
| |
| // stage 1 |
| s0 = x0 * cospi_1_64 + x1 * cospi_31_64; |
| s1 = x0 * cospi_31_64 - x1 * cospi_1_64; |
| s2 = x2 * cospi_5_64 + x3 * cospi_27_64; |
| s3 = x2 * cospi_27_64 - x3 * cospi_5_64; |
| s4 = x4 * cospi_9_64 + x5 * cospi_23_64; |
| s5 = x4 * cospi_23_64 - x5 * cospi_9_64; |
| s6 = x6 * cospi_13_64 + x7 * cospi_19_64; |
| s7 = x6 * cospi_19_64 - x7 * cospi_13_64; |
| s8 = x8 * cospi_17_64 + x9 * cospi_15_64; |
| s9 = x8 * cospi_15_64 - x9 * cospi_17_64; |
| s10 = x10 * cospi_21_64 + x11 * cospi_11_64; |
| s11 = x10 * cospi_11_64 - x11 * cospi_21_64; |
| s12 = x12 * cospi_25_64 + x13 * cospi_7_64; |
| s13 = x12 * cospi_7_64 - x13 * cospi_25_64; |
| s14 = x14 * cospi_29_64 + x15 * cospi_3_64; |
| s15 = x14 * cospi_3_64 - x15 * cospi_29_64; |
| |
| x0 = s0 + s8; |
| x1 = s1 + s9; |
| x2 = s2 + s10; |
| x3 = s3 + s11; |
| x4 = s4 + s12; |
| x5 = s5 + s13; |
| x6 = s6 + s14; |
| x7 = s7 + s15; |
| |
| x8 = fdct_round_shift(s0 - s8); |
| x9 = fdct_round_shift(s1 - s9); |
| x10 = fdct_round_shift(s2 - s10); |
| x11 = fdct_round_shift(s3 - s11); |
| x12 = fdct_round_shift(s4 - s12); |
| x13 = fdct_round_shift(s5 - s13); |
| x14 = fdct_round_shift(s6 - s14); |
| x15 = fdct_round_shift(s7 - s15); |
| |
| // stage 2 |
| s0 = x0; |
| s1 = x1; |
| s2 = x2; |
| s3 = x3; |
| s4 = x4; |
| s5 = x5; |
| s6 = x6; |
| s7 = x7; |
| s8 = x8 * cospi_4_64 + x9 * cospi_28_64; |
| s9 = x8 * cospi_28_64 - x9 * cospi_4_64; |
| s10 = x10 * cospi_20_64 + x11 * cospi_12_64; |
| s11 = x10 * cospi_12_64 - x11 * cospi_20_64; |
| s12 = -x12 * cospi_28_64 + x13 * cospi_4_64; |
| s13 = x12 * cospi_4_64 + x13 * cospi_28_64; |
| s14 = -x14 * cospi_12_64 + x15 * cospi_20_64; |
| s15 = x14 * cospi_20_64 + x15 * cospi_12_64; |
| |
| x0 = s0 + s4; |
| x1 = s1 + s5; |
| x2 = s2 + s6; |
| x3 = s3 + s7; |
| x4 = fdct_round_shift(s0 - s4); |
| x5 = fdct_round_shift(s1 - s5); |
| x6 = fdct_round_shift(s2 - s6); |
| x7 = fdct_round_shift(s3 - s7); |
| |
| x8 = s8 + s12; |
| x9 = s9 + s13; |
| x10 = s10 + s14; |
| x11 = s11 + s15; |
| x12 = fdct_round_shift(s8 - s12); |
| x13 = fdct_round_shift(s9 - s13); |
| x14 = fdct_round_shift(s10 - s14); |
| x15 = fdct_round_shift(s11 - s15); |
| |
| // stage 3 |
| s0 = x0; |
| s1 = x1; |
| s2 = x2; |
| s3 = x3; |
| s4 = x4 * cospi_8_64 + x5 * cospi_24_64; |
| s5 = x4 * cospi_24_64 - x5 * cospi_8_64; |
| s6 = -x6 * cospi_24_64 + x7 * cospi_8_64; |
| s7 = x6 * cospi_8_64 + x7 * cospi_24_64; |
| s8 = x8; |
| s9 = x9; |
| s10 = x10; |
| s11 = x11; |
| s12 = x12 * cospi_8_64 + x13 * cospi_24_64; |
| s13 = x12 * cospi_24_64 - x13 * cospi_8_64; |
| s14 = -x14 * cospi_24_64 + x15 * cospi_8_64; |
| s15 = x14 * cospi_8_64 + x15 * cospi_24_64; |
| |
| x0 = fdct_round_shift(s0 + s2); |
| x1 = fdct_round_shift(s1 + s3); |
| x2 = fdct_round_shift(s0 - s2); |
| x3 = fdct_round_shift(s1 - s3); |
| |
| x4 = fdct_round_shift(s4 + s6); |
| x5 = fdct_round_shift(s5 + s7); |
| x6 = fdct_round_shift(s4 - s6); |
| x7 = fdct_round_shift(s5 - s7); |
| |
| x8 = fdct_round_shift(s8 + s10); |
| x9 = fdct_round_shift(s9 + s11); |
| x10 = fdct_round_shift(s8 - s10); |
| x11 = fdct_round_shift(s9 - s11); |
| |
| x12 = fdct_round_shift(s12 + s14); |
| x13 = fdct_round_shift(s13 + s15); |
| x14 = fdct_round_shift(s12 - s14); |
| x15 = fdct_round_shift(s13 - s15); |
| |
| // stage 4 |
| s2 = (-cospi_16_64) * (x2 + x3); |
| s3 = cospi_16_64 * (x2 - x3); |
| s6 = cospi_16_64 * (x6 + x7); |
| s7 = cospi_16_64 * (-x6 + x7); |
| s10 = cospi_16_64 * (x10 + x11); |
| s11 = cospi_16_64 * (-x10 + x11); |
| s14 = (-cospi_16_64) * (x14 + x15); |
| s15 = cospi_16_64 * (x14 - x15); |
| |
| x2 = fdct_round_shift(s2); |
| x3 = fdct_round_shift(s3); |
| x6 = fdct_round_shift(s6); |
| x7 = fdct_round_shift(s7); |
| x10 = fdct_round_shift(s10); |
| x11 = fdct_round_shift(s11); |
| x14 = fdct_round_shift(s14); |
| x15 = fdct_round_shift(s15); |
| |
| output[0] = (tran_low_t)x0; |
| output[1] = (tran_low_t)-x8; |
| output[2] = (tran_low_t)x12; |
| output[3] = (tran_low_t)-x4; |
| output[4] = (tran_low_t)x6; |
| output[5] = (tran_low_t)x14; |
| output[6] = (tran_low_t)x10; |
| output[7] = (tran_low_t)x2; |
| output[8] = (tran_low_t)x3; |
| output[9] = (tran_low_t)x11; |
| output[10] = (tran_low_t)x15; |
| output[11] = (tran_low_t)x7; |
| output[12] = (tran_low_t)x5; |
| output[13] = (tran_low_t)-x13; |
| output[14] = (tran_low_t)x9; |
| output[15] = (tran_low_t)-x1; |
| } |
| |
| // For use in lieu of ADST |
| static void fhalfright32(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| tran_low_t inputhalf[16]; |
| for (i = 0; i < 16; ++i) { |
| output[16 + i] = input[i] * 4; |
| } |
| // Multiply input by sqrt(2) |
| for (i = 0; i < 16; ++i) { |
| inputhalf[i] = (tran_low_t)fdct_round_shift(input[i + 16] * Sqrt2); |
| } |
| fdct16(inputhalf, output); |
| // Note overall scaling factor is 4 times orthogonal |
| } |
| |
| #if CONFIG_MRC_TX |
| static void get_masked_residual32(const int16_t **input, int *input_stride, |
| const uint8_t *pred, int pred_stride, |
| int16_t *masked_input, |
| TxfmParam *txfm_param) { |
| int n_masked_vals = 0; |
| uint8_t *mrc_mask; |
| uint8_t mask_tmp[32 * 32]; |
| if ((txfm_param->is_inter && SIGNAL_MRC_MASK_INTER) || |
| (!txfm_param->is_inter && SIGNAL_MRC_MASK_INTRA)) { |
| mrc_mask = txfm_param->mask; |
| n_masked_vals = get_mrc_diff_mask(*input, *input_stride, mrc_mask, 32, 32, |
| 32, txfm_param->is_inter); |
| } else { |
| mrc_mask = mask_tmp; |
| n_masked_vals = get_mrc_pred_mask(pred, pred_stride, mrc_mask, 32, 32, 32, |
| txfm_param->is_inter); |
| } |
| |
| // Do not use MRC_DCT if mask is invalid. DCT_DCT will be used instead. |
| if (!is_valid_mrc_mask(n_masked_vals, 32, 32)) { |
| *txfm_param->valid_mask = 0; |
| return; |
| } |
| int32_t sum = 0; |
| int16_t avg; |
| // Get the masked average of the prediction |
| for (int i = 0; i < 32; ++i) { |
| for (int j = 0; j < 32; ++j) { |
| sum += mrc_mask[i * 32 + j] * (*input)[i * (*input_stride) + j]; |
| } |
| } |
| avg = sum / n_masked_vals; |
| // Replace all of the unmasked pixels in the prediction with the average |
| // of the masked pixels |
| for (int i = 0; i < 32; ++i) { |
| for (int j = 0; j < 32; ++j) |
| masked_input[i * 32 + j] = |
| (mrc_mask[i * 32 + j]) ? (*input)[i * (*input_stride) + j] : avg; |
| } |
| *input = masked_input; |
| *input_stride = 32; |
| *txfm_param->valid_mask = 1; |
| } |
| #endif // CONFIG_MRC_TX |
| |
| #if CONFIG_LGT || CONFIG_LGT_FROM_PRED |
| static void flgt4(const tran_low_t *input, tran_low_t *output, |
| const tran_high_t *lgtmtx) { |
| if (!lgtmtx) assert(0); |
| #if CONFIG_LGT_FROM_PRED |
| // For DCT/ADST, use butterfly implementations |
| if (lgtmtx[0] == DCT4) { |
| fdct4(input, output); |
| return; |
| } else if (lgtmtx[0] == ADST4) { |
| fadst4(input, output); |
| return; |
| } |
| #endif // CONFIG_LGT_FROM_PRED |
| |
| // evaluate s[j] = sum of all lgtmtx[j][i]*input[i] over i=1,...,4 |
| tran_high_t s[4] = { 0 }; |
| for (int i = 0; i < 4; ++i) |
| for (int j = 0; j < 4; ++j) s[j] += lgtmtx[j * 4 + i] * input[i]; |
| |
| for (int i = 0; i < 4; ++i) output[i] = (tran_low_t)fdct_round_shift(s[i]); |
| } |
| |
| static void flgt8(const tran_low_t *input, tran_low_t *output, |
| const tran_high_t *lgtmtx) { |
| if (!lgtmtx) assert(0); |
| #if CONFIG_LGT_FROM_PRED |
| // For DCT/ADST, use butterfly implementations |
| if (lgtmtx[0] == DCT8) { |
| fdct8(input, output); |
| return; |
| } else if (lgtmtx[0] == ADST8) { |
| fadst8(input, output); |
| return; |
| } |
| #endif // CONFIG_LGT_FROM_PRED |
| |
| // evaluate s[j] = sum of all lgtmtx[j][i]*input[i] over i=1,...,8 |
| tran_high_t s[8] = { 0 }; |
| for (int i = 0; i < 8; ++i) |
| for (int j = 0; j < 8; ++j) s[j] += lgtmtx[j * 8 + i] * input[i]; |
| |
| for (int i = 0; i < 8; ++i) output[i] = (tran_low_t)fdct_round_shift(s[i]); |
| } |
| #endif // CONFIG_LGT || CONFIG_LGT_FROM_PRED |
| |
| #if CONFIG_LGT_FROM_PRED |
| static void flgt16up(const tran_low_t *input, tran_low_t *output, |
| const tran_high_t *lgtmtx) { |
