blob: 35276d7609e724746afaccba935a629e9662e64c [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include "./aom_scale_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/psnr.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/quant_common.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/picklpf.h"
#if CONFIG_LPF_SB
#if CONFIG_HIGHBITDEPTH
static int compute_sb_y_sse_highbd(const YV12_BUFFER_CONFIG *src,
const YV12_BUFFER_CONFIG *frame,
AV1_COMMON *const cm, int mi_row,
int mi_col) {
int sse = 0;
const int mi_row_start = AOMMAX(0, mi_row - FILT_BOUNDARY_MI_OFFSET);
const int mi_col_start = AOMMAX(0, mi_col - FILT_BOUNDARY_MI_OFFSET);
const int mi_row_range = mi_row - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE;
const int mi_col_range = mi_col - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE;
const int mi_row_end = AOMMIN(mi_row_range, cm->mi_rows);
const int mi_col_end = AOMMIN(mi_col_range, cm->mi_cols);
const int row = mi_row_start * MI_SIZE;
const int col = mi_col_start * MI_SIZE;
const uint16_t *src_y =
CONVERT_TO_SHORTPTR(src->y_buffer) + row * src->y_stride + col;
const uint16_t *frame_y =
CONVERT_TO_SHORTPTR(frame->y_buffer) + row * frame->y_stride + col;
const int row_end = (mi_row_end - mi_row_start) * MI_SIZE;
const int col_end = (mi_col_end - mi_col_start) * MI_SIZE;
int x, y;
for (y = 0; y < row_end; ++y) {
for (x = 0; x < col_end; ++x) {
const int diff = src_y[x] - frame_y[x];
sse += diff * diff;
}
src_y += src->y_stride;
frame_y += frame->y_stride;
}
return sse;
}
#endif
static int compute_sb_y_sse(const YV12_BUFFER_CONFIG *src,
const YV12_BUFFER_CONFIG *frame,
AV1_COMMON *const cm, int mi_row, int mi_col) {
int sse = 0;
const int mi_row_start = AOMMAX(0, mi_row - FILT_BOUNDARY_MI_OFFSET);
const int mi_col_start = AOMMAX(0, mi_col - FILT_BOUNDARY_MI_OFFSET);
const int mi_row_range = mi_row - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE;
const int mi_col_range = mi_col - FILT_BOUNDARY_MI_OFFSET + MAX_MIB_SIZE;
const int mi_row_end = AOMMIN(mi_row_range, cm->mi_rows);
const int mi_col_end = AOMMIN(mi_col_range, cm->mi_cols);
const int row = mi_row_start * MI_SIZE;
const int col = mi_col_start * MI_SIZE;
const uint8_t *src_y = src->y_buffer + row * src->y_stride + col;
const uint8_t *frame_y = frame->y_buffer + row * frame->y_stride + col;
const int row_end = (mi_row_end - mi_row_start) * MI_SIZE;
const int col_end = (mi_col_end - mi_col_start) * MI_SIZE;
int x, y;
for (y = 0; y < row_end; ++y) {
for (x = 0; x < col_end; ++x) {
const int diff = src_y[x] - frame_y[x];
sse += diff * diff;
}
src_y += src->y_stride;
frame_y += frame->y_stride;
}
return sse;
}
#endif // CONFIG_LPF_SB
#if !CONFIG_LPF_SB
static void yv12_copy_plane(const YV12_BUFFER_CONFIG *src_bc,
YV12_BUFFER_CONFIG *dst_bc, int plane) {
switch (plane) {
case 0: aom_yv12_copy_y(src_bc, dst_bc); break;
case 1: aom_yv12_copy_u(src_bc, dst_bc); break;
case 2: aom_yv12_copy_v(src_bc, dst_bc); break;
default: assert(plane >= 0 && plane <= 2); break;
}
}
#endif // CONFIG_LPF_SB
int av1_get_max_filter_level(const AV1_COMP *cpi) {
if (cpi->oxcf.pass == 2) {
return cpi->twopass.section_intra_rating > 8 ? MAX_LOOP_FILTER * 3 / 4
: MAX_LOOP_FILTER;
} else {
return MAX_LOOP_FILTER;
}
}
#if CONFIG_LPF_SB
// TODO(chengchen): reduce memory usage by copy superblock instead of frame
static int try_filter_superblock(const YV12_BUFFER_CONFIG *sd,
AV1_COMP *const cpi, int filt_level,
int partial_frame, int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
int filt_err;
av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filt_level, 1,
partial_frame, mi_row, mi_col);
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth) {
filt_err =
compute_sb_y_sse_highbd(sd, cm->frame_to_show, cm, mi_row, mi_col);
} else {
filt_err = compute_sb_y_sse(sd, cm->frame_to_show, cm, mi_row, mi_col);
}
#else
filt_err = compute_sb_y_sse(sd, cm->frame_to_show, cm, mi_row, mi_col);
#endif // CONFIG_HIGHBITDEPTH
// TODO(chengchen): Copy the superblock only
// Re-instate the unfiltered frame
aom_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
return filt_err;
