| /* |
| * Copyright (c) 2020, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AOM_AV1_ENCODER_RC_UTILS_H_ |
| #define AOM_AV1_ENCODER_RC_UTILS_H_ |
| |
| #include "av1/encoder/encoder.h" |
| #include "aom_dsp/psnr.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| static AOM_INLINE void check_reset_rc_flag(AV1_COMP *cpi) { |
| RATE_CONTROL *rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| if (cpi->common.current_frame.frame_number > |
| (unsigned int)cpi->svc.number_spatial_layers) { |
| if (cpi->ppi->use_svc) { |
| av1_svc_check_reset_layer_rc_flag(cpi); |
| } else { |
| if (rc->avg_frame_bandwidth > (3 * rc->prev_avg_frame_bandwidth >> 1) || |
| rc->avg_frame_bandwidth < (rc->prev_avg_frame_bandwidth >> 1)) { |
| rc->rc_1_frame = 0; |
| rc->rc_2_frame = 0; |
| p_rc->bits_off_target = p_rc->optimal_buffer_level; |
| p_rc->buffer_level = p_rc->optimal_buffer_level; |
| } |
| } |
| } |
| } |
| |
| static AOM_INLINE void set_primary_rc_buffer_sizes(const AV1EncoderConfig *oxcf, |
| AV1_PRIMARY *ppi) { |
| PRIMARY_RATE_CONTROL *p_rc = &ppi->p_rc; |
| const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
| |
| const int64_t bandwidth = rc_cfg->target_bandwidth; |
| const int64_t starting = rc_cfg->starting_buffer_level_ms; |
| const int64_t optimal = rc_cfg->optimal_buffer_level_ms; |
| const int64_t maximum = rc_cfg->maximum_buffer_size_ms; |
| |
| p_rc->starting_buffer_level = starting * bandwidth / 1000; |
| p_rc->optimal_buffer_level = |
| (optimal == 0) ? bandwidth / 8 : optimal * bandwidth / 1000; |
| p_rc->maximum_buffer_size = |
| (maximum == 0) ? bandwidth / 8 : maximum * bandwidth / 1000; |
| |
| // Under a configuration change, where maximum_buffer_size may change, |
| // keep buffer level clipped to the maximum allowed buffer size. |
| p_rc->bits_off_target = |
| AOMMIN(p_rc->bits_off_target, p_rc->maximum_buffer_size); |
| p_rc->buffer_level = AOMMIN(p_rc->buffer_level, p_rc->maximum_buffer_size); |
| } |
| |
| static AOM_INLINE void config_target_level(AV1_COMP *const cpi, |
| AV1_LEVEL target_level, int tier) { |
| AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| SequenceHeader *const seq_params = cpi->common.seq_params; |
| TileConfig *const tile_cfg = &oxcf->tile_cfg; |
| RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
| |
| // Adjust target bitrate to be no larger than 70% of level limit. |
| const BITSTREAM_PROFILE profile = seq_params->profile; |
| const double level_bitrate_limit = |
| av1_get_max_bitrate_for_level(target_level, tier, profile); |
| const int64_t max_bitrate = (int64_t)(level_bitrate_limit * 0.70); |
| rc_cfg->target_bandwidth = AOMMIN(rc_cfg->target_bandwidth, max_bitrate); |
| // Also need to update cpi->ppi->twopass.bits_left. |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| FIRSTPASS_STATS *stats = twopass->stats_buf_ctx->total_stats; |
| if (stats != NULL) |
| cpi->ppi->twopass.bits_left = |
| (int64_t)(stats->duration * rc_cfg->target_bandwidth / 10000000.0); |
| |
| // Adjust max over-shoot percentage. |
| rc_cfg->over_shoot_pct = 0; |
| |
| // Adjust max quantizer. |
| rc_cfg->worst_allowed_q = 255; |
| |
| // Adjust number of tiles and tile columns to be under level limit. |
| int max_tiles, max_tile_cols; |
| av1_get_max_tiles_for_level(target_level, &max_tiles, &max_tile_cols); |
| while (tile_cfg->tile_columns > 0 && |
