blob: a6452a9bec14274ea27c43fcb4d8a1deb632a381 [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/encoder/encodetxb.h"
#include "aom_ports/mem.h"
#include "av1/common/blockd.h"
#include "av1/common/idct.h"
#include "av1/common/pred_common.h"
#include "av1/common/scan.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/hash.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/tokenize.h"
void av1_alloc_txb_buf(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
CoeffBufferPool *coeff_buf_pool = &cpi->coeff_buffer_pool;
const int num_sb_rows =
CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2);
const int num_sb_cols =
CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2);
const int size = num_sb_rows * num_sb_cols;
const int num_planes = av1_num_planes(cm);
const int subsampling_x = cm->seq_params->subsampling_x;
const int subsampling_y = cm->seq_params->subsampling_y;
const int luma_max_sb_square =
1 << num_pels_log2_lookup[cm->seq_params->sb_size];
const int chroma_max_sb_square =
luma_max_sb_square >> (subsampling_x + subsampling_y);
const int num_tcoeffs =
size * (luma_max_sb_square + (num_planes - 1) * chroma_max_sb_square);
const int txb_unit_size = TX_SIZE_W_MIN * TX_SIZE_H_MIN;
av1_free_txb_buf(cpi);
// TODO(jingning): This should be further reduced.
CHECK_MEM_ERROR(cm, cpi->coeff_buffer_base,
aom_malloc(sizeof(*cpi->coeff_buffer_base) * size));
CHECK_MEM_ERROR(
cm, coeff_buf_pool->tcoeff,
aom_memalign(32, sizeof(*coeff_buf_pool->tcoeff) * num_tcoeffs));
CHECK_MEM_ERROR(
cm, coeff_buf_pool->eobs,
aom_malloc(sizeof(*coeff_buf_pool->eobs) * num_tcoeffs / txb_unit_size));
CHECK_MEM_ERROR(cm, coeff_buf_pool->entropy_ctx,
aom_malloc(sizeof(*coeff_buf_pool->entropy_ctx) *
num_tcoeffs / txb_unit_size));
tran_low_t *tcoeff_ptr = coeff_buf_pool->tcoeff;
uint16_t *eob_ptr = coeff_buf_pool->eobs;
uint8_t *entropy_ctx_ptr = coeff_buf_pool->entropy_ctx;
for (int i = 0; i < size; i++) {
for (int plane = 0; plane < num_planes; plane++) {
const int max_sb_square =
(plane == AOM_PLANE_Y) ? luma_max_sb_square : chroma_max_sb_square;
cpi->coeff_buffer_base[i].tcoeff[plane] = tcoeff_ptr;
cpi->coeff_buffer_base[i].eobs[plane] = eob_ptr;
cpi->coeff_buffer_base[i].entropy_ctx[plane] = entropy_ctx_ptr;
tcoeff_ptr += max_sb_square;
eob_ptr += max_sb_square / txb_unit_size;
entropy_ctx_ptr += max_sb_square / txb_unit_size;
}
}
}
void av1_free_txb_buf(AV1_COMP *cpi) {
CoeffBufferPool *coeff_buf_pool = &cpi->coeff_buffer_pool;
aom_free(cpi->coeff_buffer_base);
cpi->coeff_buffer_base = NULL;
aom_free(coeff_buf_pool->tcoeff);
coeff_buf_pool->tcoeff = NULL;
aom_free(coeff_buf_pool->eobs);
coeff_buf_pool->eobs = NULL;
aom_free(coeff_buf_pool->entropy_ctx);
coeff_buf_pool->entropy_ctx = NULL;
}
static void write_golomb(aom_writer *w, int level) {
int x = level + 1;
int i = x;
int length = 0;
while (i) {
i >>= 1;
++length;
}
assert(length > 0);
for (i = 0; i < length - 1; ++i) aom_write_bit(w, 0);
for (i = length - 1; i >= 0; --i) aom_write_bit(w, (x >> i) & 0x01);
}
static const int8_t eob_to_pos_small[33] = {
0, 1, 2, // 0-2
3, 3, // 3-4
4, 4, 4, 4, // 5-8
5, 5, 5, 5, 5, 5, 5, 5, // 9-16
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 // 17-32
};
static const int8_t eob_to_pos_large[17] = {
6, // place holder
7, // 33-64
8, 8, // 65-128
9, 9, 9, 9, // 129-256
10, 10, 10, 10, 10, 10, 10, 10, // 257-512
11 // 513-
};
int av1_get_eob_pos_token(const int eob, int *const extra) {
int t;
if (eob < 33) {
t = eob_to_pos_small[eob];
} else {
const int e = AOMMIN((eob - 1) >> 5, 16);
t = eob_to_pos_large[e];
}
*extra = eob - av1_eob_group_start[t];
return t;