| if (lgtmtx[0] == DCT16) { |
| fdct16(input, output); |
| return; |
| } else if (lgtmtx[0] == ADST16) { |
| fadst16(input, output); |
| return; |
| } else if (lgtmtx[0] == DCT32) { |
| fdct32(input, output); |
| return; |
| } else if (lgtmtx[0] == ADST32) { |
| fhalfright32(input, output); |
| return; |
| } else { |
| assert(0); |
| } |
| } |
| |
| typedef void (*FlgtFunc)(const tran_low_t *input, tran_low_t *output, |
| const tran_high_t *lgtmtx); |
| |
| static FlgtFunc flgt_func[4] = { flgt4, flgt8, flgt16up, flgt16up }; |
| |
| typedef void (*GetLgtFunc)(const TxfmParam *txfm_param, int is_col, |
| const tran_high_t *lgtmtx[], int ntx); |
| |
| static GetLgtFunc get_lgt_func[4] = { get_lgt4_from_pred, get_lgt8_from_pred, |
| get_lgt16up_from_pred, |
| get_lgt16up_from_pred }; |
| |
| // this inline function corresponds to the up scaling before the first |
| // transform in the av1_fht* functions |
| static INLINE tran_low_t fwd_upscale_wrt_txsize(const tran_high_t val, |
| const TX_SIZE tx_size) { |
| switch (tx_size) { |
| case TX_4X4: return (tran_low_t)val << 4; |
| case TX_8X8: |
| case TX_4X16: |
| case TX_16X4: |
| case TX_8X32: |
| case TX_32X8: return (tran_low_t)val << 2; |
| case TX_4X8: |
| case TX_8X4: |
| case TX_8X16: |
| case TX_16X8: return (tran_low_t)fdct_round_shift(val * 4 * Sqrt2); |
| default: assert(0); break; |
| } |
| return 0; |
| } |
| |
| // This inline function corresponds to the bit shift after the second |
| // transform in the av1_fht* functions |
| static INLINE tran_low_t fwd_downscale_wrt_txsize(const tran_low_t val, |
| const TX_SIZE tx_size) { |
| switch (tx_size) { |
| case TX_4X4: return (val + 1) >> 2; |
| case TX_4X8: |
| case TX_8X4: |
| case TX_8X8: |
| case TX_4X16: |
| case TX_16X4: return (val + (val < 0)) >> 1; |
| case TX_8X16: |
| case TX_16X8: return val; |
| case TX_8X32: |
| case TX_32X8: return ROUND_POWER_OF_TWO_SIGNED(val, 2); |
| default: assert(0); break; |
| } |
| return 0; |
| } |
| |
| void flgt2d_from_pred_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_SIZE tx_size = txfm_param->tx_size; |
| const int w = tx_size_wide[tx_size]; |
| const int h = tx_size_high[tx_size]; |
| const int wlog2 = tx_size_wide_log2[tx_size]; |
| const int hlog2 = tx_size_high_log2[tx_size]; |
| assert(w <= 8 || h <= 8); |
| |
| int i, j; |
| tran_low_t out[256]; // max size: 8x32 and 32x8 |
| tran_low_t temp_in[32], temp_out[32]; |
| const tran_high_t *lgtmtx_col[1]; |
| const tran_high_t *lgtmtx_row[1]; |
| get_lgt_func[hlog2 - 2](txfm_param, 1, lgtmtx_col, w); |
| get_lgt_func[wlog2 - 2](txfm_param, 0, lgtmtx_row, h); |
| |
| // For forward transforms, to be consistent with av1_fht functions, we apply |
| // short transform first and long transform second. |
| if (w < h) { |
| // Row transforms |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) |
| temp_in[j] = fwd_upscale_wrt_txsize(input[i * stride + j], tx_size); |
| flgt_func[wlog2 - 2](temp_in, temp_out, lgtmtx_row[0]); |
| // right shift of 2 bits here in fht8x16 and fht16x8 |
| for (j = 0; j < w; ++j) |
| out[j * h + i] = (tx_size == TX_16X8 || tx_size == TX_8X16) |
| ? ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2) |
| : temp_out[j]; |
| } |
| // Column transforms |
| for (i = 0; i < w; ++i) { |
| for (j = 0; j < h; ++j) temp_in[j] = out[j + i * h]; |
| flgt_func[hlog2 - 2](temp_in, temp_out, lgtmtx_col[0]); |
| for (j = 0; j < h; ++j) |
| output[j * w + i] = fwd_downscale_wrt_txsize(temp_out[j], tx_size); |
| } |
| } else { |
| // Column transforms |
| for (i = 0; i < w; ++i) { |
| for (j = 0; j < h; ++j) |
| temp_in[j] = fwd_upscale_wrt_txsize(input[j * stride + i], tx_size); |
| flgt_func[hlog2 - 2](temp_in, temp_out, lgtmtx_col[0]); |
| // fht8x16 and fht16x8 have right shift of 2 bits here |
| for (j = 0; j < h; ++j) |
| out[j * w + i] = (tx_size == TX_16X8 || tx_size == TX_8X16) |
| ? ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2) |
| : temp_out[j]; |
| } |
| // Row transforms |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) temp_in[j] = out[j + i * w]; |
| flgt_func[wlog2 - 2](temp_in, temp_out, lgtmtx_row[0]); |
| for (j = 0; j < w; ++j) |
| output[j + i * w] = fwd_downscale_wrt_txsize(temp_out[j], tx_size); |
| } |
| } |
| } |
| #endif // CONFIG_LGT_FROM_PRED |
| |
| #if CONFIG_EXT_TX |
| // TODO(sarahparker) these functions will be removed once the highbitdepth |
| // codepath works properly for rectangular transforms. They have almost |
| // identical versions in av1_fwd_txfm1d.c, but those are currently only |
| // being used for square transforms. |
| static void fidtx4(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| for (i = 0; i < 4; ++i) { |
| output[i] = (tran_low_t)fdct_round_shift(input[i] * Sqrt2); |
| } |
| } |
| |
| static void fidtx8(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| for (i = 0; i < 8; ++i) { |
| output[i] = input[i] * 2; |
| } |
| } |
| |
| static void fidtx16(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| for (i = 0; i < 16; ++i) { |
| output[i] = (tran_low_t)fdct_round_shift(input[i] * 2 * Sqrt2); |
| } |
| } |
| |
| static void fidtx32(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| for (i = 0; i < 32; ++i) { |
| output[i] = input[i] * 4; |
| } |
| } |
| |
| static void copy_block(const int16_t *src, int src_stride, int l, int w, |
| int16_t *dest, int dest_stride) { |
| int i; |
| for (i = 0; i < l; ++i) { |
| memcpy(dest + dest_stride * i, src + src_stride * i, w * sizeof(int16_t)); |
| } |
| } |
| |
| static void fliplr(int16_t *dest, int stride, int l, int w) { |
| int i, j; |
| for (i = 0; i < l; ++i) { |
| for (j = 0; j < w / 2; ++j) { |
| const int16_t tmp = dest[i * stride + j]; |
| dest[i * stride + j] = dest[i * stride + w - 1 - j]; |
| dest[i * stride + w - 1 - j] = tmp; |
| } |
| } |
| } |
| |
| static void flipud(int16_t *dest, int stride, int l, int w) { |
| int i, j; |
| for (j = 0; j < w; ++j) { |
| for (i = 0; i < l / 2; ++i) { |
| const int16_t tmp = dest[i * stride + j]; |
| dest[i * stride + j] = dest[(l - 1 - i) * stride + j]; |
| dest[(l - 1 - i) * stride + j] = tmp; |
| } |
| } |
| } |
| |
| static void fliplrud(int16_t *dest, int stride, int l, int w) { |
| int i, j; |
| for (i = 0; i < l / 2; ++i) { |
| for (j = 0; j < w; ++j) { |
| const int16_t tmp = dest[i * stride + j]; |
| dest[i * stride + j] = dest[(l - 1 - i) * stride + w - 1 - j]; |
| dest[(l - 1 - i) * stride + w - 1 - j] = tmp; |
| } |
| } |
| } |
| |
| static void copy_fliplr(const int16_t *src, int src_stride, int l, int w, |
| int16_t *dest, int dest_stride) { |
| copy_block(src, src_stride, l, w, dest, dest_stride); |
| fliplr(dest, dest_stride, l, w); |
| } |
| |
| static void copy_flipud(const int16_t *src, int src_stride, int l, int w, |
| int16_t *dest, int dest_stride) { |
| copy_block(src, src_stride, l, w, dest, dest_stride); |
| flipud(dest, dest_stride, l, w); |
| } |
| |
| static void copy_fliplrud(const int16_t *src, int src_stride, int l, int w, |
| int16_t *dest, int dest_stride) { |
| copy_block(src, src_stride, l, w, dest, dest_stride); |
| fliplrud(dest, dest_stride, l, w); |
| } |
| |
| static void maybe_flip_input(const int16_t **src, int *src_stride, int l, int w, |
| int16_t *buff, TX_TYPE tx_type) { |
| switch (tx_type) { |
| #if CONFIG_MRC_TX |
| case MRC_DCT: |
| #endif // CONFIG_MRC_TX |
| case DCT_DCT: |
| case ADST_DCT: |
| case DCT_ADST: |
| case ADST_ADST: |
| case IDTX: |
| case V_DCT: |
| case H_DCT: |
| case V_ADST: |
| case H_ADST: break; |
| case FLIPADST_DCT: |
| case FLIPADST_ADST: |
| case V_FLIPADST: |
| copy_flipud(*src, *src_stride, l, w, buff, w); |
| *src = buff; |
| *src_stride = w; |
| break; |
| case DCT_FLIPADST: |
| case ADST_FLIPADST: |
| case H_FLIPADST: |
| copy_fliplr(*src, *src_stride, l, w, buff, w); |
| *src = buff; |
| *src_stride = w; |
| break; |
| case FLIPADST_FLIPADST: |
| copy_fliplrud(*src, *src_stride, l, w, buff, w); |
| *src = buff; |
| *src_stride = w; |
| break; |
| default: assert(0); break; |
| } |
| } |