| (1 << tile_cfg->tile_columns) > max_tile_cols) { |
| --tile_cfg->tile_columns; |
| } |
| const int tile_cols = (1 << tile_cfg->tile_columns); |
| while (tile_cfg->tile_rows > 0 && |
| tile_cols * (1 << tile_cfg->tile_rows) > max_tiles) { |
| --tile_cfg->tile_rows; |
| } |
| |
| // Adjust min compression ratio. |
| const int still_picture = seq_params->still_picture; |
| const double min_cr = |
| av1_get_min_cr_for_level(target_level, tier, still_picture); |
| rc_cfg->min_cr = AOMMAX(rc_cfg->min_cr, (unsigned int)(min_cr * 100)); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| |
| /*!\brief Function to test for conditions that indicate we should loop |
| * back and recode a frame. |
| * |
| * \ingroup rate_control |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] high_limit Upper rate threshold |
| * \param[in] low_limit Lower rate threshold |
| * \param[in] q Current q index |
| * \param[in] maxq Maximum allowed q index |
| * \param[in] minq Minimum allowed q index |
| * |
| * \return Indicates if a recode is required. |
| * \retval 1 Recode Required |
| * \retval 0 No Recode required |
| */ |
| static AOM_INLINE int recode_loop_test(AV1_COMP *cpi, int high_limit, |
| int low_limit, int q, int maxq, |
| int minq) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi); |
| int force_recode = 0; |
| |
| if ((rc->projected_frame_size >= rc->max_frame_bandwidth) || |
| (cpi->sf.hl_sf.recode_loop == ALLOW_RECODE) || |
| (frame_is_kfgfarf && |
| (cpi->sf.hl_sf.recode_loop == ALLOW_RECODE_KFARFGF))) { |
| // TODO(agrange) high_limit could be greater than the scale-down threshold. |
| if ((rc->projected_frame_size > high_limit && q < maxq) || |
| (rc->projected_frame_size < low_limit && q > minq)) { |
| force_recode = 1; |
| } else if (cpi->oxcf.rc_cfg.mode == AOM_CQ) { |
| // Deal with frame undershoot and whether or not we are |
| // below the automatically set cq level. |
| if (q > oxcf->rc_cfg.cq_level && |
| rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) { |
| force_recode = 1; |
| } |
| } |
| } |
| return force_recode; |
| } |
| |
| static AOM_INLINE double av1_get_gfu_boost_projection_factor(double min_factor, |
| double max_factor, |
| int frame_count) { |
| double factor = sqrt((double)frame_count); |
| factor = AOMMIN(factor, max_factor); |
| factor = AOMMAX(factor, min_factor); |
| factor = (200.0 + 10.0 * factor); |
| return factor; |
| } |
| |
| static AOM_INLINE int get_gfu_boost_from_r0_lap(double min_factor, |
| double max_factor, double r0, |
| int frames_to_key) { |
| double factor = av1_get_gfu_boost_projection_factor(min_factor, max_factor, |
| frames_to_key); |
| const int boost = (int)rint(factor / r0); |
| return boost; |
| } |
| |
| static AOM_INLINE double av1_get_kf_boost_projection_factor(int frame_count) { |
| double factor = sqrt((double)frame_count); |
| factor = AOMMIN(factor, 10.0); |
| factor = AOMMAX(factor, 4.0); |
| factor = (75.0 + 14.0 * factor); |
| return factor; |
| } |
| |
| static AOM_INLINE int get_regulated_q_overshoot(AV1_COMP *const cpi, |
| int is_encode_stage, int q_low, |
| int q_high, int top_index, |
| int bottom_index) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| |
| av1_rc_update_rate_correction_factors(cpi, is_encode_stage, cm->width, |
| cm->height); |
| |
| int q_regulated = |
