blob: 8f08702eb2ec1957625c104b1b68e53e67f3eb60 [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_ENCODER_TPL_MODEL_H_
#define AOM_AV1_ENCODER_TPL_MODEL_H_
#ifdef __cplusplus
extern "C" {
#endif
/*!\cond */
struct AV1_PRIMARY;
struct AV1_COMP;
struct AV1_SEQ_CODING_TOOLS;
struct EncodeFrameParams;
struct EncodeFrameInput;
struct GF_GROUP;
struct ThreadData;
struct TPL_INFO;
#include "config/aom_config.h"
#include "aom_scale/yv12config.h"
#include "aom_util/aom_pthread.h"
#include "av1/common/mv.h"
#include "av1/common/scale.h"
#include "av1/encoder/block.h"
#include "av1/encoder/lookahead.h"
#include "av1/encoder/ratectrl.h"
static INLINE BLOCK_SIZE convert_length_to_bsize(int length) {
switch (length) {
case 64: return BLOCK_64X64;
case 32: return BLOCK_32X32;
case 16: return BLOCK_16X16;
case 8: return BLOCK_8X8;
case 4: return BLOCK_4X4;
default:
assert(0 && "Invalid block size for tpl model");
return BLOCK_16X16;
}
}
typedef struct AV1TplRowMultiThreadSync {
#if CONFIG_MULTITHREAD
// Synchronization objects for top-right dependency.
pthread_mutex_t *mutex_;
pthread_cond_t *cond_;
#endif
// Buffer to store the macroblock whose encoding is complete.
// num_finished_cols[i] stores the number of macroblocks which finished
// encoding in the ith macroblock row.
int *num_finished_cols;
// Number of extra macroblocks of the top row to be complete for encoding
// of the current macroblock to start. A value of 1 indicates top-right
// dependency.
int sync_range;
// Number of macroblock rows.
int rows;
// Number of threads processing the current tile.
int num_threads_working;
} AV1TplRowMultiThreadSync;
typedef struct AV1TplRowMultiThreadInfo {
// Initialized to false, set to true by the worker thread that encounters an
// error in order to abort the processing of other worker threads.
bool tpl_mt_exit;
#if CONFIG_MULTITHREAD
// Mutex lock object used for error handling.
pthread_mutex_t *mutex_;
#endif
// Row synchronization related function pointers.
void (*sync_read_ptr)(AV1TplRowMultiThreadSync *tpl_mt_sync, int r, int c);
void (*sync_write_ptr)(AV1TplRowMultiThreadSync *tpl_mt_sync, int r, int c,
int cols);
} AV1TplRowMultiThreadInfo;
// TODO(jingning): This needs to be cleaned up next.
// TPL stats buffers are prepared for every frame in the GOP,
// including (internal) overlays and (internal) arfs.
// In addition, frames in the lookahead that are outside of the GOP
// are also used.
// Thus it should use
// (gop_length) + (# overlays) + (MAX_LAG_BUFFERS - gop_len) =
// MAX_LAG_BUFFERS + (# overlays)
// 2 * MAX_LAG_BUFFERS is therefore a safe estimate.
// TODO(bohanli): test setting it to 1.5 * MAX_LAG_BUFFER
#define MAX_TPL_FRAME_IDX (2 * MAX_LAG_BUFFERS)
// The first REF_FRAMES + 1 buffers are reserved.