| #endif // CONFIG_EXT_TX |
| |
| void av1_fht4x4_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| #if !CONFIG_DAALA_TX4 |
| if (tx_type == DCT_DCT) { |
| aom_fdct4x4_c(input, output, stride); |
| return; |
| } |
| #endif |
| { |
| static const transform_2d FHT[] = { |
| #if CONFIG_DAALA_TX4 |
| { daala_fdct4, daala_fdct4 }, // DCT_DCT |
| { daala_fdst4, daala_fdct4 }, // ADST_DCT |
| { daala_fdct4, daala_fdst4 }, // DCT_ADST |
| { daala_fdst4, daala_fdst4 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { daala_fdst4, daala_fdct4 }, // FLIPADST_DCT |
| { daala_fdct4, daala_fdst4 }, // DCT_FLIPADST |
| { daala_fdst4, daala_fdst4 }, // FLIPADST_FLIPADST |
| { daala_fdst4, daala_fdst4 }, // ADST_FLIPADST |
| { daala_fdst4, daala_fdst4 }, // FLIPADST_ADST |
| { daala_idtx4, daala_idtx4 }, // IDTX |
| { daala_fdct4, daala_idtx4 }, // V_DCT |
| { daala_idtx4, daala_fdct4 }, // H_DCT |
| { daala_fdst4, daala_idtx4 }, // V_ADST |
| { daala_idtx4, daala_fdst4 }, // H_ADST |
| { daala_fdst4, daala_idtx4 }, // V_FLIPADST |
| { daala_idtx4, daala_fdst4 }, // H_FLIPADST |
| #endif |
| #else |
| { fdct4, fdct4 }, // DCT_DCT |
| { fadst4, fdct4 }, // ADST_DCT |
| { fdct4, fadst4 }, // DCT_ADST |
| { fadst4, fadst4 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst4, fdct4 }, // FLIPADST_DCT |
| { fdct4, fadst4 }, // DCT_FLIPADST |
| { fadst4, fadst4 }, // FLIPADST_FLIPADST |
| { fadst4, fadst4 }, // ADST_FLIPADST |
| { fadst4, fadst4 }, // FLIPADST_ADST |
| { fidtx4, fidtx4 }, // IDTX |
| { fdct4, fidtx4 }, // V_DCT |
| { fidtx4, fdct4 }, // H_DCT |
| { fadst4, fidtx4 }, // V_ADST |
| { fidtx4, fadst4 }, // H_ADST |
| { fadst4, fidtx4 }, // V_FLIPADST |
| { fidtx4, fadst4 }, // H_FLIPADST |
| #endif |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| tran_low_t out[4 * 4]; |
| int i, j; |
| tran_low_t temp_in[4], temp_out[4]; |
| |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[4 * 4]; |
| maybe_flip_input(&input, &stride, 4, 4, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| // Choose LGT adaptive to the prediction. We may apply different LGTs for |
| // different rows/columns, indicated by the pointers to 2D arrays |
| const tran_high_t *lgtmtx_col[1]; |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col); |
| int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Columns |
| for (i = 0; i < 4; ++i) { |
| /* A C99-safe upshift by 4 for both Daala and VPx TX. */ |
| for (j = 0; j < 4; ++j) temp_in[j] = input[j * stride + i] * 16; |
| #if !CONFIG_DAALA_TX4 |
| if (i == 0 && temp_in[0]) temp_in[0] += 1; |
| #endif |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt4(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < 4; ++j) out[j * 4 + i] = temp_out[j]; |
| } |
| |
| // Rows |
| for (i = 0; i < 4; ++i) { |
| for (j = 0; j < 4; ++j) temp_in[j] = out[j + i * 4]; |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt4(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| #if CONFIG_DAALA_TX4 |
| /* Daala TX has orthonormal scaling; shift down by only 1 to achieve |
| the usual VPx coefficient left-shift of 3. */ |
| for (j = 0; j < 4; ++j) output[j + i * 4] = temp_out[j] >> 1; |
| #else |
| for (j = 0; j < 4; ++j) output[j + i * 4] = (temp_out[j] + 1) >> 2; |
| #endif |
| } |
| } |
| } |
| |
| void av1_fht4x8_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| #if CONFIG_DAALA_TX4 && CONFIG_DAALA_TX8 |
| { daala_fdct8, daala_fdct4 }, // DCT_DCT |
| { daala_fdst8, daala_fdct4 }, // ADST_DCT |
| { daala_fdct8, daala_fdst4 }, // DCT_ADST |
| { daala_fdst8, daala_fdst4 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { daala_fdst8, daala_fdct4 }, // FLIPADST_DCT |
| { daala_fdct8, daala_fdst4 }, // DCT_FLIPADST |
| { daala_fdst8, daala_fdst4 }, // FLIPADST_FLIPADST |
| { daala_fdst8, daala_fdst4 }, // ADST_FLIPADST |
| { daala_fdst8, daala_fdst4 }, // FLIPADST_ADST |
| { daala_idtx8, daala_idtx4 }, // IDTX |
| { daala_fdct8, daala_idtx4 }, // V_DCT |
| { daala_idtx8, daala_fdct4 }, // H_DCT |
| { daala_fdst8, daala_idtx4 }, // V_ADST |
| { daala_idtx8, daala_fdst4 }, // H_ADST |
| { daala_fdst8, daala_idtx4 }, // V_FLIPADST |
| { daala_idtx8, daala_fdst4 }, // H_FLIPADST |
| #endif |
| #else |
| { fdct8, fdct4 }, // DCT_DCT |
| { fadst8, fdct4 }, // ADST_DCT |
| { fdct8, fadst4 }, // DCT_ADST |
| { fadst8, fadst4 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst8, fdct4 }, // FLIPADST_DCT |
| { fdct8, fadst4 }, // DCT_FLIPADST |
| { fadst8, fadst4 }, // FLIPADST_FLIPADST |
| { fadst8, fadst4 }, // ADST_FLIPADST |
| { fadst8, fadst4 }, // FLIPADST_ADST |
| { fidtx8, fidtx4 }, // IDTX |
| { fdct8, fidtx4 }, // V_DCT |
| { fidtx8, fdct4 }, // H_DCT |
| { fadst8, fidtx4 }, // V_ADST |
| { fidtx8, fadst4 }, // H_ADST |
| { fadst8, fidtx4 }, // V_FLIPADST |
| { fidtx8, fadst4 }, // H_FLIPADST |
| #endif |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 4; |
| const int n2 = 8; |
| tran_low_t out[8 * 4]; |
| tran_low_t temp_in[8], temp_out[8]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[8 * 4]; |
| maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_col[1]; |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); |
| int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Multi-way scaling matrix (bits): |
| // LGT/AV1 row,col input+2.5, rowTX+.5, mid+0, colTX+1, out-1 == 3 |
| // LGT row, Daala col input+3.5, rowTX+.5, mid+0, colTX+0, out-1 == 3 |
| // Daala row, LGT col input+3, rowTX+0, mid+0, colTX+1, out-1 == 3 |
| // Daala row,col input+4, rowTX+0, mid+0, colTX+0, out-1 == 3 |
| |
| // Rows |
| for (i = 0; i < n2; ++i) { |
| // Input scaling |
| for (j = 0; j < n; ++j) { |
| #if CONFIG_DAALA_TX4 && CONFIG_DAALA_TX8 |
| #if CONFIG_LGT |
| // Input scaling when LGT might be active (1-4 above) |
| temp_in[j] = use_lgt_row ? |
| (tran_low_t)fdct_round_shift(input[i * stride + j] * Sqrt2 * |
| (use_lgt_col ? 4 : 8)) : |
| input[i * stride + j] * (use_lgt_col ? 8 : 16)); |
| #else |
| // Input scaling when LGT is not possible, Daala only (4 above) |
| temp_in[j] = input[i * stride + j] * 16; |
| #endif |
| #else |
| // Input scaling when Daala is not possible, LGT/AV1 only (1 above) |
| temp_in[j] = |
| (tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2); |
| #endif |
| } |
| // Row transform (AV1/LGT scale up .5 bit, Daala does not scale) |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt4(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| // No mid scaling |
| for (j = 0; j < n; ++j) out[j * n2 + i] = temp_out[j]; |
| } |
| |
| // Columns |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| // Column transform (AV1/LGT scale up 1 bit, Daala does not scale) |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt8(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| // Output scaling is always a downshift of 1 |
| for (j = 0; j < n2; ++j) |
| output[i + j * n] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht8x4_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| #if CONFIG_DAALA_TX4 && CONFIG_DAALA_TX8 |
| { daala_fdct4, daala_fdct8 }, // DCT_DCT |
| { daala_fdst4, daala_fdct8 }, // ADST_DCT |
| { daala_fdct4, daala_fdst8 }, // DCT_ADST |
| { daala_fdst4, daala_fdst8 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { daala_fdst4, daala_fdct8 }, // FLIPADST_DCT |
| { daala_fdct4, daala_fdst8 }, // DCT_FLIPADST |
| { daala_fdst4, daala_fdst8 }, // FLIPADST_FLIPADST |
| { daala_fdst4, daala_fdst8 }, // ADST_FLIPADST |
| { daala_fdst4, daala_fdst8 }, // FLIPADST_ADST |
| { daala_idtx4, daala_idtx8 }, // IDTX |
| { daala_fdct4, daala_idtx8 }, // V_DCT |
| { daala_idtx4, daala_fdct8 }, // H_DCT |
| { daala_fdst4, daala_idtx8 }, // V_ADST |
| { daala_idtx4, daala_fdst8 }, // H_ADST |
| { daala_fdst4, daala_idtx8 }, // V_FLIPADST |
| { daala_idtx4, daala_fdst8 }, // H_FLIPADST |
| #endif |
| #else |
| { fdct4, fdct8 }, // DCT_DCT |
| { fadst4, fdct8 }, // ADST_DCT |
| { fdct4, fadst8 }, // DCT_ADST |
| { fadst4, fadst8 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst4, fdct8 }, // FLIPADST_DCT |
