|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <tuple> | 
|  | #include <vector> | 
|  |  | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "test/acm_random.h" | 
|  | #include "test/util.h" | 
|  | #include "test/av1_txfm_test.h" | 
|  | #include "av1/common/av1_txfm.h" | 
|  | #include "av1/encoder/hybrid_fwd_txfm.h" | 
|  |  | 
|  | using libaom_test::ACMRandom; | 
|  | using libaom_test::bd; | 
|  | using libaom_test::compute_avg_abs_error; | 
|  | using libaom_test::input_base; | 
|  | using libaom_test::tx_type_name; | 
|  | using libaom_test::TYPE_TXFM; | 
|  |  | 
|  | using std::vector; | 
|  |  | 
|  | namespace { | 
|  | // tx_type_, tx_size_, max_error_, max_avg_error_ | 
|  | typedef std::tuple<TX_TYPE, TX_SIZE, double, double> AV1FwdTxfm2dParam; | 
|  |  | 
|  | class AV1FwdTxfm2d : public ::testing::TestWithParam<AV1FwdTxfm2dParam> { | 
|  | public: | 
|  | void SetUp() override { | 
|  | tx_type_ = GET_PARAM(0); | 
|  | tx_size_ = GET_PARAM(1); | 
|  | max_error_ = GET_PARAM(2); | 
|  | max_avg_error_ = GET_PARAM(3); | 
|  | count_ = 500; | 
|  | TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg; | 
|  | av1_get_fwd_txfm_cfg(tx_type_, tx_size_, &fwd_txfm_flip_cfg); | 
|  | amplify_factor_ = libaom_test::get_amplification_factor(tx_type_, tx_size_); | 
|  | tx_width_ = tx_size_wide[fwd_txfm_flip_cfg.tx_size]; | 
|  | tx_height_ = tx_size_high[fwd_txfm_flip_cfg.tx_size]; | 
|  | ud_flip_ = fwd_txfm_flip_cfg.ud_flip; | 
|  | lr_flip_ = fwd_txfm_flip_cfg.lr_flip; | 
|  |  | 
|  | fwd_txfm_ = libaom_test::fwd_txfm_func_ls[tx_size_]; | 
|  | txfm2d_size_ = tx_width_ * tx_height_; | 
|  | input_ = reinterpret_cast<int16_t *>( | 
|  | aom_memalign(16, sizeof(input_[0]) * txfm2d_size_)); | 
|  | ASSERT_NE(input_, nullptr); | 
|  | output_ = reinterpret_cast<int32_t *>( | 
|  | aom_memalign(16, sizeof(output_[0]) * txfm2d_size_)); | 
|  | ASSERT_NE(output_, nullptr); | 
|  | ref_input_ = reinterpret_cast<double *>( | 
|  | aom_memalign(16, sizeof(ref_input_[0]) * txfm2d_size_)); | 
|  | ASSERT_NE(ref_input_, nullptr); | 
|  | ref_output_ = reinterpret_cast<double *>( | 
|  | aom_memalign(16, sizeof(ref_output_[0]) * txfm2d_size_)); | 
|  | ASSERT_NE(ref_output_, nullptr); | 
|  | } | 
|  |  | 
|  | void RunFwdAccuracyCheck() { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | double avg_abs_error = 0; | 
|  | for (int ci = 0; ci < count_; ci++) { | 
|  | for (int ni = 0; ni < txfm2d_size_; ++ni) { | 
|  | input_[ni] = rnd.Rand16() % input_base; | 
|  | ref_input_[ni] = static_cast<double>(input_[ni]); | 
|  | output_[ni] = 0; | 
|  | ref_output_[ni] = 0; | 
|  | } | 
|  |  | 
|  | fwd_txfm_(input_, output_, tx_width_, tx_type_, bd); | 
|  |  | 
|  | if (lr_flip_ && ud_flip_) { | 
|  | libaom_test::fliplrud(ref_input_, tx_width_, tx_height_, tx_width_); | 
|  | } else if (lr_flip_) { | 
|  | libaom_test::fliplr(ref_input_, tx_width_, tx_height_, tx_width_); | 
|  | } else if (ud_flip_) { | 