}
#if CONFIG_ENTROPY_STATS
static void update_eob_context(int cdf_idx, int eob, TX_SIZE tx_size,
TX_CLASS tx_class, PLANE_TYPE plane,
FRAME_CONTEXT *ec_ctx, FRAME_COUNTS *counts,
uint8_t allow_update_cdf) {
#else
static void update_eob_context(int eob, TX_SIZE tx_size, TX_CLASS tx_class,
PLANE_TYPE plane, FRAME_CONTEXT *ec_ctx,
uint8_t allow_update_cdf) {
#endif
int eob_extra;
const int eob_pt = av1_get_eob_pos_token(eob, &eob_extra);
TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
const int eob_multi_size = txsize_log2_minus4[tx_size];
const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1;
switch (eob_multi_size) {
case 0:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi16[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf16[plane][eob_multi_ctx], eob_pt - 1, 5);
break;
case 1:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi32[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf32[plane][eob_multi_ctx], eob_pt - 1, 6);
break;
case 2:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi64[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf64[plane][eob_multi_ctx], eob_pt - 1, 7);
break;
case 3:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi128[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf) {
update_cdf(ec_ctx->eob_flag_cdf128[plane][eob_multi_ctx], eob_pt - 1,
8);
}
break;
case 4:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi256[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf) {
update_cdf(ec_ctx->eob_flag_cdf256[plane][eob_multi_ctx], eob_pt - 1,
9);
}
break;
case 5:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi512[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf) {
update_cdf(ec_ctx->eob_flag_cdf512[plane][eob_multi_ctx], eob_pt - 1,
10);
}
break;
case 6:
default:
#if CONFIG_ENTROPY_STATS
++counts->eob_multi1024[cdf_idx][plane][eob_multi_ctx][eob_pt - 1];
#endif
if (allow_update_cdf) {
update_cdf(ec_ctx->eob_flag_cdf1024[plane][eob_multi_ctx], eob_pt - 1,
11);
}
break;
}
if (av1_eob_offset_bits[eob_pt] > 0) {
int eob_ctx = eob_pt - 3;
int eob_shift = av1_eob_offset_bits[eob_pt] - 1;
int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
#if CONFIG_ENTROPY_STATS
counts->eob_extra[cdf_idx][txs_ctx][plane][eob_pt][bit]++;
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_cdf(ec_ctx->eob_extra_cdf[txs_ctx][plane][eob_ctx], bit, 2);
}
}
static INLINE int get_nz_map_ctx(const uint8_t *const levels,
const int coeff_idx, const int bhl,
const int width, const int scan_idx,
const int is_eob, const TX_SIZE tx_size,
const TX_CLASS tx_class) {
if (is_eob) {
if (scan_idx == 0) return 0;
if (scan_idx <= (width << bhl) / 8) return 1;
if (scan_idx <= (width << bhl) / 4) return 2;
return 3;
}
const int stats =
get_nz_mag(levels + get_padded_idx(coeff_idx, bhl), bhl, tx_class);
return get_nz_map_ctx_from_stats(stats, coeff_idx, bhl, tx_size, tx_class);
}
void av1_txb_init_levels_c(const tran_low_t *const coeff, const int width,
const int height, uint8_t *const levels) {
const int stride = height + TX_PAD_HOR;
uint8_t *ls = levels;
memset(levels + stride * width, 0,
sizeof(*levels) * (TX_PAD_BOTTOM * stride + TX_PAD_END));
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
*ls++ = (uint8_t)clamp(abs(coeff[i * height + j]), 0, INT8_MAX);
}
for (int j = 0; j < TX_PAD_HOR; j++) {
*ls++ = 0;
}
}
}
void av1_get_nz_map_contexts_c(const uint8_t *const levels,
const int16_t *const scan, const uint16_t eob,
const TX_SIZE tx_size, const TX_CLASS tx_class,
int8_t *const coeff_contexts) {
const int bhl = get_txb_bhl(tx_size);
const int width = get_txb_wide(tx_size);