| { fdct4, fadst8 }, // DCT_FLIPADST |
| { fadst4, fadst8 }, // FLIPADST_FLIPADST |
| { fadst4, fadst8 }, // ADST_FLIPADST |
| { fadst4, fadst8 }, // FLIPADST_ADST |
| { fidtx4, fidtx8 }, // IDTX |
| { fdct4, fidtx8 }, // V_DCT |
| { fidtx4, fdct8 }, // H_DCT |
| { fadst4, fidtx8 }, // V_ADST |
| { fidtx4, fadst8 }, // H_ADST |
| { fadst4, fidtx8 }, // V_FLIPADST |
| { fidtx4, fadst8 }, // H_FLIPADST |
| #endif |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 4; |
| const int n2 = 8; |
| tran_low_t out[8 * 4]; |
| tran_low_t temp_in[8], temp_out[8]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[8 * 4]; |
| maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_col[1]; |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col); |
| int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Multi-way scaling matrix (bits): |
| // LGT/AV1 row,col input+2.5, rowTX+1, mid+0, colTX+.5, out-1 == 3 |
| // LGT row, Daala col input+3, rowTX+1, mid+0, colTX+0, out-1 == 3 |
| // Daala row, LGT col input+3.5 rowTX+0, mid+0, colTX+.5, out-1 == 3 |
| // Daala row,col input+4, rowTX+0, mid+0, colTX+0, out-1 == 3 |
| |
| // Columns |
| for (i = 0; i < n2; ++i) { |
| for (j = 0; j < n; ++j) { |
| #if CONFIG_DAALA_TX4 && CONFIG_DAALA_TX8 |
| #if CONFIG_LGT |
| // Input scaling when LGT might be active (1-4 above) |
| temp_in[j] = use_lgt_col ? |
| (tran_low_t)fdct_round_shift(input[j * stride + i] * Sqrt2 * |
| (use_lgt_row ? 4 : 8)) : |
| input[j * stride + i] * (use_lgt_row ? 8 : 16)); |
| #else |
| // Input scaling when LGT is not possible, Daala only (4 above) |
| temp_in[j] = input[j * stride + i] * 16; |
| #endif |
| #else |
| // Input scaling when Daala is not possible, AV1/LGT only (1 above) |
| temp_in[j] = |
| (tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2); |
| #endif |
| } |
| // Column transform (AV1/LGT scale up .5 bit, Daala does not scale) |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt4(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| // No scaling between transforms |
| for (j = 0; j < n; ++j) out[j * n2 + i] = temp_out[j]; |
| } |
| |
| // Rows |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| // Row transform (AV1/LGT scale up 1 bit, Daala does not scale) |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt8(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| // Output scaling is always a downshift of 1 |
| for (j = 0; j < n2; ++j) |
| output[j + i * n2] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht4x16_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct16, fdct4 }, // DCT_DCT |
| { fadst16, fdct4 }, // ADST_DCT |
| { fdct16, fadst4 }, // DCT_ADST |
| { fadst16, fadst4 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst16, fdct4 }, // FLIPADST_DCT |
| { fdct16, fadst4 }, // DCT_FLIPADST |
| { fadst16, fadst4 }, // FLIPADST_FLIPADST |
| { fadst16, fadst4 }, // ADST_FLIPADST |
| { fadst16, fadst4 }, // FLIPADST_ADST |
| { fidtx16, fidtx4 }, // IDTX |
| { fdct16, fidtx4 }, // V_DCT |
| { fidtx16, fdct4 }, // H_DCT |
| { fadst16, fidtx4 }, // V_ADST |
| { fidtx16, fadst4 }, // H_ADST |
| { fadst16, fidtx4 }, // V_FLIPADST |
| { fidtx16, fadst4 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 4; |
| const int n4 = 16; |
| tran_low_t out[16 * 4]; |
| tran_low_t temp_in[16], temp_out[16]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[16 * 4]; |
| maybe_flip_input(&input, &stride, n4, n, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Rows |
| for (i = 0; i < n4; ++i) { |
| for (j = 0; j < n; ++j) temp_in[j] = input[i * stride + j] * 4; |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt4(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j]; |
| } |
| |
| // Columns |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4]; |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n4; ++j) |
| output[i + j * n] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht16x4_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct4, fdct16 }, // DCT_DCT |
| { fadst4, fdct16 }, // ADST_DCT |
| { fdct4, fadst16 }, // DCT_ADST |
| { fadst4, fadst16 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst4, fdct16 }, // FLIPADST_DCT |
| { fdct4, fadst16 }, // DCT_FLIPADST |
| { fadst4, fadst16 }, // FLIPADST_FLIPADST |
| { fadst4, fadst16 }, // ADST_FLIPADST |
| { fadst4, fadst16 }, // FLIPADST_ADST |
| { fidtx4, fidtx16 }, // IDTX |
| { fdct4, fidtx16 }, // V_DCT |
| { fidtx4, fdct16 }, // H_DCT |
| { fadst4, fidtx16 }, // V_ADST |
| { fidtx4, fadst16 }, // H_ADST |
| { fadst4, fidtx16 }, // V_FLIPADST |
| { fidtx4, fadst16 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 4; |
| const int n4 = 16; |
| tran_low_t out[16 * 4]; |
| tran_low_t temp_in[16], temp_out[16]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[16 * 4]; |
| maybe_flip_input(&input, &stride, n, n4, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_col[1]; |
| int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col); |
| #endif |
| |
| // Columns |
| for (i = 0; i < n4; ++i) { |
| for (j = 0; j < n; ++j) temp_in[j] = input[j * stride + i] * 4; |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt4(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j]; |
| } |
| |
| // Rows |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n4; ++j) |
| output[j + i * n4] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht8x16_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| #if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16 |
| { daala_fdct16, daala_fdct8 }, // DCT_DCT |
| { daala_fdst16, daala_fdct8 }, // ADST_DCT |
| { daala_fdct16, daala_fdst8 }, // DCT_ADST |
| { daala_fdst16, daala_fdst8 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { daala_fdst16, daala_fdct8 }, // FLIPADST_DCT |
| { daala_fdct16, daala_fdst8 }, // DCT_FLIPADST |
| { daala_fdst16, daala_fdst8 }, // FLIPADST_FLIPADST |
| { daala_fdst16, daala_fdst8 }, // ADST_FLIPADST |
| { daala_fdst16, daala_fdst8 }, // FLIPADST_ADST |
| { daala_idtx16, daala_idtx8 }, // IDTX |
| { daala_fdct16, daala_idtx8 }, // V_DCT |
| { daala_idtx16, daala_fdct8 }, // H_DCT |
| { daala_fdst16, daala_idtx8 }, // V_ADST |
| { daala_idtx16, daala_fdst8 }, // H_ADST |
| { daala_fdst16, daala_idtx8 }, // V_FLIPADST |
| { daala_idtx16, daala_fdst8 }, // H_FLIPADST |
| #endif |
| #else |
| { fdct16, fdct8 }, // DCT_DCT |
| { fadst16, fdct8 }, // ADST_DCT |
| { fdct16, fadst8 }, // DCT_ADST |
| { fadst16, fadst8 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst16, fdct8 }, // FLIPADST_DCT |
| { fdct16, fadst8 }, // DCT_FLIPADST |
| { fadst16, fadst8 }, // FLIPADST_FLIPADST |
| { fadst16, fadst8 }, // ADST_FLIPADST |
| { fadst16, fadst8 }, // FLIPADST_ADST |
| { fidtx16, fidtx8 }, // IDTX |
| { fdct16, fidtx8 }, // V_DCT |
| { fidtx16, fdct8 }, // H_DCT |
| { fadst16, fidtx8 }, // V_ADST |
| { fidtx16, fadst8 }, // H_ADST |
| { fadst16, fidtx8 }, // V_FLIPADST |
| { fidtx16, fadst8 }, // H_FLIPADST |
| #endif |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 8; |
| const int n2 = 16; |
| tran_low_t out[16 * 8]; |
| tran_low_t temp_in[16], temp_out[16]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[16 * 8]; |
| maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Multi-way scaling matrix (bits): |
| // LGT/AV1 row, AV1 col input+2.5, rowTX+1, mid-2, colTX+1.5, out+0 == 3 |
| // LGT row, Daala col input+3, rowTX+1, mid+0, colTX+0, out-1 == 3 |
| // Daala row, LGT col N/A (no 16-point LGT) |
| // Daala row, col input+4, rowTX+0, mid+0, colTX+0, out-1 == 3 |
| |
| // Rows |
| for (i = 0; i < n2; ++i) { |
| // Input scaling |
| for (j = 0; j < n; ++j) { |
| #if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16 |
| #if CONFIG_LGT |
| // Input scaling when LGT might be active (cases 2, 4 above) |
| temp_in[j] = input[i * stride + j] * (use_lgt_row ? 2 : 4) * 4; |
| #else |
| // Input scaling when LGT is not possible, Daala only (case 4 above) |
| temp_in[j] = input[i * stride + j] * 16; |
| #endif |
| #else |
| // Input scaling when Daala is not possible, LGT/AV1 only (case 1 above) |