|  | libaom_test::flipud(ref_input_, tx_width_, tx_height_, tx_width_); | 
|  | } | 
|  |  | 
|  | libaom_test::reference_hybrid_2d(ref_input_, ref_output_, tx_type_, | 
|  | tx_size_); | 
|  |  | 
|  | double actual_max_error = 0; | 
|  | for (int ni = 0; ni < txfm2d_size_; ++ni) { | 
|  | ref_output_[ni] = round(ref_output_[ni]); | 
|  | const double this_error = | 
|  | fabs(output_[ni] - ref_output_[ni]) / amplify_factor_; | 
|  | actual_max_error = AOMMAX(actual_max_error, this_error); | 
|  | } | 
|  | EXPECT_GE(max_error_, actual_max_error) | 
|  | << "tx_w: " << tx_width_ << " tx_h: " << tx_height_ | 
|  | << ", tx_type = " << (int)tx_type_; | 
|  | if (actual_max_error > max_error_) {  // exit early. | 
|  | break; | 
|  | } | 
|  |  | 
|  | avg_abs_error += compute_avg_abs_error<int32_t, double>( | 
|  | output_, ref_output_, txfm2d_size_); | 
|  | } | 
|  |  | 
|  | avg_abs_error /= amplify_factor_; | 
|  | avg_abs_error /= count_; | 
|  | EXPECT_GE(max_avg_error_, avg_abs_error) | 
|  | << "tx_size = " << tx_size_ << ", tx_type = " << tx_type_; | 
|  | } | 
|  |  | 
|  | void TearDown() override { | 
|  | aom_free(input_); | 
|  | aom_free(output_); | 
|  | aom_free(ref_input_); | 
|  | aom_free(ref_output_); | 
|  | } | 
|  |  | 
|  | private: | 
|  | double max_error_; | 
|  | double max_avg_error_; | 
|  | int count_; | 
|  | double amplify_factor_; | 
|  | TX_TYPE tx_type_; | 
|  | TX_SIZE tx_size_; | 
|  | int tx_width_; | 
|  | int tx_height_; | 
|  | int txfm2d_size_; | 
|  | FwdTxfm2dFunc fwd_txfm_; | 
|  | int16_t *input_; | 
|  | int32_t *output_; | 
|  | double *ref_input_; | 
|  | double *ref_output_; | 
|  | int ud_flip_;  // flip upside down | 
|  | int lr_flip_;  // flip left to right | 
|  | }; | 
|  |  | 
|  | static double avg_error_ls[TX_SIZES_ALL] = { | 
|  | 0.5,   // 4x4 transform | 
|  | 0.5,   // 8x8 transform | 
|  | 1.2,   // 16x16 transform | 
|  | 6.1,   // 32x32 transform | 
|  | 3.4,   // 64x64 transform | 
|  | 0.57,  // 4x8 transform | 
|  | 0.68,  // 8x4 transform | 
|  | 0.92,  // 8x16 transform | 
|  | 1.1,   // 16x8 transform | 
|  | 4.1,   // 16x32 transform | 
|  | 6,     // 32x16 transform | 
|  | 3.5,   // 32x64 transform | 
|  | 5.7,   // 64x32 transform | 
|  | 0.6,   // 4x16 transform | 
|  | 0.9,   // 16x4 transform | 
|  | 1.2,   // 8x32 transform | 
|  | 1.7,   // 32x8 transform | 
|  | 2.0,   // 16x64 transform | 
|  | 4.7,   // 64x16 transform | 
|  | }; | 
|  |  | 
|  | static double max_error_ls[TX_SIZES_ALL] = { | 
|  | 3,    // 4x4 transform | 
|  | 5,    // 8x8 transform | 
|  | 11,   // 16x16 transform | 
|  | 70,   // 32x32 transform | 
|  | 64,   // 64x64 transform | 
|  | 3.9,  // 4x8 transform | 
|  | 4.3,  // 8x4 transform | 
|  | 12,   // 8x16 transform | 
|  | 12,   // 16x8 transform | 
|  | 32,   // 16x32 transform | 
|  | 46,   // 32x16 transform | 
|  | 136,  // 32x64 transform | 
|  | 136,  // 64x32 transform | 
|  | 5,    // 4x16 transform | 
|  | 6,    // 16x4 transform | 
|  | 21,   // 8x32 transform | 