for (int i = 0; i < eob; ++i) {
const int pos = scan[i];
coeff_contexts[pos] = get_nz_map_ctx(levels, pos, bhl, width, i,
i == eob - 1, tx_size, tx_class);
}
}
void av1_write_coeffs_txb(const AV1_COMMON *const cm, MACROBLOCK *const x,
aom_writer *w, int blk_row, int blk_col, int plane,
int block, TX_SIZE tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
const CB_COEFF_BUFFER *cb_coef_buff = x->cb_coef_buff;
const PLANE_TYPE plane_type = get_plane_type(plane);
const int txb_offset = x->mbmi_ext_frame->cb_offset[plane_type] /
(TX_SIZE_W_MIN * TX_SIZE_H_MIN);
const uint16_t *eob_txb = cb_coef_buff->eobs[plane] + txb_offset;
const uint16_t eob = eob_txb[block];
const uint8_t *entropy_ctx = cb_coef_buff->entropy_ctx[plane] + txb_offset;
const int txb_skip_ctx = entropy_ctx[block] & TXB_SKIP_CTX_MASK;
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, eob == 0, ec_ctx->txb_skip_cdf[txs_ctx][txb_skip_ctx], 2);
if (eob == 0) return;
const TX_TYPE tx_type =
av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
cm->features.reduced_tx_set_used);
// Only y plane's tx_type is transmitted
if (plane == 0) {
av1_write_tx_type(cm, xd, tx_type, tx_size, w);
}
int eob_extra;
const int eob_pt = av1_get_eob_pos_token(eob, &eob_extra);
const int eob_multi_size = txsize_log2_minus4[tx_size];
const TX_CLASS tx_class = tx_type_to_class[tx_type];
const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1;
switch (eob_multi_size) {
case 0:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf16[plane_type][eob_multi_ctx], 5);
break;
case 1:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf32[plane_type][eob_multi_ctx], 6);
break;
case 2:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf64[plane_type][eob_multi_ctx], 7);
break;
case 3:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf128[plane_type][eob_multi_ctx], 8);
break;
case 4:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf256[plane_type][eob_multi_ctx], 9);
break;
case 5:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf512[plane_type][eob_multi_ctx], 10);
break;
default:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf1024[plane_type][eob_multi_ctx], 11);
break;
}
const int eob_offset_bits = av1_eob_offset_bits[eob_pt];
if (eob_offset_bits > 0) {
const int eob_ctx = eob_pt - 3;
int eob_shift = eob_offset_bits - 1;
int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
aom_write_symbol(w, bit,
ec_ctx->eob_extra_cdf[txs_ctx][plane_type][eob_ctx], 2);
for (int i = 1; i < eob_offset_bits; i++) {
eob_shift = eob_offset_bits - 1 - i;
bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
aom_write_bit(w, bit);
}
}
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, height);
const tran_low_t *tcoeff_txb =
cb_coef_buff->tcoeff[plane] + x->mbmi_ext_frame->cb_offset[plane_type];
const tran_low_t *tcoeff = tcoeff_txb + BLOCK_OFFSET(block);
av1_txb_init_levels(tcoeff, width, height, levels);
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
const int16_t *const scan = scan_order->scan;
DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]);
av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts);
const int bhl = get_txb_bhl(tx_size);
for (int c = eob - 1; c >= 0; --c) {
const int pos = scan[c];
const int coeff_ctx = coeff_contexts[pos];
const tran_low_t v = tcoeff[pos];
const tran_low_t level = abs(v);
if (c == eob - 1) {
aom_write_symbol(
w, AOMMIN(level, 3) - 1,
ec_ctx->coeff_base_eob_cdf[txs_ctx][plane_type][coeff_ctx], 3);
} else {
aom_write_symbol(w, AOMMIN(level, 3),
ec_ctx->coeff_base_cdf[txs_ctx][plane_type][coeff_ctx],
4);
}
if (level > NUM_BASE_LEVELS) {
// level is above 1.