// tpl_data->tpl_frame starts after REF_FRAMES + 1
#define MAX_LENGTH_TPL_FRAME_STATS (MAX_TPL_FRAME_IDX + REF_FRAMES + 1)
#define TPL_DEP_COST_SCALE_LOG2 4
#define TPL_EPSILON 0.0000001
typedef struct TplTxfmStats {
int ready; // Whether abs_coeff_mean is ready
double abs_coeff_sum[256]; // Assume we are using 16x16 transform block
double abs_coeff_mean[256];
int txfm_block_count;
int coeff_num;
} TplTxfmStats;
typedef struct {
uint8_t *predictor8;
int16_t *src_diff;
tran_low_t *coeff;
tran_low_t *qcoeff;
tran_low_t *dqcoeff;
} TplBuffers;
typedef struct TplDepStats {
int64_t srcrf_sse;
int64_t srcrf_dist;
int64_t recrf_sse;
int64_t recrf_dist;
int64_t intra_sse;
int64_t intra_dist;
int64_t cmp_recrf_dist[2];
int64_t mc_dep_rate;
int64_t mc_dep_dist;
int64_t pred_error[INTER_REFS_PER_FRAME];
int32_t intra_cost;
int32_t inter_cost;
int32_t srcrf_rate;
int32_t recrf_rate;
int32_t intra_rate;
int32_t cmp_recrf_rate[2];
int_mv mv[INTER_REFS_PER_FRAME];
int8_t ref_frame_index[2];
} TplDepStats;
typedef struct TplDepFrame {
uint8_t is_valid;
TplDepStats *tpl_stats_ptr;
const YV12_BUFFER_CONFIG *gf_picture;
YV12_BUFFER_CONFIG *rec_picture;
int ref_map_index[REF_FRAMES];
int stride;
int width;
int height;
int mi_rows;
int mi_cols;
int base_rdmult;
uint32_t frame_display_index;
// When set, SAD metric is used for intra and inter mode decision.
int use_pred_sad;
} TplDepFrame;
/*!\endcond */
/*!
* \brief Params related to temporal dependency model.
*/
typedef struct TplParams {
/*!
* Whether the tpl stats is ready.
*/
int ready;
/*!
* Block granularity of tpl score storage.
*/
uint8_t tpl_stats_block_mis_log2;
/*!
* Tpl motion estimation block 1d size. tpl_bsize_1d >= 16.
*/
uint8_t tpl_bsize_1d;
/*!
* Buffer to store the frame level tpl information for each frame in a gf
* group. tpl_stats_buffer[i] stores the tpl information of ith frame in a gf
* group
*/
TplDepFrame tpl_stats_buffer[MAX_LENGTH_TPL_FRAME_STATS];
/*!
* Buffer to store tpl stats at block granularity.
* tpl_stats_pool[i][j] stores the tpl stats of jth block of ith frame in a gf
* group.
*/
TplDepStats *tpl_stats_pool[MAX_LAG_BUFFERS];
/*!
* Pointer to the buffer which stores tpl transform stats per frame.
* txfm_stats_list[i] stores the TplTxfmStats of the ith frame in a gf group.
* Memory is allocated dynamically for MAX_LENGTH_TPL_FRAME_STATS frames when
* tpl is enabled.
*/
TplTxfmStats *txfm_stats_list;
/*!
* Buffer to store tpl reconstructed frame.
* tpl_rec_pool[i] stores the reconstructed frame of ith frame in a gf group.
*/
YV12_BUFFER_CONFIG tpl_rec_pool[MAX_LAG_BUFFERS];
/*!
* Pointer to tpl_stats_buffer.
*/
TplDepFrame *tpl_frame;
/*!
* Scale factors for the current frame.
*/
struct scale_factors sf;
/*!
* GF group index of the current frame.
*/
int frame_idx;
/*!
* Array of pointers to the frame buffers holding the source frame.
* src_ref_frame[i] stores the pointer to the source frame of the ith
* reference frame type.
*/
const YV12_BUFFER_CONFIG *src_ref_frame[INTER_REFS_PER_FRAME];
/*!
* Array of pointers to the frame buffers holding the tpl reconstructed frame.
* ref_frame[i] stores the pointer to the tpl reconstructed frame of the ith
* reference frame type.
*/
const YV12_BUFFER_CONFIG *ref_frame[INTER_REFS_PER_FRAME];
/*!
* Parameters related to synchronization for top-right dependency in row based
* multi-threading of tpl
*/
AV1TplRowMultiThreadSync tpl_mt_sync;
/*!
* Frame border for tpl frame.
*/
int border_in_pixels;
/*!
* Factor to adjust r0 if TPL uses a subset of frames in the gf group.
*/
double r0_adjust_factor;
} TplParams;
#if CONFIG_BITRATE_ACCURACY || CONFIG_RATECTRL_LOG
#define VBR_RC_INFO_MAX_FRAMES 500
#endif // CONFIG_BITRATE_ACCURACY || CONFIG_RATECTRL_LOG
#if CONFIG_BITRATE_ACCURACY
/*!
* \brief This structure stores information needed for bitrate accuracy
* experiment.