|  | 13,   // 32x8 transform | 
|  | 30,   // 16x64 transform | 
|  | 36,   // 64x16 transform | 
|  | }; | 
|  |  | 
|  | vector<AV1FwdTxfm2dParam> GetTxfm2dParamList() { | 
|  | vector<AV1FwdTxfm2dParam> param_list; | 
|  | for (int s = 0; s < TX_SIZES; ++s) { | 
|  | const double max_error = max_error_ls[s]; | 
|  | const double avg_error = avg_error_ls[s]; | 
|  | for (int t = 0; t < TX_TYPES; ++t) { | 
|  | const TX_TYPE tx_type = static_cast<TX_TYPE>(t); | 
|  | const TX_SIZE tx_size = static_cast<TX_SIZE>(s); | 
|  | if (libaom_test::IsTxSizeTypeValid(tx_size, tx_type)) { | 
|  | param_list.push_back( | 
|  | AV1FwdTxfm2dParam(tx_type, tx_size, max_error, avg_error)); | 
|  | } | 
|  | } | 
|  | } | 
|  | return param_list; | 
|  | } | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(C, AV1FwdTxfm2d, | 
|  | ::testing::ValuesIn(GetTxfm2dParamList())); | 
|  |  | 
|  | TEST_P(AV1FwdTxfm2d, RunFwdAccuracyCheck) { RunFwdAccuracyCheck(); } | 
|  |  | 
|  | TEST(AV1FwdTxfm2d, CfgTest) { | 
|  | for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) { | 
|  | int bd = libaom_test::bd_arr[bd_idx]; | 
|  | int8_t low_range = libaom_test::low_range_arr[bd_idx]; | 
|  | int8_t high_range = libaom_test::high_range_arr[bd_idx]; | 
|  | for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) { | 
|  | for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { | 
|  | if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(tx_size), | 
|  | static_cast<TX_TYPE>(tx_type)) == | 
|  | false) { | 
|  | continue; | 
|  | } | 
|  | TXFM_2D_FLIP_CFG cfg; | 
|  | av1_get_fwd_txfm_cfg(static_cast<TX_TYPE>(tx_type), | 
|  | static_cast<TX_SIZE>(tx_size), &cfg); | 
|  | int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; | 
|  | int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; | 
|  | av1_gen_fwd_stage_range(stage_range_col, stage_range_row, &cfg, bd); | 
|  | libaom_test::txfm_stage_range_check(stage_range_col, cfg.stage_num_col, | 
|  | cfg.cos_bit_col, low_range, | 
|  | high_range); | 
|  | libaom_test::txfm_stage_range_check(stage_range_row, cfg.stage_num_row, | 
|  | cfg.cos_bit_row, low_range, | 
|  | high_range); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef void (*lowbd_fwd_txfm_func)(const int16_t *src_diff, tran_low_t *coeff, | 
|  | int diff_stride, TxfmParam *txfm_param); | 
|  |  | 
|  | void AV1FwdTxfm2dMatchTest(TX_SIZE tx_size, lowbd_fwd_txfm_func target_func) { | 
|  | const int bd = 8; | 
|  | TxfmParam param; | 
|  | memset(¶m, 0, sizeof(param)); | 
|  | const int rows = tx_size_high[tx_size]; | 
|  | const int cols = tx_size_wide[tx_size]; | 
|  | // printf("%d x %d\n", cols, rows); | 
|  | for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { | 
|  | if (libaom_test::IsTxSizeTypeValid( | 
|  | tx_size, static_cast<TX_TYPE>(tx_type)) == false) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size]; | 
|  | if (ref_func != nullptr) { | 
|  | DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 }; | 
