| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include "vpx_config.h" |
| #include "vp9/common/vp9_filter.h" |
| #include "vp9/common/vp9_onyxc_int.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/encoder/vp9_onyx_int.h" |
| #include "vp9/common/vp9_systemdependent.h" |
| #include "vp9/encoder/vp9_quantize.h" |
| #include "vp9/common/vp9_alloccommon.h" |
| #include "vp9/encoder/vp9_mcomp.h" |
| #include "vp9/encoder/vp9_firstpass.h" |
| #include "vp9/encoder/vp9_psnr.h" |
| #include "vpx_scale/vpx_scale.h" |
| #include "vp9/common/vp9_extend.h" |
| #include "vp9/encoder/vp9_ratectrl.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/common/vp9_tile_common.h" |
| #include "vp9/encoder/vp9_segmentation.h" |
| #include "./vp9_rtcd.h" |
| #include "./vpx_scale_rtcd.h" |
| #if CONFIG_POSTPROC |
| #include "vp9/common/vp9_postproc.h" |
| #endif |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_ports/vpx_timer.h" |
| |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/encoder/vp9_mbgraph.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/encoder/vp9_rdopt.h" |
| #include "vp9/encoder/vp9_bitstream.h" |
| #include "vp9/encoder/vp9_picklpf.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #include "vp9/encoder/vp9_temporal_filter.h" |
| |
| #include <math.h> |
| #include <stdio.h> |
| #include <limits.h> |
| |
| extern void print_tree_update_probs(); |
| |
| static void set_default_lf_deltas(VP9_COMP *cpi); |
| |
| #define DEFAULT_INTERP_FILTER SWITCHABLE |
| |
| #define SEARCH_BEST_FILTER 0 /* to search exhaustively for |
| best filter */ |
| #define RESET_FOREACH_FILTER 0 /* whether to reset the encoder state |
| before trying each new filter */ |
| #define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */ |
| |
| #define ALTREF_HIGH_PRECISION_MV 1 /* whether to use high precision mv |
| for altref computation */ |
| #define HIGH_PRECISION_MV_QTHRESH 200 /* Q threshold for use of high precision |
| mv. Choose a very high value for |
| now so that HIGH_PRECISION is always |
| chosen */ |
| |
| #if CONFIG_INTERNAL_STATS |
| #include "math.h" |
| |
| extern double vp9_calc_ssim(YV12_BUFFER_CONFIG *source, |
| YV12_BUFFER_CONFIG *dest, int lumamask, |
| double *weight); |
| |
| |
| extern double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source, |
| YV12_BUFFER_CONFIG *dest, double *ssim_y, |
| double *ssim_u, double *ssim_v); |
| |
| |
| #endif |
| |
| // #define OUTPUT_YUV_REC |
| |
| #ifdef OUTPUT_YUV_SRC |
| FILE *yuv_file; |
| #endif |
| #ifdef OUTPUT_YUV_REC |
| FILE *yuv_rec_file; |
| #endif |
| |
| #if 0 |
| FILE *framepsnr; |
| FILE *kf_list; |
| FILE *keyfile; |
| #endif |
| |
| #if 0 |
| extern int skip_true_count; |
| extern int skip_false_count; |
| #endif |
| |
| |
| #ifdef ENTROPY_STATS |
| extern int intra_mode_stats[VP9_KF_BINTRAMODES] |
| [VP9_KF_BINTRAMODES] |
| [VP9_KF_BINTRAMODES]; |
| #endif |
| |
| #ifdef NMV_STATS |
| extern void init_nmvstats(); |
| extern void print_nmvstats(); |
| #endif |
| |
| #ifdef SPEEDSTATS |
| unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| #endif |
| |
| #if defined(SECTIONBITS_OUTPUT) |
| extern unsigned __int64 Sectionbits[500]; |
| #endif |
| |
| extern void vp9_init_quantizer(VP9_COMP *cpi); |
| |
| static int base_skip_false_prob[QINDEX_RANGE][3]; |
| |
| // Tables relating active max Q to active min Q |
| static int kf_low_motion_minq[QINDEX_RANGE]; |
| static int kf_high_motion_minq[QINDEX_RANGE]; |
| static int gf_low_motion_minq[QINDEX_RANGE]; |
| static int gf_high_motion_minq[QINDEX_RANGE]; |
| static int inter_minq[QINDEX_RANGE]; |
| |
| // Functions to compute the active minq lookup table entries based on a |
| // formulaic approach to facilitate easier adjustment of the Q tables. |
| // The formulae were derived from computing a 3rd order polynomial best |
| // fit to the original data (after plotting real maxq vs minq (not q index)) |
| static int calculate_minq_index(double maxq, |
| double x3, double x2, double x1, double c) { |
| int i; |
| const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c, |
| maxq); |
| |
| // Special case handling to deal with the step from q2.0 |
| // down to lossless mode represented by q 1.0. |
| if (minqtarget <= 2.0) |
| return 0; |
| |
| for (i = 0; i < QINDEX_RANGE; i++) { |
| if (minqtarget <= vp9_convert_qindex_to_q(i)) |
| return i; |
| } |
| |
| return QINDEX_RANGE - 1; |
| } |
| |
| static void init_minq_luts(void) { |
| int i; |
| |
| for (i = 0; i < QINDEX_RANGE; i++) { |
| const double maxq = vp9_convert_qindex_to_q(i); |
| |
| |
| kf_low_motion_minq[i] = calculate_minq_index(maxq, |
| 0.000001, |
| -0.0004, |
| 0.15, |
| 0.0); |
| kf_high_motion_minq[i] = calculate_minq_index(maxq, |
| 0.000002, |
| -0.0012, |
| 0.5, |
| 0.0); |
| |
| gf_low_motion_minq[i] = calculate_minq_index(maxq, |
| 0.0000015, |
| -0.0009, |
| 0.33, |
| 0.0); |
| gf_high_motion_minq[i] = calculate_minq_index(maxq, |
| 0.0000021, |
| -0.00125, |
| 0.45, |
| 0.0); |
| inter_minq[i] = calculate_minq_index(maxq, |
| 0.00000271, |
| -0.00113, |
| 0.697, |
| 0.0); |
| |
| } |
| } |
| |
| static void set_mvcost(MACROBLOCK *mb) { |
| if (mb->e_mbd.allow_high_precision_mv) { |
| mb->mvcost = mb->nmvcost_hp; |
| mb->mvsadcost = mb->nmvsadcost_hp; |
| } else { |
| mb->mvcost = mb->nmvcost; |
| mb->mvsadcost = mb->nmvsadcost; |
| } |
| } |
| static void init_base_skip_probs(void) { |
| int i; |
| |
| for (i = 0; i < QINDEX_RANGE; i++) { |
| const double q = vp9_convert_qindex_to_q(i); |
| |
| // Exponential decay caluclation of baseline skip prob with clamping |
| // Based on crude best fit of old table. |
| const int t = (int)(564.25 * pow(2.71828, (-0.012 * q))); |
| |
| base_skip_false_prob[i][1] = clip_prob(t); |
| base_skip_false_prob[i][2] = clip_prob(t * 3 / 4); |
| base_skip_false_prob[i][0] = clip_prob(t * 5 / 4); |
| } |
| } |
| |
| static void update_base_skip_probs(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| int k; |
| |
| if (cm->frame_type != KEY_FRAME) { |
| vp9_update_skip_probs(cpi); |
| |
| if (cpi->refresh_alt_ref_frame) { |
| for (k = 0; k < MBSKIP_CONTEXTS; ++k) |
| cpi->last_skip_false_probs[2][k] = cm->mbskip_pred_probs[k]; |
| cpi->last_skip_probs_q[2] = cm->base_qindex; |
| } else if (cpi->refresh_golden_frame) { |
| for (k = 0; k < MBSKIP_CONTEXTS; ++k) |
| cpi->last_skip_false_probs[1][k] = cm->mbskip_pred_probs[k]; |
| cpi->last_skip_probs_q[1] = cm->base_qindex; |
| } else { |
| for (k = 0; k < MBSKIP_CONTEXTS; ++k) |
| cpi->last_skip_false_probs[0][k] = cm->mbskip_pred_probs[k]; |
| cpi->last_skip_probs_q[0] = cm->base_qindex; |
| |
| // update the baseline table for the current q |
| for (k = 0; k < MBSKIP_CONTEXTS; ++k) |
| cpi->base_skip_false_prob[cm->base_qindex][k] = |
| cm->mbskip_pred_probs[k]; |
| } |
| } |
| } |
| |
| void vp9_initialize_enc() { |
| static int init_done = 0; |
| |
| if (!init_done) { |
| vp9_initialize_common(); |
| vp9_tokenize_initialize(); |
| vp9_init_quant_tables(); |
| vp9_init_me_luts(); |
| init_minq_luts(); |
| init_base_skip_probs(); |
| init_done = 1; |
| } |
| } |
| |
| static void setup_features(VP9_COMP *cpi) { |
| MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| |
| // Set up default state for MB feature flags |
| xd->segmentation_enabled = 0; |
| |
| xd->update_mb_segmentation_map = 0; |
| xd->update_mb_segmentation_data = 0; |
| #if CONFIG_IMPLICIT_SEGMENTATION |
| xd->allow_implicit_segment_update = 0; |
| #endif |
| vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); |
| |
| vp9_clearall_segfeatures(xd); |
| |
| xd->mode_ref_lf_delta_enabled = 0; |
| xd->mode_ref_lf_delta_update = 0; |
| vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); |
| vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas)); |
| vpx_memset(xd->last_ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); |
| vpx_memset(xd->last_mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas)); |
| |
| set_default_lf_deltas(cpi); |
| } |
| |
| static void dealloc_compressor_data(VP9_COMP *cpi) { |
| // Delete sementation map |
| vpx_free(cpi->segmentation_map); |
| cpi->segmentation_map = 0; |
| vpx_free(cpi->common.last_frame_seg_map); |
| cpi->common.last_frame_seg_map = 0; |
| vpx_free(cpi->coding_context.last_frame_seg_map_copy); |
| cpi->coding_context.last_frame_seg_map_copy = 0; |
| |
| vpx_free(cpi->active_map); |
| cpi->active_map = 0; |
| |
| vp9_free_frame_buffers(&cpi->common); |
| |
| vp9_free_frame_buffer(&cpi->last_frame_uf); |
| vp9_free_frame_buffer(&cpi->scaled_source); |
| vp9_free_frame_buffer(&cpi->alt_ref_buffer); |
| vp9_lookahead_destroy(cpi->lookahead); |
| |
| vpx_free(cpi->tok); |
| cpi->tok = 0; |
| |
| // Activity mask based per mb zbin adjustments |
| vpx_free(cpi->mb_activity_map); |
| cpi->mb_activity_map = 0; |
| vpx_free(cpi->mb_norm_activity_map); |
| cpi->mb_norm_activity_map = 0; |
| |
| vpx_free(cpi->mb.pip); |
| cpi->mb.pip = 0; |
| } |
| |
| // Computes a q delta (in "q index" terms) to get from a starting q value |
| // to a target value |
| // target q value |
| static int compute_qdelta(VP9_COMP *cpi, double qstart, double qtarget) { |
| int i; |
| int start_index = cpi->worst_quality; |
| int target_index = cpi->worst_quality; |
| |
| // Convert the average q value to an index. |
| for (i = cpi->best_quality; i < cpi->worst_quality; i++) { |
| start_index = i; |
| if (vp9_convert_qindex_to_q(i) >= qstart) |
| break; |
| } |
| |
| // Convert the q target to an index |
| for (i = cpi->best_quality; i < cpi->worst_quality; i++) { |
| target_index = i; |