*/
typedef struct {
int ready;
double total_bit_budget; // The total bit budget of the entire video
int show_frame_count; // Number of show frames in the entire video
int gop_showframe_count; // The number of show frames in the current gop
double gop_bit_budget; // The bitbudget for the current gop
double scale_factors[FRAME_UPDATE_TYPES]; // Scale factors to improve the
// budget estimation
double mv_scale_factors[FRAME_UPDATE_TYPES]; // Scale factors to improve
// MV entropy estimation
// === Below this line are GOP related data that will be updated per GOP ===
int base_q_index; // Stores the base q index.
int q_index_list_ready;
int q_index_list[VBR_RC_INFO_MAX_FRAMES]; // q indices for the current
// GOP
// Array to store qstep_ratio for each frame in a GOP
double qstep_ratio_list[VBR_RC_INFO_MAX_FRAMES];
#if CONFIG_THREE_PASS
TplTxfmStats txfm_stats_list[VBR_RC_INFO_MAX_FRAMES];
FRAME_UPDATE_TYPE update_type_list[VBR_RC_INFO_MAX_FRAMES];
int gop_start_idx_list[VBR_RC_INFO_MAX_FRAMES];
int gop_length_list[VBR_RC_INFO_MAX_FRAMES];
int cur_gop_idx;
int total_frame_count;
int gop_count;
#endif // CONFIG_THREE_PASS
} VBR_RATECTRL_INFO;
static INLINE void vbr_rc_reset_gop_data(VBR_RATECTRL_INFO *vbr_rc_info) {
vbr_rc_info->q_index_list_ready = 0;
av1_zero(vbr_rc_info->q_index_list);
}
void av1_vbr_rc_init(VBR_RATECTRL_INFO *vbr_rc_info, double total_bit_budget,
int show_frame_count);
int av1_vbr_rc_frame_coding_idx(const VBR_RATECTRL_INFO *vbr_rc_info,
int gf_frame_index);
void av1_vbr_rc_append_tpl_info(VBR_RATECTRL_INFO *vbr_rc_info,
const struct TPL_INFO *tpl_info);
void av1_vbr_rc_set_gop_bit_budget(VBR_RATECTRL_INFO *vbr_rc_info,
int gop_showframe_count);
void av1_vbr_rc_compute_q_indices(int base_q_index, int frame_count,
const double *qstep_ratio_list,
aom_bit_depth_t bit_depth, int *q_index_list);
/*!\brief Update q_index_list in vbr_rc_info based on tpl stats
*
* \param[out] vbr_rc_info Rate control info for BITRATE_ACCURACY
* experiment
* \param[in] tpl_data TPL struct
* \param[in] gf_group GOP struct
* \param[in] bit_depth bit depth
*/
void av1_vbr_rc_update_q_index_list(VBR_RATECTRL_INFO *vbr_rc_info,
const TplParams *tpl_data,
const struct GF_GROUP *gf_group,
aom_bit_depth_t bit_depth);
/*
*!\brief Compute the number of bits needed to encode a GOP
*
* \param[in] base_q_index base layer q_index
* \param[in] bit_depth bit depth
* \param[in] update_type_scale_factors array of scale factors for each
* update_type
* \param[in] frame_count size of update_type_list,
* qstep_ratio_list stats_list,
* q_index_list and
* estimated_bitrate_byframe
* \param[in] update_type_list array of update_type, one per frame
* \param[in] qstep_ratio_list array of qstep_ratio, one per frame
* \param[in] stats_list array of transform stats, one per
* frame
* \param[out] q_index_list array of q_index, one per frame
* \param[out] estimated_bitrate_byframe array to keep track of frame
* bitrate
*
* \return The estimated GOP bitrate.
*
*/
double av1_vbr_rc_info_estimate_gop_bitrate(
int base_q_index, aom_bit_depth_t bit_depth,
const double *update_type_scale_factors, int frame_count,
const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
const TplTxfmStats *stats_list, int *q_index_list,
double *estimated_bitrate_byframe);
/*!\brief Estimate the optimal base q index for a GOP.
*
* This function uses a binary search to find base layer q index to
* achieve the specified bit budget.