|  | DECLARE_ALIGNED(32, int32_t, output[64 * 64]); | 
|  | DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]); | 
|  | int input_stride = 64; | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | for (int cnt = 0; cnt < 500; ++cnt) { | 
|  | if (cnt == 0) { | 
|  | for (int c = 0; c < cols; ++c) { | 
|  | for (int r = 0; r < rows; ++r) { | 
|  | input[r * input_stride + c] = (1 << bd) - 1; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | for (int r = 0; r < rows; ++r) { | 
|  | for (int c = 0; c < cols; ++c) { | 
|  | input[r * input_stride + c] = rnd.Rand16() % (1 << bd); | 
|  | } | 
|  | } | 
|  | } | 
|  | param.tx_type = (TX_TYPE)tx_type; | 
|  | param.tx_size = (TX_SIZE)tx_size; | 
|  | param.tx_set_type = EXT_TX_SET_ALL16; | 
|  | param.bd = bd; | 
|  | ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd); | 
|  | target_func(input, output, input_stride, ¶m); | 
|  | const int check_cols = AOMMIN(32, cols); | 
|  | const int check_rows = AOMMIN(32, rows * cols / check_cols); | 
|  | for (int r = 0; r < check_rows; ++r) { | 
|  | for (int c = 0; c < check_cols; ++c) { | 
|  | ASSERT_EQ(ref_output[r * check_cols + c], | 
|  | output[r * check_cols + c]) | 
|  | << "[" << r << "," << c << "] cnt:" << cnt | 
|  | << " tx_size: " << cols << "x" << rows | 
|  | << " tx_type: " << tx_type_name[tx_type]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void AV1FwdTxfm2dSpeedTest(TX_SIZE tx_size, lowbd_fwd_txfm_func target_func) { | 
|  | TxfmParam param; | 
|  | memset(¶m, 0, sizeof(param)); | 
|  | const int rows = tx_size_high[tx_size]; | 
|  | const int cols = tx_size_wide[tx_size]; | 
|  | const int num_loops = 1000000 / (rows * cols); | 
|  |  | 
|  | const int bd = 8; | 
|  | for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { | 
|  | if (libaom_test::IsTxSizeTypeValid( | 
|  | tx_size, static_cast<TX_TYPE>(tx_type)) == false) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size]; | 
|  | if (ref_func != nullptr) { | 
|  | DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 }; | 
|  | DECLARE_ALIGNED(32, int32_t, output[64 * 64]); | 
|  | DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]); | 
|  | int input_stride = 64; | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  |  | 
|  | for (int r = 0; r < rows; ++r) { | 
|  | for (int c = 0; c < cols; ++c) { | 
|  | input[r * input_stride + c] = rnd.Rand16() % (1 << bd); | 
|  | } | 
|  | } | 
|  |  | 
|  | param.tx_type = (TX_TYPE)tx_type; | 
|  | param.tx_size = (TX_SIZE)tx_size; | 
|  | param.tx_set_type = EXT_TX_SET_ALL16; | 
|  | param.bd = bd; | 
|  |  | 
|  | aom_usec_timer ref_timer, test_timer; | 
|  |  | 
|  | aom_usec_timer_start(&ref_timer); | 
|  | for (int i = 0; i < num_loops; ++i) { | 
|  | ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd); | 
|  | } | 
|  | aom_usec_timer_mark(&ref_timer); | 
|  | const int elapsed_time_c = | 
|  | static_cast<int>(aom_usec_timer_elapsed(&ref_timer)); | 
|  |  | 
|  | aom_usec_timer_start(&test_timer); | 