}
static int search_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi,
int partial_frame, double *best_cost_ret,
int mi_row, int mi_col, int last_lvl) {
assert(partial_frame == 1);
assert(last_lvl >= 0);
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *x = &cpi->td.mb;
int min_filter_level = AOMMAX(0, last_lvl - MAX_LPF_OFFSET);
int max_filter_level =
AOMMIN(av1_get_max_filter_level(cpi), last_lvl + MAX_LPF_OFFSET);
// search a larger range for the start superblock
if (mi_row == 0 && mi_col == 0) {
min_filter_level = 0;
max_filter_level = av1_get_max_filter_level(cpi);
}
// TODO(chengchen): Copy for superblock only
// Make a copy of the unfiltered / processed recon buffer
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
int estimate_err =
try_filter_superblock(sd, cpi, last_lvl, partial_frame, mi_row, mi_col);
int best_err = estimate_err;
int filt_best = last_lvl;
int i;
for (i = min_filter_level; i <= max_filter_level; i += LPF_STEP) {
if (i == last_lvl) continue;
int filt_err =
try_filter_superblock(sd, cpi, i, partial_frame, mi_row, mi_col);
if (filt_err < best_err) {
best_err = filt_err;
filt_best = i;
}
}
// If previous sb filter level has similar filtering performance as current
// best filter level, use previous level such that we can only send one bit
// to indicate current filter level is the same as the previous.
int threshold = 400;
// ratio = the filtering area / a superblock size
int ratio = 1;
if (mi_row + MAX_MIB_SIZE > cm->mi_rows) {
ratio *= (cm->mi_rows - mi_row);
} else {
if (mi_row == 0) {
ratio *= (MAX_MIB_SIZE - FILT_BOUNDARY_MI_OFFSET);
} else {
ratio *= MAX_MIB_SIZE;
}
}
if (mi_col + MAX_MIB_SIZE > cm->mi_cols) {
ratio *= (cm->mi_cols - mi_col);
} else {
if (mi_col == 0) {
ratio *= (MAX_MIB_SIZE - FILT_BOUNDARY_MI_OFFSET);
} else {
ratio *= MAX_MIB_SIZE;
}
}
threshold = threshold * ratio / (MAX_MIB_SIZE * MAX_MIB_SIZE);
const int diff = abs(estimate_err - best_err);
const int percent_thresh = (int)((double)estimate_err * 0.01);
threshold = AOMMAX(threshold, percent_thresh);
if (diff < threshold) {
best_err = estimate_err;
filt_best = last_lvl;
}
// Compute rdcost to determine whether to reuse previous filter lvl
if (filt_best != last_lvl) {
}
if (best_cost_ret) *best_cost_ret = RDCOST_DBL(x->rdmult, 0, best_err);
return filt_best;
}
#else // CONFIG_LPF_SB
static int64_t try_filter_frame(const YV12_BUFFER_CONFIG *sd,
AV1_COMP *const cpi, int filt_level,
int partial_frame
#if CONFIG_LOOPFILTER_LEVEL
,
int plane, int dir
#endif
) {
AV1_COMMON *const cm = &cpi->common;
int64_t filt_err;
#if CONFIG_LOOPFILTER_LEVEL
assert(plane >= 0 && plane <= 2);
int filter_level[2] = { filt_level, filt_level };
if (plane == 0 && dir == 0) filter_level[1] = cm->lf.filter_level[1];
if (plane == 0 && dir == 1) filter_level[0] = cm->lf.filter_level[0];
av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd,
filter_level[0], filter_level[1], plane, partial_frame);
#else
av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filt_level, 1,
partial_frame);
#endif // CONFIG_LOOPFILTER_LEVEL
int highbd = 0;
#if CONFIG_HIGHBITDEPTH
highbd = cm->use_highbitdepth;
#endif // CONFIG_HIGHBITDEPTH
#if CONFIG_LOOPFILTER_LEVEL
filt_err = aom_get_sse_plane(sd, cm->frame_to_show, plane, highbd);
// Re-instate the unfiltered frame
yv12_copy_plane(&cpi->last_frame_uf, cm->frame_to_show, plane);
#else
filt_err = aom_get_sse_plane(sd, cm->frame_to_show, 0, highbd);
// Re-instate the unfiltered frame
yv12_copy_plane(&cpi->last_frame_uf, cm->frame_to_show, 0);
#endif // CONFIG_LOOPFILTER_LEVEL
return filt_err;
}
static int search_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi,
int partial_frame, double *best_cost_ret
#if CONFIG_LOOPFILTER_LEVEL
,
int plane, int dir
#endif
) {
const AV1_COMMON *const cm = &cpi->common;
const struct loopfilter *const lf = &cm->lf;
const int min_filter_level = 0;
const int max_filter_level = av1_get_max_filter_level(cpi);
int filt_direction = 0;
int64_t best_err;
int filt_best;
MACROBLOCK *x = &cpi->td.mb;
// Start the search at the previous frame filter level unless it is now out of
// range.