| if (vp9_convert_qindex_to_q(i) >= qtarget) |
| break; |
| } |
| |
| return target_index - start_index; |
| } |
| |
| static void configure_static_seg_features(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| |
| int high_q = (int)(cpi->avg_q > 48.0); |
| int qi_delta; |
| |
| // Disable and clear down for KF |
| if (cm->frame_type == KEY_FRAME) { |
| // Clear down the global segmentation map |
| vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); |
| xd->update_mb_segmentation_map = 0; |
| xd->update_mb_segmentation_data = 0; |
| #if CONFIG_IMPLICIT_SEGMENTATION |
| xd->allow_implicit_segment_update = 0; |
| #endif |
| cpi->static_mb_pct = 0; |
| |
| // Disable segmentation |
| vp9_disable_segmentation((VP9_PTR)cpi); |
| |
| // Clear down the segment features. |
| vp9_clearall_segfeatures(xd); |
| } else if (cpi->refresh_alt_ref_frame) { |
| // If this is an alt ref frame |
| // Clear down the global segmentation map |
| vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); |
| xd->update_mb_segmentation_map = 0; |
| xd->update_mb_segmentation_data = 0; |
| #if CONFIG_IMPLICIT_SEGMENTATION |
| xd->allow_implicit_segment_update = 0; |
| #endif |
| cpi->static_mb_pct = 0; |
| |
| // Disable segmentation and individual segment features by default |
| vp9_disable_segmentation((VP9_PTR)cpi); |
| vp9_clearall_segfeatures(xd); |
| |
| // Scan frames from current to arf frame. |
| // This function re-enables segmentation if appropriate. |
| vp9_update_mbgraph_stats(cpi); |
| |
| // If segmentation was enabled set those features needed for the |
| // arf itself. |
| if (xd->segmentation_enabled) { |
| xd->update_mb_segmentation_map = 1; |
| xd->update_mb_segmentation_data = 1; |
| |
| qi_delta = compute_qdelta(cpi, cpi->avg_q, (cpi->avg_q * 0.875)); |
| vp9_set_segdata(xd, 1, SEG_LVL_ALT_Q, (qi_delta - 2)); |
| vp9_set_segdata(xd, 1, SEG_LVL_ALT_LF, -2); |
| |
| vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_Q); |
| vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_LF); |
| |
| // Where relevant assume segment data is delta data |
| xd->mb_segment_abs_delta = SEGMENT_DELTADATA; |
| |
| } |
| } else if (xd->segmentation_enabled) { |
| // All other frames if segmentation has been enabled |
| |
| // First normal frame in a valid gf or alt ref group |
| if (cpi->common.frames_since_golden == 0) { |
| // Set up segment features for normal frames in an arf group |
| if (cpi->source_alt_ref_active) { |
| xd->update_mb_segmentation_map = 0; |
| xd->update_mb_segmentation_data = 1; |
| xd->mb_segment_abs_delta = SEGMENT_DELTADATA; |
| |
| qi_delta = compute_qdelta(cpi, cpi->avg_q, |
| (cpi->avg_q * 1.125)); |
| vp9_set_segdata(xd, 1, SEG_LVL_ALT_Q, (qi_delta + 2)); |
| vp9_set_segdata(xd, 1, SEG_LVL_ALT_Q, 0); |
| vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_Q); |
| |
| vp9_set_segdata(xd, 1, SEG_LVL_ALT_LF, -2); |
| vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_LF); |
| |
| // Segment coding disabled for compred testing |
| if (high_q || (cpi->static_mb_pct == 100)) { |
| vp9_set_segref(xd, 1, ALTREF_FRAME); |
| vp9_enable_segfeature(xd, 1, SEG_LVL_REF_FRAME); |
| vp9_enable_segfeature(xd, 1, SEG_LVL_SKIP); |
| } |
| } else { |
| // Disable segmentation and clear down features if alt ref |
| // is not active for this group |
| |
| vp9_disable_segmentation((VP9_PTR)cpi); |
| |
| vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); |
| |
| xd->update_mb_segmentation_map = 0; |
| xd->update_mb_segmentation_data = 0; |
| |
| vp9_clearall_segfeatures(xd); |
| } |
| } else if (cpi->is_src_frame_alt_ref) { |
| // Special case where we are coding over the top of a previous |
| // alt ref frame. |
| // Segment coding disabled for compred testing |
| |
| // Enable ref frame features for segment 0 as well |
| vp9_enable_segfeature(xd, 0, SEG_LVL_REF_FRAME); |
| vp9_enable_segfeature(xd, 1, SEG_LVL_REF_FRAME); |
| |
| // All mbs should use ALTREF_FRAME |
| vp9_clear_segref(xd, 0); |
| vp9_set_segref(xd, 0, ALTREF_FRAME); |
| vp9_clear_segref(xd, 1); |
| vp9_set_segref(xd, 1, ALTREF_FRAME); |
| |
| // Skip all MBs if high Q (0,0 mv and skip coeffs) |
| if (high_q) { |
| vp9_enable_segfeature(xd, 0, SEG_LVL_SKIP); |
| vp9_enable_segfeature(xd, 1, SEG_LVL_SKIP); |
| } |
| // Enable data udpate |
| xd->update_mb_segmentation_data = 1; |
| } else { |
| // All other frames. |
| |
| // No updates.. leave things as they are. |
| xd->update_mb_segmentation_map = 0; |
| xd->update_mb_segmentation_data = 0; |
| } |
| } |
| } |
| |
| #if CONFIG_IMPLICIT_SEGMENTATION |
| static double implict_seg_q_modifiers[MAX_MB_SEGMENTS] = |
| {1.0, 0.95, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; |
| static void configure_implicit_segmentation(VP9_COMP *cpi, int frame_qindex) { |
| VP9_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| int i; |
| int qi_delta; |
| double q_baseline = vp9_convert_qindex_to_q(frame_qindex); |
| |
| // Set the flags to allow implicit segment update but disallow explicit update |
| xd->segmentation_enabled = 1; |
| xd->allow_implicit_segment_update = 1; |
| xd->update_mb_segmentation_map = 0; |
| |
| // For key frames clear down the segment map to a default state. |
| if (cm->frame_type == KEY_FRAME) { |
| // Clear down the global segmentation map |
| vpx_memset(cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols)); |
| |
| // Clear down the segment features. |
| vp9_clearall_segfeatures(xd); |
| |
| xd->update_mb_segmentation_data = 0; |
| |
| // Update the segment data if it is an arf or non overlay gf. |
| } else if (cpi->refresh_alt_ref_frame || |
| (cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)) { |
| xd->update_mb_segmentation_data = 1; |
| |
| // Enable use of q deltas on segments 1 and up |
| // Segment 0 is treated as a neutral segment with no changes |
| for (i = 1; i < MAX_MB_SEGMENTS; ++i) { |
| qi_delta = compute_qdelta(cpi, q_baseline, |
| implict_seg_q_modifiers[i] * q_baseline); |
| vp9_set_segdata(xd, i, SEG_LVL_ALT_Q, qi_delta); |
| vp9_enable_segfeature(xd, i, SEG_LVL_ALT_Q); |
| } |
| |
| // Where relevant assume segment data is delta data |
| xd->mb_segment_abs_delta = SEGMENT_DELTADATA; |
| } else { |
| xd->update_mb_segmentation_data = 0; |
| } |
| } |
| #endif |
| |
| #ifdef ENTROPY_STATS |
| void vp9_update_mode_context_stats(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| int i, j; |
| unsigned int (*mv_ref_ct)[4][2] = cm->fc.mv_ref_ct; |
| int64_t (*mv_ref_stats)[4][2] = cpi->mv_ref_stats; |
| FILE *f; |
| |
| // Read the past stats counters |
| f = fopen("mode_context.bin", "rb"); |
| if (!f) { |
| vpx_memset(cpi->mv_ref_stats, 0, sizeof(cpi->mv_ref_stats)); |
| } else { |
| fread(cpi->mv_ref_stats, sizeof(cpi->mv_ref_stats), 1, f); |
| fclose(f); |
| } |
| |
| // Add in the values for this frame |
| for (i = 0; i < INTER_MODE_CONTEXTS; i++) { |
| for (j = 0; j < 4; j++) { |
| mv_ref_stats[i][j][0] += (int64_t)mv_ref_ct[i][j][0]; |
| mv_ref_stats[i][j][1] += (int64_t)mv_ref_ct[i][j][1]; |
| } |
| } |
| |
| // Write back the accumulated stats |
| f = fopen("mode_context.bin", "wb"); |
| fwrite(cpi->mv_ref_stats, sizeof(cpi->mv_ref_stats), 1, f); |
| fclose(f); |
| } |
| |
| void print_mode_context(VP9_COMP *cpi) { |
| FILE *f = fopen("vp9_modecont.c", "a"); |
| int i, j; |
| |
| fprintf(f, "#include \"vp9_entropy.h\"\n"); |
| fprintf(f, "const int vp9_mode_contexts[INTER_MODE_CONTEXTS][4] ="); |
| fprintf(f, "{\n"); |
| for (j = 0; j < INTER_MODE_CONTEXTS; j++) { |
| fprintf(f, " {/* %d */ ", j); |
| fprintf(f, " "); |
| for (i = 0; i < 4; i++) { |
| int this_prob; |
| int64_t count = cpi->mv_ref_stats[j][i][0] + cpi->mv_ref_stats[j][i][1]; |
| if (count) |
| this_prob = ((cpi->mv_ref_stats[j][i][0] * 256) + (count >> 1)) / count; |
| else |
| this_prob = 128; |
| |
| // context probs |
| fprintf(f, "%5d, ", this_prob); |
| } |
| fprintf(f, " },\n"); |
| } |
| |
| fprintf(f, "};\n"); |
| fclose(f); |
| } |
| #endif // ENTROPY_STATS |
| |
| // DEBUG: Print out the segment id of each MB in the current frame. |
| static void print_seg_map(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| int row, col; |
| int map_index = 0; |
| FILE *statsfile = fopen("segmap.stt", "a"); |
| |
| fprintf(statsfile, "%10d\n", cm->current_video_frame); |
| |
| for (row = 0; row < cpi->common.mi_rows; row++) { |
| for (col = 0; col < cpi->common.mi_cols; col++) { |
| fprintf(statsfile, "%10d", cpi->segmentation_map[map_index]); |
| map_index++; |
| } |
| fprintf(statsfile, "\n"); |
| } |
| fprintf(statsfile, "\n"); |
| |
| fclose(statsfile); |
| } |
| |
| static void update_reference_segmentation_map(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| int row, col; |
| MODE_INFO *mi, *mi_ptr = cm->mi; |
| uint8_t *cache_ptr = cm->last_frame_seg_map, *cache; |
| |
| for (row = 0; row < cm->mi_rows; row++) { |
| mi = mi_ptr; |
| cache = cache_ptr; |
| for (col = 0; col < cm->mi_cols; col++, mi++, cache++) |
| cache[0] = mi->mbmi.segment_id; |
| mi_ptr += cm->mode_info_stride; |
| cache_ptr += cm->mi_cols; |
| } |
| } |
| |
| static void set_default_lf_deltas(VP9_COMP *cpi) { |
| cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1; |
| cpi->mb.e_mbd.mode_ref_lf_delta_update = 1; |
| |
| vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); |
| vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); |
| |
| // Test of ref frame deltas |
| cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2; |
| cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0; |
| cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2; |
| cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2; |
| |
| cpi->mb.e_mbd.mode_lf_deltas[0] = 4; // I4X4_PRED |
| cpi->mb.e_mbd.mode_lf_deltas[1] = -2; // Zero |
| cpi->mb.e_mbd.mode_lf_deltas[2] = 2; // New mv |
| cpi->mb.e_mbd.mode_lf_deltas[3] = 4; // Split mv |
| } |
| |
| static void set_rd_speed_thresholds(VP9_COMP *cpi, int mode, int speed) { |
| SPEED_FEATURES *sf = &cpi->sf; |
| int speed_multiplier = speed + 1; |
| int i; |
| |
| // Set baseline threshold values |
| for (i = 0; i < MAX_MODES; ++i) |
| sf->thresh_mult[i] = mode == 0 ? -500 : 0; |
| |
| sf->thresh_mult[THR_ZEROMV ] = 0; |
| sf->thresh_mult[THR_ZEROG ] = 0; |
| sf->thresh_mult[THR_ZEROA ] = 0; |
| |
| sf->thresh_mult[THR_NEARESTMV] = 0; |
| sf->thresh_mult[THR_NEARESTG ] = 0; |
| sf->thresh_mult[THR_NEARESTA ] = 0; |
| |
| sf->thresh_mult[THR_NEARMV ] += speed_multiplier * 1000; |
| sf->thresh_mult[THR_NEARG ] += speed_multiplier * 1000; |
| sf->thresh_mult[THR_NEARA ] += speed_multiplier * 1000; |
| |
| sf->thresh_mult[THR_DC ] = 0; |
| sf->thresh_mult[THR_TM ] += speed_multiplier * 1000; |
| sf->thresh_mult[THR_V_PRED ] += speed_multiplier * 1000; |
| sf->thresh_mult[THR_H_PRED ] += speed_multiplier * 1000; |
| sf->thresh_mult[THR_D45_PRED ] += speed_multiplier * 1500; |
| sf->thresh_mult[THR_D135_PRED] += speed_multiplier * 1500; |
| sf->thresh_mult[THR_D117_PRED] += speed_multiplier * 1500; |
| sf->thresh_mult[THR_D153_PRED] += speed_multiplier * 1500; |
| sf->thresh_mult[THR_D27_PRED ] += speed_multiplier * 1500; |
| sf->thresh_mult[THR_D63_PRED ] += speed_multiplier * 1500; |
| |
| sf->thresh_mult[THR_B_PRED ] += speed_multiplier * 2500; |
| |
| sf->thresh_mult[THR_NEWMV ] += speed_multiplier * 1000; |
| sf->thresh_mult[THR_NEWG ] += speed_multiplier * 1000; |
| sf->thresh_mult[THR_NEWA ] += speed_multiplier * 1000; |
| |
| sf->thresh_mult[THR_SPLITMV ] += speed_multiplier * 2500; |
| sf->thresh_mult[THR_SPLITG ] += speed_multiplier * 2500; |
| sf->thresh_mult[THR_SPLITA ] += speed_multiplier * 2500; |
| |
| sf->thresh_mult[THR_COMP_ZEROLG ] += speed_multiplier * 1500; |
| sf->thresh_mult[THR_COMP_ZEROLA ] += speed_multiplier * 1500; |
| sf->thresh_mult[THR_COMP_ZEROGA ] += speed_multiplier * 1500; |
| |
| sf->thresh_mult[THR_COMP_NEARESTLG] += speed_multiplier * 1500; |
| sf->thresh_mult[THR_COMP_NEARESTLA] += speed_multiplier * 1500; |
| sf->thresh_mult[THR_COMP_NEARESTGA] += speed_multiplier * 1500; |
| |
| sf->thresh_mult[THR_COMP_NEARLG ] += speed_multiplier * 1500; |
| sf->thresh_mult[THR_COMP_NEARLA ] += speed_multiplier * 1500; |
| sf->thresh_mult[THR_COMP_NEARGA ] += speed_multiplier * 1500; |
| |
| sf->thresh_mult[THR_COMP_NEWLG ] += speed_multiplier * 2000; |
| sf->thresh_mult[THR_COMP_NEWLA ] += speed_multiplier * 2000; |
| sf->thresh_mult[THR_COMP_NEWGA ] += speed_multiplier * 2000; |
| |
| sf->thresh_mult[THR_COMP_SPLITLA ] += speed_multiplier * 4500; |
| sf->thresh_mult[THR_COMP_SPLITGA ] += speed_multiplier * 4500; |
| sf->thresh_mult[THR_COMP_SPLITLG ] += speed_multiplier * 4500; |
| |
| /* disable frame modes if flags not set */ |
| if (!(cpi->ref_frame_flags & VP9_LAST_FLAG)) { |
| sf->thresh_mult[THR_NEWMV ] = INT_MAX; |
| sf->thresh_mult[THR_NEARESTMV] = INT_MAX; |
| sf->thresh_mult[THR_ZEROMV ] = INT_MAX; |
| sf->thresh_mult[THR_NEARMV ] = INT_MAX; |
| sf->thresh_mult[THR_SPLITMV ] = INT_MAX; |
| } |
| if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG)) { |
| sf->thresh_mult[THR_NEARESTG ] = INT_MAX; |
| sf->thresh_mult[THR_ZEROG ] = INT_MAX; |
| sf->thresh_mult[THR_NEARG ] = INT_MAX; |
| sf->thresh_mult[THR_NEWG ] = INT_MAX; |
| sf->thresh_mult[THR_SPLITG ] = INT_MAX; |
| } |
| if (!(cpi->ref_frame_flags & VP9_ALT_FLAG)) { |
| sf->thresh_mult[THR_NEARESTA ] = INT_MAX; |
| sf->thresh_mult[THR_ZEROA ] = INT_MAX; |
| sf->thresh_mult[THR_NEARA ] = INT_MAX; |
| sf->thresh_mult[THR_NEWA ] = INT_MAX; |
| sf->thresh_mult[THR_SPLITA ] = INT_MAX; |
| } |
| |
| if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_GOLD_FLAG)) != |
| (VP9_LAST_FLAG | VP9_GOLD_FLAG)) { |
| sf->thresh_mult[THR_COMP_ZEROLG ] = INT_MAX; |
| sf->thresh_mult[THR_COMP_NEARESTLG] = INT_MAX; |
| sf->thresh_mult[THR_COMP_NEARLG ] = INT_MAX; |
| sf->thresh_mult[THR_COMP_NEWLG ] = INT_MAX; |
| sf->thresh_mult[THR_COMP_SPLITLG ] = INT_MAX; |
| } |
| if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) != |
| (VP9_LAST_FLAG | VP9_ALT_FLAG)) { |
| sf->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX; |
| sf->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX; |
| sf->thresh_mult[THR_COMP_NEARLA ] = INT_MAX; |
| sf->thresh_mult[THR_COMP_NEWLA ] = INT_MAX; |
| sf->thresh_mult[THR_COMP_SPLITLA ] = INT_MAX; |
| } |
| if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) != |
| (VP9_GOLD_FLAG | VP9_ALT_FLAG)) { |
| sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX; |
| sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX; |
| sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX; |
| sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX; |
| sf->thresh_mult[THR_COMP_SPLITGA ] = INT_MAX; |
| } |
| } |
| |
| void vp9_set_speed_features(VP9_COMP *cpi) { |
| SPEED_FEATURES *sf = &cpi->sf; |
| int mode = cpi->compressor_speed; |
| int speed = cpi->speed; |
| int i; |
| |
| // Only modes 0 and 1 supported for now in experimental code basae |
| if (mode > 1) |
| mode = 1; |
| |
| // Initialise default mode frequency sampling variables |
| for (i = 0; i < MAX_MODES; i ++) { |
| cpi->mode_check_freq[i] = 0; |
| cpi->mode_test_hit_counts[i] = 0; |
| cpi->mode_chosen_counts[i] = 0; |
| } |
| |
| // best quality defaults |
| sf->RD = 1; |
| sf->search_method = NSTEP; |
| sf->auto_filter = 1; |
| sf->recode_loop = 1; |
| sf->quarter_pixel_search = 1; |
| sf->half_pixel_search = 1; |
| sf->iterative_sub_pixel = 1; |
| sf->no_skip_block4x4_search = 1; |
| sf->optimize_coefficients = !cpi->oxcf.lossless; |
| sf->first_step = 0; |
| sf->max_step_search_steps = MAX_MVSEARCH_STEPS; |
| sf->comp_inter_joint_serach = 1; |
| #if CONFIG_MULTIPLE_ARF |
| // Switch segmentation off. |
| sf->static_segmentation = 0; |
| #else |
| #if CONFIG_IMPLICIT_SEGMENTATION |
| sf->static_segmentation = 0; |
| #else |
| sf->static_segmentation = 0; |
| #endif |
| #endif |
| sf->mb16_breakout = 0; |
| |
| switch (mode) { |
| case 0: // best quality mode |
| sf->search_best_filter = SEARCH_BEST_FILTER; |
| break; |
| |
| case 1: |
| #if CONFIG_MULTIPLE_ARF |
| // Switch segmentation off. |
| sf->static_segmentation = 0; |
| #else |
| #if CONFIG_IMPLICIT_SEGMENTATION |
| sf->static_segmentation = 0; |
| #else |
| sf->static_segmentation = 0; |
| #endif |
| #endif |
| sf->mb16_breakout = 0; |
| |
| if (speed > 0) { |
| /* Disable coefficient optimization above speed 0 */ |
| sf->optimize_coefficients = 0; |
| sf->no_skip_block4x4_search = 0; |
| sf->comp_inter_joint_serach = 0; |
| |
| sf->first_step = 1; |
| |
| cpi->mode_check_freq[THR_SPLITG] = 2; |
| cpi->mode_check_freq[THR_SPLITA] = 2; |
| cpi->mode_check_freq[THR_SPLITMV] = 0; |
| |
| cpi->mode_check_freq[THR_COMP_SPLITGA] = 2; |
| cpi->mode_check_freq[THR_COMP_SPLITLG] = 2; |
| cpi->mode_check_freq[THR_COMP_SPLITLA] = 0; |
| } |
| |
| if (speed > 1) { |
| cpi->mode_check_freq[THR_SPLITG] = 4; |
| cpi->mode_check_freq[THR_SPLITA] = 4; |
| cpi->mode_check_freq[THR_SPLITMV] = 2; |
| |
| cpi->mode_check_freq[THR_COMP_SPLITGA] = 4; |
| cpi->mode_check_freq[THR_COMP_SPLITLG] = 4; |
| cpi->mode_check_freq[THR_COMP_SPLITLA] = 2; |
| } |
| |
| if (speed > 2) { |
| cpi->mode_check_freq[THR_SPLITG] = 15; |
| cpi->mode_check_freq[THR_SPLITA] = 15; |
| cpi->mode_check_freq[THR_SPLITMV] = 7; |
| |
| cpi->mode_check_freq[THR_COMP_SPLITGA] = 15; |
| cpi->mode_check_freq[THR_COMP_SPLITLG] = 15; |
| cpi->mode_check_freq[THR_COMP_SPLITLA] = 7; |
| |
| // Only do recode loop on key frames, golden frames and |
| // alt ref frames |
| sf->recode_loop = 2; |
| } |
| |
| break; |
| |
| }; /* switch */ |
| |
| // Set rd thresholds based on mode and speed setting |
| set_rd_speed_thresholds(cpi, mode, speed); |
| |
| // Slow quant, dct and trellis not worthwhile for first pass |
| // so make sure they are always turned off. |
| if (cpi->pass == 1) { |
| sf->optimize_coefficients = 0; |
| } |
| |
| cpi->mb.fwd_txm16x16 = vp9_short_fdct16x16; |
| cpi->mb.fwd_txm8x8 = vp9_short_fdct8x8; |
| cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4; |
| cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4; |
| if (cpi->oxcf.lossless || cpi->mb.e_mbd.lossless) { |
| cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4; |
| cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4; |
| } |
| |
| cpi->mb.quantize_b_4x4 = vp9_regular_quantize_b_4x4; |
| |
| vp9_init_quantizer(cpi); |
| |
| if (cpi->sf.iterative_sub_pixel == 1) { |
| cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_step_iteratively; |
| } else if (cpi->sf.quarter_pixel_search) { |
| cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_step; |
| } else if (cpi->sf.half_pixel_search) { |
| cpi->find_fractional_mv_step = vp9_find_best_half_pixel_step; |
| } |
| |
| cpi->mb.optimize = cpi->sf.optimize_coefficients == 1 && cpi->pass != 1; |
| |
| #ifdef SPEEDSTATS |
| frames_at_speed[cpi->speed]++; |
| #endif |
| } |
| |
| static void alloc_raw_frame_buffers(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| |
| cpi->lookahead = vp9_lookahead_init(cpi->oxcf.width, cpi->oxcf.height, |
| cm->subsampling_x, cm->subsampling_y, |
| cpi->oxcf.lag_in_frames); |