|  | for (int i = 0; i < num_loops; ++i) { | 
|  | target_func(input, output, input_stride, ¶m); | 
|  | } | 
|  | aom_usec_timer_mark(&test_timer); | 
|  | const int elapsed_time_simd = | 
|  | static_cast<int>(aom_usec_timer_elapsed(&test_timer)); | 
|  |  | 
|  | printf( | 
|  | "txfm_size[%2dx%-2d] \t txfm_type[%d] \t c_time=%d \t" | 
|  | "simd_time=%d \t gain=%d \n", | 
|  | rows, cols, tx_type, elapsed_time_c, elapsed_time_simd, | 
|  | (elapsed_time_c / elapsed_time_simd)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef std::tuple<TX_SIZE, lowbd_fwd_txfm_func> LbdFwdTxfm2dParam; | 
|  |  | 
|  | class AV1FwdTxfm2dTest : public ::testing::TestWithParam<LbdFwdTxfm2dParam> {}; | 
|  | GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1FwdTxfm2dTest); | 
|  |  | 
|  | TEST_P(AV1FwdTxfm2dTest, match) { | 
|  | AV1FwdTxfm2dMatchTest(GET_PARAM(0), GET_PARAM(1)); | 
|  | } | 
|  | TEST_P(AV1FwdTxfm2dTest, DISABLED_Speed) { | 
|  | AV1FwdTxfm2dSpeedTest(GET_PARAM(0), GET_PARAM(1)); | 
|  | } | 
|  | TEST(AV1FwdTxfm2dTest, DCTScaleTest) { | 
|  | BitDepthInfo bd_info; | 
|  | bd_info.bit_depth = 8; | 
|  | bd_info.use_highbitdepth_buf = 0; | 
|  | DECLARE_ALIGNED(32, int16_t, src_diff[1024]); | 
|  | DECLARE_ALIGNED(32, tran_low_t, coeff[1024]); | 
|  |  | 
|  | const TX_SIZE tx_size_list[4] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32 }; | 
|  | const int stride_list[4] = { 4, 8, 16, 32 }; | 
|  | const int ref_scale_list[4] = { 64, 64, 64, 16 }; | 
|  |  | 
|  | for (int i = 0; i < 4; i++) { | 
|  | TX_SIZE tx_size = tx_size_list[i]; | 
|  | int stride = stride_list[i]; | 
|  | int array_size = stride * stride; | 
|  |  | 
|  | for (int j = 0; j < array_size; j++) { | 
|  | src_diff[j] = 8; | 
|  | coeff[j] = 0; | 
|  | } | 
|  |  | 
|  | av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, stride, | 
|  | coeff); | 
|  |  | 
|  | double input_sse = 0; | 
|  | double output_sse = 0; | 
|  | for (int j = 0; j < array_size; j++) { | 
|  | input_sse += pow(src_diff[j], 2); | 
|  | output_sse += pow(coeff[j], 2); | 
|  | } | 
|  |  | 
|  | double scale = output_sse / input_sse; | 
|  |  | 
|  | EXPECT_NEAR(scale, ref_scale_list[i], 5); | 
|  | } | 
|  | } | 
|  | TEST(AV1FwdTxfm2dTest, HadamardScaleTest) { | 
|  | BitDepthInfo bd_info; | 
|  | bd_info.bit_depth = 8; | 
|  | bd_info.use_highbitdepth_buf = 0; | 
|  | DECLARE_ALIGNED(32, int16_t, src_diff[1024]); | 
|  | DECLARE_ALIGNED(32, tran_low_t, coeff[1024]); | 
|  |  | 
|  | const TX_SIZE tx_size_list[4] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32 }; | 
|  | const int stride_list[4] = { 4, 8, 16, 32 }; | 
|  | const int ref_scale_list[4] = { 1, 64, 64, 16 }; | 
|  |  | 
|  | for (int i = 0; i < 4; i++) { | 
|  | TX_SIZE tx_size = tx_size_list[i]; | 
|  | int stride = stride_list[i]; | 
|  | int array_size = stride * stride; | 
|  |  | 
|  | for (int j = 0; j < array_size; j++) { | 
|  | src_diff[j] = 8; | 
|  | coeff[j] = 0; | 
|  | } | 
|  |  | 
