blob: ffac886e3203ecfb5431f0e1939c13c02cd30174 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "aom_mem/aom_mem.h"
#include "av1/common/entropy.h"
#include "av1/common/pred_common.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/tokenize.h"
static AOM_INLINE int av1_fast_palette_color_index_context_on_edge(
const uint8_t *color_map, int stride, int r, int c, int *color_idx) {
const bool has_left = (c - 1 >= 0);
const bool has_above = (r - 1 >= 0);
assert(r > 0 || c > 0);
assert(has_above ^ has_left);
assert(color_idx);
(void)has_left;
const uint8_t color_neighbor = has_above
? color_map[(r - 1) * stride + (c - 0)]
: color_map[(r - 0) * stride + (c - 1)];
// If the neighbor color has higher index than current color index, then we
// move up by 1.
const uint8_t current_color = *color_idx = color_map[r * stride + c];
if (color_neighbor > current_color) {
(*color_idx)++;
} else if (color_neighbor == current_color) {
*color_idx = 0;
}
// Get hash value of context.
// The non-diagonal neighbors get a weight of 2.
const uint8_t color_score = 2;
const uint8_t hash_multiplier = 1;
const uint8_t color_index_ctx_hash = color_score * hash_multiplier;
// Lookup context from hash.
const int color_index_ctx =
av1_palette_color_index_context_lookup[color_index_ctx_hash];
assert(color_index_ctx == 0);
(void)color_index_ctx;
return 0;
}
#define SWAP(i, j) \
do { \
const uint8_t tmp_score = score_rank[i]; \
const uint8_t tmp_color = color_rank[i]; \
score_rank[i] = score_rank[j]; \
color_rank[i] = color_rank[j]; \
score_rank[j] = tmp_score; \
color_rank[j] = tmp_color; \
} while (0)
#define INVALID_COLOR_IDX (UINT8_MAX)
// A faster version of av1_get_palette_color_index_context used by the encoder
// exploiting the fact that the encoder does not need to maintain a color order.
static AOM_INLINE int av1_fast_palette_color_index_context(
const uint8_t *color_map, int stride, int r, int c, int *color_idx) {
assert(r > 0 || c > 0);
const bool has_above = (r - 1 >= 0);
const bool has_left = (c - 1 >= 0);
assert(has_above || has_left);
if (has_above ^ has_left) {
return av1_fast_palette_color_index_context_on_edge(color_map, stride, r, c,
color_idx);
}
// This goes in the order of left, top, and top-left. This has the advantage
// that unless anything here are not distinct or invalid, this will already
// be in sorted order. Furthermore, if either of the first two is
// invalid, we know the last one is also invalid.
uint8_t color_neighbors[NUM_PALETTE_NEIGHBORS];
color_neighbors[0] = color_map[(r - 0) * stride + (c - 1)];
color_neighbors[1] = color_map[(r - 1) * stride + (c - 0)];
color_neighbors[2] = color_map[(r - 1) * stride + (c - 1)];
// Aggregate duplicated values.
// Since our array is so small, using a couple if statements is faster
uint8_t scores[NUM_PALETTE_NEIGHBORS] = { 2, 2, 1 };
uint8_t num_invalid_colors = 0;
if (color_neighbors[0] == color_neighbors[1]) {
scores[0] += scores[1];
color_neighbors[1] = INVALID_COLOR_IDX;
num_invalid_colors += 1;
if (color_neighbors[0] == color_neighbors[2]) {
scores[0] += scores[2];
num_invalid_colors += 1;
}
} else if (color_neighbors[0] == color_neighbors[2]) {
scores[0] += scores[2];
num_invalid_colors += 1;
} else if (color_neighbors[1] == color_neighbors[2]) {
scores[1] += scores[2];
num_invalid_colors += 1;
}
const uint8_t num_valid_colors = NUM_PALETTE_NEIGHBORS - num_invalid_colors;
uint8_t *color_rank = color_neighbors;
uint8_t *score_rank = scores;
// Sort everything
if (num_valid_colors > 1) {
if (color_neighbors[1] == INVALID_COLOR_IDX) {
scores[1] = scores[2];
color_neighbors[1] = color_neighbors[2];
}
// We need to swap the first two elements if they have the same score but
// the color indices are not in the right order
if (score_rank[0] < score_rank[1] ||
(score_rank[0] == score_rank[1] && color_rank[0] > color_rank[1])) {
SWAP(0, 1);
}
if (num_valid_colors > 2) {
if (score_rank[0] < score_rank[2]) {
SWAP(0, 2);
}
if (score_rank[1] < score_rank[2]) {
SWAP(1, 2);
}
}
}
// If any of the neighbor colors has higher index than current color index,
// then we move up by 1 unless the current color is the same as one of the
// neighbors.