*
* \param[in] bit_budget target bit budget
* \param[in] bit_depth bit depth
* \param[in] update_type_scale_factors array of scale factors for each
* update_type
* \param[in] frame_count size of update_type_list, qstep_ratio_list
* stats_list, q_index_list and
* estimated_bitrate_byframe
* \param[in] update_type_list array of update_type, one per frame
* \param[in] qstep_ratio_list array of qstep_ratio, one per frame
* \param[in] stats_list array of transform stats, one per frame
* \param[out] q_index_list array of q_index, one per frame
* \param[out] estimated_bitrate_byframe Array to keep track of frame
* bitrate
*
* \return Returns the optimal base q index to use.
*/
int av1_vbr_rc_info_estimate_base_q(
double bit_budget, aom_bit_depth_t bit_depth,
const double *update_type_scale_factors, int frame_count,
const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
const TplTxfmStats *stats_list, int *q_index_list,
double *estimated_bitrate_byframe);
#endif // CONFIG_BITRATE_ACCURACY
#if CONFIG_RD_COMMAND
typedef enum {
RD_OPTION_NONE,
RD_OPTION_SET_Q,
RD_OPTION_SET_Q_RDMULT
} RD_OPTION;
typedef struct RD_COMMAND {
RD_OPTION option_ls[MAX_LENGTH_TPL_FRAME_STATS];
int q_index_ls[MAX_LENGTH_TPL_FRAME_STATS];
int rdmult_ls[MAX_LENGTH_TPL_FRAME_STATS];
int frame_count;
int frame_index;
} RD_COMMAND;
void av1_read_rd_command(const char *filepath, RD_COMMAND *rd_command);
#endif // CONFIG_RD_COMMAND
/*!\brief Allocate buffers used by tpl model
*
* \param[in] Top-level encode/decode structure
* \param[in] lag_in_frames number of lookahead frames
*
* \param[out] tpl_data tpl data structure
*/
void av1_setup_tpl_buffers(struct AV1_PRIMARY *const ppi,
CommonModeInfoParams *const mi_params, int width,
int height, int byte_alignment, int lag_in_frames);
static AOM_INLINE void tpl_dealloc_temp_buffers(TplBuffers *tpl_tmp_buffers) {
aom_free(tpl_tmp_buffers->predictor8);
tpl_tmp_buffers->predictor8 = NULL;
aom_free(tpl_tmp_buffers->src_diff);
tpl_tmp_buffers->src_diff = NULL;
aom_free(tpl_tmp_buffers->coeff);
tpl_tmp_buffers->coeff = NULL;
aom_free(tpl_tmp_buffers->qcoeff);
tpl_tmp_buffers->qcoeff = NULL;
aom_free(tpl_tmp_buffers->dqcoeff);
tpl_tmp_buffers->dqcoeff = NULL;
}
static AOM_INLINE bool tpl_alloc_temp_buffers(TplBuffers *tpl_tmp_buffers,
uint8_t tpl_bsize_1d) {
// Number of pixels in a tpl block
const int tpl_block_pels = tpl_bsize_1d * tpl_bsize_1d;
// Allocate temporary buffers used in mode estimation.
tpl_tmp_buffers->predictor8 = (uint8_t *)aom_memalign(
32, tpl_block_pels * 2 * sizeof(*tpl_tmp_buffers->predictor8));
tpl_tmp_buffers->src_diff = (int16_t *)aom_memalign(
32, tpl_block_pels * sizeof(*tpl_tmp_buffers->src_diff));
tpl_tmp_buffers->coeff = (tran_low_t *)aom_memalign(
32, tpl_block_pels * sizeof(*tpl_tmp_buffers->coeff));
tpl_tmp_buffers->qcoeff = (tran_low_t *)aom_memalign(
32, tpl_block_pels * sizeof(*tpl_tmp_buffers->qcoeff));
tpl_tmp_buffers->dqcoeff = (tran_low_t *)aom_memalign(
32, tpl_block_pels * sizeof(*tpl_tmp_buffers->dqcoeff));
if (!(tpl_tmp_buffers->predictor8 && tpl_tmp_buffers->src_diff &&
tpl_tmp_buffers->coeff && tpl_tmp_buffers->qcoeff &&
tpl_tmp_buffers->dqcoeff)) {
tpl_dealloc_temp_buffers(tpl_tmp_buffers);
return false;
}
return true;
}
/*!\brief Implements temporal dependency modelling for a GOP (GF/ARF
* group) and selects between 16 and 32 frame GOP structure.