|  | av1_quick_txfm(/*use_hadamard=*/1, tx_size, bd_info, src_diff, stride, | 
|  | coeff); | 
|  |  | 
|  | double input_sse = 0; | 
|  | double output_sse = 0; | 
|  | for (int j = 0; j < array_size; j++) { | 
|  | input_sse += pow(src_diff[j], 2); | 
|  | output_sse += pow(coeff[j], 2); | 
|  | } | 
|  |  | 
|  | double scale = output_sse / input_sse; | 
|  |  | 
|  | EXPECT_NEAR(scale, ref_scale_list[i], 5); | 
|  | } | 
|  | } | 
|  | using ::testing::Combine; | 
|  | using ::testing::Values; | 
|  | using ::testing::ValuesIn; | 
|  |  | 
|  | #if HAVE_SSE2 | 
|  | static TX_SIZE fwd_txfm_for_sse2[] = { | 
|  | TX_4X4, | 
|  | TX_8X8, | 
|  | TX_16X16, | 
|  | TX_32X32, | 
|  | // TX_64X64, | 
|  | TX_4X8, | 
|  | TX_8X4, | 
|  | TX_8X16, | 
|  | TX_16X8, | 
|  | TX_16X32, | 
|  | TX_32X16, | 
|  | // TX_32X64, | 
|  | // TX_64X32, | 
|  | TX_4X16, | 
|  | TX_16X4, | 
|  | TX_8X32, | 
|  | TX_32X8, | 
|  | TX_16X64, | 
|  | TX_64X16, | 
|  | }; | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(SSE2, AV1FwdTxfm2dTest, | 
|  | Combine(ValuesIn(fwd_txfm_for_sse2), | 
|  | Values(av1_lowbd_fwd_txfm_sse2))); | 
|  | #endif  // HAVE_SSE2 | 
|  |  | 
|  | #if HAVE_SSE4_1 | 
|  | static TX_SIZE fwd_txfm_for_sse41[] = { | 
|  | TX_4X4, | 
|  | TX_64X64, | 
|  | TX_32X64, | 
|  | TX_64X32, | 
|  | }; | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1FwdTxfm2dTest, | 
|  | Combine(ValuesIn(fwd_txfm_for_sse41), | 
|  | Values(av1_lowbd_fwd_txfm_sse4_1))); | 
|  | #endif  // HAVE_SSE4_1 | 
|  |  | 
|  | #if HAVE_AVX2 | 
|  | static TX_SIZE fwd_txfm_for_avx2[] = { | 
|  | TX_4X4,  TX_8X8,  TX_16X16, TX_32X32, TX_64X64, TX_4X8,   TX_8X4, | 
|  | TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, TX_4X16, | 
|  | TX_16X4, TX_8X32, TX_32X8,  TX_16X64, TX_64X16, | 
|  | }; | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(AVX2, AV1FwdTxfm2dTest, | 
|  | Combine(ValuesIn(fwd_txfm_for_avx2), | 
|  | Values(av1_lowbd_fwd_txfm_avx2))); | 
|  | #endif  // HAVE_AVX2 | 
|  |  | 
|  | #if HAVE_NEON | 
|  |  | 
|  | static TX_SIZE fwd_txfm_for_neon[] = { TX_4X4,   TX_8X8,   TX_16X16, TX_32X32, | 
|  | TX_64X64, TX_4X8,   TX_8X4,   TX_8X16, | 
|  | TX_16X8,  TX_16X32, TX_32X16, TX_32X64, | 
|  | TX_64X32, TX_4X16,  TX_16X4,  TX_8X32, | 
|  | TX_32X8,  TX_16X64, TX_64X16 }; | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(NEON, AV1FwdTxfm2dTest, | 
|  | Combine(ValuesIn(fwd_txfm_for_neon), | 
|  | Values(av1_lowbd_fwd_txfm_neon))); | 
|  |  | 
|  | #endif  // HAVE_NEON | 
|  |  | 
|  | typedef void (*Highbd_fwd_txfm_func)(const int16_t *src_diff, tran_low_t *coeff, | 
|  | int diff_stride, TxfmParam *txfm_param); | 
|  |  | 
|  | void AV1HighbdFwdTxfm2dMatchTest(TX_SIZE tx_size, | 
|  | Highbd_fwd_txfm_func target_func) { | 
|  | const int bd_ar[2] = { 10, 12 }; | 
|  | TxfmParam param; | 
|  | memset(¶m, 0, sizeof(param)); | 
|  | const int rows = tx_size_high[tx_size]; | 
|  | const int cols = tx_size_wide[tx_size]; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | const int bd = bd_ar[i]; | 
