| /* |
| * Copyright (c) 2024, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AOM_AOM_DSP_ARM_HIGHBD_CONVOLVE8_NEON_H_ |
| #define AOM_AOM_DSP_ARM_HIGHBD_CONVOLVE8_NEON_H_ |
| |
| #include <arm_neon.h> |
| |
| #include "config/aom_config.h" |
| #include "aom_dsp/arm/mem_neon.h" |
| |
| static INLINE void highbd_convolve8_horiz_2tap_neon( |
| const uint16_t *src_ptr, ptrdiff_t src_stride, uint16_t *dst_ptr, |
| ptrdiff_t dst_stride, const int16_t *x_filter_ptr, int w, int h, int bd) { |
| // Bilinear filter values are all positive and multiples of 8. Divide by 8 to |
| // reduce intermediate precision requirements and allow the use of non |
| // widening multiply. |
| const uint16x8_t f0 = vdupq_n_u16((uint16_t)x_filter_ptr[3] / 8); |
| const uint16x8_t f1 = vdupq_n_u16((uint16_t)x_filter_ptr[4] / 8); |
| |
| const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); |
| |
| if (w == 4) { |
| do { |
| uint16x8_t s0 = |
| load_unaligned_u16_4x2(src_ptr + 0 * src_stride + 0, (int)src_stride); |
| uint16x8_t s1 = |
| load_unaligned_u16_4x2(src_ptr + 0 * src_stride + 1, (int)src_stride); |
| uint16x8_t s2 = |
| load_unaligned_u16_4x2(src_ptr + 2 * src_stride + 0, (int)src_stride); |
| uint16x8_t s3 = |
| load_unaligned_u16_4x2(src_ptr + 2 * src_stride + 1, (int)src_stride); |
| |
| uint16x8_t sum01 = vmulq_u16(s0, f0); |
| sum01 = vmlaq_u16(sum01, s1, f1); |
| uint16x8_t sum23 = vmulq_u16(s2, f0); |
| sum23 = vmlaq_u16(sum23, s3, f1); |
| |
| // We divided filter taps by 8 so subtract 3 from right shift. |
| sum01 = vrshrq_n_u16(sum01, FILTER_BITS - 3); |
| sum23 = vrshrq_n_u16(sum23, FILTER_BITS - 3); |
| |
| sum01 = vminq_u16(sum01, max); |
| sum23 = vminq_u16(sum23, max); |
| |
| store_u16x4_strided_x2(dst_ptr + 0 * dst_stride, (int)dst_stride, sum01); |
| store_u16x4_strided_x2(dst_ptr + 2 * dst_stride, (int)dst_stride, sum23); |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| h -= 4; |
| } while (h > 0); |
| } else { |
| do { |
| int width = w; |
| const uint16_t *s = src_ptr; |
| uint16_t *d = dst_ptr; |
| |
| do { |
| uint16x8_t s0 = vld1q_u16(s + 0 * src_stride + 0); |
| uint16x8_t s1 = vld1q_u16(s + 0 * src_stride + 1); |
| uint16x8_t s2 = vld1q_u16(s + 1 * src_stride + 0); |
| uint16x8_t s3 = vld1q_u16(s + 1 * src_stride + 1); |
| |
| uint16x8_t sum01 = vmulq_u16(s0, f0); |
| sum01 = vmlaq_u16(sum01, s1, f1); |
| uint16x8_t sum23 = vmulq_u16(s2, f0); |
| sum23 = vmlaq_u16(sum23, s3, f1); |
| |
| // We divided filter taps by 8 so subtract 3 from right shift. |
| sum01 = vrshrq_n_u16(sum01, FILTER_BITS - 3); |
| sum23 = vrshrq_n_u16(sum23, FILTER_BITS - 3); |
| |
| sum01 = vminq_u16(sum01, max); |
| sum23 = vminq_u16(sum23, max); |
| |
| vst1q_u16(d + 0 * dst_stride, sum01); |
| vst1q_u16(d + 1 * dst_stride, sum23); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src_ptr += 2 * src_stride; |
| dst_ptr += 2 * dst_stride; |
| h -= 2; |
| } while (h > 0); |
| } |
| } |
| |
| static INLINE uint16x4_t highbd_convolve4_4( |