| if (!cpi->lookahead) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate lag buffers"); |
| |
| if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer, |
| cpi->oxcf.width, cpi->oxcf.height, |
| cm->subsampling_x, cm->subsampling_y, |
| VP9BORDERINPIXELS)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate altref buffer"); |
| } |
| |
| static int alloc_partition_data(VP9_COMP *cpi) { |
| vpx_free(cpi->mb.pip); |
| |
| cpi->mb.pip = vpx_calloc((cpi->common.mode_info_stride) * |
| (cpi->common.mi_rows + 1), |
| sizeof(PARTITION_INFO)); |
| if (!cpi->mb.pip) |
| return 1; |
| |
| cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1; |
| |
| return 0; |
| } |
| |
| void vp9_alloc_compressor_data(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| |
| if (vp9_alloc_frame_buffers(cm, cm->width, cm->height)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffers"); |
| |
| if (alloc_partition_data(cpi)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate partition data"); |
| |
| if (vp9_alloc_frame_buffer(&cpi->last_frame_uf, |
| cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| VP9BORDERINPIXELS)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate last frame buffer"); |
| |
| if (vp9_alloc_frame_buffer(&cpi->scaled_source, |
| cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| VP9BORDERINPIXELS)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate scaled source buffer"); |
| |
| vpx_free(cpi->tok); |
| |
| { |
| unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols); |
| |
| CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok))); |
| } |
| |
| // Data used for real time vc mode to see if gf needs refreshing |
| cpi->inter_zz_count = 0; |
| cpi->gf_bad_count = 0; |
| cpi->gf_update_recommended = 0; |
| |
| vpx_free(cpi->mb_activity_map); |
| CHECK_MEM_ERROR(cpi->mb_activity_map, |
| vpx_calloc(sizeof(unsigned int), |
| cm->mb_rows * cm->mb_cols)); |
| |
| vpx_free(cpi->mb_norm_activity_map); |
| CHECK_MEM_ERROR(cpi->mb_norm_activity_map, |
| vpx_calloc(sizeof(unsigned int), |
| cm->mb_rows * cm->mb_cols)); |
| } |
| |
| |
| static void update_frame_size(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| |
| vp9_update_frame_size(cm); |
| |
| // Update size of buffers local to this frame |
| if (vp9_realloc_frame_buffer(&cpi->last_frame_uf, |
| cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| VP9BORDERINPIXELS)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to reallocate last frame buffer"); |
| |
| if (vp9_realloc_frame_buffer(&cpi->scaled_source, |
| cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| VP9BORDERINPIXELS)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to reallocate scaled source buffer"); |
| |
| { |
| int y_stride = cpi->scaled_source.y_stride; |
| |
| if (cpi->sf.search_method == NSTEP) { |
| vp9_init3smotion_compensation(&cpi->mb, y_stride); |
| } else if (cpi->sf.search_method == DIAMOND) { |
| vp9_init_dsmotion_compensation(&cpi->mb, y_stride); |
| } |
| } |
| } |
| |
| |
| // TODO perhaps change number of steps expose to outside world when setting |
| // max and min limits. Also this will likely want refining for the extended Q |
| // range. |
| // |
| // Table that converts 0-63 Q range values passed in outside to the Qindex |
| // range used internally. |
| static const int q_trans[] = { |
| 0, 4, 8, 12, 16, 20, 24, 28, |
| 32, 36, 40, 44, 48, 52, 56, 60, |
| 64, 68, 72, 76, 80, 84, 88, 92, |
| 96, 100, 104, 108, 112, 116, 120, 124, |
| 128, 132, 136, 140, 144, 148, 152, 156, |
| 160, 164, 168, 172, 176, 180, 184, 188, |
| 192, 196, 200, 204, 208, 212, 216, 220, |
| 224, 228, 232, 236, 240, 244, 249, 255, |
| }; |
| |
| int vp9_reverse_trans(int x) { |
| int i; |
| |
| for (i = 0; i < 64; i++) |
| if (q_trans[i] >= x) |
| return i; |
| |
| return 63; |
| }; |
| void vp9_new_frame_rate(VP9_COMP *cpi, double framerate) { |
| if (framerate < 0.1) |
| framerate = 30; |
| |
| cpi->oxcf.frame_rate = framerate; |
| cpi->output_frame_rate = cpi->oxcf.frame_rate; |
| cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate); |
| cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate); |
| cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); |
| |
| |
| cpi->min_frame_bandwidth = MAX(cpi->min_frame_bandwidth, FRAME_OVERHEAD_BITS); |
| |
| // Set Maximum gf/arf interval |
| cpi->max_gf_interval = 16; |
| |
| // Extended interval for genuinely static scenes |
| cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1; |
| |
| // Special conditions when alt ref frame enabled in lagged compress mode |
| if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) { |
| if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1) |
| cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1; |
| |
| if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1) |
| cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1; |
| } |
| |
| if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval) |
| cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval; |
| } |
| |
| static int64_t rescale(int val, int64_t num, int denom) { |
| int64_t llnum = num; |
| int64_t llden = denom; |
| int64_t llval = val; |
| |
| return (llval * llnum / llden); |
| } |
| |
| static void set_tile_limits(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| int min_log2_tiles, max_log2_tiles; |
| |
| cm->log2_tile_columns = cpi->oxcf.tile_columns; |
| cm->log2_tile_rows = cpi->oxcf.tile_rows; |
| |
| vp9_get_tile_n_bits(cm, &min_log2_tiles, &max_log2_tiles); |
| max_log2_tiles += min_log2_tiles; |
| |
| cm->log2_tile_columns = clamp(cm->log2_tile_columns, |
| min_log2_tiles, max_log2_tiles); |
| |
| cm->tile_columns = 1 << cm->log2_tile_columns; |
| cm->tile_rows = 1 << cm->log2_tile_rows; |
| } |
| |
| static void init_config(VP9_PTR ptr, VP9_CONFIG *oxcf) { |
| VP9_COMP *cpi = (VP9_COMP *)(ptr); |
| VP9_COMMON *const cm = &cpi->common; |
| int i; |
| |
| cpi->oxcf = *oxcf; |
| cpi->goldfreq = 7; |
| |
| cm->version = oxcf->version; |
| vp9_setup_version(cm); |
| |
| cm->width = oxcf->width; |
| cm->height = oxcf->height; |
| cm->subsampling_x = 0; |
| cm->subsampling_y = 0; |
| vp9_alloc_compressor_data(cpi); |
| |
| // change includes all joint functionality |
| vp9_change_config(ptr, oxcf); |
| |
| // Initialize active best and worst q and average q values. |
| cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; |
| cpi->active_best_quality = cpi->oxcf.best_allowed_q; |
| cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q; |
| |
| // Initialise the starting buffer levels |
| cpi->buffer_level = cpi->oxcf.starting_buffer_level; |
| cpi->bits_off_target = cpi->oxcf.starting_buffer_level; |
| |
| cpi->rolling_target_bits = cpi->av_per_frame_bandwidth; |
| cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth; |
| cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth; |
| cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth; |
| |
| cpi->total_actual_bits = 0; |
| cpi->total_target_vs_actual = 0; |
| |
| cpi->static_mb_pct = 0; |
| |
| cpi->lst_fb_idx = 0; |
| cpi->gld_fb_idx = 1; |
| cpi->alt_fb_idx = 2; |
| |
| set_tile_limits(cpi); |
| |
| cpi->fixed_divide[0] = 0; |
| for (i = 1; i < 512; i++) |
| cpi->fixed_divide[i] = 0x80000 / i; |
| } |
| |
| |
| void vp9_change_config(VP9_PTR ptr, VP9_CONFIG *oxcf) { |
| VP9_COMP *cpi = (VP9_COMP *)(ptr); |
| VP9_COMMON *const cm = &cpi->common; |
| |
| if (!cpi || !oxcf) |
| return; |
| |
| if (cm->version != oxcf->version) { |
| cm->version = oxcf->version; |
| vp9_setup_version(cm); |
| } |
| |
| cpi->oxcf = *oxcf; |
| |
| switch (cpi->oxcf.Mode) { |
| // Real time and one pass deprecated in test code base |
| case MODE_FIRSTPASS: |
| cpi->pass = 1; |
| cpi->compressor_speed = 1; |
| break; |
| |
| case MODE_SECONDPASS: |
| cpi->pass = 2; |
| cpi->compressor_speed = 1; |
| cpi->oxcf.cpu_used = clamp(cpi->oxcf.cpu_used, -5, 5); |
| break; |
| |
| case MODE_SECONDPASS_BEST: |
| cpi->pass = 2; |
| cpi->compressor_speed = 0; |
| break; |
| } |
| |
| cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q]; |
| cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q]; |
| cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level]; |
| |
| cpi->oxcf.lossless = oxcf->lossless; |
| if (cpi->oxcf.lossless) { |
| cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_iwalsh4x4_1_add; |
| cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_iwalsh4x4_add; |
| } else { |
| cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_idct4x4_1_add; |
| cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_idct4x4_add; |
| } |
| |
| cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL; |
| |
| cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG; |
| |
| // cpi->use_golden_frame_only = 0; |
| // cpi->use_last_frame_only = 0; |
| cpi->refresh_golden_frame = 0; |
| cpi->refresh_last_frame = 1; |
| cm->refresh_frame_context = 1; |
| |
| setup_features(cpi); |
| cpi->mb.e_mbd.allow_high_precision_mv = 0; // Default mv precision adaptation |
| set_mvcost(&cpi->mb); |
| |
| { |
| int i; |
| |
| for (i = 0; i < MAX_MB_SEGMENTS; i++) |
| cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; |
| } |
| |
| // At the moment the first order values may not be > MAXQ |
| cpi->oxcf.fixed_q = MIN(cpi->oxcf.fixed_q, MAXQ); |
| |
| // local file playback mode == really big buffer |
| if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) { |
| cpi->oxcf.starting_buffer_level = 60000; |
| cpi->oxcf.optimal_buffer_level = 60000; |
| cpi->oxcf.maximum_buffer_size = 240000; |
| } |
| |
| // Convert target bandwidth from Kbit/s to Bit/s |