| av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, |
| AOMMAX(q_high, top_index), cm->width, cm->height); |
| |
| int retries = 0; |
| while (q_regulated < q_low && retries < 10) { |
| av1_rc_update_rate_correction_factors(cpi, is_encode_stage, cm->width, |
| cm->height); |
| q_regulated = |
| av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, |
| AOMMAX(q_high, top_index), cm->width, cm->height); |
| retries++; |
| } |
| return q_regulated; |
| } |
| |
| static AOM_INLINE int get_regulated_q_undershoot(AV1_COMP *const cpi, |
| int is_encode_stage, |
| int q_high, int top_index, |
| int bottom_index) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| |
| av1_rc_update_rate_correction_factors(cpi, is_encode_stage, cm->width, |
| cm->height); |
| int q_regulated = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, |
| top_index, cm->width, cm->height); |
| |
| int retries = 0; |
| while (q_regulated > q_high && retries < 10) { |
| av1_rc_update_rate_correction_factors(cpi, is_encode_stage, cm->width, |
| cm->height); |
| q_regulated = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, |
| top_index, cm->width, cm->height); |
| retries++; |
| } |
| return q_regulated; |
| } |
| |
| /*!\brief Called after encode_with_recode_loop() has just encoded a frame. |
| * This function works out whether we undershot or overshot our bitrate |
| * target and adjusts q as appropriate. It also decides whether or not |
| * we need to recode the frame to get closer to the target rate. |
| * |
| * \ingroup rate_control |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[out] loop Should we go around the recode loop again |
| * \param[in,out] q New q index value |
| * \param[in,out] q_low Low q index limit for this loop itteration |
| * \param[in,out] q_high High q index limit for this loop itteration |
| * \param[in] top_index Max permited new value for q index |
| * \param[in] bottom_index Min permited new value for q index |
| * \param[in,out] undershoot_seen Have we seen undershoot on this frame |
| * \param[in,out] overshoot_seen Have we seen overshoot on this frame |
| * \param[in,out] low_cr_seen Have we previously trriggered recode |
| * because the compression ration was less |
| * than a given minimum threshold. |
| * \param[in] loop_count Loop itterations so far. |
| * |
| */ |
| static AOM_INLINE void recode_loop_update_q( |
| AV1_COMP *const cpi, int *const loop, int *const q, int *const q_low, |
| int *const q_high, const int top_index, const int bottom_index, |
| int *const undershoot_seen, int *const overshoot_seen, |
| int *const low_cr_seen, const int loop_count) { |
| AV1_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg; |
| *loop = 0; |
| |
| // Special case for overlay frame. |
| if (rc->is_src_frame_alt_ref && |
| rc->projected_frame_size < rc->max_frame_bandwidth) |
| return; |
| |
| const int min_cr = rc_cfg->min_cr; |
| if (min_cr > 0) { |
| const double compression_ratio = |
| av1_get_compression_ratio(cm, rc->projected_frame_size >> 3); |
| const double target_cr = min_cr / 100.0; |
| if (compression_ratio < target_cr) { |
| *low_cr_seen = 1; |
| if (*q < rc->worst_quality) { |
| const double cr_ratio = target_cr / compression_ratio; |
| const int projected_q = AOMMAX(*q + 1, (int)(*q * cr_ratio * cr_ratio)); |
| *q = AOMMIN(AOMMIN(projected_q, *q + 32), rc->worst_quality); |
