| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <immintrin.h> |
| |
| #include "config/aom_dsp_rtcd.h" |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/x86/bitdepth_conversion_sse2.h" |
| #include "aom_dsp/x86/mem_sse2.h" |
| #include "aom_dsp/x86/synonyms.h" |
| #include "aom_ports/mem.h" |
| |
| static INLINE void sign_extend_16bit_to_32bit_sse2(__m128i in, __m128i zero, |
| __m128i *out_lo, |
| __m128i *out_hi) { |
| const __m128i sign_bits = _mm_cmplt_epi16(in, zero); |
| *out_lo = _mm_unpacklo_epi16(in, sign_bits); |
| *out_hi = _mm_unpackhi_epi16(in, sign_bits); |
| } |
| |
| static INLINE __m128i invert_sign_32_sse2(__m128i a, __m128i sign) { |
| a = _mm_xor_si128(a, sign); |
| return _mm_sub_epi32(a, sign); |
| } |
| |
| void aom_minmax_8x8_sse2(const uint8_t *s, int p, const uint8_t *d, int dp, |
| int *min, int *max) { |
| __m128i u0, s0, d0, diff, maxabsdiff, minabsdiff, negdiff, absdiff0, absdiff; |
| u0 = _mm_setzero_si128(); |
| // Row 0 |
| s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s)), u0); |
| d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d)), u0); |
| diff = _mm_subs_epi16(s0, d0); |
| negdiff = _mm_subs_epi16(u0, diff); |
| absdiff0 = _mm_max_epi16(diff, negdiff); |
| // Row 1 |
| s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + p)), u0); |
| d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + dp)), u0); |
| diff = _mm_subs_epi16(s0, d0); |
| negdiff = _mm_subs_epi16(u0, diff); |
| absdiff = _mm_max_epi16(diff, negdiff); |
| maxabsdiff = _mm_max_epi16(absdiff0, absdiff); |
| minabsdiff = _mm_min_epi16(absdiff0, absdiff); |
| // Row 2 |
| s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 2 * p)), u0); |
| d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 2 * dp)), u0); |
| diff = _mm_subs_epi16(s0, d0); |
| negdiff = _mm_subs_epi16(u0, diff); |
| absdiff = _mm_max_epi16(diff, negdiff); |
| maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); |
| minabsdiff = _mm_min_epi16(minabsdiff, absdiff); |
| // Row 3 |
| s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 3 * p)), u0); |
| d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 3 * dp)), u0); |
| diff = _mm_subs_epi16(s0, d0); |
| negdiff = _mm_subs_epi16(u0, diff); |
| absdiff = _mm_max_epi16(diff, negdiff); |
| maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); |
| minabsdiff = _mm_min_epi16(minabsdiff, absdiff); |
| // Row 4 |
| s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 4 * p)), u0); |
| d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 4 * dp)), u0); |
| diff = _mm_subs_epi16(s0, d0); |
| negdiff = _mm_subs_epi16(u0, diff); |
| absdiff = _mm_max_epi16(diff, negdiff); |
| maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); |
| minabsdiff = _mm_min_epi16(minabsdiff, absdiff); |
| // Row 5 |
| s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 5 * p)), u0); |
| d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 5 * dp)), u0); |
| diff = _mm_subs_epi16(s0, d0); |
| negdiff = _mm_subs_epi16(u0, diff); |
| absdiff = _mm_max_epi16(diff, negdiff); |
| maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); |
| minabsdiff = _mm_min_epi16(minabsdiff, absdiff); |
| // Row 6 |