| const int16x4_t s0, const int16x4_t s1, const int16x4_t s2, |
| const int16x4_t s3, const int16x4_t filter, const uint16x4_t max) { |
| int32x4_t sum = vmull_lane_s16(s0, filter, 0); |
| sum = vmlal_lane_s16(sum, s1, filter, 1); |
| sum = vmlal_lane_s16(sum, s2, filter, 2); |
| sum = vmlal_lane_s16(sum, s3, filter, 3); |
| |
| uint16x4_t res = vqrshrun_n_s32(sum, FILTER_BITS); |
| |
| return vmin_u16(res, max); |
| } |
| |
| static INLINE uint16x8_t highbd_convolve4_8( |
| const int16x8_t s0, const int16x8_t s1, const int16x8_t s2, |
| const int16x8_t s3, const int16x4_t filter, const uint16x8_t max) { |
| int32x4_t sum0 = vmull_lane_s16(vget_low_s16(s0), filter, 0); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s1), filter, 1); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s2), filter, 2); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s3), filter, 3); |
| |
| int32x4_t sum1 = vmull_lane_s16(vget_high_s16(s0), filter, 0); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s1), filter, 1); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s2), filter, 2); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s3), filter, 3); |
| |
| uint16x8_t res = vcombine_u16(vqrshrun_n_s32(sum0, FILTER_BITS), |
| vqrshrun_n_s32(sum1, FILTER_BITS)); |
| |
| return vminq_u16(res, max); |
| } |
| |
| static INLINE void highbd_convolve8_vert_4tap_neon( |
| const uint16_t *src_ptr, ptrdiff_t src_stride, uint16_t *dst_ptr, |
| ptrdiff_t dst_stride, const int16_t *y_filter_ptr, int w, int h, int bd) { |
| assert(w >= 4 && h >= 4); |
| const int16x4_t y_filter = vld1_s16(y_filter_ptr + 2); |
| |
| if (w == 4) { |
| const uint16x4_t max = vdup_n_u16((1 << bd) - 1); |
| const int16_t *s = (const int16_t *)src_ptr; |
| uint16_t *d = dst_ptr; |
| |
| int16x4_t s0, s1, s2; |
| load_s16_4x3(s, src_stride, &s0, &s1, &s2); |
| s += 3 * src_stride; |
| |
| do { |
| int16x4_t s3, s4, s5, s6; |
| load_s16_4x4(s, src_stride, &s3, &s4, &s5, &s6); |
| |
| uint16x4_t d0 = highbd_convolve4_4(s0, s1, s2, s3, y_filter, max); |
| uint16x4_t d1 = highbd_convolve4_4(s1, s2, s3, s4, y_filter, max); |
| uint16x4_t d2 = highbd_convolve4_4(s2, s3, s4, s5, y_filter, max); |
| uint16x4_t d3 = highbd_convolve4_4(s3, s4, s5, s6, y_filter, max); |
| |
| store_u16_4x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s0 = s4; |
| s1 = s5; |
| s2 = s6; |
| |
| s += 4 * src_stride; |
| d += 4 * dst_stride; |
| h -= 4; |
| } while (h > 0); |
| } else { |
| const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); |
| |
| do { |
| int height = h; |
| const int16_t *s = (const int16_t *)src_ptr; |
| uint16_t *d = dst_ptr; |
| |
| int16x8_t s0, s1, s2; |
| load_s16_8x3(s, src_stride, &s0, &s1, &s2); |
| s += 3 * src_stride; |
| |
| do { |
| int16x8_t s3, s4, s5, s6; |
| load_s16_8x4(s, src_stride, &s3, &s4, &s5, &s6); |
| |
| uint16x8_t d0 = highbd_convolve4_8(s0, s1, s2, s3, y_filter, max); |
| uint16x8_t d1 = highbd_convolve4_8(s1, s2, s3, s4, y_filter, max); |