|  | for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { | 
|  | if (libaom_test::IsTxSizeTypeValid( | 
|  | tx_size, static_cast<TX_TYPE>(tx_type)) == false) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size]; | 
|  | if (ref_func != nullptr) { | 
|  | DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 }; | 
|  | DECLARE_ALIGNED(32, int32_t, output[64 * 64]); | 
|  | DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]); | 
|  | int input_stride = 64; | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | for (int cnt = 0; cnt < 500; ++cnt) { | 
|  | if (cnt == 0) { | 
|  | for (int r = 0; r < rows; ++r) { | 
|  | for (int c = 0; c < cols; ++c) { | 
|  | input[r * input_stride + c] = (1 << bd) - 1; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | for (int r = 0; r < rows; ++r) { | 
|  | for (int c = 0; c < cols; ++c) { | 
|  | input[r * input_stride + c] = rnd.Rand16() % (1 << bd); | 
|  | } | 
|  | } | 
|  | } | 
|  | param.tx_type = (TX_TYPE)tx_type; | 
|  | param.tx_size = (TX_SIZE)tx_size; | 
|  | param.tx_set_type = EXT_TX_SET_ALL16; | 
|  | param.bd = bd; | 
|  |  | 
|  | ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd); | 
|  | target_func(input, output, input_stride, ¶m); | 
|  | const int check_cols = AOMMIN(32, cols); | 
|  | const int check_rows = AOMMIN(32, rows * cols / check_cols); | 
|  | for (int r = 0; r < check_rows; ++r) { | 
|  | for (int c = 0; c < check_cols; ++c) { | 
|  | ASSERT_EQ(ref_output[c * check_rows + r], | 
|  | output[c * check_rows + r]) | 
|  | << "[" << r << "," << c << "] cnt:" << cnt | 
|  | << " tx_size: " << cols << "x" << rows | 
|  | << " tx_type: " << tx_type; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void AV1HighbdFwdTxfm2dSpeedTest(TX_SIZE tx_size, | 
|  | Highbd_fwd_txfm_func target_func) { | 
|  | const int bd_ar[2] = { 10, 12 }; | 
|  | TxfmParam param; | 
|  | memset(¶m, 0, sizeof(param)); | 
|  | const int rows = tx_size_high[tx_size]; | 
|  | const int cols = tx_size_wide[tx_size]; | 
|  | const int num_loops = 1000000 / (rows * cols); | 
|  |  | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | const int bd = bd_ar[i]; | 
|  | for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { | 
|  | if (libaom_test::IsTxSizeTypeValid( | 
|  | tx_size, static_cast<TX_TYPE>(tx_type)) == false) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size]; | 
|  | if (ref_func != nullptr) { | 
|  | DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 }; | 
|  | DECLARE_ALIGNED(32, int32_t, output[64 * 64]); | 
|  | DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]); | 
|  | int input_stride = 64; | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  |  | 
|  | for (int r = 0; r < rows; ++r) { | 
|  | for (int c = 0; c < cols; ++c) { | 
|  | input[r * input_stride + c] = rnd.Rand16() % (1 << bd); | 
|  | } | 
|  | } | 
|  |  | 
|  | param.tx_type = (TX_TYPE)tx_type; | 
|  | param.tx_size = (TX_SIZE)tx_size; | 
|  | param.tx_set_type = EXT_TX_SET_ALL16; | 