| s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 6 * p)), u0); |
| d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 6 * dp)), u0); |
| diff = _mm_subs_epi16(s0, d0); |
| negdiff = _mm_subs_epi16(u0, diff); |
| absdiff = _mm_max_epi16(diff, negdiff); |
| maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); |
| minabsdiff = _mm_min_epi16(minabsdiff, absdiff); |
| // Row 7 |
| s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 7 * p)), u0); |
| d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 7 * dp)), u0); |
| diff = _mm_subs_epi16(s0, d0); |
| negdiff = _mm_subs_epi16(u0, diff); |
| absdiff = _mm_max_epi16(diff, negdiff); |
| maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); |
| minabsdiff = _mm_min_epi16(minabsdiff, absdiff); |
| |
| maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_si128(maxabsdiff, 8)); |
| maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_epi64(maxabsdiff, 32)); |
| maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_epi64(maxabsdiff, 16)); |
| *max = _mm_extract_epi16(maxabsdiff, 0); |
| |
| minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_si128(minabsdiff, 8)); |
| minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_epi64(minabsdiff, 32)); |
| minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_epi64(minabsdiff, 16)); |
| *min = _mm_extract_epi16(minabsdiff, 0); |
| } |
| |
| unsigned int aom_avg_8x8_sse2(const uint8_t *s, int p) { |
| __m128i sum0, sum1, s0, s1, s2, s3, u0; |
| unsigned int avg = 0; |
| u0 = _mm_setzero_si128(); |
| s0 = loadh_epi64((const __m128i *)(s + p), |
| _mm_loadl_epi64((const __m128i *)(s))); |
| s1 = loadh_epi64((const __m128i *)(s + 3 * p), |
| _mm_loadl_epi64((const __m128i *)(s + 2 * p))); |
| s2 = loadh_epi64((const __m128i *)(s + 5 * p), |
| _mm_loadl_epi64((const __m128i *)(s + 4 * p))); |
| s3 = loadh_epi64((const __m128i *)(s + 7 * p), |
| _mm_loadl_epi64((const __m128i *)(s + 6 * p))); |
| s0 = _mm_sad_epu8(s0, u0); |
| s1 = _mm_sad_epu8(s1, u0); |
| s2 = _mm_sad_epu8(s2, u0); |
| s3 = _mm_sad_epu8(s3, u0); |
| |
| sum0 = _mm_add_epi16(s0, s1); |
| sum1 = _mm_add_epi16(s2, s3); |
| sum0 = _mm_add_epi16(sum0, sum1); |
| sum0 = _mm_add_epi16(sum0, _mm_srli_si128(sum0, 8)); |
| avg = _mm_cvtsi128_si32(sum0); |
| return (avg + 32) >> 6; |
| } |
| |
| static void calc_avg_8x8_dual_sse2(const uint8_t *s, int p, int *avg) { |
| __m128i sum0, sum1, s0, s1, s2, s3, u0; |
| u0 = _mm_setzero_si128(); |
| s0 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s)), u0); |
| s1 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + p)), u0); |
| s2 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 2 * p)), u0); |
| s3 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 3 * p)), u0); |
| sum0 = _mm_add_epi16(s0, s1); |
| sum1 = _mm_add_epi16(s2, s3); |
| s0 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 4 * p)), u0); |
| s1 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 5 * p)), u0); |
| s2 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 6 * p)), u0); |
| s3 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 7 * p)), u0); |
| sum0 = _mm_add_epi16(sum0, _mm_add_epi16(s0, s1)); |
| sum1 = _mm_add_epi16(sum1, _mm_add_epi16(s2, s3)); |