| *q_low = AOMMAX(*q, *q_low); |
| *q_high = AOMMAX(*q, *q_high); |
| *loop = 1; |
| } |
| } |
| if (*low_cr_seen) return; |
| } |
| |
| if (cpi->ppi->level_params.keep_level_stats && |
| !is_stat_generation_stage(cpi)) { |
| // Initialize level info. at the beginning of each sequence. |
| if (cm->current_frame.frame_type == KEY_FRAME && |
| cpi->ppi->gf_group.refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) { |
| av1_init_level_info(cpi); |
| } |
| const AV1LevelParams *const level_params = &cpi->ppi->level_params; |
| // TODO(any): currently only checking operating point 0 |
| const AV1LevelInfo *const level_info = level_params->level_info[0]; |
| const DECODER_MODEL *const decoder_models = level_info->decoder_models; |
| const AV1_LEVEL target_level = level_params->target_seq_level_idx[0]; |
| |
| if (target_level < SEQ_LEVELS && |
| decoder_models[target_level].status == DECODER_MODEL_OK) { |
| DECODER_MODEL_STATUS status = av1_decoder_model_try_smooth_buf( |
| cpi, rc->projected_frame_size, &decoder_models[target_level]); |
| |
| if ((status == SMOOTHING_BUFFER_UNDERFLOW || |
| status == SMOOTHING_BUFFER_OVERFLOW) && |
| *q < rc->worst_quality) { |
| *q = AOMMIN(*q + 10, rc->worst_quality); |
| *q_low = AOMMAX(*q, *q_low); |
| *q_high = AOMMAX(*q, *q_high); |
| *loop = 1; |
| return; |
| } |
| } |
| } |
| |
| if (rc_cfg->mode == AOM_Q) return; |
| |
| const int last_q = *q; |
| int frame_over_shoot_limit = 0, frame_under_shoot_limit = 0; |
| av1_rc_compute_frame_size_bounds(cpi, rc->this_frame_target, |
| &frame_under_shoot_limit, |
| &frame_over_shoot_limit); |
| if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1; |
| |
| if (cm->current_frame.frame_type == KEY_FRAME && |
| p_rc->this_key_frame_forced && |
| rc->projected_frame_size < rc->max_frame_bandwidth) { |
| int64_t kf_err; |
| const int64_t high_err_target = cpi->ambient_err; |
| const int64_t low_err_target = cpi->ambient_err >> 1; |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (cm->seq_params->use_highbitdepth) { |
| kf_err = aom_highbd_get_y_sse(cpi->source, &cm->cur_frame->buf); |
| } else { |
| kf_err = aom_get_y_sse(cpi->source, &cm->cur_frame->buf); |
| } |
| #else |
| kf_err = aom_get_y_sse(cpi->source, &cm->cur_frame->buf); |
| #endif |
| // Prevent possible divide by zero error below for perfect KF |
| kf_err += !kf_err; |
| |
| // The key frame is not good enough or we can afford |
| // to make it better without undue risk of popping. |
| if ((kf_err > high_err_target && |
| rc->projected_frame_size <= frame_over_shoot_limit) || |
| (kf_err > low_err_target && |
| rc->projected_frame_size <= frame_under_shoot_limit)) { |
| // Lower q_high |
| *q_high = AOMMAX(*q - 1, *q_low); |
| |
| // Adjust Q |
| *q = (int)((*q * high_err_target) / kf_err); |
| *q = AOMMIN(*q, (*q_high + *q_low) >> 1); |
| } else if (kf_err < low_err_target && |
| rc->projected_frame_size >= frame_under_shoot_limit) { |
| // The key frame is much better than the previous frame |
| // Raise q_low |
| *q_low = AOMMIN(*q + 1, *q_high); |
| |
| // Adjust Q |
| *q = (int)((*q * low_err_target) / kf_err); |
| *q = AOMMIN(*q, (*q_high + *q_low + 1) >> 1); |
| } |
| |
| // Clamp Q to upper and lower limits: |
| *q = clamp(*q, *q_low, *q_high); |
| *loop = (*q != last_q); |
| return; |
| } |
| |