const int base_range = level - 1 - NUM_BASE_LEVELS;
const int br_ctx = get_br_ctx(levels, pos, bhl, tx_class);
aom_cdf_prob *cdf =
ec_ctx->coeff_br_cdf[AOMMIN(txs_ctx, TX_32X32)][plane_type][br_ctx];
for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) {
const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1);
aom_write_symbol(w, k, cdf, BR_CDF_SIZE);
if (k < BR_CDF_SIZE - 1) break;
}
}
}
// Loop to code all signs in the transform block,
// starting with the sign of DC (if applicable)
for (int c = 0; c < eob; ++c) {
const tran_low_t v = tcoeff[scan[c]];
const tran_low_t level = abs(v);
const int sign = (v < 0) ? 1 : 0;
if (level) {
if (c == 0) {
const int dc_sign_ctx =
(entropy_ctx[block] >> DC_SIGN_CTX_SHIFT) & DC_SIGN_CTX_MASK;
aom_write_symbol(w, sign, ec_ctx->dc_sign_cdf[plane_type][dc_sign_ctx],
2);
} else {
aom_write_bit(w, sign);
}
if (level > COEFF_BASE_RANGE + NUM_BASE_LEVELS)
write_golomb(w, level - COEFF_BASE_RANGE - 1 - NUM_BASE_LEVELS);
}
}
}
void av1_write_intra_coeffs_mb(const AV1_COMMON *const cm, MACROBLOCK *x,
aom_writer *w, BLOCK_SIZE bsize) {
MACROBLOCKD *xd = &x->e_mbd;
const int num_planes = av1_num_planes(cm);
int block[MAX_MB_PLANE] = { 0 };
int row, col;
assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
xd->plane[0].subsampling_y));
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int max_blocks_high = max_block_high(xd, bsize, 0);
const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
int mu_blocks_wide = mi_size_wide[max_unit_bsize];
int mu_blocks_high = mi_size_high[max_unit_bsize];
mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
for (int plane = 0; plane < num_planes; ++plane) {
if (plane && !xd->is_chroma_ref) break;
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
const int step = stepr * stepc;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int unit_height = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y);
const int unit_width = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x);
for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height;
blk_row += stepr) {
for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width;
blk_col += stepc) {
av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane,
block[plane], tx_size);
block[plane] += step;
}
}
}
}
}
}
uint8_t av1_get_txb_entropy_context(const tran_low_t *qcoeff,
const SCAN_ORDER *scan_order, int eob) {
const int16_t *const scan = scan_order->scan;
int cul_level = 0;
int c;
if (eob == 0) return 0;
for (c = 0; c < eob; ++c) {
cul_level += abs(qcoeff[scan[c]]);
if (cul_level > COEFF_CONTEXT_MASK) break;
}
cul_level = AOMMIN(COEFF_CONTEXT_MASK, cul_level);
set_dc_sign(&cul_level, qcoeff[0]);
return (uint8_t)cul_level;
}
static void update_tx_type_count(const AV1_COMP *cpi, const AV1_COMMON *cm,
MACROBLOCKD *xd, int blk_row, int blk_col,
int plane, TX_SIZE tx_size,
FRAME_COUNTS *counts,
uint8_t allow_update_cdf) {
MB_MODE_INFO *mbmi = xd->mi[0];
int is_inter = is_inter_block(mbmi);
const int reduced_tx_set_used = cm->features.reduced_tx_set_used;
FRAME_CONTEXT *fc = xd->tile_ctx;
#if !CONFIG_ENTROPY_STATS
(void)counts;
#endif // !CONFIG_ENTROPY_STATS
// Only y plane's tx_type is updated
if (plane > 0) return;
const TX_TYPE tx_type = av1_get_tx_type(xd, PLANE_TYPE_Y, blk_row, blk_col,
tx_size, reduced_tx_set_used);
if (is_inter) {
if (cpi->oxcf.txfm_cfg.use_inter_dct_only) {
assert(tx_type == DCT_DCT);
}
} else {
if (cpi->oxcf.txfm_cfg.use_intra_dct_only) {
assert(tx_type == DCT_DCT);
} else if (cpi->oxcf.txfm_cfg.use_intra_default_tx_only) {
const TX_TYPE default_type = get_default_tx_type(
PLANE_TYPE_Y, xd, tx_size, cpi->use_screen_content_tools);
(void)default_type;
// TODO(kyslov): We don't always respect use_intra_default_tx_only flag in
// NonRD and REALTIME case. Specifically we ignore it in hybrid inta mode
// search, when picking up intra mode in nonRD inter mode search and in RD
// REALTIME mode when we limit TX type usage.