| sum0 = _mm_add_epi16(sum0, sum1); |
| |
| // (avg + 32) >> 6 |
| __m128i rounding = _mm_set1_epi32(32); |
| sum0 = _mm_add_epi32(sum0, rounding); |
| sum0 = _mm_srli_epi32(sum0, 6); |
| avg[0] = _mm_cvtsi128_si32(sum0); |
| avg[1] = _mm_extract_epi16(sum0, 4); |
| } |
| |
| void aom_avg_8x8_quad_sse2(const uint8_t *s, int p, int x16_idx, int y16_idx, |
| int *avg) { |
| const uint8_t *s_ptr = s + y16_idx * p + x16_idx; |
| for (int k = 0; k < 2; k++) { |
| calc_avg_8x8_dual_sse2(s_ptr, p, avg + k * 2); |
| s_ptr += 8 * p; |
| } |
| } |
| |
| unsigned int aom_avg_4x4_sse2(const uint8_t *s, int p) { |
| __m128i s0, s1, u0; |
| unsigned int avg = 0; |
| u0 = _mm_setzero_si128(); |
| s0 = _mm_unpacklo_epi32(xx_loadl_32(s), xx_loadl_32(s + p)); |
| s1 = _mm_unpacklo_epi32(xx_loadl_32(s + p * 2), xx_loadl_32(s + p * 3)); |
| s0 = _mm_sad_epu8(s0, u0); |
| s1 = _mm_sad_epu8(s1, u0); |
| s0 = _mm_add_epi16(s0, s1); |
| avg = _mm_cvtsi128_si32(s0); |
| return (avg + 8) >> 4; |
| } |
| |
| static INLINE void hadamard_col4_sse2(__m128i *in, int iter) { |
| const __m128i a0 = in[0]; |
| const __m128i a1 = in[1]; |
| const __m128i a2 = in[2]; |
| const __m128i a3 = in[3]; |
| const __m128i b0 = _mm_srai_epi16(_mm_add_epi16(a0, a1), 1); |
| const __m128i b1 = _mm_srai_epi16(_mm_sub_epi16(a0, a1), 1); |
| const __m128i b2 = _mm_srai_epi16(_mm_add_epi16(a2, a3), 1); |
| const __m128i b3 = _mm_srai_epi16(_mm_sub_epi16(a2, a3), 1); |
| in[0] = _mm_add_epi16(b0, b2); |
| in[1] = _mm_add_epi16(b1, b3); |
| in[2] = _mm_sub_epi16(b0, b2); |
| in[3] = _mm_sub_epi16(b1, b3); |
| |
| if (iter == 0) { |
| const __m128i ba = _mm_unpacklo_epi16(in[0], in[1]); |
| const __m128i dc = _mm_unpacklo_epi16(in[2], in[3]); |
| const __m128i dcba_lo = _mm_unpacklo_epi32(ba, dc); |
| const __m128i dcba_hi = _mm_unpackhi_epi32(ba, dc); |
| in[0] = dcba_lo; |
| in[1] = _mm_srli_si128(dcba_lo, 8); |
| in[2] = dcba_hi; |
| in[3] = _mm_srli_si128(dcba_hi, 8); |
| } |
| } |
| |
| void aom_hadamard_4x4_sse2(const int16_t *src_diff, ptrdiff_t src_stride, |
| tran_low_t *coeff) { |
| __m128i src[4]; |
| src[0] = _mm_loadl_epi64((const __m128i *)src_diff); |
| src[1] = _mm_loadl_epi64((const __m128i *)(src_diff += src_stride)); |
| src[2] = _mm_loadl_epi64((const __m128i *)(src_diff += src_stride)); |
| src[3] = _mm_loadl_epi64((const __m128i *)(src_diff + src_stride)); |
| |
| hadamard_col4_sse2(src, 0); |
| hadamard_col4_sse2(src, 1); |
| |
| store_tran_low(_mm_unpacklo_epi64(src[0], src[1]), coeff); |
| coeff += 8; |
| store_tran_low(_mm_unpacklo_epi64(src[2], src[3]), coeff); |
| } |
| |
| static INLINE void hadamard_col8_sse2(__m128i *in, int iter) { |
| __m128i a0 = in[0]; |
| __m128i a1 = in[1]; |
| __m128i a2 = in[2]; |
| __m128i a3 = in[3]; |
| __m128i a4 = in[4]; |
| __m128i a5 = in[5]; |
| __m128i a6 = in[6]; |
| __m128i a7 = in[7]; |
| |
| __m128i b0 = _mm_add_epi16(a0, a1); |
| __m128i b1 = _mm_sub_epi16(a0, a1); |
| __m128i b2 = _mm_add_epi16(a2, a3); |
| __m128i b3 = _mm_sub_epi16(a2, a3); |
| __m128i b4 = _mm_add_epi16(a4, a5); |
| __m128i b5 = _mm_sub_epi16(a4, a5); |
| __m128i b6 = _mm_add_epi16(a6, a7); |
| __m128i b7 = _mm_sub_epi16(a6, a7); |
| |
| a0 = _mm_add_epi16(b0, b2); |