| uint16x8_t d2 = highbd_convolve4_8(s2, s3, s4, s5, y_filter, max); |
| uint16x8_t d3 = highbd_convolve4_8(s3, s4, s5, s6, y_filter, max); |
| |
| store_u16_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s0 = s4; |
| s1 = s5; |
| s2 = s6; |
| |
| s += 4 * src_stride; |
| d += 4 * dst_stride; |
| height -= 4; |
| } while (height > 0); |
| src_ptr += 8; |
| dst_ptr += 8; |
| w -= 8; |
| } while (w > 0); |
| } |
| } |
| |
| static INLINE void highbd_convolve8_vert_2tap_neon( |
| const uint16_t *src_ptr, ptrdiff_t src_stride, uint16_t *dst_ptr, |
| ptrdiff_t dst_stride, const int16_t *x_filter_ptr, int w, int h, int bd) { |
| // Bilinear filter values are all positive and multiples of 8. Divide by 8 to |
| // reduce intermediate precision requirements and allow the use of non |
| // widening multiply. |
| const uint16x8_t f0 = vdupq_n_u16((uint16_t)x_filter_ptr[3] / 8); |
| const uint16x8_t f1 = vdupq_n_u16((uint16_t)x_filter_ptr[4] / 8); |
| |
| const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); |
| |
| if (w == 4) { |
| do { |
| uint16x8_t s0 = |
| load_unaligned_u16_4x2(src_ptr + 0 * src_stride, (int)src_stride); |
| uint16x8_t s1 = |
| load_unaligned_u16_4x2(src_ptr + 1 * src_stride, (int)src_stride); |
| uint16x8_t s2 = |
| load_unaligned_u16_4x2(src_ptr + 2 * src_stride, (int)src_stride); |
| uint16x8_t s3 = |
| load_unaligned_u16_4x2(src_ptr + 3 * src_stride, (int)src_stride); |
| |
| uint16x8_t sum01 = vmulq_u16(s0, f0); |
| sum01 = vmlaq_u16(sum01, s1, f1); |
| uint16x8_t sum23 = vmulq_u16(s2, f0); |
| sum23 = vmlaq_u16(sum23, s3, f1); |
| |
| // We divided filter taps by 8 so subtract 3 from right shift. |
| sum01 = vrshrq_n_u16(sum01, FILTER_BITS - 3); |
| sum23 = vrshrq_n_u16(sum23, FILTER_BITS - 3); |
| |
| sum01 = vminq_u16(sum01, max); |
| sum23 = vminq_u16(sum23, max); |
| |
| store_u16x4_strided_x2(dst_ptr + 0 * dst_stride, (int)dst_stride, sum01); |
| store_u16x4_strided_x2(dst_ptr + 2 * dst_stride, (int)dst_stride, sum23); |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| h -= 4; |
| } while (h > 0); |
| } else { |
| do { |
| int width = w; |
| const uint16_t *s = src_ptr; |
| uint16_t *d = dst_ptr; |
| |
| do { |
| uint16x8_t s0, s1, s2; |
| load_u16_8x3(s, src_stride, &s0, &s1, &s2); |
| |
| uint16x8_t sum01 = vmulq_u16(s0, f0); |
| sum01 = vmlaq_u16(sum01, s1, f1); |
| uint16x8_t sum23 = vmulq_u16(s1, f0); |
| sum23 = vmlaq_u16(sum23, s2, f1); |
| |
| // We divided filter taps by 8 so subtract 3 from right shift. |
| sum01 = vrshrq_n_u16(sum01, FILTER_BITS - 3); |
| sum23 = vrshrq_n_u16(sum23, FILTER_BITS - 3); |
| |
| sum01 = vminq_u16(sum01, max); |
| sum23 = vminq_u16(sum23, max); |
| |
| vst1q_u16(d + 0 * dst_stride, sum01); |
| vst1q_u16(d + 1 * dst_stride, sum23); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src_ptr += 2 * src_stride; |
| dst_ptr += 2 * dst_stride; |
| h -= 2; |
| } while (h > 0); |
| } |
| } |
| |
| #endif // AOM_AOM_DSP_ARM_HIGHBD_CONVOLVE8_NEON_H_ |