// We need to fix txfm cfg for these cases. Meanwhile relieving the
// assert.
assert(tx_type == default_type || cpi->sf.rt_sf.use_nonrd_pick_mode ||
cpi->oxcf.mode == REALTIME);
}
}
if (get_ext_tx_types(tx_size, is_inter, reduced_tx_set_used) > 1 &&
cm->quant_params.base_qindex > 0 && !mbmi->skip_txfm &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
const int eset = get_ext_tx_set(tx_size, is_inter, reduced_tx_set_used);
if (eset > 0) {
const TxSetType tx_set_type =
av1_get_ext_tx_set_type(tx_size, is_inter, reduced_tx_set_used);
if (is_inter) {
if (allow_update_cdf) {
update_cdf(fc->inter_ext_tx_cdf[eset][txsize_sqr_map[tx_size]],
av1_ext_tx_ind[tx_set_type][tx_type],
av1_num_ext_tx_set[tx_set_type]);
}
#if CONFIG_ENTROPY_STATS
++counts->inter_ext_tx[eset][txsize_sqr_map[tx_size]]
[av1_ext_tx_ind[tx_set_type][tx_type]];
#endif // CONFIG_ENTROPY_STATS
} else {
PREDICTION_MODE intra_dir;
if (mbmi->filter_intra_mode_info.use_filter_intra)
intra_dir = fimode_to_intradir[mbmi->filter_intra_mode_info
.filter_intra_mode];
else
intra_dir = mbmi->mode;
#if CONFIG_ENTROPY_STATS
++counts->intra_ext_tx[eset][txsize_sqr_map[tx_size]][intra_dir]
[av1_ext_tx_ind[tx_set_type][tx_type]];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf) {
update_cdf(
fc->intra_ext_tx_cdf[eset][txsize_sqr_map[tx_size]][intra_dir],
av1_ext_tx_ind[tx_set_type][tx_type],
av1_num_ext_tx_set[tx_set_type]);
}
}
}
}
}
void av1_update_and_record_txb_context(int plane, int block, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct tokenize_b_args *const args = arg;
const AV1_COMP *cpi = args->cpi;
const AV1_COMMON *cm = &cpi->common;
ThreadData *const td = args->td;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
const int eob = p->eobs[block];
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *qcoeff = p->qcoeff + block_offset;
const PLANE_TYPE plane_type = pd->plane_type;
const TX_TYPE tx_type =
av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
cm->features.reduced_tx_set_used);
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
tran_low_t *tcoeff;
assert(args->dry_run != DRY_RUN_COSTCOEFFS);
if (args->dry_run == OUTPUT_ENABLED) {
MB_MODE_INFO *mbmi = xd->mi[0];
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane,
pd->above_entropy_context + blk_col,
pd->left_entropy_context + blk_row, &txb_ctx);
const int bhl = get_txb_bhl(tx_size);
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
const uint8_t allow_update_cdf = args->allow_update_cdf;
const TX_SIZE txsize_ctx = get_txsize_entropy_ctx(tx_size);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
#if CONFIG_ENTROPY_STATS
int cdf_idx = cm->coef_cdf_category;
++td->counts->txb_skip[cdf_idx][txsize_ctx][txb_ctx.txb_skip_ctx][eob == 0];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf) {
update_cdf(ec_ctx->txb_skip_cdf[txsize_ctx][txb_ctx.txb_skip_ctx],
eob == 0, 2);
}
CB_COEFF_BUFFER *cb_coef_buff = x->cb_coef_buff;
const int txb_offset = x->mbmi_ext_frame->cb_offset[plane_type] /
(TX_SIZE_W_MIN * TX_SIZE_H_MIN);
uint16_t *eob_txb = cb_coef_buff->eobs[plane] + txb_offset;