| a1 = _mm_add_epi16(b1, b3); |
| a2 = _mm_sub_epi16(b0, b2); |
| a3 = _mm_sub_epi16(b1, b3); |
| a4 = _mm_add_epi16(b4, b6); |
| a5 = _mm_add_epi16(b5, b7); |
| a6 = _mm_sub_epi16(b4, b6); |
| a7 = _mm_sub_epi16(b5, b7); |
| |
| if (iter == 0) { |
| b0 = _mm_add_epi16(a0, a4); |
| b7 = _mm_add_epi16(a1, a5); |
| b3 = _mm_add_epi16(a2, a6); |
| b4 = _mm_add_epi16(a3, a7); |
| b2 = _mm_sub_epi16(a0, a4); |
| b6 = _mm_sub_epi16(a1, a5); |
| b1 = _mm_sub_epi16(a2, a6); |
| b5 = _mm_sub_epi16(a3, a7); |
| |
| a0 = _mm_unpacklo_epi16(b0, b1); |
| a1 = _mm_unpacklo_epi16(b2, b3); |
| a2 = _mm_unpackhi_epi16(b0, b1); |
| a3 = _mm_unpackhi_epi16(b2, b3); |
| a4 = _mm_unpacklo_epi16(b4, b5); |
| a5 = _mm_unpacklo_epi16(b6, b7); |
| a6 = _mm_unpackhi_epi16(b4, b5); |
| a7 = _mm_unpackhi_epi16(b6, b7); |
| |
| b0 = _mm_unpacklo_epi32(a0, a1); |
| b1 = _mm_unpacklo_epi32(a4, a5); |
| b2 = _mm_unpackhi_epi32(a0, a1); |
| b3 = _mm_unpackhi_epi32(a4, a5); |
| b4 = _mm_unpacklo_epi32(a2, a3); |
| b5 = _mm_unpacklo_epi32(a6, a7); |
| b6 = _mm_unpackhi_epi32(a2, a3); |
| b7 = _mm_unpackhi_epi32(a6, a7); |
| |
| in[0] = _mm_unpacklo_epi64(b0, b1); |
| in[1] = _mm_unpackhi_epi64(b0, b1); |
| in[2] = _mm_unpacklo_epi64(b2, b3); |
| in[3] = _mm_unpackhi_epi64(b2, b3); |
| in[4] = _mm_unpacklo_epi64(b4, b5); |
| in[5] = _mm_unpackhi_epi64(b4, b5); |
| in[6] = _mm_unpacklo_epi64(b6, b7); |
| in[7] = _mm_unpackhi_epi64(b6, b7); |
| } else { |
| in[0] = _mm_add_epi16(a0, a4); |
| in[7] = _mm_add_epi16(a1, a5); |
| in[3] = _mm_add_epi16(a2, a6); |
| in[4] = _mm_add_epi16(a3, a7); |
| in[2] = _mm_sub_epi16(a0, a4); |
| in[6] = _mm_sub_epi16(a1, a5); |
| in[1] = _mm_sub_epi16(a2, a6); |
| in[5] = _mm_sub_epi16(a3, a7); |
| } |
| } |
| |
| static INLINE void hadamard_8x8_sse2(const int16_t *src_diff, |
| ptrdiff_t src_stride, tran_low_t *coeff, |
| int is_final) { |
| __m128i src[8]; |
| src[0] = _mm_load_si128((const __m128i *)src_diff); |
| src[1] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); |
| src[2] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); |
| src[3] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); |
| src[4] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); |
| src[5] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); |
| src[6] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); |
| src[7] = _mm_load_si128((const __m128i *)(src_diff + src_stride)); |
| |
| hadamard_col8_sse2(src, 0); |
| hadamard_col8_sse2(src, 1); |
| |
| if (is_final) { |
| store_tran_low(src[0], coeff); |
| coeff += 8; |
| store_tran_low(src[1], coeff); |
| coeff += 8; |
| store_tran_low(src[2], coeff); |
| coeff += 8; |
| store_tran_low(src[3], coeff); |
| coeff += 8; |
| store_tran_low(src[4], coeff); |
| coeff += 8; |
| store_tran_low(src[5], coeff); |
| coeff += 8; |
| store_tran_low(src[6], coeff); |
| coeff += 8; |
| store_tran_low(src[7], coeff); |
| } else { |
| int16_t *coeff16 = (int16_t *)coeff; |
| _mm_store_si128((__m128i *)coeff16, src[0]); |
| coeff16 += 8; |
| _mm_store_si128((__m128i *)coeff16, src[1]); |
| coeff16 += 8; |
| _mm_store_si128((__m128i *)coeff16, src[2]); |
| coeff16 += 8; |
| _mm_store_si128((__m128i *)coeff16, src[3]); |
| coeff16 += 8; |