| cpi->oxcf.target_bandwidth *= 1000; |
| |
| cpi->oxcf.starting_buffer_level = rescale(cpi->oxcf.starting_buffer_level, |
| cpi->oxcf.target_bandwidth, 1000); |
| |
| // Set or reset optimal and maximum buffer levels. |
| if (cpi->oxcf.optimal_buffer_level == 0) |
| cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8; |
| else |
| cpi->oxcf.optimal_buffer_level = rescale(cpi->oxcf.optimal_buffer_level, |
| cpi->oxcf.target_bandwidth, 1000); |
| |
| if (cpi->oxcf.maximum_buffer_size == 0) |
| cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8; |
| else |
| cpi->oxcf.maximum_buffer_size = rescale(cpi->oxcf.maximum_buffer_size, |
| cpi->oxcf.target_bandwidth, 1000); |
| |
| // Set up frame rate and related parameters rate control values. |
| vp9_new_frame_rate(cpi, cpi->oxcf.frame_rate); |
| |
| // Set absolute upper and lower quality limits |
| cpi->worst_quality = cpi->oxcf.worst_allowed_q; |
| cpi->best_quality = cpi->oxcf.best_allowed_q; |
| |
| // active values should only be modified if out of new range |
| cpi->active_worst_quality = clamp(cpi->active_worst_quality, |
| cpi->oxcf.best_allowed_q, |
| cpi->oxcf.worst_allowed_q); |
| |
| cpi->active_best_quality = clamp(cpi->active_best_quality, |
| cpi->oxcf.best_allowed_q, |
| cpi->oxcf.worst_allowed_q); |
| |
| cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0; |
| |
| cpi->cq_target_quality = cpi->oxcf.cq_level; |
| |
| cm->mcomp_filter_type = cm->use_bilinear_mc_filter ? BILINEAR |
| : DEFAULT_INTERP_FILTER; |
| |
| cpi->target_bandwidth = cpi->oxcf.target_bandwidth; |
| |
| cm->display_width = cpi->oxcf.width; |
| cm->display_height = cpi->oxcf.height; |
| |
| // VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) |
| cpi->oxcf.Sharpness = MIN(7, cpi->oxcf.Sharpness); |
| |
| cm->sharpness_level = cpi->oxcf.Sharpness; |
| |
| if (cpi->initial_width) { |
| // Increasing the size of the frame beyond the first seen frame, or some |
| // otherwise signalled maximum size, is not supported. |
| // TODO(jkoleszar): exit gracefully. |
| assert(cm->width <= cpi->initial_width); |
| assert(cm->height <= cpi->initial_height); |
| } |
| update_frame_size(cpi); |
| |
| if (cpi->oxcf.fixed_q >= 0) { |
| cpi->last_q[0] = cpi->oxcf.fixed_q; |
| cpi->last_q[1] = cpi->oxcf.fixed_q; |
| cpi->last_boosted_qindex = cpi->oxcf.fixed_q; |
| } |
| |
| cpi->speed = cpi->oxcf.cpu_used; |
| |
| if (cpi->oxcf.lag_in_frames == 0) { |
| // force to allowlag to 0 if lag_in_frames is 0; |
| cpi->oxcf.allow_lag = 0; |
| } else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) { |
| // Limit on lag buffers as these are not currently dynamically allocated |
| cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS; |
| } |
| |
| // YX Temp |
| #if CONFIG_MULTIPLE_ARF |
| vp9_zero(cpi->alt_ref_source); |
| #else |
| cpi->alt_ref_source = NULL; |
| #endif |
| cpi->is_src_frame_alt_ref = 0; |
| |
| #if 0 |
| // Experimental RD Code |
| cpi->frame_distortion = 0; |
| cpi->last_frame_distortion = 0; |
| #endif |
| |
| set_tile_limits(cpi); |
| } |
| |
| #define M_LOG2_E 0.693147180559945309417 |
| #define log2f(x) (log (x) / (float) M_LOG2_E) |
| |
| static void cal_nmvjointsadcost(int *mvjointsadcost) { |
| mvjointsadcost[0] = 600; |
| mvjointsadcost[1] = 300; |
| mvjointsadcost[2] = 300; |
| mvjointsadcost[0] = 300; |
| } |
| |
| static void cal_nmvsadcosts(int *mvsadcost[2]) { |
| int i = 1; |
| |
| mvsadcost[0][0] = 0; |
| mvsadcost[1][0] = 0; |
| |
| do { |
| double z = 256 * (2 * (log2f(8 * i) + .6)); |
| mvsadcost[0][i] = (int)z; |
| mvsadcost[1][i] = (int)z; |
| mvsadcost[0][-i] = (int)z; |
| mvsadcost[1][-i] = (int)z; |
| } while (++i <= MV_MAX); |
| } |
| |
| static void cal_nmvsadcosts_hp(int *mvsadcost[2]) { |
| int i = 1; |
| |
| mvsadcost[0][0] = 0; |
| mvsadcost[1][0] = 0; |
| |
| do { |
| double z = 256 * (2 * (log2f(8 * i) + .6)); |
| mvsadcost[0][i] = (int)z; |
| mvsadcost[1][i] = (int)z; |
| mvsadcost[0][-i] = (int)z; |
| mvsadcost[1][-i] = (int)z; |
| } while (++i <= MV_MAX); |
| } |
| |
| VP9_PTR vp9_create_compressor(VP9_CONFIG *oxcf) { |
| int i; |
| volatile union { |
| VP9_COMP *cpi; |
| VP9_PTR ptr; |
| } ctx; |
| |
| VP9_COMP *cpi; |
| VP9_COMMON *cm; |
| |
| cpi = ctx.cpi = vpx_memalign(32, sizeof(VP9_COMP)); |
| // Check that the CPI instance is valid |
| if (!cpi) |
| return 0; |
| |
| cm = &cpi->common; |
| |
| vpx_memset(cpi, 0, sizeof(VP9_COMP)); |
| |
| if (setjmp(cm->error.jmp)) { |
| VP9_PTR ptr = ctx.ptr; |
| |
| ctx.cpi->common.error.setjmp = 0; |
| vp9_remove_compressor(&ptr); |
| return 0; |
| } |
| |
| cpi->common.error.setjmp = 1; |
| |
| CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1)); |
| |
| vp9_create_common(&cpi->common); |
| |
| init_config((VP9_PTR)cpi, oxcf); |
| |
| memcpy(cpi->base_skip_false_prob, base_skip_false_prob, sizeof(base_skip_false_prob)); |
| cpi->common.current_video_frame = 0; |
| cpi->kf_overspend_bits = 0; |
| cpi->kf_bitrate_adjustment = 0; |
| cpi->frames_till_gf_update_due = 0; |
| cpi->gf_overspend_bits = 0; |
| cpi->non_gf_bitrate_adjustment = 0; |
| cm->prob_last_coded = 128; |
| cm->prob_gf_coded = 128; |
| cm->prob_intra_coded = 63; |
| for (i = 0; i < COMP_PRED_CONTEXTS; i++) |
| cm->prob_comppred[i] = 128; |
| for (i = 0; i < TX_SIZE_MAX_SB - 1; i++) |
| cm->prob_tx[i] = 128; |
| |
| // Prime the recent reference frame usage counters. |
| // Hereafter they will be maintained as a sort of moving average |
| cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; |
| cpi->recent_ref_frame_usage[LAST_FRAME] = 1; |
| cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; |
| cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; |
| |
| // Set reference frame sign bias for ALTREF frame to 1 (for now) |
| cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1; |
| |
| cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL; |
| |
| cpi->gold_is_last = 0; |
| cpi->alt_is_last = 0; |
| cpi->gold_is_alt = 0; |
| |
| // Create the encoder segmentation map and set all entries to 0 |
| CHECK_MEM_ERROR(cpi->segmentation_map, |
| vpx_calloc(cpi->common.mi_rows * cpi->common.mi_cols, 1)); |
| |
| // And a copy in common for temporal coding |
| CHECK_MEM_ERROR(cm->last_frame_seg_map, |
| vpx_calloc(cpi->common.mi_rows * cpi->common.mi_cols, 1)); |
| |
| // And a place holder structure is the coding context |
| // for use if we want to save and restore it |
| CHECK_MEM_ERROR(cpi->coding_context.last_frame_seg_map_copy, |
| vpx_calloc(cpi->common.mi_rows * cpi->common.mi_cols, 1)); |
| |
| CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1)); |
| vpx_memset(cpi->active_map, 1, (cpi->common.mb_rows * cpi->common.mb_cols)); |
| cpi->active_map_enabled = 0; |
| |
| for (i = 0; i < (sizeof(cpi->mbgraph_stats) / |
| sizeof(cpi->mbgraph_stats[0])); i++) { |
| CHECK_MEM_ERROR(cpi->mbgraph_stats[i].mb_stats, |
| vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols * |
| sizeof(*cpi->mbgraph_stats[i].mb_stats), |
| 1)); |
| } |
| |
| #ifdef ENTROPY_STATS |
| if (cpi->pass != 1) |
| init_context_counters(); |
| #endif |
| |
| #ifdef NMV_STATS |
| init_nmvstats(); |
| #endif |
| |
| /*Initialize the feed-forward activity masking.*/ |
| cpi->activity_avg = 90 << 12; |
| |
| cpi->frames_since_key = 8; // Give a sensible default for the first frame. |
| cpi->key_frame_frequency = cpi->oxcf.key_freq; |
| cpi->this_key_frame_forced = 0; |
| cpi->next_key_frame_forced = 0; |
| |
| cpi->source_alt_ref_pending = 0; |
| cpi->source_alt_ref_active = 0; |
| cpi->refresh_alt_ref_frame = 0; |
| |
| #if CONFIG_MULTIPLE_ARF |
| // Turn multiple ARF usage on/off. This is a quick hack for the initial test |
| // version. It should eventually be set via the codec API. |
| cpi->multi_arf_enabled = 1; |
| |
| if (cpi->multi_arf_enabled) { |
| cpi->sequence_number = 0; |
| cpi->frame_coding_order_period = 0; |
| vp9_zero(cpi->frame_coding_order); |
| vp9_zero(cpi->arf_buffer_idx); |
| } |
| #endif |
| |
| cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS; |
| #if CONFIG_INTERNAL_STATS |
| cpi->b_calculate_ssimg = 0; |
| |
| cpi->count = 0; |
| cpi->bytes = 0; |
| |
| if (cpi->b_calculate_psnr) { |
| cpi->total_sq_error = 0.0; |
| cpi->total_sq_error2 = 0.0; |
| cpi->total_y = 0.0; |
| cpi->total_u = 0.0; |
| cpi->total_v = 0.0; |
| cpi->total = 0.0; |
| cpi->totalp_y = 0.0; |
| cpi->totalp_u = 0.0; |
| cpi->totalp_v = 0.0; |
| cpi->totalp = 0.0; |
| cpi->tot_recode_hits = 0; |
| cpi->summed_quality = 0; |
| cpi->summed_weights = 0; |
| cpi->summedp_quality = 0; |
| cpi->summedp_weights = 0; |
| } |
| |
| if (cpi->b_calculate_ssimg) { |
| cpi->total_ssimg_y = 0; |
| cpi->total_ssimg_u = 0; |
| cpi->total_ssimg_v = 0; |
| cpi->total_ssimg_all = 0; |
| } |
| |
| #endif |
| |
| cpi->first_time_stamp_ever = INT64_MAX; |
| |
| cpi->frames_till_gf_update_due = 0; |
| cpi->key_frame_count = 1; |
| |
| cpi->ni_av_qi = cpi->oxcf.worst_allowed_q; |
| cpi->ni_tot_qi = 0; |
| cpi->ni_frames = 0; |
| cpi->tot_q = 0.0; |
| cpi->avg_q = vp9_convert_qindex_to_q(cpi->oxcf.worst_allowed_q); |
| cpi->total_byte_count = 0; |
| |
| cpi->rate_correction_factor = 1.0; |
| cpi->key_frame_rate_correction_factor = 1.0; |
| cpi->gf_rate_correction_factor = 1.0; |
| cpi->twopass.est_max_qcorrection_factor = 1.0; |
| |
| cal_nmvjointsadcost(cpi->mb.nmvjointsadcost); |
| cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX]; |
| cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX]; |
| cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX]; |
| cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX]; |
| cal_nmvsadcosts(cpi->mb.nmvsadcost); |
| |
| cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX]; |
| cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX]; |
| cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX]; |
| cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX]; |
| cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp); |
| |
| for (i = 0; i < KEY_FRAME_CONTEXT; i++) |
| cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate; |
| |
| #ifdef OUTPUT_YUV_SRC |
| yuv_file = fopen("bd.yuv", "ab"); |
| #endif |
| #ifdef OUTPUT_YUV_REC |
| yuv_rec_file = fopen("rec.yuv", "wb"); |
| #endif |
| |
| #if 0 |
| framepsnr = fopen("framepsnr.stt", "a"); |
| kf_list = fopen("kf_list.stt", "w"); |
| #endif |
| |
| cpi->output_pkt_list = oxcf->output_pkt_list; |
| |
| if (cpi->pass == 1) { |
| vp9_init_first_pass(cpi); |
| } else if (cpi->pass == 2) { |
| size_t packet_sz = sizeof(FIRSTPASS_STATS); |
| int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz); |
| |
| cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf; |
| cpi->twopass.stats_in = cpi->twopass.stats_in_start; |
| cpi->twopass.stats_in_end = (void *)((char *)cpi->twopass.stats_in |
| + (packets - 1) * packet_sz); |
| vp9_init_second_pass(cpi); |
| } |
| |
| vp9_set_speed_features(cpi); |
| |
| // Set starting values of RD threshold multipliers (128 = *1) |
| for (i = 0; i < MAX_MODES; i++) |
| cpi->rd_thresh_mult[i] = 128; |
| |
| #define BFP(BT, SDF, VF, SVF, SVAF, SVFHH, SVFHV, SVFHHV, SDX3F, SDX8F, SDX4DF)\ |
| cpi->fn_ptr[BT].sdf = SDF; \ |
| cpi->fn_ptr[BT].vf = VF; \ |
| cpi->fn_ptr[BT].svf = SVF; \ |
| cpi->fn_ptr[BT].svaf = SVAF; \ |
| cpi->fn_ptr[BT].svf_halfpix_h = SVFHH; \ |
| cpi->fn_ptr[BT].svf_halfpix_v = SVFHV; \ |
| cpi->fn_ptr[BT].svf_halfpix_hv = SVFHHV; \ |
| cpi->fn_ptr[BT].sdx3f = SDX3F; \ |
| cpi->fn_ptr[BT].sdx8f = SDX8F; \ |
| cpi->fn_ptr[BT].sdx4df = SDX4DF; |
| |
| BFP(BLOCK_32X16, vp9_sad32x16, vp9_variance32x16, vp9_sub_pixel_variance32x16, |
| vp9_sub_pixel_avg_variance32x16, NULL, NULL, |
| NULL, NULL, NULL, |
| vp9_sad32x16x4d) |
| |
| BFP(BLOCK_16X32, vp9_sad16x32, vp9_variance16x32, vp9_sub_pixel_variance16x32, |
| vp9_sub_pixel_avg_variance16x32, NULL, NULL, |
| NULL, NULL, NULL, |
| vp9_sad16x32x4d) |
| |
| BFP(BLOCK_64X32, vp9_sad64x32, vp9_variance64x32, vp9_sub_pixel_variance64x32, |
| vp9_sub_pixel_avg_variance64x32, NULL, NULL, |
| NULL, NULL, NULL, |
| vp9_sad64x32x4d) |
| |
| BFP(BLOCK_32X64, vp9_sad32x64, vp9_variance32x64, vp9_sub_pixel_variance32x64, |
| vp9_sub_pixel_avg_variance32x64, NULL, NULL, |
| NULL, NULL, NULL, |
| vp9_sad32x64x4d) |
| |
| BFP(BLOCK_32X32, vp9_sad32x32, vp9_variance32x32, vp9_sub_pixel_variance32x32, |
| vp9_sub_pixel_avg_variance32x32, vp9_variance_halfpixvar32x32_h, |
| vp9_variance_halfpixvar32x32_v, |
| vp9_variance_halfpixvar32x32_hv, vp9_sad32x32x3, vp9_sad32x32x8, |
| vp9_sad32x32x4d) |
| |
| BFP(BLOCK_64X64, vp9_sad64x64, vp9_variance64x64, vp9_sub_pixel_variance64x64, |
| vp9_sub_pixel_avg_variance64x64, vp9_variance_halfpixvar64x64_h, |
| vp9_variance_halfpixvar64x64_v, |
| vp9_variance_halfpixvar64x64_hv, vp9_sad64x64x3, vp9_sad64x64x8, |
| vp9_sad64x64x4d) |
| |
| BFP(BLOCK_16X16, vp9_sad16x16, vp9_variance16x16, vp9_sub_pixel_variance16x16, |
| vp9_sub_pixel_avg_variance16x16, vp9_variance_halfpixvar16x16_h, |
| vp9_variance_halfpixvar16x16_v, |
| vp9_variance_halfpixvar16x16_hv, vp9_sad16x16x3, vp9_sad16x16x8, |
| vp9_sad16x16x4d) |
| |
| BFP(BLOCK_16X8, vp9_sad16x8, vp9_variance16x8, vp9_sub_pixel_variance16x8, |
| vp9_sub_pixel_avg_variance16x8, NULL, NULL, NULL, |
| vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d) |
| |
| BFP(BLOCK_8X16, vp9_sad8x16, vp9_variance8x16, vp9_sub_pixel_variance8x16, |
| vp9_sub_pixel_avg_variance8x16, NULL, NULL, NULL, |
| vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d) |
| |
| BFP(BLOCK_8X8, vp9_sad8x8, vp9_variance8x8, vp9_sub_pixel_variance8x8, |
| vp9_sub_pixel_avg_variance8x8, NULL, NULL, NULL, |
| vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d) |
| |
| BFP(BLOCK_8X4, vp9_sad8x4, vp9_variance8x4, vp9_sub_pixel_variance8x4, |
| vp9_sub_pixel_avg_variance8x4, NULL, NULL, |
| NULL, NULL, vp9_sad8x4x8, |
| vp9_sad8x4x4d) |
| |
| BFP(BLOCK_4X8, vp9_sad4x8, vp9_variance4x8, vp9_sub_pixel_variance4x8, |
| vp9_sub_pixel_avg_variance4x8, NULL, NULL, |
| NULL, NULL, vp9_sad4x8x8, |
| vp9_sad4x8x4d) |
| |
| BFP(BLOCK_4X4, vp9_sad4x4, vp9_variance4x4, vp9_sub_pixel_variance4x4, |
| vp9_sub_pixel_avg_variance4x4, NULL, NULL, NULL, |
| vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d) |
| |
| cpi->full_search_sad = vp9_full_search_sad; |
| cpi->diamond_search_sad = vp9_diamond_search_sad; |
| cpi->refining_search_sad = vp9_refining_search_sad; |
| |
| // make sure frame 1 is okay |
| cpi->error_bins[0] = cpi->common.MBs; |
| |
| /* vp9_init_quantizer() is first called here. Add check in |
| * vp9_frame_init_quantizer() so that vp9_init_quantizer is only |
| * called later when needed. This will avoid unnecessary calls of |
| * vp9_init_quantizer() for every frame. |
| */ |
| vp9_init_quantizer(cpi); |
| |
| vp9_loop_filter_init(cm); |
| |
| cpi->common.error.setjmp = 0; |
| |
| vp9_zero(cpi->y_uv_mode_count) |
| |
| return (VP9_PTR) cpi; |
| } |
| |
| void vp9_remove_compressor(VP9_PTR *ptr) { |
| VP9_COMP *cpi = (VP9_COMP *)(*ptr); |
| int i; |
| |
| if (!cpi) |
| return; |
| |
| if (cpi && (cpi->common.current_video_frame > 0)) { |
| if (cpi->pass == 2) { |
| vp9_end_second_pass(cpi); |
| } |
| |
| #ifdef ENTROPY_STATS |
| if (cpi->pass != 1) { |
| print_context_counters(); |
| print_tree_update_probs(); |
| print_mode_context(cpi); |
| } |
| #endif |
| #ifdef NMV_STATS |
| if (cpi->pass != 1) |
| print_nmvstats(); |
| #endif |
| |
| #if CONFIG_INTERNAL_STATS |
| |
| vp9_clear_system_state(); |
| |
| // printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count); |
| if (cpi->pass != 1) { |
| FILE *f = fopen("opsnr.stt", "a"); |
| double time_encoded = (cpi->last_end_time_stamp_seen |
| - cpi->first_time_stamp_ever) / 10000000.000; |
| double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000; |
| double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded; |
| |
| if (cpi->b_calculate_psnr) { |
| YV12_BUFFER_CONFIG *lst_yv12 = |
| &cpi->common.yv12_fb[cpi->common.ref_frame_map[cpi->lst_fb_idx]]; |
| double samples = 3.0 / 2 * cpi->count * |
| lst_yv12->y_width * lst_yv12->y_height; |
| double total_psnr = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error); |
| double total_psnr2 = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error2); |
| double total_ssim = 100 * pow(cpi->summed_quality / |
| cpi->summed_weights, 8.0); |
| double total_ssimp = 100 * pow(cpi->summedp_quality / |
| cpi->summedp_weights, 8.0); |
| |
| fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t" |
| "VPXSSIM\tVPSSIMP\t Time(ms)\n"); |
| fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n", |
| dr, cpi->total / cpi->count, total_psnr, |
| cpi->totalp / cpi->count, total_psnr2, total_ssim, total_ssimp, |
| total_encode_time); |
| // fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f %10ld\n", |
| // dr, cpi->total / cpi->count, total_psnr, |
| // cpi->totalp / cpi->count, total_psnr2, total_ssim, |
| // total_encode_time, cpi->tot_recode_hits); |
| } |
| |
| if (cpi->b_calculate_ssimg) { |
| fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n"); |
| fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr, |
| cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count, |
| cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time); |
| // fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f %10ld\n", dr, |
| // cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count, |
| // cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time, cpi->tot_recode_hits); |
| } |
| |
| fclose(f); |
| } |
| |
| #endif |
| |
| #ifdef ENTROPY_STATS |
| { |
| int i, j, k; |
| FILE *fmode = fopen("vp9_modecontext.c", "w"); |
| |
| fprintf(fmode, "\n#include \"vp9_entropymode.h\"\n\n"); |
| fprintf(fmode, "const unsigned int vp9_kf_default_bmode_counts "); |
| fprintf(fmode, "[VP9_KF_BINTRAMODES][VP9_KF_BINTRAMODES]" |
| "[VP9_KF_BINTRAMODES] =\n{\n"); |
| |
| for (i = 0; i < VP9_KF_BINTRAMODES; i++) { |
| |
| fprintf(fmode, " { // Above Mode : %d\n", i); |
| |
| for (j = 0; j < VP9_KF_BINTRAMODES; j++) { |
| |
| fprintf(fmode, " {"); |
| |
| for (k = 0; k < VP9_KF_BINTRAMODES; k++) { |
| if (!intra_mode_stats[i][j][k]) |
| fprintf(fmode, " %5d, ", 1); |
| else |
| fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]); |
| } |
| |
| fprintf(fmode, "}, // left_mode %d\n", j); |
| |
| } |
| |
| fprintf(fmode, " },\n"); |
| |
| } |
| |
| fprintf(fmode, "};\n"); |
| fclose(fmode); |
| } |
| #endif |
| |
| |
| #if defined(SECTIONBITS_OUTPUT) |
| |
| if (0) { |
| int i; |
| FILE *f = fopen("tokenbits.stt", "a"); |
| |
| for (i = 0; i < 28; i++) |
| fprintf(f, "%8d", (int)(Sectionbits[i] / 256)); |
| |
| fprintf(f, "\n"); |
| fclose(f); |
| } |
| |
| #endif |
| |
| #if 0 |
| { |
| printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000); |
| printf("\n_frames recive_data encod_mb_row compress_frame Total\n"); |
| printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000); |
| } |
| #endif |
| |
| } |
| |
| dealloc_compressor_data(cpi); |
| vpx_free(cpi->mb.ss); |
| vpx_free(cpi->tok); |
| |
| for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); i++) { |
| vpx_free(cpi->mbgraph_stats[i].mb_stats); |