uint8_t *const entropy_ctx = cb_coef_buff->entropy_ctx[plane] + txb_offset;
entropy_ctx[block] = txb_ctx.txb_skip_ctx;
eob_txb[block] = eob;
if (eob == 0) {
av1_set_entropy_contexts(xd, pd, plane, plane_bsize, tx_size, 0, blk_col,
blk_row);
return;
}
const int segment_id = mbmi->segment_id;
const int seg_eob = av1_get_tx_eob(&cpi->common.seg, segment_id, tx_size);
tran_low_t *tcoeff_txb =
cb_coef_buff->tcoeff[plane] + x->mbmi_ext_frame->cb_offset[plane_type];
tcoeff = tcoeff_txb + block_offset;
memcpy(tcoeff, qcoeff, sizeof(*tcoeff) * seg_eob);
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, height);
av1_txb_init_levels(tcoeff, width, height, levels);
update_tx_type_count(cpi, cm, xd, blk_row, blk_col, plane, tx_size,
td->counts, allow_update_cdf);
const TX_CLASS tx_class = tx_type_to_class[tx_type];
const int16_t *const scan = scan_order->scan;
// record tx type usage
td->rd_counts.tx_type_used[tx_size][tx_type]++;
#if CONFIG_ENTROPY_STATS
update_eob_context(cdf_idx, eob, tx_size, tx_class, plane_type, ec_ctx,
td->counts, allow_update_cdf);
#else
update_eob_context(eob, tx_size, tx_class, plane_type, ec_ctx,
allow_update_cdf);
#endif
DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]);
av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class,
coeff_contexts);
for (int c = eob - 1; c >= 0; --c) {
const int pos = scan[c];
const int coeff_ctx = coeff_contexts[pos];
const tran_low_t v = qcoeff[pos];
const tran_low_t level = abs(v);
/* abs_sum_level is needed to decide the job scheduling order of
* pack bitstream multi-threading. This data is not needed if
* multi-threading is disabled. */
if (cpi->mt_info.pack_bs_mt_enabled) td->abs_sum_level += level;
if (allow_update_cdf) {
if (c == eob - 1) {
assert(coeff_ctx < 4);
update_cdf(
ec_ctx->coeff_base_eob_cdf[txsize_ctx][plane_type][coeff_ctx],
AOMMIN(level, 3) - 1, 3);
} else {
update_cdf(ec_ctx->coeff_base_cdf[txsize_ctx][plane_type][coeff_ctx],
AOMMIN(level, 3), 4);
}
}
if (c == eob - 1) {
assert(coeff_ctx < 4);
#if CONFIG_ENTROPY_STATS
++td->counts->coeff_base_eob_multi[cdf_idx][txsize_ctx][plane_type]
[coeff_ctx][AOMMIN(level, 3) - 1];
} else {
++td->counts->coeff_base_multi[cdf_idx][txsize_ctx][plane_type]
[coeff_ctx][AOMMIN(level, 3)];
#endif
}
if (level > NUM_BASE_LEVELS) {
const int base_range = level - 1 - NUM_BASE_LEVELS;
const int br_ctx = get_br_ctx(levels, pos, bhl, tx_class);
for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) {
const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1);
if (allow_update_cdf) {
update_cdf(ec_ctx->coeff_br_cdf[AOMMIN(txsize_ctx, TX_32X32)]
[plane_type][br_ctx],
k, BR_CDF_SIZE);
}
for (int lps = 0; lps < BR_CDF_SIZE - 1; lps++) {
#if CONFIG_ENTROPY_STATS
++td->counts->coeff_lps[AOMMIN(txsize_ctx, TX_32X32)][plane_type]
[lps][br_ctx][lps == k];
#endif // CONFIG_ENTROPY_STATS
if (lps == k) break;
}
#if CONFIG_ENTROPY_STATS
++td->counts->coeff_lps_multi[cdf_idx][AOMMIN(txsize_ctx, TX_32X32)]
[plane_type][br_ctx][k];
#endif
if (k < BR_CDF_SIZE - 1) break;
}
}
}
// Update the context needed to code the DC sign (if applicable)
if (tcoeff[0] != 0) {
const int dc_sign = (tcoeff[0] < 0) ? 1 : 0;