| _mm_store_si128((__m128i *)coeff16, src[4]); |
| coeff16 += 8; |
| _mm_store_si128((__m128i *)coeff16, src[5]); |
| coeff16 += 8; |
| _mm_store_si128((__m128i *)coeff16, src[6]); |
| coeff16 += 8; |
| _mm_store_si128((__m128i *)coeff16, src[7]); |
| } |
| } |
| |
| void aom_hadamard_8x8_sse2(const int16_t *src_diff, ptrdiff_t src_stride, |
| tran_low_t *coeff) { |
| hadamard_8x8_sse2(src_diff, src_stride, coeff, 1); |
| } |
| |
| static INLINE void hadamard_lp_8x8_sse2(const int16_t *src_diff, |
| ptrdiff_t src_stride, int16_t *coeff) { |
| __m128i src[8]; |
| src[0] = _mm_load_si128((const __m128i *)src_diff); |
| src[1] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); |
| src[2] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); |
| src[3] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); |
| src[4] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); |
| src[5] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); |
| src[6] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); |
| src[7] = _mm_load_si128((const __m128i *)(src_diff + src_stride)); |
| |
| hadamard_col8_sse2(src, 0); |
| hadamard_col8_sse2(src, 1); |
| |
| _mm_store_si128((__m128i *)coeff, src[0]); |
| coeff += 8; |
| _mm_store_si128((__m128i *)coeff, src[1]); |
| coeff += 8; |
| _mm_store_si128((__m128i *)coeff, src[2]); |
| coeff += 8; |
| _mm_store_si128((__m128i *)coeff, src[3]); |
| coeff += 8; |
| _mm_store_si128((__m128i *)coeff, src[4]); |
| coeff += 8; |
| _mm_store_si128((__m128i *)coeff, src[5]); |
| coeff += 8; |
| _mm_store_si128((__m128i *)coeff, src[6]); |
| coeff += 8; |
| _mm_store_si128((__m128i *)coeff, src[7]); |
| } |
| |
| void aom_hadamard_lp_8x8_sse2(const int16_t *src_diff, ptrdiff_t src_stride, |
| int16_t *coeff) { |
| hadamard_lp_8x8_sse2(src_diff, src_stride, coeff); |
| } |
| |
| void aom_hadamard_lp_8x8_dual_sse2(const int16_t *src_diff, |
| ptrdiff_t src_stride, int16_t *coeff) { |
| for (int i = 0; i < 2; i++) { |
| hadamard_lp_8x8_sse2(src_diff + (i * 8), src_stride, coeff + (i * 64)); |
| } |
| } |
| |
| void aom_hadamard_lp_16x16_sse2(const int16_t *src_diff, ptrdiff_t src_stride, |
| int16_t *coeff) { |
| for (int idx = 0; idx < 4; ++idx) { |
| const int16_t *src_ptr = |
| src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8; |
| hadamard_lp_8x8_sse2(src_ptr, src_stride, coeff + idx * 64); |
| } |
| |
| int16_t *t_coeff = coeff; |
| for (int idx = 0; idx < 64; idx += 8) { |
| __m128i coeff0 = _mm_load_si128((const __m128i *)t_coeff); |
| __m128i coeff1 = _mm_load_si128((const __m128i *)(t_coeff + 64)); |
| __m128i coeff2 = _mm_load_si128((const __m128i *)(t_coeff + 128)); |
| __m128i coeff3 = _mm_load_si128((const __m128i *)(t_coeff + 192)); |
| |
| __m128i b0 = _mm_add_epi16(coeff0, coeff1); |
| __m128i b1 = _mm_sub_epi16(coeff0, coeff1); |
| __m128i b2 = _mm_add_epi16(coeff2, coeff3); |
| __m128i b3 = _mm_sub_epi16(coeff2, coeff3); |
| |
| b0 = _mm_srai_epi16(b0, 1); |
| b1 = _mm_srai_epi16(b1, 1); |
| b2 = _mm_srai_epi16(b2, 1); |
| b3 = _mm_srai_epi16(b3, 1); |
| |
| coeff0 = _mm_add_epi16(b0, b2); |
| coeff1 = _mm_add_epi16(b1, b3); |
| coeff2 = _mm_sub_epi16(b0, b2); |
| coeff3 = _mm_sub_epi16(b1, b3); |
| |
| _mm_store_si128((__m128i *)t_coeff, coeff0); |