const uint8_t current_color = *color_idx = color_map[r * stride + c];
for (int idx = 0; idx < num_valid_colors; idx++) {
if (color_rank[idx] > current_color) {
(*color_idx)++;
} else if (color_rank[idx] == current_color) {
*color_idx = idx;
break;
}
}
// Get hash value of context.
uint8_t color_index_ctx_hash = 0;
static const uint8_t hash_multipliers[NUM_PALETTE_NEIGHBORS] = { 1, 2, 2 };
for (int idx = 0; idx < num_valid_colors; ++idx) {
color_index_ctx_hash += score_rank[idx] * hash_multipliers[idx];
}
assert(color_index_ctx_hash > 0);
assert(color_index_ctx_hash <= MAX_COLOR_CONTEXT_HASH);
// Lookup context from hash.
const int color_index_ctx = 9 - color_index_ctx_hash;
assert(color_index_ctx ==
av1_palette_color_index_context_lookup[color_index_ctx_hash]);
assert(color_index_ctx >= 0);
assert(color_index_ctx < PALETTE_COLOR_INDEX_CONTEXTS);
return color_index_ctx;
}
#undef INVALID_COLOR_IDX
#undef SWAP
static int cost_and_tokenize_map(Av1ColorMapParam *param, TokenExtra **t,
int plane, int calc_rate, int allow_update_cdf,
FRAME_COUNTS *counts) {
const uint8_t *const color_map = param->color_map;
MapCdf map_cdf = param->map_cdf;
ColorCost color_cost = param->color_cost;
const int plane_block_width = param->plane_width;
const int rows = param->rows;
const int cols = param->cols;
const int n = param->n_colors;
const int palette_size_idx = n - PALETTE_MIN_SIZE;
int this_rate = 0;
(void)plane;
(void)counts;
for (int k = 1; k < rows + cols - 1; ++k) {
for (int j = AOMMIN(k, cols - 1); j >= AOMMAX(0, k - rows + 1); --j) {
int i = k - j;
int color_new_idx;
const int color_ctx = av1_fast_palette_color_index_context(
color_map, plane_block_width, i, j, &color_new_idx);
assert(color_new_idx >= 0 && color_new_idx < n);
if (calc_rate) {
this_rate += color_cost[palette_size_idx][color_ctx][color_new_idx];
} else {
(*t)->token = color_new_idx;
(*t)->color_ctx = color_ctx;
++(*t);
if (allow_update_cdf)
update_cdf(map_cdf[palette_size_idx][color_ctx], color_new_idx, n);
#if CONFIG_ENTROPY_STATS
if (plane) {
++counts->palette_uv_color_index[palette_size_idx][color_ctx]
[color_new_idx];
} else {
++counts->palette_y_color_index[palette_size_idx][color_ctx]
[color_new_idx];
}
#endif
}
}
}
if (calc_rate) return this_rate;
return 0;
}
static void get_palette_params(const MACROBLOCK *const x, int plane,
BLOCK_SIZE bsize, Av1ColorMapParam *params) {
const MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
params->color_map = xd->plane[plane].color_index_map;
params->map_cdf = plane ? xd->tile_ctx->palette_uv_color_index_cdf
: xd->tile_ctx->palette_y_color_index_cdf;
params->color_cost = plane ? x->mode_costs.palette_uv_color_cost
: x->mode_costs.palette_y_color_cost;
params->n_colors = pmi->palette_size[plane];
av1_get_block_dimensions(bsize, plane, xd, &params->plane_width, NULL,
&params->rows, &params->cols);
}
// TODO(any): Remove this function
static void get_color_map_params(const MACROBLOCK *const x, int plane,
BLOCK_SIZE bsize, TX_SIZE tx_size,
COLOR_MAP_TYPE type,
Av1ColorMapParam *params) {
(void)tx_size;
memset(params, 0, sizeof(*params));
switch (type) {
case PALETTE_MAP: get_palette_params(x, plane, bsize, params); break;
default: assert(0 && "Invalid color map type"); return;
}
}
int av1_cost_color_map(const MACROBLOCK *const x, int plane, BLOCK_SIZE bsize,
TX_SIZE tx_size, COLOR_MAP_TYPE type) {
assert(plane == 0 || plane == 1);
Av1ColorMapParam color_map_params;