const int dc_sign_ctx = txb_ctx.dc_sign_ctx;
#if CONFIG_ENTROPY_STATS
++td->counts->dc_sign[plane_type][dc_sign_ctx][dc_sign];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_cdf(ec_ctx->dc_sign_cdf[plane_type][dc_sign_ctx], dc_sign, 2);
entropy_ctx[block] |= dc_sign_ctx << DC_SIGN_CTX_SHIFT;
}
} else {
tcoeff = qcoeff;
}
const uint8_t cul_level =
av1_get_txb_entropy_context(tcoeff, scan_order, eob);
av1_set_entropy_contexts(xd, pd, plane, plane_bsize, tx_size, cul_level,
blk_col, blk_row);
}
void av1_record_txb_context(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct tokenize_b_args *const args = arg;
const AV1_COMP *cpi = args->cpi;
const AV1_COMMON *cm = &cpi->common;
ThreadData *const td = args->td;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
const int eob = p->eobs[block];
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *qcoeff = p->qcoeff + block_offset;
const PLANE_TYPE plane_type = pd->plane_type;
const TX_TYPE tx_type =
av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
cm->features.reduced_tx_set_used);
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
tran_low_t *tcoeff;
assert(args->dry_run != DRY_RUN_COSTCOEFFS);
if (args->dry_run == OUTPUT_ENABLED) {
MB_MODE_INFO *mbmi = xd->mi[0];
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane,
pd->above_entropy_context + blk_col,
pd->left_entropy_context + blk_row, &txb_ctx);
#if CONFIG_ENTROPY_STATS
const TX_SIZE txsize_ctx = get_txsize_entropy_ctx(tx_size);
const int bhl = get_txb_bhl(tx_size);
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
int cdf_idx = cm->coef_cdf_category;
++td->counts->txb_skip[cdf_idx][txsize_ctx][txb_ctx.txb_skip_ctx][eob == 0];
#endif // CONFIG_ENTROPY_STATS
CB_COEFF_BUFFER *cb_coef_buff = x->cb_coef_buff;
const int txb_offset = x->mbmi_ext_frame->cb_offset[plane_type] /
(TX_SIZE_W_MIN * TX_SIZE_H_MIN);
uint16_t *eob_txb = cb_coef_buff->eobs[plane] + txb_offset;
uint8_t *const entropy_ctx = cb_coef_buff->entropy_ctx[plane] + txb_offset;
entropy_ctx[block] = txb_ctx.txb_skip_ctx;
eob_txb[block] = eob;
if (eob == 0) {
av1_set_entropy_contexts(xd, pd, plane, plane_bsize, tx_size, 0, blk_col,
blk_row);
return;
}
const int segment_id = mbmi->segment_id;
const int seg_eob = av1_get_tx_eob(&cpi->common.seg, segment_id, tx_size);
tran_low_t *tcoeff_txb =
cb_coef_buff->tcoeff[plane] + x->mbmi_ext_frame->cb_offset[plane_type];
tcoeff = tcoeff_txb + block_offset;
memcpy(tcoeff, qcoeff, sizeof(*tcoeff) * seg_eob);
#if CONFIG_ENTROPY_STATS
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, height);
av1_txb_init_levels(tcoeff, width, height, levels);
update_tx_type_count(cpi, cm, xd, blk_row, blk_col, plane, tx_size,
td->counts, 0 /*allow_update_cdf*/);
const TX_CLASS tx_class = tx_type_to_class[tx_type];
const bool do_coeff_scan = true;
#else
const bool do_coeff_scan = cpi->mt_info.pack_bs_mt_enabled;
#endif
const int16_t *const scan = scan_order->scan;
// record tx type usage
td->rd_counts.tx_type_used[tx_size][tx_type]++;
#if CONFIG_ENTROPY_STATS
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