| _mm_store_si128((__m128i *)(t_coeff + 64), coeff1); |
| _mm_store_si128((__m128i *)(t_coeff + 128), coeff2); |
| _mm_store_si128((__m128i *)(t_coeff + 192), coeff3); |
| |
| t_coeff += 8; |
| } |
| } |
| |
| static INLINE void hadamard_16x16_sse2(const int16_t *src_diff, |
| ptrdiff_t src_stride, tran_low_t *coeff, |
| int is_final) { |
| // For high bitdepths, it is unnecessary to store_tran_low |
| // (mult/unpack/store), then load_tran_low (load/pack) the same memory in the |
| // next stage. Output to an intermediate buffer first, then store_tran_low() |
| // in the final stage. |
| DECLARE_ALIGNED(32, int16_t, temp_coeff[16 * 16]); |
| int16_t *t_coeff = temp_coeff; |
| int16_t *coeff16 = (int16_t *)coeff; |
| int idx; |
| for (idx = 0; idx < 4; ++idx) { |
| const int16_t *src_ptr = |
| src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8; |
| hadamard_8x8_sse2(src_ptr, src_stride, (tran_low_t *)(t_coeff + idx * 64), |
| 0); |
| } |
| |
| for (idx = 0; idx < 64; idx += 8) { |
| __m128i coeff0 = _mm_load_si128((const __m128i *)t_coeff); |
| __m128i coeff1 = _mm_load_si128((const __m128i *)(t_coeff + 64)); |
| __m128i coeff2 = _mm_load_si128((const __m128i *)(t_coeff + 128)); |
| __m128i coeff3 = _mm_load_si128((const __m128i *)(t_coeff + 192)); |
| |
| __m128i b0 = _mm_add_epi16(coeff0, coeff1); |
| __m128i b1 = _mm_sub_epi16(coeff0, coeff1); |
| __m128i b2 = _mm_add_epi16(coeff2, coeff3); |
| __m128i b3 = _mm_sub_epi16(coeff2, coeff3); |
| |
| b0 = _mm_srai_epi16(b0, 1); |
| b1 = _mm_srai_epi16(b1, 1); |
| b2 = _mm_srai_epi16(b2, 1); |
| b3 = _mm_srai_epi16(b3, 1); |
| |
| coeff0 = _mm_add_epi16(b0, b2); |
| coeff1 = _mm_add_epi16(b1, b3); |
| coeff2 = _mm_sub_epi16(b0, b2); |
| coeff3 = _mm_sub_epi16(b1, b3); |
| |
| if (is_final) { |
| store_tran_low_offset_4(coeff0, coeff); |
| store_tran_low_offset_4(coeff1, coeff + 64); |
| store_tran_low_offset_4(coeff2, coeff + 128); |
| store_tran_low_offset_4(coeff3, coeff + 192); |
| coeff += 4; |
| } else { |
| _mm_store_si128((__m128i *)coeff16, coeff0); |
| _mm_store_si128((__m128i *)(coeff16 + 64), coeff1); |
| _mm_store_si128((__m128i *)(coeff16 + 128), coeff2); |
| _mm_store_si128((__m128i *)(coeff16 + 192), coeff3); |
| coeff16 += 8; |
| } |
| |
| t_coeff += 8; |
| // Increment the pointer additionally by 0 and 8 in alternate |
| // iterations(instead of 8) to ensure the coherency with the implementation |
| // of store_tran_low_offset_4() |
| coeff += (((idx >> 3) & 1) << 3); |
| } |
| } |
| |
| void aom_hadamard_16x16_sse2(const int16_t *src_diff, ptrdiff_t src_stride, |
| tran_low_t *coeff) { |
| hadamard_16x16_sse2(src_diff, src_stride, coeff, 1); |
| } |
| |
| void aom_hadamard_32x32_sse2(const int16_t *src_diff, ptrdiff_t src_stride, |
| tran_low_t *coeff) { |
| // For high bitdepths, it is unnecessary to store_tran_low |
| // (mult/unpack/store), then load_tran_low (load/pack) the same memory in the |
| // next stage. Output to an intermediate buffer first, then store_tran_low() |
| // in the final stage. |
| DECLARE_ALIGNED(32, int16_t, temp_coeff[32 * 32]); |
| int16_t *t_coeff = temp_coeff; |
| int idx; |
| __m128i coeff0_lo, coeff1_lo, coeff2_lo, coeff3_lo, b0_lo, b1_lo, b2_lo, |
