blob: ce08986e5fdfc5870b56bbea62d34a194246c287 [file] [log] [blame]
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <cstdlib>
#include <new>
#include <tuple>
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "aom/aom_codec.h"
#include "aom/aom_integer.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "test/acm_random.h"
#include "av1/encoder/palette.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
namespace AV1Kmeans {
typedef void (*av1_calc_indices_dim1_func)(const int16_t *data,
const int16_t *centroids,
uint8_t *indices,
int64_t *total_dist, int n, int k);
typedef void (*av1_calc_indices_dim2_func)(const int16_t *data,
const int16_t *centroids,
uint8_t *indices,
int64_t *total_dist, int n, int k);
typedef std::tuple<av1_calc_indices_dim1_func, BLOCK_SIZE>
av1_calc_indices_dim1Param;
typedef std::tuple<av1_calc_indices_dim2_func, BLOCK_SIZE>
av1_calc_indices_dim2Param;
class AV1KmeansTest1
: public ::testing::TestWithParam<av1_calc_indices_dim1Param> {
public:
~AV1KmeansTest1() override;
void SetUp() override;
protected:
void RunCheckOutput(av1_calc_indices_dim1_func test_impl, BLOCK_SIZE bsize,
int centroids);
void RunSpeedTest(av1_calc_indices_dim1_func test_impl, BLOCK_SIZE bsize,
int centroids);
bool CheckResult(int n) {
for (int idx = 0; idx < n; ++idx) {
if (indices1_[idx] != indices2_[idx]) {
printf("%d ", idx);
printf("%d != %d ", indices1_[idx], indices2_[idx]);
return false;
}
}
return true;
}
libaom_test::ACMRandom rnd_;
int16_t data_[4096];
int16_t centroids_[8];
uint8_t indices1_[4096];
uint8_t indices2_[4096];
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1KmeansTest1);
AV1KmeansTest1::~AV1KmeansTest1() = default;
void AV1KmeansTest1::SetUp() {
rnd_.Reset(libaom_test::ACMRandom::DeterministicSeed());
for (int i = 0; i < 4096; ++i) {
data_[i] = (int)rnd_.Rand8() << 4;
}
for (int i = 0; i < 8; i++) {
centroids_[i] = (int)rnd_.Rand8() << 4;
}
}
void AV1KmeansTest1::RunCheckOutput(av1_calc_indices_dim1_func test_impl,
BLOCK_SIZE bsize, int k) {
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
const int n = w * h;
int64_t total_dist_dim1, total_dist_impl;
av1_calc_indices_dim1_c(data_, centroids_, indices1_, &total_dist_dim1, n, k);
test_impl(data_, centroids_, indices2_, &total_dist_impl, n, k);
ASSERT_EQ(total_dist_dim1, total_dist_impl);
ASSERT_EQ(CheckResult(n), true)
<< " block " << bsize << " index " << n << " Centroids " << k;
}
void AV1KmeansTest1::RunSpeedTest(av1_calc_indices_dim1_func test_impl,
BLOCK_SIZE bsize, int k) {
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
const int n = w * h;
const int num_loops = 1000000000 / n;
av1_calc_indices_dim1_func funcs[2] = { av1_calc_indices_dim1_c, test_impl };
double elapsed_time[2] = { 0 };
for (int i = 0; i < 2; ++i) {
aom_usec_timer timer;
aom_usec_timer_start(&timer);
av1_calc_indices_dim1_func func = funcs[i];
for (int j = 0; j < num_loops; ++j) {
func(data_, centroids_, indices1_, /*total_dist=*/nullptr, n, k);
}
aom_usec_timer_mark(&timer);
double time = static_cast<double>(aom_usec_timer_elapsed(&timer));
elapsed_time[i] = 1000.0 * time / num_loops;
}
printf("av1_calc_indices_dim1 indices= %d centroids=%d: %7.2f/%7.2fns", n, k,
elapsed_time[0], elapsed_time[1]);
printf("(%3.2f)\n", elapsed_time[0] / elapsed_time[1]);
}
TEST_P(AV1KmeansTest1, CheckOutput) {
// centroids = 2..8
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 2);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 3);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 4);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 5);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 6);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 7);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 8);
}
TEST_P(AV1KmeansTest1, DISABLED_Speed) {
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 2);
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 3);
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 4);
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 5);
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 6);
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 7);
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 8);
}
class AV1KmeansTest2
: public ::testing::TestWithParam<av1_calc_indices_dim2Param> {
public:
~AV1KmeansTest2() override;
void SetUp() override;
protected:
void RunCheckOutput(av1_calc_indices_dim2_func test_impl, BLOCK_SIZE bsize,