*
*\ingroup tpl_modelling
*
* \param[in] cpi Top - level encoder instance structure
* \param[in] gop_eval Flag if it is in the GOP length decision stage
* \param[in] frame_params Per frame encoding parameters
*
* \return Indicates whether or not we should use a longer GOP length.
*/
int av1_tpl_setup_stats(struct AV1_COMP *cpi, int gop_eval,
const struct EncodeFrameParams *const frame_params);
/*!\cond */
void av1_tpl_preload_rc_estimate(
struct AV1_COMP *cpi, const struct EncodeFrameParams *const frame_params);
int av1_tpl_ptr_pos(int mi_row, int mi_col, int stride, uint8_t right_shift);
void av1_init_tpl_stats(TplParams *const tpl_data);
int av1_tpl_stats_ready(const TplParams *tpl_data, int gf_frame_index);
void av1_tpl_rdmult_setup(struct AV1_COMP *cpi);
void av1_tpl_rdmult_setup_sb(struct AV1_COMP *cpi, MACROBLOCK *const x,
BLOCK_SIZE sb_size, int mi_row, int mi_col);
void av1_mc_flow_dispenser_row(struct AV1_COMP *cpi,
TplTxfmStats *tpl_txfm_stats,
TplBuffers *tpl_tmp_buffers, MACROBLOCK *x,
int mi_row, BLOCK_SIZE bsize, TX_SIZE tx_size);
/*!\brief Compute the entropy of an exponential probability distribution
* function (pdf) subjected to uniform quantization.
*
* pdf(x) = b*exp(-b*x)
*
*\ingroup tpl_modelling
*
* \param[in] q_step quantizer step size
* \param[in] b parameter of exponential distribution
*
* \return entropy cost
*/
double av1_exponential_entropy(double q_step, double b);
/*!\brief Compute the entropy of a Laplace probability distribution
* function (pdf) subjected to non-uniform quantization.
*
* pdf(x) = 0.5*b*exp(-0.5*b*|x|)
*
*\ingroup tpl_modelling
*
* \param[in] q_step quantizer step size for non-zero bins
* \param[in] b parameter of Laplace distribution
* \param[in] zero_bin_ratio zero bin's size is zero_bin_ratio * q_step
*
* \return entropy cost
*/
double av1_laplace_entropy(double q_step, double b, double zero_bin_ratio);
/*!\brief Compute the frame rate using transform block stats
*
* Assume each position i in the transform block is of Laplace distribution
* with mean absolute deviation abs_coeff_mean[i]
*
* Then we can use av1_laplace_entropy() to compute the expected frame
* rate.
*
*\ingroup tpl_modelling
*
* \param[in] q_index quantizer index
* \param[in] block_count number of transform blocks
* \param[in] abs_coeff_mean array of mean absolute deviation
* \param[in] coeff_num number of coefficients per transform block
*
* \return expected frame rate
*/
double av1_laplace_estimate_frame_rate(int q_index, int block_count,
const double *abs_coeff_mean,
int coeff_num);
/*
*!\brief Init TplTxfmStats
*
* \param[in] tpl_txfm_stats a structure for storing transform stats
*
*/
void av1_init_tpl_txfm_stats(TplTxfmStats *tpl_txfm_stats);
#if CONFIG_BITRATE_ACCURACY
/*
*!\brief Accumulate TplTxfmStats
*
* \param[in] sub_stats a structure for storing sub transform stats
* \param[out] accumulated_stats a structure for storing accumulated
*transform stats
*
*/
void av1_accumulate_tpl_txfm_stats(const TplTxfmStats *sub_stats,
TplTxfmStats *accumulated_stats);
/*
*!\brief Record a transform block into TplTxfmStats
*
* \param[in] tpl_txfm_stats A structure for storing transform stats
* \param[out] coeff An array of transform coefficients. Its size
* should equal to tpl_txfm_stats.coeff_num.
*
*/
void av1_record_tpl_txfm_block(TplTxfmStats *tpl_txfm_stats,
const tran_low_t *coeff);
/*
*!\brief Update abs_coeff_mean and ready of txfm_stats
* If txfm_block_count > 0, this function will use abs_coeff_sum and
* txfm_block_count to compute abs_coeff_mean. Moreover, reday flag
* will be set to one.