| b3_lo; |
| __m128i coeff0_hi, coeff1_hi, coeff2_hi, coeff3_hi, b0_hi, b1_hi, b2_hi, |
| b3_hi; |
| __m128i b0, b1, b2, b3; |
| const __m128i zero = _mm_setzero_si128(); |
| for (idx = 0; idx < 4; ++idx) { |
| const int16_t *src_ptr = |
| src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16; |
| hadamard_16x16_sse2(src_ptr, src_stride, |
| (tran_low_t *)(t_coeff + idx * 256), 0); |
| } |
| |
| for (idx = 0; idx < 256; idx += 8) { |
| __m128i coeff0 = _mm_load_si128((const __m128i *)t_coeff); |
| __m128i coeff1 = _mm_load_si128((const __m128i *)(t_coeff + 256)); |
| __m128i coeff2 = _mm_load_si128((const __m128i *)(t_coeff + 512)); |
| __m128i coeff3 = _mm_load_si128((const __m128i *)(t_coeff + 768)); |
| |
| // Sign extend 16 bit to 32 bit. |
| sign_extend_16bit_to_32bit_sse2(coeff0, zero, &coeff0_lo, &coeff0_hi); |
| sign_extend_16bit_to_32bit_sse2(coeff1, zero, &coeff1_lo, &coeff1_hi); |
| sign_extend_16bit_to_32bit_sse2(coeff2, zero, &coeff2_lo, &coeff2_hi); |
| sign_extend_16bit_to_32bit_sse2(coeff3, zero, &coeff3_lo, &coeff3_hi); |
| |
| b0_lo = _mm_add_epi32(coeff0_lo, coeff1_lo); |
| b0_hi = _mm_add_epi32(coeff0_hi, coeff1_hi); |
| |
| b1_lo = _mm_sub_epi32(coeff0_lo, coeff1_lo); |
| b1_hi = _mm_sub_epi32(coeff0_hi, coeff1_hi); |
| |
| b2_lo = _mm_add_epi32(coeff2_lo, coeff3_lo); |
| b2_hi = _mm_add_epi32(coeff2_hi, coeff3_hi); |
| |
| b3_lo = _mm_sub_epi32(coeff2_lo, coeff3_lo); |
| b3_hi = _mm_sub_epi32(coeff2_hi, coeff3_hi); |
| |
| b0_lo = _mm_srai_epi32(b0_lo, 2); |
| b1_lo = _mm_srai_epi32(b1_lo, 2); |
| b2_lo = _mm_srai_epi32(b2_lo, 2); |
| b3_lo = _mm_srai_epi32(b3_lo, 2); |
| |
| b0_hi = _mm_srai_epi32(b0_hi, 2); |
| b1_hi = _mm_srai_epi32(b1_hi, 2); |
| b2_hi = _mm_srai_epi32(b2_hi, 2); |
| b3_hi = _mm_srai_epi32(b3_hi, 2); |
| |
| b0 = _mm_packs_epi32(b0_lo, b0_hi); |
| b1 = _mm_packs_epi32(b1_lo, b1_hi); |
| b2 = _mm_packs_epi32(b2_lo, b2_hi); |
| b3 = _mm_packs_epi32(b3_lo, b3_hi); |
| |
| coeff0 = _mm_add_epi16(b0, b2); |
| coeff1 = _mm_add_epi16(b1, b3); |
| store_tran_low_offset_4(coeff0, coeff); |
| store_tran_low_offset_4(coeff1, coeff + 256); |
| |
| coeff2 = _mm_sub_epi16(b0, b2); |
| coeff3 = _mm_sub_epi16(b1, b3); |
| store_tran_low_offset_4(coeff2, coeff + 512); |
| store_tran_low_offset_4(coeff3, coeff + 768); |
| |
| // Increment the pointer by 4 and 12 in alternate iterations(instead of 8) |
| // to ensure the coherency with the implementation of |
| // store_tran_low_offset_4() |
| coeff += (4 + (((idx >> 3) & 1) << 3)); |
| t_coeff += 8; |
| } |
| } |
| |
| int aom_satd_sse2(const tran_low_t *coeff, int length) { |
| int i; |
| const __m128i zero = _mm_setzero_si128(); |
| __m128i accum = zero; |
| |
| for (i = 0; i < length; i += 4) { |
| const __m128i src_line = _mm_load_si128((const __m128i *)coeff); |
| const __m128i coeff_sign = _mm_srai_epi32(src_line, 31); |
| const __m128i abs_coeff = invert_sign_32_sse2(src_line, coeff_sign); |
| accum = _mm_add_epi32(accum, abs_coeff); |
| coeff += 4; |
| } |
| |
| { // cascading summation of accum |
| __m128i hi = _mm_srli_si128(accum, 8); |
| accum = _mm_add_epi32(accum, hi); |
| hi = _mm_srli_epi64(accum, 32); |
| accum = _mm_add_epi32(accum, hi); |
| } |
| |