|  | param.bd = bd; | 
|  |  | 
|  | aom_usec_timer ref_timer, test_timer; | 
|  |  | 
|  | aom_usec_timer_start(&ref_timer); | 
|  | for (int j = 0; j < num_loops; ++j) { | 
|  | ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd); | 
|  | } | 
|  | aom_usec_timer_mark(&ref_timer); | 
|  | const int elapsed_time_c = | 
|  | static_cast<int>(aom_usec_timer_elapsed(&ref_timer)); | 
|  |  | 
|  | aom_usec_timer_start(&test_timer); | 
|  | for (int j = 0; j < num_loops; ++j) { | 
|  | target_func(input, output, input_stride, ¶m); | 
|  | } | 
|  | aom_usec_timer_mark(&test_timer); | 
|  | const int elapsed_time_simd = | 
|  | static_cast<int>(aom_usec_timer_elapsed(&test_timer)); | 
|  |  | 
|  | printf( | 
|  | "txfm_size[%2dx%-2d] \t txfm_type[%d] \t c_time=%d \t" | 
|  | "simd_time=%d \t gain=%d \n", | 
|  | cols, rows, tx_type, elapsed_time_c, elapsed_time_simd, | 
|  | (elapsed_time_c / elapsed_time_simd)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef std::tuple<TX_SIZE, Highbd_fwd_txfm_func> HighbdFwdTxfm2dParam; | 
|  |  | 
|  | class AV1HighbdFwdTxfm2dTest | 
|  | : public ::testing::TestWithParam<HighbdFwdTxfm2dParam> {}; | 
|  | GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1HighbdFwdTxfm2dTest); | 
|  |  | 
|  | TEST_P(AV1HighbdFwdTxfm2dTest, match) { | 
|  | AV1HighbdFwdTxfm2dMatchTest(GET_PARAM(0), GET_PARAM(1)); | 
|  | } | 
|  |  | 
|  | TEST_P(AV1HighbdFwdTxfm2dTest, DISABLED_Speed) { | 
|  | AV1HighbdFwdTxfm2dSpeedTest(GET_PARAM(0), GET_PARAM(1)); | 
|  | } | 
|  |  | 
|  | using ::testing::Combine; | 
|  | using ::testing::Values; | 
|  | using ::testing::ValuesIn; | 
|  |  | 
|  | #if HAVE_SSE4_1 | 
|  | static TX_SIZE Highbd_fwd_txfm_for_sse4_1[] = { | 
|  | TX_4X4,  TX_8X8,  TX_16X16, TX_32X32, TX_64X64, TX_4X8,   TX_8X4, | 
|  | TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | TX_4X16, TX_16X4, TX_8X32,  TX_32X8,  TX_16X64, TX_64X16, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1HighbdFwdTxfm2dTest, | 
|  | Combine(ValuesIn(Highbd_fwd_txfm_for_sse4_1), | 
|  | Values(av1_highbd_fwd_txfm))); | 
|  | #endif  // HAVE_SSE4_1 | 
|  | #if HAVE_AVX2 | 
|  | static TX_SIZE Highbd_fwd_txfm_for_avx2[] = { TX_8X8,   TX_16X16, TX_32X32, | 
|  | TX_64X64, TX_8X16,  TX_16X8 }; | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(AVX2, AV1HighbdFwdTxfm2dTest, | 
|  | Combine(ValuesIn(Highbd_fwd_txfm_for_avx2), | 
|  | Values(av1_highbd_fwd_txfm))); | 
|  | #endif  // HAVE_AVX2 | 
|  |  | 
|  | #if HAVE_NEON | 
|  | static TX_SIZE Highbd_fwd_txfm_for_neon[] = { | 
|  | TX_4X4,  TX_8X8,  TX_16X16, TX_32X32, TX_64X64, TX_4X8,   TX_8X4, | 
|  | TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, TX_4X16, | 
|  | TX_16X4, TX_8X32, TX_32X8,  TX_16X64, TX_64X16 | 
|  | }; | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(NEON, AV1HighbdFwdTxfm2dTest, | 
|  | Combine(ValuesIn(Highbd_fwd_txfm_for_neon), | 
|  | Values(av1_highbd_fwd_txfm))); | 
|  | #endif  // HAVE_NEON | 
|  |  | 
|  | }  // namespace |