get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params);
return cost_and_tokenize_map(&color_map_params, NULL, plane, 1, 0, NULL);
}
void av1_tokenize_color_map(const MACROBLOCK *const x, int plane,
TokenExtra **t, BLOCK_SIZE bsize, TX_SIZE tx_size,
COLOR_MAP_TYPE type, int allow_update_cdf,
FRAME_COUNTS *counts) {
assert(plane == 0 || plane == 1);
Av1ColorMapParam color_map_params;
get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params);
// The first color index does not use context or entropy.
(*t)->token = color_map_params.color_map[0];
(*t)->color_ctx = -1;
++(*t);
cost_and_tokenize_map(&color_map_params, t, plane, 0, allow_update_cdf,
counts);
}
static void tokenize_vartx(ThreadData *td, TX_SIZE tx_size,
BLOCK_SIZE plane_bsize, int blk_row, int blk_col,
int block, int plane, void *arg) {
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
if (tx_size == plane_tx_size || plane) {
plane_bsize =
get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
struct tokenize_b_args *args = arg;
if (args->allow_update_cdf)
av1_update_and_record_txb_context(plane, block, blk_row, blk_col,
plane_bsize, tx_size, arg);
else
av1_record_txb_context(plane, block, blk_row, blk_col, plane_bsize,
tx_size, arg);
} else {
// Half the block size in transform block unit.
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int step = bsw * bsh;
const int row_end =
AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
const int col_end =
AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < row_end; row += bsh) {
const int offsetr = blk_row + row;
for (int col = 0; col < col_end; col += bsw) {
const int offsetc = blk_col + col;
tokenize_vartx(td, sub_txs, plane_bsize, offsetr, offsetc, block, plane,
arg);
block += step;
}
}
}
}
void av1_tokenize_sb_vartx(const AV1_COMP *cpi, ThreadData *td,
RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate,
uint8_t allow_update_cdf) {
assert(bsize < BLOCK_SIZES_ALL);
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
return;
const int num_planes = av1_num_planes(cm);
MB_MODE_INFO *const mbmi = xd->mi[0];
struct tokenize_b_args arg = { cpi, td, 0, allow_update_cdf, dry_run };
if (mbmi->skip_txfm) {
av1_reset_entropy_context(xd, bsize, num_planes);
return;
}
for (int plane = 0; plane < num_planes; ++plane) {
if (plane && !xd->is_chroma_ref) break;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
assert(plane_bsize < BLOCK_SIZES_ALL);
const int mi_width = mi_size_wide[plane_bsize];
const int mi_height = mi_size_high[plane_bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
const int bw = mi_size_wide[txb_size];
const int bh = mi_size_high[txb_size];
int block = 0;
const int step =
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
const BLOCK_SIZE max_unit_bsize =
get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
int mu_blocks_wide = mi_size_wide[max_unit_bsize];
int mu_blocks_high = mi_size_high[max_unit_bsize];
mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
for (int idy = 0; idy < mi_height; idy += mu_blocks_high) {
for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) {
const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
for (int blk_row = idy; blk_row < unit_height; blk_row += bh) {
for (int blk_col = idx; blk_col < unit_width; blk_col += bw) {
tokenize_vartx(td, max_tx_size, plane_bsize, blk_row, blk_col,
block, plane, &arg);
block += step;
}
}
}
}
}
if (rate) *rate += arg.this_rate;
}