*
* \param[in] txfm_stats A structure for storing transform stats
*/
void av1_tpl_txfm_stats_update_abs_coeff_mean(TplTxfmStats *txfm_stats);
#endif // CONFIG_BITRATE_ACCURACY
/*!\brief Estimate coefficient entropy using Laplace dsitribution
*
*\ingroup tpl_modelling
*
* This function is equivalent to -log2(laplace_prob()), where laplace_prob()
*is defined in tpl_model_test.cc
*
* \param[in] q_step quantizer step size without any scaling
* \param[in] b mean absolute deviation of Laplace
*distribution \param[in] zero_bin_ratio zero bin's size is zero_bin_ratio
** q_step \param[in] qcoeff quantized coefficient
*
* \return estimated coefficient entropy
*
*/
double av1_estimate_coeff_entropy(double q_step, double b,
double zero_bin_ratio, int qcoeff);
/*!\brief Estimate entropy of a transform block using Laplace dsitribution
*
*\ingroup tpl_modelling
*
* \param[in] q_index quantizer index
* \param[in] abs_coeff_mean array of mean absolute deviations
* \param[in] qcoeff_arr array of quantized coefficients
* \param[in] coeff_num number of coefficients per transform block
*
* \return estimated transform block entropy
*
*/
double av1_estimate_txfm_block_entropy(int q_index,
const double *abs_coeff_mean,
int *qcoeff_arr, int coeff_num);
// TODO(angiebird): Add doxygen description here.
int64_t av1_delta_rate_cost(int64_t delta_rate, int64_t recrf_dist,
int64_t srcrf_dist, int pix_num);
/*!\brief Compute the overlap area between two blocks with the same size
*
*\ingroup tpl_modelling
*
* If there is no overlap, this function should return zero.
*
* \param[in] row_a row position of the first block
* \param[in] col_a column position of the first block
* \param[in] row_b row position of the second block
* \param[in] col_b column position of the second block
* \param[in] width width shared by the two blocks
* \param[in] height height shared by the two blocks
*
* \return overlap area of the two blocks
*/
int av1_get_overlap_area(int row_a, int col_a, int row_b, int col_b, int width,
int height);
/*!\brief Get current frame's q_index from tpl stats and leaf_qindex
*
* \param[in] tpl_data TPL struct
* \param[in] gf_frame_index current frame index in the GOP
* \param[in] leaf_qindex q index of leaf frame
* \param[in] bit_depth bit depth
*
* \return q_index
*/
int av1_tpl_get_q_index(const TplParams *tpl_data, int gf_frame_index,
int leaf_qindex, aom_bit_depth_t bit_depth);
/*!\brief Compute the frame importance from TPL stats
*
* \param[in] tpl_data TPL struct
* \param[in] gf_frame_index current frame index in the GOP
*
* \return frame_importance
*/
double av1_tpl_get_frame_importance(const TplParams *tpl_data,
int gf_frame_index);
/*!\brief Compute the ratio between arf q step and the leaf q step based on
* TPL stats
*
* \param[in] tpl_data TPL struct
* \param[in] gf_frame_index current frame index in the GOP
* \param[in] leaf_qindex q index of leaf frame
* \param[in] bit_depth bit depth
*
* \return qstep_ratio
*/
double av1_tpl_get_qstep_ratio(const TplParams *tpl_data, int gf_frame_index);
/*!\brief Find a q index whose step size is near qstep_ratio * leaf_qstep
*
* \param[in] leaf_qindex q index of leaf frame
* \param[in] qstep_ratio step ratio between target q index and
* leaf q index \param[in] bit_depth bit depth
*
* \return q_index
*/
int av1_get_q_index_from_qstep_ratio(int leaf_qindex, double qstep_ratio,
aom_bit_depth_t bit_depth);
/*!\brief Improve the motion vector estimation by taking neighbors into
* account.
*
* Use the upper and left neighbor block as the reference MVs.
* Compute the minimum difference between current MV and reference MV.