| temp_in[j] = |
| (tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2); |
| #endif |
| } |
| |
| // Row transform (AV1/LGT scale up 1 bit, Daala does not scale) |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt8(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| |
| // Mid scaling |
| for (j = 0; j < n; ++j) { |
| #if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16 |
| // mid scaling: only cases 2 and 4 possible |
| out[j * n2 + i] = temp_out[j]; |
| #else |
| // mid scaling: only case 1 possible |
| out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| #endif |
| } |
| } |
| |
| // Columns |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| // Column transform (AV1/LGT scale up 1.5 bits, Daala does not scale) |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n2; ++j) { |
| #if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16 |
| // Output scaling (cases 2 and 3 above) |
| output[i + j * n] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| #else |
| // Output scaling (case 1 above) |
| output[i + j * n] = temp_out[j]; |
| #endif |
| } |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht16x8_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| #if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16 |
| { daala_fdct8, daala_fdct16 }, // DCT_DCT |
| { daala_fdst8, daala_fdct16 }, // ADST_DCT |
| { daala_fdct8, daala_fdst16 }, // DCT_ADST |
| { daala_fdst8, daala_fdst16 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { daala_fdst8, daala_fdct16 }, // FLIPADST_DCT |
| { daala_fdct8, daala_fdst16 }, // DCT_FLIPADST |
| { daala_fdst8, daala_fdst16 }, // FLIPADST_FLIPADST |
| { daala_fdst8, daala_fdst16 }, // ADST_FLIPADST |
| { daala_fdst8, daala_fdst16 }, // FLIPADST_ADST |
| { daala_idtx8, daala_idtx16 }, // IDTX |
| { daala_fdct8, daala_idtx16 }, // V_DCT |
| { daala_idtx8, daala_fdct16 }, // H_DCT |
| { daala_fdst8, daala_idtx16 }, // V_ADST |
| { daala_idtx8, daala_fdst16 }, // H_ADST |
| { daala_fdst8, daala_idtx16 }, // V_FLIPADST |
| { daala_idtx8, daala_fdst16 }, // H_FLIPADST |
| #endif |
| #else |
| { fdct8, fdct16 }, // DCT_DCT |
| { fadst8, fdct16 }, // ADST_DCT |
| { fdct8, fadst16 }, // DCT_ADST |
| { fadst8, fadst16 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst8, fdct16 }, // FLIPADST_DCT |
| { fdct8, fadst16 }, // DCT_FLIPADST |
| { fadst8, fadst16 }, // FLIPADST_FLIPADST |
| { fadst8, fadst16 }, // ADST_FLIPADST |
| { fadst8, fadst16 }, // FLIPADST_ADST |
| { fidtx8, fidtx16 }, // IDTX |
| { fdct8, fidtx16 }, // V_DCT |
| { fidtx8, fdct16 }, // H_DCT |
| { fadst8, fidtx16 }, // V_ADST |
| { fidtx8, fadst16 }, // H_ADST |
| { fadst8, fidtx16 }, // V_FLIPADST |
| { fidtx8, fadst16 }, // H_FLIPADST |
| #endif |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 8; |
| const int n2 = 16; |
| tran_low_t out[16 * 8]; |
| tran_low_t temp_in[16], temp_out[16]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[16 * 8]; |
| maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_col[1]; |
| int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); |
| #endif |
| |
| // Multi-way scaling matrix (bits): |
| // LGT/AV1 col, AV1 row input+2.5, colTX+1, mid-2, rowTX+1.5, out+0 == 3 |
| // LGT col, Daala row input+3, colTX+1, mid+0, rowTX+0, out-1 == 3 |
| // Daala col, LGT row N/A (no 16-point LGT) |
| // Daala col, row input+4, colTX+0, mid+0, rowTX+0, out-1 == 3 |
| |
| // Columns |
| for (i = 0; i < n2; ++i) { |
| // Input scaling |
| for (j = 0; j < n; ++j) { |
| #if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16 |
| #if CONFIG_LGT |
| // Input scaling when LGT might be active (1, 2 above) |
| temp_in[j] = input[j * stride + i] * 4 * (use_lgt_col ? 2 : 4); |
| #else |
| // Input scaling when LGT is not possible, Daala only (4 above) |
| temp_in[j] = input[j * stride + i] * 16; |
| #endif |
| #else |
| // Input scaling when Daala is not possible, AV1/LGT only (1 above) |
| temp_in[j] = |
| (tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2); |
| #endif |
| } |
| |
| // Column transform (AV1/LGT scale up 1 bit, Daala does not scale) |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt8(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| |
| // Mid scaling |
| for (j = 0; j < n; ++j) { |
| #if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16 |
| // scaling cases 2 and 4 above |
| out[j * n2 + i] = temp_out[j]; |
| #else |
| // Scaling case 1 above |
| out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| #endif |
| } |
| } |
| |
| // Rows |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| // Row transform (AV1 scales up 1.5 bits, Daala does not scale) |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n2; ++j) { |
| #if CONFIG_DAALA_TX8 && CONFIG_DAALA_TX16 |
| // Output scaing cases 2 and 4 above |
| output[j + i * n2] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| #else |
| // Ouptut scaling case 1 above |
| output[j + i * n2] = temp_out[j]; |
| #endif |
| } |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht8x32_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct32, fdct8 }, // DCT_DCT |
| { fhalfright32, fdct8 }, // ADST_DCT |
| { fdct32, fadst8 }, // DCT_ADST |
| { fhalfright32, fadst8 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fhalfright32, fdct8 }, // FLIPADST_DCT |
| { fdct32, fadst8 }, // DCT_FLIPADST |
| { fhalfright32, fadst8 }, // FLIPADST_FLIPADST |
| { fhalfright32, fadst8 }, // ADST_FLIPADST |
| { fhalfright32, fadst8 }, // FLIPADST_ADST |
| { fidtx32, fidtx8 }, // IDTX |
| { fdct32, fidtx8 }, // V_DCT |
| { fidtx32, fdct8 }, // H_DCT |
| { fhalfright32, fidtx8 }, // V_ADST |
| { fidtx32, fadst8 }, // H_ADST |
| { fhalfright32, fidtx8 }, // V_FLIPADST |
| { fidtx32, fadst8 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 8; |
| const int n4 = 32; |
| tran_low_t out[32 * 8]; |
| tran_low_t temp_in[32], temp_out[32]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[32 * 8]; |
| maybe_flip_input(&input, &stride, n4, n, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Rows |
| for (i = 0; i < n4; ++i) { |
| for (j = 0; j < n; ++j) temp_in[j] = input[i * stride + j] * 4; |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt8(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j]; |
| } |
| |
| // Columns |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4]; |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n4; ++j) |
| output[i + j * n] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht32x8_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct8, fdct32 }, // DCT_DCT |
| { fadst8, fdct32 }, // ADST_DCT |
| { fdct8, fhalfright32 }, // DCT_ADST |
| { fadst8, fhalfright32 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst8, fdct32 }, // FLIPADST_DCT |
| { fdct8, fhalfright32 }, // DCT_FLIPADST |
| { fadst8, fhalfright32 }, // FLIPADST_FLIPADST |
| { fadst8, fhalfright32 }, // ADST_FLIPADST |
| { fadst8, fhalfright32 }, // FLIPADST_ADST |
| { fidtx8, fidtx32 }, // IDTX |
| { fdct8, fidtx32 }, // V_DCT |
| { fidtx8, fdct32 }, // H_DCT |
| { fadst8, fidtx32 }, // V_ADST |
| { fidtx8, fhalfright32 }, // H_ADST |
| { fadst8, fidtx32 }, // V_FLIPADST |
| { fidtx8, fhalfright32 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 8; |
| const int n4 = 32; |
| tran_low_t out[32 * 8]; |
| tran_low_t temp_in[32], temp_out[32]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[32 * 8]; |
| maybe_flip_input(&input, &stride, n, n4, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_col[1]; |
| int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); |
| #endif |
| |
| // Columns |
| for (i = 0; i < n4; ++i) { |
| for (j = 0; j < n; ++j) temp_in[j] = input[j * stride + i] * 4; |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt8(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j]; |
| } |
| |
| // Rows |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n4; ++j) |
| output[j + i * n4] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht16x32_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| #if CONFIG_DAALA_TX16 && CONFIG_DAALA_TX32 |