#if CONFIG_LOOPFILTER_LEVEL
int lvl;
switch (plane) {
case 0: lvl = (dir == 1) ? lf->filter_level[1] : lf->filter_level[0]; break;
case 1: lvl = lf->filter_level_u; break;
case 2: lvl = lf->filter_level_v; break;
default: assert(plane >= 0 && plane <= 2); return 0;
}
int filt_mid = clamp(lvl, min_filter_level, max_filter_level);
#else
int filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level);
#endif // CONFIG_LOOPFILTER_LEVEL
int filter_step = filt_mid < 16 ? 4 : filt_mid / 4;
// Sum squared error at each filter level
int64_t ss_err[MAX_LOOP_FILTER + 1];
// Set each entry to -1
memset(ss_err, 0xFF, sizeof(ss_err));
#if CONFIG_LOOPFILTER_LEVEL
yv12_copy_plane(cm->frame_to_show, &cpi->last_frame_uf, plane);
#else
// Make a copy of the unfiltered / processed recon buffer
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
#endif // CONFIG_LOOPFILTER_LEVEL
#if CONFIG_LOOPFILTER_LEVEL
best_err = try_filter_frame(sd, cpi, filt_mid, partial_frame, plane, dir);
#else
best_err = try_filter_frame(sd, cpi, filt_mid, partial_frame);
#endif // CONFIG_LOOPFILTER_LEVEL
filt_best = filt_mid;
ss_err[filt_mid] = best_err;
while (filter_step > 0) {
const int filt_high = AOMMIN(filt_mid + filter_step, max_filter_level);
const int filt_low = AOMMAX(filt_mid - filter_step, min_filter_level);
// Bias against raising loop filter in favor of lowering it.
int64_t bias = (best_err >> (15 - (filt_mid / 8))) * filter_step;
if ((cpi->oxcf.pass == 2) && (cpi->twopass.section_intra_rating < 20))
bias = (bias * cpi->twopass.section_intra_rating) / 20;
// yx, bias less for large block size
if (cm->tx_mode != ONLY_4X4) bias >>= 1;
if (filt_direction <= 0 && filt_low != filt_mid) {
// Get Low filter error score
if (ss_err[filt_low] < 0) {
#if CONFIG_LOOPFILTER_LEVEL
ss_err[filt_low] =
try_filter_frame(sd, cpi, filt_low, partial_frame, plane, dir);
#else
ss_err[filt_low] = try_filter_frame(sd, cpi, filt_low, partial_frame);
#endif // CONFIG_LOOPFILTER_LEVEL
}
// If value is close to the best so far then bias towards a lower loop
// filter value.
if (ss_err[filt_low] < (best_err + bias)) {
// Was it actually better than the previous best?