int centroids);
void RunSpeedTest(av1_calc_indices_dim2_func test_impl, BLOCK_SIZE bsize,
int centroids);
bool CheckResult(int n) {
bool flag = true;
for (int idx = 0; idx < n; ++idx) {
if (indices1_[idx] != indices2_[idx]) {
printf("%d ", idx);
printf("%d != %d ", indices1_[idx], indices2_[idx]);
flag = false;
}
}
if (flag == false) {
return false;
}
return true;
}
libaom_test::ACMRandom rnd_;
int16_t data_[4096 * 2];
int16_t centroids_[8 * 2];
uint8_t indices1_[4096];
uint8_t indices2_[4096];
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1KmeansTest2);
AV1KmeansTest2::~AV1KmeansTest2() = default;
void AV1KmeansTest2::SetUp() {
rnd_.Reset(libaom_test::ACMRandom::DeterministicSeed());
for (int i = 0; i < 4096 * 2; ++i) {
data_[i] = (int)rnd_.Rand8();
}
for (int i = 0; i < 8 * 2; i++) {
centroids_[i] = (int)rnd_.Rand8();
}
}
void AV1KmeansTest2::RunCheckOutput(av1_calc_indices_dim2_func test_impl,
BLOCK_SIZE bsize, int k) {
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
const int n = w * h;
int64_t total_dist_dim2, total_dist_impl;
av1_calc_indices_dim2_c(data_, centroids_, indices1_, &total_dist_dim2, n, k);
test_impl(data_, centroids_, indices2_, &total_dist_impl, n, k);
ASSERT_EQ(total_dist_dim2, total_dist_impl);
ASSERT_EQ(CheckResult(n), true)
<< " block " << bsize << " index " << n << " Centroids " << k;
}
void AV1KmeansTest2::RunSpeedTest(av1_calc_indices_dim2_func test_impl,
BLOCK_SIZE bsize, int k) {
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
const int n = w * h;
const int num_loops = 1000000000 / n;
av1_calc_indices_dim2_func funcs[2] = { av1_calc_indices_dim2_c, test_impl };
double elapsed_time[2] = { 0 };
for (int i = 0; i < 2; ++i) {
aom_usec_timer timer;
aom_usec_timer_start(&timer);
av1_calc_indices_dim2_func func = funcs[i];
for (int j = 0; j < num_loops; ++j) {
func(data_, centroids_, indices1_, /*total_dist=*/nullptr, n, k);
}
aom_usec_timer_mark(&timer);
double time = static_cast<double>(aom_usec_timer_elapsed(&timer));
elapsed_time[i] = 1000.0 * time / num_loops;
}
printf("av1_calc_indices_dim2 indices= %d centroids=%d: %7.2f/%7.2fns", n, k,
elapsed_time[0], elapsed_time[1]);
printf("(%3.2f)\n", elapsed_time[0] / elapsed_time[1]);
}
TEST_P(AV1KmeansTest2, CheckOutput) {
// centroids = 2..8
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 2);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 3);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 4);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 5);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 6);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 7);
RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 8);
}
TEST_P(AV1KmeansTest2, DISABLED_Speed) {
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 2);
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 3);
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 4);
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 5);
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 6);
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 7);
RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 8);
}
#if HAVE_SSE2 || HAVE_AVX2 || HAVE_NEON
const BLOCK_SIZE kValidBlockSize[] = { BLOCK_8X8, BLOCK_8X16, BLOCK_8X32,
BLOCK_16X8, BLOCK_16X16, BLOCK_16X32,
BLOCK_32X8, BLOCK_32X16, BLOCK_32X32,
BLOCK_32X64, BLOCK_64X32, BLOCK_64X64,
BLOCK_16X64, BLOCK_64X16 };
#endif
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, AV1KmeansTest1,
::testing::Combine(::testing::Values(&av1_calc_indices_dim1_sse2),
::testing::ValuesIn(kValidBlockSize)));
INSTANTIATE_TEST_SUITE_P(
SSE2, AV1KmeansTest2,
::testing::Combine(::testing::Values(&av1_calc_indices_dim2_sse2),
::testing::ValuesIn(kValidBlockSize)));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, AV1KmeansTest1,
::testing::Combine(::testing::Values(&av1_calc_indices_dim1_avx2),
::testing::ValuesIn(kValidBlockSize)));
INSTANTIATE_TEST_SUITE_P(
AVX2, AV1KmeansTest2,
::testing::Combine(::testing::Values(&av1_calc_indices_dim2_avx2),
::testing::ValuesIn(kValidBlockSize)));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, AV1KmeansTest1,
::testing::Combine(::testing::Values(&av1_calc_indices_dim1_neon),
::testing::ValuesIn(kValidBlockSize)));
INSTANTIATE_TEST_SUITE_P(
NEON, AV1KmeansTest2,
::testing::Combine(::testing::Values(&av1_calc_indices_dim2_neon),
::testing::ValuesIn(kValidBlockSize)));
#endif
} // namespace AV1Kmeans