| { daala_fdct32, daala_fdct16 }, // DCT_DCT |
| { daala_fdst32, daala_fdct16 }, // ADST_DCT |
| { daala_fdct32, daala_fdst16 }, // DCT_ADST |
| { daala_fdst32, daala_fdst16 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { daala_fdst32, daala_fdct16 }, // FLIPADST_DCT |
| { daala_fdct32, daala_fdst16 }, // DCT_FLIPADST |
| { daala_fdst32, daala_fdst16 }, // FLIPADST_FLIPADST |
| { daala_fdst32, daala_fdst16 }, // ADST_FLIPADST |
| { daala_fdst32, daala_fdst16 }, // FLIPADST_ADST |
| { daala_idtx32, daala_idtx16 }, // IDTX |
| { daala_fdct32, daala_idtx16 }, // V_DCT |
| { daala_idtx32, daala_fdct16 }, // H_DCT |
| { daala_fdst32, daala_idtx16 }, // V_ADST |
| { daala_idtx32, daala_fdst16 }, // H_ADST |
| { daala_fdst32, daala_idtx16 }, // V_FLIPADST |
| { daala_idtx32, daala_fdst16 }, // H_FLIPADST |
| #endif |
| #else |
| { fdct32, fdct16 }, // DCT_DCT |
| { fhalfright32, fdct16 }, // ADST_DCT |
| { fdct32, fadst16 }, // DCT_ADST |
| { fhalfright32, fadst16 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fhalfright32, fdct16 }, // FLIPADST_DCT |
| { fdct32, fadst16 }, // DCT_FLIPADST |
| { fhalfright32, fadst16 }, // FLIPADST_FLIPADST |
| { fhalfright32, fadst16 }, // ADST_FLIPADST |
| { fhalfright32, fadst16 }, // FLIPADST_ADST |
| { fidtx32, fidtx16 }, // IDTX |
| { fdct32, fidtx16 }, // V_DCT |
| { fidtx32, fdct16 }, // H_DCT |
| { fhalfright32, fidtx16 }, // V_ADST |
| { fidtx32, fadst16 }, // H_ADST |
| { fhalfright32, fidtx16 }, // V_FLIPADST |
| { fidtx32, fadst16 }, // H_FLIPADST |
| #endif |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 16; |
| const int n2 = 32; |
| tran_low_t out[32 * 16]; |
| tran_low_t temp_in[32], temp_out[32]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[32 * 16]; |
| maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type); |
| #endif |
| |
| // Rows |
| for (i = 0; i < n2; ++i) { |
| for (j = 0; j < n; ++j) { |
| #if CONFIG_DAALA_TX16 && CONFIG_DAALA_TX32 |
| temp_in[j] = input[i * stride + j] * 16; |
| #else |
| temp_in[j] = |
| (tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2); |
| #endif |
| } |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n; ++j) { |
| #if CONFIG_DAALA_TX16 && CONFIG_DAALA_TX32 |
| out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| #else |
| out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4); |
| #endif |
| } |
| } |
| |
| // Columns |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n2; ++j) output[i + j * n] = temp_out[j]; |
| } |
| // Note: overall scale factor of transform is 4 times unitary |
| } |
| |
| void av1_fht32x16_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| #if CONFIG_DAALA_TX16 && CONFIG_DAALA_TX32 |
| { daala_fdct16, daala_fdct32 }, // DCT_DCT |
| { daala_fdst16, daala_fdct32 }, // ADST_DCT |
| { daala_fdct16, daala_fdst32 }, // DCT_ADST |
| { daala_fdst16, daala_fdst32 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { daala_fdst16, daala_fdct32 }, // FLIPADST_DCT |
| { daala_fdct16, daala_fdst32 }, // DCT_FLIPADST |
| { daala_fdst16, daala_fdst32 }, // FLIPADST_FLIPADST |
| { daala_fdst16, daala_fdst32 }, // ADST_FLIPADST |
| { daala_fdst16, daala_fdst32 }, // FLIPADST_ADST |
| { daala_idtx16, daala_idtx32 }, // IDTX |
| { daala_fdct16, daala_idtx32 }, // V_DCT |
| { daala_idtx16, daala_fdct32 }, // H_DCT |
| { daala_fdst16, daala_idtx32 }, // V_ADST |
| { daala_idtx16, daala_fdst32 }, // H_ADST |
| { daala_fdst16, daala_idtx32 }, // V_FLIPADST |
| { daala_idtx16, daala_fdst32 }, // H_FLIPADST |
| #endif |
| #else |
| { fdct16, fdct32 }, // DCT_DCT |
| { fadst16, fdct32 }, // ADST_DCT |
| { fdct16, fhalfright32 }, // DCT_ADST |
| { fadst16, fhalfright32 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst16, fdct32 }, // FLIPADST_DCT |
| { fdct16, fhalfright32 }, // DCT_FLIPADST |
| { fadst16, fhalfright32 }, // FLIPADST_FLIPADST |
| { fadst16, fhalfright32 }, // ADST_FLIPADST |
| { fadst16, fhalfright32 }, // FLIPADST_ADST |
| { fidtx16, fidtx32 }, // IDTX |
| { fdct16, fidtx32 }, // V_DCT |
| { fidtx16, fdct32 }, // H_DCT |
| { fadst16, fidtx32 }, // V_ADST |
| { fidtx16, fhalfright32 }, // H_ADST |
| { fadst16, fidtx32 }, // V_FLIPADST |
| { fidtx16, fhalfright32 }, // H_FLIPADST |
| #endif |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 16; |
| const int n2 = 32; |
| tran_low_t out[32 * 16]; |
| tran_low_t temp_in[32], temp_out[32]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[32 * 16]; |
| maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type); |
| #endif |
| |
| // Columns |
| for (i = 0; i < n2; ++i) { |
| for (j = 0; j < n; ++j) { |
| #if CONFIG_DAALA_TX16 && CONFIG_DAALA_TX32 |
| temp_in[j] = input[j * stride + i] * 16; |
| #else |
| temp_in[j] = |
| (tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2); |
| #endif |
| } |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n; ++j) { |
| #if CONFIG_DAALA_TX16 && CONFIG_DAALA_TX32 |
| out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| #else |
| out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4); |
| #endif |
| } |
| } |
| |
| // Rows |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n2; ++j) output[j + i * n2] = temp_out[j]; |
| } |
| // Note: overall scale factor of transform is 4 times unitary |
| } |
| |
| void av1_fht8x8_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| #if !CONFIG_DAALA_TX8 |
| if (tx_type == DCT_DCT) { |
| aom_fdct8x8_c(input, output, stride); |
| return; |
| } |
| #endif |
| { |
| static const transform_2d FHT[] = { |
| #if CONFIG_DAALA_TX8 |
| { daala_fdct8, daala_fdct8 }, // DCT_DCT |
| { daala_fdst8, daala_fdct8 }, // ADST_DCT |
| { daala_fdct8, daala_fdst8 }, // DCT_ADST |
| { daala_fdst8, daala_fdst8 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { daala_fdst8, daala_fdct8 }, // FLIPADST_DCT |
| { daala_fdct8, daala_fdst8 }, // DCT_FLIPADST |
| { daala_fdst8, daala_fdst8 }, // FLIPADST_FLIPADST |
| { daala_fdst8, daala_fdst8 }, // ADST_FLIPADST |
| { daala_fdst8, daala_fdst8 }, // FLIPADST_ADST |
| { daala_idtx8, daala_idtx8 }, // IDTX |
| { daala_fdct8, daala_idtx8 }, // V_DCT |
| { daala_idtx8, daala_fdct8 }, // H_DCT |
| { daala_fdst8, daala_idtx8 }, // V_ADST |
| { daala_idtx8, daala_fdst8 }, // H_ADST |
| { daala_fdst8, daala_idtx8 }, // V_FLIPADST |
| { daala_idtx8, daala_fdst8 }, // H_FLIPADST |
| #endif |
| #else |
| { fdct8, fdct8 }, // DCT_DCT |
| { fadst8, fdct8 }, // ADST_DCT |
| { fdct8, fadst8 }, // DCT_ADST |
| { fadst8, fadst8 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst8, fdct8 }, // FLIPADST_DCT |
| { fdct8, fadst8 }, // DCT_FLIPADST |
| { fadst8, fadst8 }, // FLIPADST_FLIPADST |
| { fadst8, fadst8 }, // ADST_FLIPADST |
| { fadst8, fadst8 }, // FLIPADST_ADST |
| { fidtx8, fidtx8 }, // IDTX |
| { fdct8, fidtx8 }, // V_DCT |
| { fidtx8, fdct8 }, // H_DCT |
| { fadst8, fidtx8 }, // V_ADST |
| { fidtx8, fadst8 }, // H_ADST |
| { fadst8, fidtx8 }, // V_FLIPADST |
| { fidtx8, fadst8 }, // H_FLIPADST |
| #endif |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| tran_low_t out[64]; |
| int i, j; |
| tran_low_t temp_in[8], temp_out[8]; |
| |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[8 * 8]; |
| maybe_flip_input(&input, &stride, 8, 8, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_col[1]; |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); |
| int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Columns |
| for (i = 0; i < 8; ++i) { |
| #if CONFIG_DAALA_TX8 |
| for (j = 0; j < 8; ++j) temp_in[j] = input[j * stride + i] * 16; |
| #else |
| for (j = 0; j < 8; ++j) temp_in[j] = input[j * stride + i] * 4; |
| #endif |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt8(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < 8; ++j) out[j * 8 + i] = temp_out[j]; |
| } |
| |
| // Rows |
| for (i = 0; i < 8; ++i) { |
| for (j = 0; j < 8; ++j) temp_in[j] = out[j + i * 8]; |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt8(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| #if CONFIG_DAALA_TX8 |