| } |
| |
| vp9_remove_common(&cpi->common); |
| vpx_free(cpi); |
| *ptr = 0; |
| |
| #ifdef OUTPUT_YUV_SRC |
| fclose(yuv_file); |
| #endif |
| #ifdef OUTPUT_YUV_REC |
| fclose(yuv_rec_file); |
| #endif |
| |
| #if 0 |
| |
| if (keyfile) |
| fclose(keyfile); |
| |
| if (framepsnr) |
| fclose(framepsnr); |
| |
| if (kf_list) |
| fclose(kf_list); |
| |
| #endif |
| |
| } |
| |
| |
| static uint64_t calc_plane_error(uint8_t *orig, int orig_stride, |
| uint8_t *recon, int recon_stride, |
| unsigned int cols, unsigned int rows) { |
| unsigned int row, col; |
| uint64_t total_sse = 0; |
| int diff; |
| |
| for (row = 0; row + 16 <= rows; row += 16) { |
| for (col = 0; col + 16 <= cols; col += 16) { |
| unsigned int sse; |
| |
| vp9_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse); |
| total_sse += sse; |
| } |
| |
| /* Handle odd-sized width */ |
| if (col < cols) { |
| unsigned int border_row, border_col; |
| uint8_t *border_orig = orig; |
| uint8_t *border_recon = recon; |
| |
| for (border_row = 0; border_row < 16; border_row++) { |
| for (border_col = col; border_col < cols; border_col++) { |
| diff = border_orig[border_col] - border_recon[border_col]; |
| total_sse += diff * diff; |
| } |
| |
| border_orig += orig_stride; |
| border_recon += recon_stride; |
| } |
| } |
| |
| orig += orig_stride * 16; |
| recon += recon_stride * 16; |
| } |
| |
| /* Handle odd-sized height */ |
| for (; row < rows; row++) { |
| for (col = 0; col < cols; col++) { |
| diff = orig[col] - recon[col]; |
| total_sse += diff * diff; |
| } |
| |
| orig += orig_stride; |
| recon += recon_stride; |
| } |
| |
| return total_sse; |
| } |
| |
| |
| static void generate_psnr_packet(VP9_COMP *cpi) { |
| YV12_BUFFER_CONFIG *orig = cpi->Source; |
| YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; |
| struct vpx_codec_cx_pkt pkt; |
| uint64_t sse; |
| int i; |
| unsigned int width = cpi->common.width; |
| unsigned int height = cpi->common.height; |
| |
| pkt.kind = VPX_CODEC_PSNR_PKT; |
| sse = calc_plane_error(orig->y_buffer, orig->y_stride, |
| recon->y_buffer, recon->y_stride, |
| width, height); |
| pkt.data.psnr.sse[0] = sse; |
| pkt.data.psnr.sse[1] = sse; |
| pkt.data.psnr.samples[0] = width * height; |
| pkt.data.psnr.samples[1] = width * height; |
| |
| width = orig->uv_width; |
| height = orig->uv_height; |
| |
| sse = calc_plane_error(orig->u_buffer, orig->uv_stride, |
| recon->u_buffer, recon->uv_stride, |
| width, height); |
| pkt.data.psnr.sse[0] += sse; |
| pkt.data.psnr.sse[2] = sse; |
| pkt.data.psnr.samples[0] += width * height; |
| pkt.data.psnr.samples[2] = width * height; |
| |
| sse = calc_plane_error(orig->v_buffer, orig->uv_stride, |
| recon->v_buffer, recon->uv_stride, |
| width, height); |
| pkt.data.psnr.sse[0] += sse; |
| pkt.data.psnr.sse[3] = sse; |
| pkt.data.psnr.samples[0] += width * height; |
| pkt.data.psnr.samples[3] = width * height; |
| |
| for (i = 0; i < 4; i++) |
| pkt.data.psnr.psnr[i] = vp9_mse2psnr(pkt.data.psnr.samples[i], 255.0, |
| (double)pkt.data.psnr.sse[i]); |
| |
| vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt); |
| } |
| |
| |
| int vp9_use_as_reference(VP9_PTR ptr, int ref_frame_flags) { |
| VP9_COMP *cpi = (VP9_COMP *)(ptr); |
| |
| if (ref_frame_flags > 7) |
| return -1; |
| |
| cpi->ref_frame_flags = ref_frame_flags; |
| return 0; |
| } |
| int vp9_update_reference(VP9_PTR ptr, int ref_frame_flags) { |
| VP9_COMP *cpi = (VP9_COMP *)(ptr); |
| |
| if (ref_frame_flags > 7) |
| return -1; |
| |
| cpi->refresh_golden_frame = 0; |
| cpi->refresh_alt_ref_frame = 0; |
| cpi->refresh_last_frame = 0; |
| |
| if (ref_frame_flags & VP9_LAST_FLAG) |
| cpi->refresh_last_frame = 1; |
| |
| if (ref_frame_flags & VP9_GOLD_FLAG) |
| cpi->refresh_golden_frame = 1; |
| |
| if (ref_frame_flags & VP9_ALT_FLAG) |
| cpi->refresh_alt_ref_frame = 1; |
| |
| return 0; |
| } |
| |
| int vp9_copy_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag, |
| YV12_BUFFER_CONFIG *sd) { |
| VP9_COMP *cpi = (VP9_COMP *)(ptr); |
| VP9_COMMON *cm = &cpi->common; |
| int ref_fb_idx; |
| |
| if (ref_frame_flag == VP9_LAST_FLAG) |
| ref_fb_idx = cm->ref_frame_map[cpi->lst_fb_idx]; |
| else if (ref_frame_flag == VP9_GOLD_FLAG) |
| ref_fb_idx = cm->ref_frame_map[cpi->gld_fb_idx]; |
| else if (ref_frame_flag == VP9_ALT_FLAG) |
| ref_fb_idx = cm->ref_frame_map[cpi->alt_fb_idx]; |
| else |
| return -1; |
| |
| vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd); |
| |
| return 0; |
| } |
| |
| int vp9_get_reference_enc(VP9_PTR ptr, int index, YV12_BUFFER_CONFIG **fb) { |
| VP9_COMP *cpi = (VP9_COMP *)(ptr); |
| VP9_COMMON *cm = &cpi->common; |
| |
| if (index < 0 || index >= NUM_REF_FRAMES) |
| return -1; |
| |
| *fb = &cm->yv12_fb[cm->ref_frame_map[index]]; |
| return 0; |
| } |
| |
| int vp9_set_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag, |
| YV12_BUFFER_CONFIG *sd) { |
| VP9_COMP *cpi = (VP9_COMP *)(ptr); |
| VP9_COMMON *cm = &cpi->common; |
| |
| int ref_fb_idx; |
| |
| if (ref_frame_flag == VP9_LAST_FLAG) |
| ref_fb_idx = cm->ref_frame_map[cpi->lst_fb_idx]; |
| else if (ref_frame_flag == VP9_GOLD_FLAG) |
| ref_fb_idx = cm->ref_frame_map[cpi->gld_fb_idx]; |
| else if (ref_frame_flag == VP9_ALT_FLAG) |
| ref_fb_idx = cm->ref_frame_map[cpi->alt_fb_idx]; |
| else |
| return -1; |
| |
| vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]); |
| |
| return 0; |
| } |
| int vp9_update_entropy(VP9_PTR comp, int update) { |
| ((VP9_COMP *)comp)->common.refresh_frame_context = update; |
| return 0; |
| } |
| |
| |
| #ifdef OUTPUT_YUV_SRC |
| void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) { |
| uint8_t *src = s->y_buffer; |
| int h = s->y_height; |
| |
| do { |
| fwrite(src, s->y_width, 1, yuv_file); |
| src += s->y_stride; |
| } while (--h); |
| |
| src = s->u_buffer; |
| h = s->uv_height; |
| |
| do { |
| fwrite(src, s->uv_width, 1, yuv_file); |
| src += s->uv_stride; |
| } while (--h); |
| |
| src = s->v_buffer; |
| h = s->uv_height; |
| |
| do { |
| fwrite(src, s->uv_width, 1, yuv_file); |
| src += s->uv_stride; |
| } while (--h); |
| } |
| #endif |
| |
| #ifdef OUTPUT_YUV_REC |
| void vp9_write_yuv_rec_frame(VP9_COMMON *cm) { |
| YV12_BUFFER_CONFIG *s = cm->frame_to_show; |
| uint8_t *src = s->y_buffer; |
| int h = cm->height; |
| |
| do { |
| fwrite(src, s->y_width, 1, yuv_rec_file); |
| src += s->y_stride; |
| } while (--h); |
| |
| src = s->u_buffer; |
| h = s->uv_height; |
| |
| do { |
| fwrite(src, s->uv_width, 1, yuv_rec_file); |
| src += s->uv_stride; |
| } while (--h); |
| |
| src = s->v_buffer; |
| h = s->uv_height; |
| |
| do { |
| fwrite(src, s->uv_width, 1, yuv_rec_file); |
| src += s->uv_stride; |
| } while (--h); |
| |
| #if CONFIG_ALPHA |
| if (s->alpha_buffer) { |
| src = s->alpha_buffer; |
| h = s->alpha_height; |
| do { |
| fwrite(src, s->alpha_width, 1, yuv_rec_file); |
| src += s->alpha_stride; |
| } while (--h); |
| } |
| #endif |
| |
| fflush(yuv_rec_file); |
| } |
| #endif |
| |
| static void scale_and_extend_frame(YV12_BUFFER_CONFIG *src_fb, |
| YV12_BUFFER_CONFIG *dst_fb) { |
| const int in_w = src_fb->y_crop_width; |
| const int in_h = src_fb->y_crop_height; |
| const int out_w = dst_fb->y_crop_width; |
| const int out_h = dst_fb->y_crop_height; |
| int x, y, i; |
| |
| uint8_t *srcs[4] = {src_fb->y_buffer, src_fb->u_buffer, src_fb->v_buffer, |
| src_fb->alpha_buffer}; |
| int src_strides[4] = {src_fb->y_stride, src_fb->uv_stride, src_fb->uv_stride, |
| src_fb->alpha_stride}; |
| |
| uint8_t *dsts[4] = {dst_fb->y_buffer, dst_fb->u_buffer, dst_fb->v_buffer, |
| dst_fb->alpha_buffer}; |
| int dst_strides[4] = {dst_fb->y_stride, dst_fb->uv_stride, dst_fb->uv_stride, |
| dst_fb->alpha_stride}; |
| |
| for (y = 0; y < out_h; y += 16) { |
| for (x = 0; x < out_w; x += 16) { |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| const int factor = i == 0 ? 1 : 2; |
| const int x_q4 = x * (16 / factor) * in_w / out_w; |
| const int y_q4 = y * (16 / factor) * in_h / out_h; |
| const int src_stride = src_strides[i]; |
| const int dst_stride = dst_strides[i]; |
| uint8_t *src = srcs[i] + y / factor * in_h / out_h * src_stride + |
| x / factor * in_w / out_w; |
| uint8_t *dst = dsts[i] + y * dst_stride + x; |
| |
| vp9_convolve8(src, src_stride, dst, dst_stride, |
| vp9_sub_pel_filters_8[x_q4 & 0xf], 16 * in_w / out_w, |
| vp9_sub_pel_filters_8[y_q4 & 0xf], 16 * in_h / out_h, |
| 16 / factor, 16 / factor); |
| } |
| } |
| } |
| |
| vp8_yv12_extend_frame_borders(dst_fb); |
| } |
| |
| |
| static void update_alt_ref_frame_stats(VP9_COMP *cpi) { |
| // this frame refreshes means next frames don't unless specified by user |
| cpi->common.frames_since_golden = 0; |
| |
| #if CONFIG_MULTIPLE_ARF |
| if (!cpi->multi_arf_enabled) |
| #endif |
| // Clear the alternate reference update pending flag. |
| cpi->source_alt_ref_pending = 0; |
| |
| // Set the alternate reference frame active flag |
| cpi->source_alt_ref_active = 1; |
| } |
| static void update_golden_frame_stats(VP9_COMP *cpi) { |
| // Update the Golden frame usage counts. |
| if (cpi->refresh_golden_frame) { |
| // this frame refreshes means next frames don't unless specified by user |
| cpi->refresh_golden_frame = 0; |
| cpi->common.frames_since_golden = 0; |
| |
| // if ( cm->frame_type == KEY_FRAME ) |
| // { |
| cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; |
| cpi->recent_ref_frame_usage[LAST_FRAME] = 1; |
| cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; |
| cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; |
| // } |
| // else |
| // { |
