| /* |
| * Copyright (c) 2023, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <arm_neon.h> |
| |
| #include "aom_dsp/arm/sum_neon.h" |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| |
| static int32x4_t k_means_multiply_add_neon(const int16x8_t a) { |
| const int32x4_t l = vmull_s16(vget_low_s16(a), vget_low_s16(a)); |
| const int32x4_t h = vmull_s16(vget_high_s16(a), vget_high_s16(a)); |
| #if AOM_ARCH_AARCH64 |
| return vpaddq_s32(l, h); |
| #else |
| const int32x2_t dl = vpadd_s32(vget_low_s32(l), vget_high_s32(l)); |
| const int32x2_t dh = vpadd_s32(vget_low_s32(h), vget_high_s32(h)); |
| return vcombine_s32(dl, dh); |
| #endif |
| } |
| |
| void av1_calc_indices_dim1_neon(const int16_t *data, const int16_t *centroids, |
| uint8_t *indices, int64_t *total_dist, int n, |
| int k) { |
| int64x2_t sum = vdupq_n_s64(0); |
| int16x8_t cents[PALETTE_MAX_SIZE]; |
| for (int j = 0; j < k; ++j) { |
| cents[j] = vdupq_n_s16(centroids[j]); |
| } |
| |
| for (int i = 0; i < n; i += 8) { |
| const int16x8_t in = vld1q_s16(data); |
| uint16x8_t ind = vdupq_n_u16(0); |
| // Compute the distance to the first centroid. |
| int16x8_t dist_min = vabdq_s16(in, cents[0]); |
| |
| for (int j = 1; j < k; ++j) { |
| // Compute the distance to the centroid. |
| const int16x8_t dist = vabdq_s16(in, cents[j]); |
| // Compare to the minimal one. |
| const uint16x8_t cmp = vcgtq_s16(dist_min, dist); |
| dist_min = vminq_s16(dist_min, dist); |
| const uint16x8_t ind1 = vdupq_n_u16(j); |
| ind = vbslq_u16(cmp, ind1, ind); |
| } |
| if (total_dist) { |
| // Square, convert to 32 bit and add together. |
| const int32x4_t l = |
| vmull_s16(vget_low_s16(dist_min), vget_low_s16(dist_min)); |
| const int32x4_t sum32_tmp = |
| vmlal_s16(l, vget_high_s16(dist_min), vget_high_s16(dist_min)); |
| // Pairwise sum, convert to 64 bit and add to sum. |
| sum = vpadalq_s32(sum, sum32_tmp); |
| } |
| vst1_u8(indices, vmovn_u16(ind)); |
| indices += 8; |
| data += 8; |
| } |
| if (total_dist) { |
| *total_dist = horizontal_add_s64x2(sum); |
| } |
| } |
| |
| void av1_calc_indices_dim2_neon(const int16_t *data, const int16_t *centroids, |
| uint8_t *indices, int64_t *total_dist, int n, |
| int k) { |
| int64x2_t sum = vdupq_n_s64(0); |
| uint32x4_t ind[2]; |
| int16x8_t cents[PALETTE_MAX_SIZE]; |
| for (int j = 0; j < k; ++j) { |
| const int16_t cx = centroids[2 * j], cy = centroids[2 * j + 1]; |
| const int16_t cxcy[8] = { cx, cy, cx, cy, cx, cy, cx, cy }; |
| cents[j] = vld1q_s16(cxcy); |
| } |
| |
| for (int i = 0; i < n; i += 8) { |
| for (int l = 0; l < 2; ++l) { |
| const int16x8_t in = vld1q_s16(data); |
| ind[l] = vdupq_n_u32(0); |
| // Compute the distance to the first centroid. |
| int16x8_t d1 = vsubq_s16(in, cents[0]); |
| int32x4_t dist_min = k_means_multiply_add_neon(d1); |
| |
| for (int j = 1; j < k; ++j) { |
| // Compute the distance to the centroid. |
| d1 = vsubq_s16(in, cents[j]); |
| const int32x4_t dist = k_means_multiply_add_neon(d1); |
| // Compare to the minimal one. |
| const uint32x4_t cmp = vcgtq_s32(dist_min, dist); |
| dist_min = vminq_s32(dist_min, dist); |
| const uint32x4_t ind1 = vdupq_n_u32(j); |
| ind[l] = vbslq_u32(cmp, ind1, ind[l]); |
| } |
| if (total_dist) { |
| // Pairwise sum, convert to 64 bit and add to sum. |
| sum = vpadalq_s32(sum, dist_min); |
| } |
| data += 8; |
| } |
| // Cast to 8 bit and store. |
| vst1_u8(indices, |
| vmovn_u16(vcombine_u16(vmovn_u32(ind[0]), vmovn_u32(ind[1])))); |
| indices += 8; |
| } |
| if (total_dist) { |
| *total_dist = horizontal_add_s64x2(sum); |
| } |
| } |