| if (recode_loop_test(cpi, frame_over_shoot_limit, frame_under_shoot_limit, *q, |
| AOMMAX(*q_high, top_index), bottom_index)) { |
| // Is the projected frame size out of range and are we allowed |
| // to attempt to recode. |
| |
| // Frame size out of permitted range: |
| // Update correction factor & compute new Q to try... |
| // Frame is too large |
| if (rc->projected_frame_size > rc->this_frame_target) { |
| // Special case if the projected size is > the max allowed. |
| if (*q == *q_high && |
| rc->projected_frame_size >= rc->max_frame_bandwidth) { |
| const double q_val_high_current = |
| av1_convert_qindex_to_q(*q_high, cm->seq_params->bit_depth); |
| const double q_val_high_new = |
| q_val_high_current * |
| ((double)rc->projected_frame_size / rc->max_frame_bandwidth); |
| *q_high = av1_find_qindex(q_val_high_new, cm->seq_params->bit_depth, |
| rc->best_quality, rc->worst_quality); |
| } |
| |
| // Raise Qlow as to at least the current value |
| *q_low = AOMMIN(*q + 1, *q_high); |
| |
| if (*undershoot_seen || loop_count > 2 || |
| (loop_count == 2 && !frame_is_intra_only(cm))) { |
| av1_rc_update_rate_correction_factors(cpi, 1, cm->width, cm->height); |
| |
| *q = (*q_high + *q_low + 1) / 2; |
| } else if (loop_count == 2 && frame_is_intra_only(cm)) { |
| const int q_mid = (*q_high + *q_low + 1) / 2; |
| const int q_regulated = get_regulated_q_overshoot( |
| cpi, 1, *q_low, *q_high, top_index, bottom_index); |
| // Get 'q' in-between 'q_mid' and 'q_regulated' for a smooth |
| // transition between loop_count < 2 and loop_count > 2. |
| *q = (q_mid + q_regulated + 1) / 2; |
| } else { |
| *q = get_regulated_q_overshoot(cpi, 1, *q_low, *q_high, top_index, |
| bottom_index); |
| } |
| |
| *overshoot_seen = 1; |
| } else { |
| // Frame is too small |
| *q_high = AOMMAX(*q - 1, *q_low); |
| |
| if (*overshoot_seen || loop_count > 2 || |
| (loop_count == 2 && !frame_is_intra_only(cm))) { |
| av1_rc_update_rate_correction_factors(cpi, 1, cm->width, cm->height); |
| *q = (*q_high + *q_low) / 2; |
| } else if (loop_count == 2 && frame_is_intra_only(cm)) { |
| const int q_mid = (*q_high + *q_low) / 2; |
| const int q_regulated = get_regulated_q_undershoot( |
| cpi, 1, *q_high, top_index, bottom_index); |
| // Get 'q' in-between 'q_mid' and 'q_regulated' for a smooth |
| // transition between loop_count < 2 and loop_count > 2. |
| *q = (q_mid + q_regulated) / 2; |
| |
| // Special case reset for qlow for constrained quality. |
| // This should only trigger where there is very substantial |
| // undershoot on a frame and the auto cq level is above |
| // the user passsed in value. |
| if (rc_cfg->mode == AOM_CQ && q_regulated < *q_low) { |
| *q_low = *q; |
| } |
| } else { |
| *q = get_regulated_q_undershoot(cpi, 1, *q_high, top_index, |
| bottom_index); |
| |
| // Special case reset for qlow for constrained quality. |
| // This should only trigger where there is very substantial |
| // undershoot on a frame and the auto cq level is above |
| // the user passsed in value. |
| if (rc_cfg->mode == AOM_CQ && *q < *q_low) { |
| *q_low = *q; |
| } |
| } |
| |
| *undershoot_seen = 1; |
| } |
| |
| // Clamp Q to upper and lower limits: |
| *q = clamp(*q, *q_low, *q_high); |
| } |
| |
| *loop = (*q != last_q); |
| } |
| #endif |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |
| |
| #endif // AOM_AV1_ENCODER_RC_UTILS_H_ |