| return _mm_cvtsi128_si32(accum); |
| } |
| |
| int aom_satd_lp_sse2(const int16_t *coeff, int length) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i one = _mm_set1_epi16(1); |
| __m128i accum = zero; |
| |
| for (int i = 0; i < length; i += 16) { |
| const __m128i src_line0 = _mm_loadu_si128((const __m128i *)coeff); |
| const __m128i src_line1 = _mm_loadu_si128((const __m128i *)(coeff + 8)); |
| const __m128i inv0 = _mm_sub_epi16(zero, src_line0); |
| const __m128i inv1 = _mm_sub_epi16(zero, src_line1); |
| const __m128i abs0 = _mm_max_epi16(src_line0, inv0); // abs(src_line) |
| const __m128i abs1 = _mm_max_epi16(src_line1, inv1); // abs(src_line) |
| const __m128i sum0 = _mm_madd_epi16(abs0, one); |
| const __m128i sum1 = _mm_madd_epi16(abs1, one); |
| accum = _mm_add_epi32(accum, sum0); |
| accum = _mm_add_epi32(accum, sum1); |
| coeff += 16; |
| } |
| |
| { // cascading summation of accum |
| __m128i hi = _mm_srli_si128(accum, 8); |
| accum = _mm_add_epi32(accum, hi); |
| hi = _mm_srli_epi64(accum, 32); |
| accum = _mm_add_epi32(accum, hi); |
| } |
| |
| return _mm_cvtsi128_si32(accum); |
| } |
| |
| void aom_int_pro_row_sse2(int16_t *hbuf, const uint8_t *ref, |
| const int ref_stride, const int width, |
| const int height, int norm_factor) { |
| // SIMD implementation assumes width and height to be multiple of 16 and 2 |
| // respectively. For any odd width or height, SIMD support needs to be added. |
| assert(width % 16 == 0 && height % 2 == 0); |
| __m128i zero = _mm_setzero_si128(); |
| |
| for (int wd = 0; wd < width; wd += 16) { |
| const uint8_t *ref_tmp = ref + wd; |
| int16_t *hbuf_tmp = hbuf + wd; |
| __m128i s0 = zero; |
| __m128i s1 = zero; |
| int idx = 0; |
| do { |
| __m128i src_line = _mm_loadu_si128((const __m128i *)ref_tmp); |
| __m128i t0 = _mm_unpacklo_epi8(src_line, zero); |
| __m128i t1 = _mm_unpackhi_epi8(src_line, zero); |
| s0 = _mm_add_epi16(s0, t0); |
| s1 = _mm_add_epi16(s1, t1); |
| ref_tmp += ref_stride; |
| |
| src_line = _mm_loadu_si128((const __m128i *)ref_tmp); |
| t0 = _mm_unpacklo_epi8(src_line, zero); |
| t1 = _mm_unpackhi_epi8(src_line, zero); |
| s0 = _mm_add_epi16(s0, t0); |
| s1 = _mm_add_epi16(s1, t1); |
| ref_tmp += ref_stride; |
| idx += 2; |
| } while (idx < height); |
| |
| s0 = _mm_srai_epi16(s0, norm_factor); |
| s1 = _mm_srai_epi16(s1, norm_factor); |
| _mm_storeu_si128((__m128i *)(hbuf_tmp), s0); |
| _mm_storeu_si128((__m128i *)(hbuf_tmp + 8), s1); |
| } |
| } |
| |
| void aom_int_pro_col_sse2(int16_t *vbuf, const uint8_t *ref, |
| const int ref_stride, const int width, |
| const int height, int norm_factor) { |
| // SIMD implementation assumes width to be multiple of 16. |
| assert(width % 16 == 0); |
| |
| for (int ht = 0; ht < height; ht++) { |
| const uint8_t *ref_tmp = ref + (ht * ref_stride); |
| __m128i zero = _mm_setzero_si128(); |
| __m128i s0 = zero; |
| __m128i s1, src_line; |
| for (int i = 0; i < width; i += 16) { |
| src_line = _mm_loadu_si128((const __m128i *)ref_tmp); |
| s1 = _mm_sad_epu8(src_line, zero); |
| s0 = _mm_add_epi16(s0, s1); |
| ref_tmp += 16; |
| } |
| |
| s1 = _mm_srli_si128(s0, 8); |
| s0 = _mm_add_epi16(s0, s1); |
| vbuf[ht] = _mm_cvtsi128_si32(s0) >> norm_factor; |
| } |
| } |