| for (j = 0; j < 8; ++j) |
| output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| #else |
| for (j = 0; j < 8; ++j) |
| output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| #endif |
| } |
| } |
| } |
| |
| /* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per |
| pixel. */ |
| void av1_fwht4x4_c(const int16_t *input, tran_low_t *output, int stride) { |
| int i; |
| tran_high_t a1, b1, c1, d1, e1; |
| const int16_t *ip_pass0 = input; |
| const tran_low_t *ip = NULL; |
| tran_low_t *op = output; |
| |
| for (i = 0; i < 4; i++) { |
| a1 = ip_pass0[0 * stride]; |
| b1 = ip_pass0[1 * stride]; |
| c1 = ip_pass0[2 * stride]; |
| d1 = ip_pass0[3 * stride]; |
| |
| a1 += b1; |
| d1 = d1 - c1; |
| e1 = (a1 - d1) >> 1; |
| b1 = e1 - b1; |
| c1 = e1 - c1; |
| a1 -= c1; |
| d1 += b1; |
| op[0] = (tran_low_t)a1; |
| op[4] = (tran_low_t)c1; |
| op[8] = (tran_low_t)d1; |
| op[12] = (tran_low_t)b1; |
| |
| ip_pass0++; |
| op++; |
| } |
| ip = output; |
| op = output; |
| |
| for (i = 0; i < 4; i++) { |
| a1 = ip[0]; |
| b1 = ip[1]; |
| c1 = ip[2]; |
| d1 = ip[3]; |
| |
| a1 += b1; |
| d1 -= c1; |
| e1 = (a1 - d1) >> 1; |
| b1 = e1 - b1; |
| c1 = e1 - c1; |
| a1 -= c1; |
| d1 += b1; |
| op[0] = (tran_low_t)(a1 * UNIT_QUANT_FACTOR); |
| op[1] = (tran_low_t)(c1 * UNIT_QUANT_FACTOR); |
| op[2] = (tran_low_t)(d1 * UNIT_QUANT_FACTOR); |
| op[3] = (tran_low_t)(b1 * UNIT_QUANT_FACTOR); |
| |
| ip += 4; |
| op += 4; |
| } |
| } |
| |
| void av1_fht16x16_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| #if CONFIG_DAALA_TX16 |
| { daala_fdct16, daala_fdct16 }, // DCT_DCT |
| { daala_fdst16, daala_fdct16 }, // ADST_DCT |
| { daala_fdct16, daala_fdst16 }, // DCT_ADST |
| { daala_fdst16, daala_fdst16 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { daala_fdst16, daala_fdct16 }, // FLIPADST_DCT |
| { daala_fdct16, daala_fdst16 }, // DCT_FLIPADST |
| { daala_fdst16, daala_fdst16 }, // FLIPADST_FLIPADST |
| { daala_fdst16, daala_fdst16 }, // ADST_FLIPADST |
| { daala_fdst16, daala_fdst16 }, // FLIPADST_ADST |
| { daala_idtx16, daala_idtx16 }, // IDTX |
| { daala_fdct16, daala_idtx16 }, // V_DCT |
| { daala_idtx16, daala_fdct16 }, // H_DCT |
| { daala_fdst16, daala_idtx16 }, // V_ADST |
| { daala_idtx16, daala_fdst16 }, // H_ADST |
| { daala_fdst16, daala_idtx16 }, // V_FLIPADST |
| { daala_idtx16, daala_fdst16 }, // H_FLIPADST |
| #endif |
| #else |
| { fdct16, fdct16 }, // DCT_DCT |
| { fadst16, fdct16 }, // ADST_DCT |
| { fdct16, fadst16 }, // DCT_ADST |
| { fadst16, fadst16 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst16, fdct16 }, // FLIPADST_DCT |
| { fdct16, fadst16 }, // DCT_FLIPADST |
| { fadst16, fadst16 }, // FLIPADST_FLIPADST |
| { fadst16, fadst16 }, // ADST_FLIPADST |
| { fadst16, fadst16 }, // FLIPADST_ADST |
| { fidtx16, fidtx16 }, // IDTX |
| { fdct16, fidtx16 }, // V_DCT |
| { fidtx16, fdct16 }, // H_DCT |
| { fadst16, fidtx16 }, // V_ADST |
| { fidtx16, fadst16 }, // H_ADST |
| { fadst16, fidtx16 }, // V_FLIPADST |
| { fidtx16, fadst16 }, // H_FLIPADST |
| #endif |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| tran_low_t out[256]; |
| int i, j; |
| tran_low_t temp_in[16], temp_out[16]; |
| |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[16 * 16]; |
| maybe_flip_input(&input, &stride, 16, 16, flipped_input, tx_type); |
| #endif |
| |
| // Columns |
| for (i = 0; i < 16; ++i) { |
| for (j = 0; j < 16; ++j) { |
| #if CONFIG_DAALA_TX16 |
| temp_in[j] = input[j * stride + i] * 16; |
| #else |
| temp_in[j] = input[j * stride + i] * 4; |
| #endif |
| } |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < 16; ++j) { |
| #if CONFIG_DAALA_TX16 |
| out[j * 16 + i] = temp_out[j]; |
| #else |
| out[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2; |
| #endif |
| } |
| } |
| |
| // Rows |
| for (i = 0; i < 16; ++i) { |
| for (j = 0; j < 16; ++j) temp_in[j] = out[j + i * 16]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < 16; ++j) { |
| #if CONFIG_DAALA_TX16 |
| output[j + i * 16] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| #else |
| output[j + i * 16] = temp_out[j]; |
| #endif |
| } |
| } |
| } |
| |
| void av1_highbd_fwht4x4_c(const int16_t *input, tran_low_t *output, |
| int stride) { |
| av1_fwht4x4_c(input, output, stride); |
| } |
| |
| void av1_fht32x32_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| #if CONFIG_DAALA_TX32 |
| { daala_fdct32, daala_fdct32 }, // DCT_DCT |
| #if CONFIG_EXT_TX |
| { daala_fdst32, daala_fdct32 }, // ADST_DCT |
| { daala_fdct32, daala_fdst32 }, // DCT_ADST |
| { daala_fdst32, daala_fdst32 }, // ADST_ADST |
| { daala_fdst32, daala_fdct32 }, // FLIPADST_DCT |
| { daala_fdct32, daala_fdst32 }, // DCT_FLIPADST |
| { daala_fdst32, daala_fdst32 }, // FLIPADST_FLIPADST |
| { daala_fdst32, daala_fdst32 }, // ADST_FLIPADST |
| { daala_fdst32, daala_fdst32 }, // FLIPADST_ADST |
| { daala_idtx32, daala_idtx32 }, // IDTX |
| { daala_fdct32, daala_idtx32 }, // V_DCT |
| { daala_idtx32, daala_fdct32 }, // H_DCT |
| { daala_fdst32, daala_idtx32 }, // V_ADST |
| { daala_idtx32, daala_fdst32 }, // H_ADST |
| { daala_fdst32, daala_idtx32 }, // V_FLIPADST |
| { daala_idtx32, daala_fdst32 }, // H_FLIPADST |
| #endif |
| #else |
| { fdct32, fdct32 }, // DCT_DCT |
| #if CONFIG_EXT_TX |
| { fhalfright32, fdct32 }, // ADST_DCT |
| { fdct32, fhalfright32 }, // DCT_ADST |
| { fhalfright32, fhalfright32 }, // ADST_ADST |
| { fhalfright32, fdct32 }, // FLIPADST_DCT |
| { fdct32, fhalfright32 }, // DCT_FLIPADST |
| { fhalfright32, fhalfright32 }, // FLIPADST_FLIPADST |
| { fhalfright32, fhalfright32 }, // ADST_FLIPADST |
| { fhalfright32, fhalfright32 }, // FLIPADST_ADST |
| { fidtx32, fidtx32 }, // IDTX |
| { fdct32, fidtx32 }, // V_DCT |
| { fidtx32, fdct32 }, // H_DCT |
| { fhalfright32, fidtx32 }, // V_ADST |
| { fidtx32, fhalfright32 }, // H_ADST |
| { fhalfright32, fidtx32 }, // V_FLIPADST |
| { fidtx32, fhalfright32 }, // H_FLIPADST |
| #endif |
| #endif |
| #if CONFIG_MRC_TX |
| { fdct32, fdct32 }, // MRC_TX |
| #endif // CONFIG_MRC_TX |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| tran_low_t out[1024]; |
| int i, j; |
| tran_low_t temp_in[32], temp_out[32]; |
| |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[32 * 32]; |
| maybe_flip_input(&input, &stride, 32, 32, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_MRC_TX |
| if (tx_type == MRC_DCT) { |
| int16_t masked_input[32 * 32]; |
| get_masked_residual32(&input, &stride, txfm_param->dst, txfm_param->stride, |
| masked_input, txfm_param); |
| } |
| #endif // CONFIG_MRC_TX |
| |
| // Columns |
| for (i = 0; i < 32; ++i) { |
| for (j = 0; j < 32; ++j) { |
| #if CONFIG_DAALA_TX32 |
| temp_in[j] = input[j * stride + i] * 16; |
| #else |
| temp_in[j] = input[j * stride + i] * 4; |
| #endif |
| } |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < 32; ++j) { |
| #if CONFIG_DAALA_TX32 |
| out[j * 32 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| #else |
| out[j * 32 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4); |
| #endif |
| } |
| } |
| |
| // Rows |
| for (i = 0; i < 32; ++i) { |
| for (j = 0; j < 32; ++j) temp_in[j] = out[j + i * 32]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < 32; ++j) { |
| output[j + i * 32] = temp_out[j]; |
| } |
| } |
| } |
| |
| #if CONFIG_TX64X64 |
| #if !CONFIG_DAALA_TX64 |
| #if CONFIG_EXT_TX |
| static void fidtx64(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| for (i = 0; i < 64; ++i) |
| output[i] = (tran_low_t)fdct_round_shift(input[i] * 4 * Sqrt2); |
| } |
| |
| // For use in lieu of ADST |
| static void fhalfright64(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| tran_low_t inputhalf[32]; |
| for (i = 0; i < 32; ++i) { |
| output[32 + i] = (tran_low_t)fdct_round_shift(input[i] * 4 * Sqrt2); |
| } |
| // Multiply input by sqrt(2) |
| for (i = 0; i < 32; ++i) { |
| inputhalf[i] = (tran_low_t)fdct_round_shift(input[i + 32] * Sqrt2); |
| } |
| fdct32(inputhalf, output); |
| // Note overall scaling factor is 2 times unitary |