*
* \param[in] tpl_frame Tpl frame struct
* \param[in] row Current row
* \param[in] col Current column
* \param[in] step Step parameter for av1_tpl_ptr_pos
* \param[in] tpl_stride Stride parameter for av1_tpl_ptr_pos
* \param[in] right_shift Right shift parameter for
* av1_tpl_ptr_pos
*/
int_mv av1_compute_mv_difference(const TplDepFrame *tpl_frame, int row, int col,
int step, int tpl_stride, int right_shift);
/*!\brief Compute the entropy of motion vectors for a single frame.
*
* \param[in] tpl_frame TPL frame struct
* \param[in] right_shift right shift value for step
*
* \return Bits used by the motion vectors for one frame.
*/
double av1_tpl_compute_frame_mv_entropy(const TplDepFrame *tpl_frame,
uint8_t right_shift);
#if CONFIG_RATECTRL_LOG
typedef struct {
int coding_frame_count;
int base_q_index;
// Encode decision
int q_index_list[VBR_RC_INFO_MAX_FRAMES];
double qstep_ratio_list[VBR_RC_INFO_MAX_FRAMES];
FRAME_UPDATE_TYPE update_type_list[VBR_RC_INFO_MAX_FRAMES];
// Frame stats
TplTxfmStats txfm_stats_list[VBR_RC_INFO_MAX_FRAMES];
// Estimated encode results
double est_coeff_rate_list[VBR_RC_INFO_MAX_FRAMES];
// Actual encode results
double act_rate_list[VBR_RC_INFO_MAX_FRAMES];
double act_coeff_rate_list[VBR_RC_INFO_MAX_FRAMES];
} RATECTRL_LOG;
static INLINE void rc_log_init(RATECTRL_LOG *rc_log) { av1_zero(*rc_log); }
static INLINE void rc_log_frame_stats(RATECTRL_LOG *rc_log, int coding_index,
const TplTxfmStats *txfm_stats) {
rc_log->txfm_stats_list[coding_index] = *txfm_stats;
}
static INLINE void rc_log_frame_encode_param(RATECTRL_LOG *rc_log,
int coding_index,
double qstep_ratio, int q_index,
FRAME_UPDATE_TYPE update_type) {
rc_log->qstep_ratio_list[coding_index] = qstep_ratio;
rc_log->q_index_list[coding_index] = q_index;
rc_log->update_type_list[coding_index] = update_type;
const TplTxfmStats *txfm_stats = &rc_log->txfm_stats_list[coding_index];
rc_log->est_coeff_rate_list[coding_index] = 0;
if (txfm_stats->ready) {
rc_log->est_coeff_rate_list[coding_index] = av1_laplace_estimate_frame_rate(
q_index, txfm_stats->txfm_block_count, txfm_stats->abs_coeff_mean,
txfm_stats->coeff_num);
}
}
static INLINE void rc_log_frame_entropy(RATECTRL_LOG *rc_log, int coding_index,
double act_rate,
double act_coeff_rate) {
rc_log->act_rate_list[coding_index] = act_rate;
rc_log->act_coeff_rate_list[coding_index] = act_coeff_rate;
}
static INLINE void rc_log_record_chunk_info(RATECTRL_LOG *rc_log,
int base_q_index,
int coding_frame_count) {
rc_log->base_q_index = base_q_index;
rc_log->coding_frame_count = coding_frame_count;
}
static INLINE void rc_log_show(const RATECTRL_LOG *rc_log) {
printf("= chunk 1\n");
printf("coding_frame_count %d base_q_index %d\n", rc_log->coding_frame_count,
rc_log->base_q_index);
printf("= frame %d\n", rc_log->coding_frame_count);
for (int coding_idx = 0; coding_idx < rc_log->coding_frame_count;
coding_idx++) {
printf(
"coding_idx %d update_type %d q %d qstep_ratio %f est_coeff_rate %f "
"act_coeff_rate %f act_rate %f\n",
coding_idx, rc_log->update_type_list[coding_idx],
rc_log->q_index_list[coding_idx], rc_log->qstep_ratio_list[coding_idx],
rc_log->est_coeff_rate_list[coding_idx],
rc_log->act_coeff_rate_list[coding_idx],
rc_log->act_rate_list[coding_idx]);
}
}
#endif // CONFIG_RATECTRL_LOG
/*!\endcond */
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_ENCODER_TPL_MODEL_H_