if (ss_err[filt_low] < best_err) {
best_err = ss_err[filt_low];
}
filt_best = filt_low;
}
}
// Now look at filt_high
if (filt_direction >= 0 && filt_high != filt_mid) {
if (ss_err[filt_high] < 0) {
#if CONFIG_LOOPFILTER_LEVEL
ss_err[filt_high] =
try_filter_frame(sd, cpi, filt_high, partial_frame, plane, dir);
#else
ss_err[filt_high] = try_filter_frame(sd, cpi, filt_high, partial_frame);
#endif // CONFIG_LOOPFILTER_LEVEL
}
// If value is significantly better than previous best, bias added against
// raising filter value
if (ss_err[filt_high] < (best_err - bias)) {
best_err = ss_err[filt_high];
filt_best = filt_high;
}
}
// Half the step distance if the best filter value was the same as last time
if (filt_best == filt_mid) {
filter_step /= 2;
filt_direction = 0;
} else {
filt_direction = (filt_best < filt_mid) ? -1 : 1;
filt_mid = filt_best;
}
}
// Update best error
best_err = ss_err[filt_best];
if (best_cost_ret) *best_cost_ret = RDCOST_DBL(x->rdmult, 0, best_err);
return filt_best;
}
#endif // CONFIG_LPF_SB
void av1_pick_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi,
LPF_PICK_METHOD method) {
AV1_COMMON *const cm = &cpi->common;
struct loopfilter *const lf = &cm->lf;
lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0 : cpi->oxcf.sharpness;
if (method == LPF_PICK_MINIMAL_LPF) {
#if CONFIG_LOOPFILTER_LEVEL
lf->filter_level[0] = 0;
lf->filter_level[1] = 0;
#else
lf->filter_level = 0;
#endif
} else if (method >= LPF_PICK_FROM_Q) {
const int min_filter_level = 0;
const int max_filter_level = av1_get_max_filter_level(cpi);
const int q = av1_ac_quant(cm->base_qindex, 0, cm->bit_depth);
// These values were determined by linear fitting the result of the
// searched level for 8 bit depth:
// Keyframes: filt_guess = q * 0.06699 - 1.60817
// Other frames: filt_guess = q * 0.02295 + 2.48225
//
// And high bit depth separately:
// filt_guess = q * 0.316206 + 3.87252
#if CONFIG_HIGHBITDEPTH
int filt_guess;
switch (cm->bit_depth) {
case AOM_BITS_8:
filt_guess = (cm->frame_type == KEY_FRAME)
? ROUND_POWER_OF_TWO(q * 17563 - 421574, 18)
: ROUND_POWER_OF_TWO(q * 6017 + 650707, 18);
break;
case AOM_BITS_10:
filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20);
break;
case AOM_BITS_12:
filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22);
break;
default:
assert(0 &&
"bit_depth should be AOM_BITS_8, AOM_BITS_10 "
"or AOM_BITS_12");
return;
}
#else
int filt_guess = (cm->frame_type == KEY_FRAME)
? ROUND_POWER_OF_TWO(q * 17563 - 421574, 18)
: ROUND_POWER_OF_TWO(q * 6017 + 650707, 18);
#endif // CONFIG_HIGHBITDEPTH
if (cm->bit_depth != AOM_BITS_8 && cm->frame_type == KEY_FRAME)
filt_guess -= 4;
#if CONFIG_LOOPFILTER_LEVEL
lf->filter_level[0] = clamp(filt_guess, min_filter_level, max_filter_level);
lf->filter_level[1] = clamp(filt_guess, min_filter_level, max_filter_level);
#else
lf->filter_level = clamp(filt_guess, min_filter_level, max_filter_level);
#endif
} else {
#if CONFIG_LPF_SB
int mi_row, mi_col;
// TODO(chengchen): init last_lvl using previous frame's info?
int last_lvl = 0;
// TODO(chengchen): if the frame size makes the last superblock very small,
// consider merge it to the previous superblock to save bits.
// Example, if frame size 1080x720, then in the last row of superblock,
// there're (FILT_BOUNDAR_OFFSET + 16) pixels.
for (mi_row = 0; mi_row < cm->mi_rows; mi_row += MAX_MIB_SIZE) {
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) {
int lvl =
search_filter_level(sd, cpi, 1, NULL, mi_row, mi_col, last_lvl);
if (USE_LOOP_FILTER_SUPERBLOCK) lvl = FAKE_FILTER_LEVEL;
av1_loop_filter_sb_level_init(cm, mi_row, mi_col, lvl);
// For the superblock at row start, its previous filter level should be
// the one above it, not the one at the end of last row
if (mi_col + MAX_MIB_SIZE >= cm->mi_cols) {
last_lvl = cm->mi_grid_visible[mi_row * cm->mi_stride]->mbmi.filt_lvl;
} else {
last_lvl = lvl;
}
}
}
#else // CONFIG_LPF_SB
#if CONFIG_LOOPFILTER_LEVEL
lf->filter_level[0] = lf->filter_level[1] = search_filter_level(
sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, NULL, 0, 2);
lf->filter_level[0] = search_filter_level(
sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, NULL, 0, 0);
lf->filter_level[1] = search_filter_level(
sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, NULL, 0, 1);
lf->filter_level_u = search_filter_level(
sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, NULL, 1, 0);
lf->filter_level_v = search_filter_level(
sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, NULL, 2, 0);
#else
lf->filter_level =
search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, NULL);
#endif // CONFIG_LOOPFILTER_LEVEL
#endif // CONFIG_LPF_SB
}
}