| } |
| #endif // CONFIG_EXT_TX |
| |
| static void fdct64_col(const tran_low_t *input, tran_low_t *output) { |
| int32_t in[64], out[64]; |
| int i; |
| for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i]; |
| av1_fdct64_new(in, out, fwd_cos_bit_col_dct_64, fwd_stage_range_col_dct_64); |
| for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i]; |
| } |
| |
| static void fdct64_row(const tran_low_t *input, tran_low_t *output) { |
| int32_t in[64], out[64]; |
| int i; |
| for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i]; |
| av1_fdct64_new(in, out, fwd_cos_bit_row_dct_64, fwd_stage_range_row_dct_64); |
| for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i]; |
| } |
| #endif |
| |
| void av1_fht64x64_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| #if CONFIG_DAALA_TX64 |
| { daala_fdct64, daala_fdct64 }, // DCT_DCT |
| #if CONFIG_EXT_TX |
| { daala_fdst64, daala_fdct64 }, // ADST_DCT |
| { daala_fdct64, daala_fdst64 }, // DCT_ADST |
| { daala_fdst64, daala_fdst64 }, // ADST_ADST |
| { daala_fdst64, daala_fdct64 }, // FLIPADST_DCT |
| { daala_fdct64, daala_fdst64 }, // DCT_FLIPADST |
| { daala_fdst64, daala_fdst64 }, // FLIPADST_FLIPADST |
| { daala_fdst64, daala_fdst64 }, // ADST_FLIPADST |
| { daala_fdst64, daala_fdst64 }, // FLIPADST_ADST |
| { daala_idtx64, daala_idtx64 }, // IDTX |
| { daala_fdct64, daala_idtx64 }, // V_DCT |
| { daala_idtx64, daala_fdct64 }, // H_DCT |
| { daala_fdst64, daala_idtx64 }, // V_ADST |
| { daala_idtx64, daala_fdst64 }, // H_ADST |
| { daala_fdst64, daala_idtx64 }, // V_FLIPADST |
| { daala_idtx64, daala_fdst64 }, // H_FLIPADST |
| #endif // CONFIG_EXT_TX |
| #else |
| { fdct64_col, fdct64_row }, // DCT_DCT |
| #if CONFIG_EXT_TX |
| { fhalfright64, fdct64_row }, // ADST_DCT |
| { fdct64_col, fhalfright64 }, // DCT_ADST |
| { fhalfright64, fhalfright64 }, // ADST_ADST |
| { fhalfright64, fdct64_row }, // FLIPADST_DCT |
| { fdct64_col, fhalfright64 }, // DCT_FLIPADST |
| { fhalfright64, fhalfright64 }, // FLIPADST_FLIPADST |
| { fhalfright64, fhalfright64 }, // ADST_FLIPADST |
| { fhalfright64, fhalfright64 }, // FLIPADST_ADST |
| { fidtx64, fidtx64 }, // IDTX |
| { fdct64_col, fidtx64 }, // V_DCT |
| { fidtx64, fdct64_row }, // H_DCT |
| { fhalfright64, fidtx64 }, // V_ADST |
| { fidtx64, fhalfright64 }, // H_ADST |
| { fhalfright64, fidtx64 }, // V_FLIPADST |
| { fidtx64, fhalfright64 }, // H_FLIPADST |
| #endif // CONFIG_EXT_TX |
| #endif // CONFIG_DAALA_TX64 |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| tran_low_t out[4096]; |
| int i, j; |
| tran_low_t temp_in[64], temp_out[64]; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[64 * 64]; |
| maybe_flip_input(&input, &stride, 64, 64, flipped_input, tx_type); |
| #endif |
| |
| // Columns |
| for (i = 0; i < 64; ++i) { |
| #if CONFIG_DAALA_TX64 |
| for (j = 0; j < 64; ++j) temp_in[j] = input[j * stride + i] * 16; |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < 64; ++j) |
| out[j * 64 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 3; |
| |
| #else |
| for (j = 0; j < 64; ++j) temp_in[j] = input[j * stride + i]; |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < 64; ++j) |
| out[j * 64 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; |
| #endif |
| } |
| |
| // Rows |
| for (i = 0; i < 64; ++i) { |
| for (j = 0; j < 64; ++j) temp_in[j] = out[j + i * 64]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < 64; ++j) |
| #if CONFIG_DAALA_TX64 |
| output[j + i * 64] = temp_out[j]; |
| #else |
| output[j + i * 64] = |
| (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2); |
| #endif |
| } |
| |
| // Zero out top-right 32x32 area. |
| for (int row = 0; row < 32; ++row) { |
| memset(output + row * 64 + 32, 0, 32 * sizeof(*output)); |
| } |
| // Zero out the bottom 64x32 area. |
| memset(output + 32 * 64, 0, 32 * 64 * sizeof(*output)); |
| } |
| |
| void av1_fht64x32_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct32, fdct64_row }, // DCT_DCT |
| #if CONFIG_EXT_TX |
| { fhalfright32, fdct64_row }, // ADST_DCT |
| { fdct32, fhalfright64 }, // DCT_ADST |
| { fhalfright32, fhalfright64 }, // ADST_ADST |
| { fhalfright32, fdct64_row }, // FLIPADST_DCT |
| { fdct32, fhalfright64 }, // DCT_FLIPADST |
| { fhalfright32, fhalfright64 }, // FLIPADST_FLIPADST |
| { fhalfright32, fhalfright64 }, // ADST_FLIPADST |
| { fhalfright32, fhalfright64 }, // FLIPADST_ADST |
| { fidtx32, fidtx64 }, // IDTX |
| { fdct32, fidtx64 }, // V_DCT |
| { fidtx32, fdct64_row }, // H_DCT |
| { fhalfright32, fidtx64 }, // V_ADST |
| { fidtx32, fhalfright64 }, // H_ADST |
| { fhalfright32, fidtx64 }, // V_FLIPADST |
| { fidtx32, fhalfright64 }, // H_FLIPADST |
| #endif // CONFIG_EXT_TX |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| tran_low_t out[2048]; |
| int i, j; |
| tran_low_t temp_in[64], temp_out[64]; |
| const int n = 32; |
| const int n2 = 64; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[32 * 64]; |
| maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type); |
| #endif |
| |
| // Columns |
| for (i = 0; i < n2; ++i) { |
| for (j = 0; j < n; ++j) |
| temp_in[j] = (tran_low_t)fdct_round_shift(input[j * stride + i] * Sqrt2); |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n; ++j) |
| out[j * n2 + i] = (tran_low_t)ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| } |
| |
| // Rows |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n2; ++j) |
| output[j + i * n2] = |
| (tran_low_t)ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| } |
| |
| // Zero out right 32x32 area. |
| for (int row = 0; row < n; ++row) { |
| memset(output + row * n2 + n, 0, n * sizeof(*output)); |
| } |
| } |
| |
| void av1_fht32x64_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| const TX_TYPE tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct64_row, fdct32 }, // DCT_DCT |
| #if CONFIG_EXT_TX |
| { fhalfright64, fdct32 }, // ADST_DCT |
| { fdct64_row, fhalfright32 }, // DCT_ADST |
| { fhalfright64, fhalfright32 }, // ADST_ADST |
| { fhalfright64, fdct32 }, // FLIPADST_DCT |
| { fdct64_row, fhalfright32 }, // DCT_FLIPADST |
| { fhalfright64, fhalfright32 }, // FLIPADST_FLIPADST |
| { fhalfright64, fhalfright32 }, // ADST_FLIPADST |
| { fhalfright64, fhalfright32 }, // FLIPADST_ADST |
| { fidtx64, fidtx32 }, // IDTX |
| { fdct64_row, fidtx32 }, // V_DCT |
| { fidtx64, fdct32 }, // H_DCT |
| { fhalfright64, fidtx32 }, // V_ADST |
| { fidtx64, fhalfright32 }, // H_ADST |
| { fhalfright64, fidtx32 }, // V_FLIPADST |
| { fidtx64, fhalfright32 }, // H_FLIPADST |
| #endif // CONFIG_EXT_TX |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| tran_low_t out[32 * 64]; |
| int i, j; |
| tran_low_t temp_in[64], temp_out[64]; |
| const int n = 32; |
| const int n2 = 64; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[32 * 64]; |
| maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type); |
| #endif |
| |
| // Rows |
| for (i = 0; i < n2; ++i) { |
| for (j = 0; j < n; ++j) |
| temp_in[j] = (tran_low_t)fdct_round_shift(input[i * stride + j] * Sqrt2); |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n; ++j) |
| out[j * n2 + i] = (tran_low_t)ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| } |
| |
| // Columns |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n2; ++j) |
| output[i + j * n] = (tran_low_t)ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| } |
| |
| // Zero out the bottom 32x32 area. |
| memset(output + n * n, 0, n * n * sizeof(*output)); |
| } |
| #endif // CONFIG_TX64X64 |
| |
| #if CONFIG_EXT_TX |
| // Forward identity transform. |
| void av1_fwd_idtx_c(const int16_t *src_diff, tran_low_t *coeff, int stride, |
| int bsx, int bsy, TX_TYPE tx_type) { |
| int r, c; |
| const int pels = bsx * bsy; |
| const int shift = 3 - ((pels > 256) + (pels > 1024)); |
| if (tx_type == IDTX) { |
| for (r = 0; r < bsy; ++r) { |
| for (c = 0; c < bsx; ++c) coeff[c] = src_diff[c] * (1 << shift); |
| src_diff += stride; |
| coeff += bsx; |
| } |
| } |
| } |
| #endif // CONFIG_EXT_TX |
| #endif // !AV1_DCT_GTEST |