update_eob_context(cdf_idx, eob, tx_size, tx_class, plane_type, ec_ctx,
td->counts, 0 /*allow_update_cdf*/);
DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]);
av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class,
coeff_contexts);
#endif
for (int c = eob - 1; (c >= 0) && do_coeff_scan; --c) {
const int pos = scan[c];
const tran_low_t v = qcoeff[pos];
const tran_low_t level = abs(v);
/* abs_sum_level is needed to decide the job scheduling order of
* pack bitstream multi-threading. This data is not needed if
* multi-threading is disabled. */
if (cpi->mt_info.pack_bs_mt_enabled) td->abs_sum_level += level;
#if CONFIG_ENTROPY_STATS
const int coeff_ctx = coeff_contexts[pos];
if (c == eob - 1) {
assert(coeff_ctx < 4);
++td->counts->coeff_base_eob_multi[cdf_idx][txsize_ctx][plane_type]
[coeff_ctx][AOMMIN(level, 3) - 1];
} else {
++td->counts->coeff_base_multi[cdf_idx][txsize_ctx][plane_type]
[coeff_ctx][AOMMIN(level, 3)];
}
if (level > NUM_BASE_LEVELS) {
const int base_range = level - 1 - NUM_BASE_LEVELS;
const int br_ctx = get_br_ctx(levels, pos, bhl, tx_class);
for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) {
const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1);
for (int lps = 0; lps < BR_CDF_SIZE - 1; lps++) {
++td->counts->coeff_lps[AOMMIN(txsize_ctx, TX_32X32)][plane_type]
[lps][br_ctx][lps == k];
if (lps == k) break;
}
++td->counts->coeff_lps_multi[cdf_idx][AOMMIN(txsize_ctx, TX_32X32)]
[plane_type][br_ctx][k];
if (k < BR_CDF_SIZE - 1) break;
}
}
#endif
}
// Update the context needed to code the DC sign (if applicable)
if (tcoeff[0] != 0) {
const int dc_sign_ctx = txb_ctx.dc_sign_ctx;
#if CONFIG_ENTROPY_STATS
const int dc_sign = (tcoeff[0] < 0) ? 1 : 0;
++td->counts->dc_sign[plane_type][dc_sign_ctx][dc_sign];
#endif // CONFIG_ENTROPY_STATS
entropy_ctx[block] |= dc_sign_ctx << DC_SIGN_CTX_SHIFT;
}
} else {
tcoeff = qcoeff;
}
const uint8_t cul_level =
av1_get_txb_entropy_context(tcoeff, scan_order, eob);
av1_set_entropy_contexts(xd, pd, plane, plane_bsize, tx_size, cul_level,
blk_col, blk_row);
}
void av1_update_intra_mb_txb_context(const AV1_COMP *cpi, ThreadData *td,
RUN_TYPE dry_run, BLOCK_SIZE bsize,
uint8_t allow_update_cdf) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
struct tokenize_b_args arg = { cpi, td, 0, allow_update_cdf, dry_run };
if (mbmi->skip_txfm) {
av1_reset_entropy_context(xd, bsize, num_planes);
return;
}
const foreach_transformed_block_visitor visit =
allow_update_cdf ? av1_update_and_record_txb_context
: av1_record_txb_context;
for (int plane = 0; plane < num_planes; ++plane) {
if (plane && !xd->is_chroma_ref) break;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
av1_foreach_transformed_block_in_plane(xd, plane_bsize, plane, visit, &arg);
}
}
CB_COEFF_BUFFER *av1_get_cb_coeff_buffer(const struct AV1_COMP *cpi, int mi_row,
int mi_col) {
const AV1_COMMON *const cm = &cpi->common;
const int mib_size_log2 = cm->seq_params->mib_size_log2;
const int stride =
CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2);
const int offset =
(mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2);
return cpi->coeff_buffer_base + offset;
}