| // // Carry a portion of count over to beginning of next gf sequence |
| // cpi->recent_ref_frame_usage[INTRA_FRAME] >>= 5; |
| // cpi->recent_ref_frame_usage[LAST_FRAME] >>= 5; |
| // cpi->recent_ref_frame_usage[GOLDEN_FRAME] >>= 5; |
| // cpi->recent_ref_frame_usage[ALTREF_FRAME] >>= 5; |
| // } |
| |
| // ******** Fixed Q test code only ************ |
| // If we are going to use the ALT reference for the next group of frames set a flag to say so. |
| if (cpi->oxcf.fixed_q >= 0 && |
| cpi->oxcf.play_alternate && !cpi->refresh_alt_ref_frame) { |
| cpi->source_alt_ref_pending = 1; |
| cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
| } |
| |
| if (!cpi->source_alt_ref_pending) |
| cpi->source_alt_ref_active = 0; |
| |
| // Decrement count down till next gf |
| if (cpi->frames_till_gf_update_due > 0) |
| cpi->frames_till_gf_update_due--; |
| |
| } else if (!cpi->refresh_alt_ref_frame) { |
| // Decrement count down till next gf |
| if (cpi->frames_till_gf_update_due > 0) |
| cpi->frames_till_gf_update_due--; |
| |
| if (cpi->common.frames_till_alt_ref_frame) |
| cpi->common.frames_till_alt_ref_frame--; |
| |
| cpi->common.frames_since_golden++; |
| |
| if (cpi->common.frames_since_golden > 1) { |
| cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME]; |
| cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME]; |
| cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME]; |
| cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME]; |
| } |
| } |
| } |
| |
| static int find_fp_qindex() { |
| int i; |
| |
| for (i = 0; i < QINDEX_RANGE; i++) { |
| if (vp9_convert_qindex_to_q(i) >= 30.0) { |
| break; |
| } |
| } |
| |
| if (i == QINDEX_RANGE) |
| i--; |
| |
| return i; |
| } |
| |
| static void Pass1Encode(VP9_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) { |
| (void) size; |
| (void) dest; |
| (void) frame_flags; |
| |
| |
| vp9_set_quantizer(cpi, find_fp_qindex()); |
| vp9_first_pass(cpi); |
| } |
| |
| #define WRITE_RECON_BUFFER 0 |
| #if WRITE_RECON_BUFFER |
| void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) { |
| |
| // write the frame |
| FILE *yframe; |
| int i; |
| char filename[255]; |
| |
| sprintf(filename, "cx\\y%04d.raw", this_frame); |
| yframe = fopen(filename, "wb"); |
| |
| for (i = 0; i < frame->y_height; i++) |
| fwrite(frame->y_buffer + i * frame->y_stride, |
| frame->y_width, 1, yframe); |
| |
| fclose(yframe); |
| sprintf(filename, "cx\\u%04d.raw", this_frame); |
| yframe = fopen(filename, "wb"); |
| |
| for (i = 0; i < frame->uv_height; i++) |
| fwrite(frame->u_buffer + i * frame->uv_stride, |
| frame->uv_width, 1, yframe); |
| |
| fclose(yframe); |
| sprintf(filename, "cx\\v%04d.raw", this_frame); |
| yframe = fopen(filename, "wb"); |
| |
| for (i = 0; i < frame->uv_height; i++) |
| fwrite(frame->v_buffer + i * frame->uv_stride, |
| frame->uv_width, 1, yframe); |
| |
| fclose(yframe); |
| } |
| #endif |
| |
| static double compute_edge_pixel_proportion(YV12_BUFFER_CONFIG *frame) { |
| #define EDGE_THRESH 128 |
| int i, j; |
| int num_edge_pels = 0; |
| int num_pels = (frame->y_height - 2) * (frame->y_width - 2); |
| uint8_t *prev = frame->y_buffer + 1; |
| uint8_t *curr = frame->y_buffer + 1 + frame->y_stride; |
| uint8_t *next = frame->y_buffer + 1 + 2 * frame->y_stride; |
| for (i = 1; i < frame->y_height - 1; i++) { |
| for (j = 1; j < frame->y_width - 1; j++) { |
| /* Sobel hor and ver gradients */ |
| int v = 2 * (curr[1] - curr[-1]) + (prev[1] - prev[-1]) + (next[1] - next[-1]); |
| int h = 2 * (prev[0] - next[0]) + (prev[1] - next[1]) + (prev[-1] - next[-1]); |
| h = (h < 0 ? -h : h); |
| v = (v < 0 ? -v : v); |
| if (h > EDGE_THRESH || v > EDGE_THRESH) |
| num_edge_pels++; |
| curr++; |
| prev++; |
| next++; |
| } |
| curr += frame->y_stride - frame->y_width + 2; |
| prev += frame->y_stride - frame->y_width + 2; |
| next += frame->y_stride - frame->y_width + 2; |
| } |
| return (double)num_edge_pels / num_pels; |
| } |
| |
| // Function to test for conditions that indicate we should loop |
| // back and recode a frame. |
| static int recode_loop_test(VP9_COMP *cpi, |
| int high_limit, int low_limit, |
| int q, int maxq, int minq) { |
| int force_recode = 0; |
| VP9_COMMON *cm = &cpi->common; |
| |
| // Is frame recode allowed at all |
| // Yes if either recode mode 1 is selected or mode two is selected |
| // and the frame is a key frame. golden frame or alt_ref_frame |
| if ((cpi->sf.recode_loop == 1) || |
| ((cpi->sf.recode_loop == 2) && |
| ((cm->frame_type == KEY_FRAME) || |
| cpi->refresh_golden_frame || |
| cpi->refresh_alt_ref_frame))) { |
| // General over and under shoot tests |
| if (((cpi->projected_frame_size > high_limit) && (q < maxq)) || |
| ((cpi->projected_frame_size < low_limit) && (q > minq))) { |
| force_recode = 1; |
| } |
| // Special Constrained quality tests |
| else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { |
| // Undershoot and below auto cq level |
| if (q > cpi->cq_target_quality && |
| cpi->projected_frame_size < ((cpi->this_frame_target * 7) >> 3)) { |
| force_recode = 1; |
| } else if (q > cpi->oxcf.cq_level && |
| cpi->projected_frame_size < cpi->min_frame_bandwidth && |
| cpi->active_best_quality > cpi->oxcf.cq_level) { |
| // Severe undershoot and between auto and user cq level |
| force_recode = 1; |
| cpi->active_best_quality = cpi->oxcf.cq_level; |
| } |
| } |
| } |
| |
| return force_recode; |
| } |
| |
| static void update_reference_frames(VP9_COMP * const cpi) { |
| VP9_COMMON * const cm = &cpi->common; |
| |
| // At this point the new frame has been encoded. |
| // If any buffer copy / swapping is signaled it should be done here. |
| if (cm->frame_type == KEY_FRAME) { |
| ref_cnt_fb(cm->fb_idx_ref_cnt, |
| &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx); |
| ref_cnt_fb(cm->fb_idx_ref_cnt, |
| &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx); |
| } |
| #if CONFIG_MULTIPLE_ARF |
| else if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame && |
| !cpi->refresh_alt_ref_frame) { |
| #else |
| else if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { |
| #endif |
| /* Preserve the previously existing golden frame and update the frame in |
| * the alt ref slot instead. This is highly specific to the current use of |
| * alt-ref as a forward reference, and this needs to be generalized as |
| * other uses are implemented (like RTC/temporal scaling) |
| * |
| * The update to the buffer in the alt ref slot was signaled in |
| * vp9_pack_bitstream(), now swap the buffer pointers so that it's treated |
| * as the golden frame next time. |
| */ |
| int tmp; |
| |
| ref_cnt_fb(cm->fb_idx_ref_cnt, |
| &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx); |
| |
| tmp = cpi->alt_fb_idx; |
| cpi->alt_fb_idx = cpi->gld_fb_idx; |
| cpi->gld_fb_idx = tmp; |
| } else { /* For non key/golden frames */ |
| if (cpi->refresh_alt_ref_frame) { |
| int arf_idx = cpi->alt_fb_idx; |
| #if CONFIG_MULTIPLE_ARF |
| if (cpi->multi_arf_enabled) { |
| arf_idx = cpi->arf_buffer_idx[cpi->sequence_number + 1]; |
| } |
| #endif |
| ref_cnt_fb(cm->fb_idx_ref_cnt, |
| &cm->ref_frame_map[arf_idx], cm->new_fb_idx); |
| } |
| |
| if (cpi->refresh_golden_frame) { |
| ref_cnt_fb(cm->fb_idx_ref_cnt, |
| &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx); |
| } |
| } |
| |
| if (cpi->refresh_last_frame) { |
| ref_cnt_fb(cm->fb_idx_ref_cnt, |
| &cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx); |
| } |
| } |
| |
| static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) { |
| if (cm->no_lpf || cpi->mb.e_mbd.lossless) { |
| cm->filter_level = 0; |
| } else { |
| struct vpx_usec_timer timer; |
| |
| vp9_clear_system_state(); |
| |
| vpx_usec_timer_start(&timer); |
| |
| vp9_pick_filter_level(cpi->Source, cpi); |
| |
| vpx_usec_timer_mark(&timer); |
| cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer); |
| } |
| |
| if (cm->filter_level > 0) { |
| vp9_set_alt_lf_level(cpi, cm->filter_level); |
| vp9_loop_filter_frame(cm, &cpi->mb.e_mbd, cm->filter_level, 0); |
| } |
| |
| vp9_extend_frame_borders(cm->frame_to_show, |
| cm->subsampling_x, cm->subsampling_y); |
| |
| } |
| |
| void vp9_select_interp_filter_type(VP9_COMP *cpi) { |
| int i; |
| int high_filter_index = 0; |
| unsigned int thresh; |
| unsigned int high_count = 0; |
| unsigned int count_sum = 0; |
| unsigned int *hist = cpi->best_switchable_interp_count; |
| |
| if (DEFAULT_INTERP_FILTER != SWITCHABLE) { |
| cpi->common.mcomp_filter_type = DEFAULT_INTERP_FILTER; |
| return; |
| } |
| |
| // TODO(agrange): Look at using RD criteria to select the interpolation |
| // filter to use for the next frame rather than this simpler counting scheme. |
| |
| // Select the interpolation filter mode for the next frame |
| // based on the selection frequency seen in the current frame. |
| for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) { |
| unsigned int count = hist[i]; |
| count_sum += count; |
| if (count > high_count) { |
| high_count = count; |
| high_filter_index = i; |
| } |
| } |
| |
| thresh = (unsigned int)(0.80 * count_sum); |
| |
| if (high_count > thresh) { |
| // One filter accounts for 80+% of cases so force the next |
| // frame to use this filter exclusively using frame-level flag. |
| cpi->common.mcomp_filter_type = vp9_switchable_interp[high_filter_index]; |
| } else { |
| // Use a MB-level switchable filter selection strategy. |
| cpi->common.mcomp_filter_type = SWITCHABLE; |
| } |
| } |
| |
| static void scale_references(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| int i; |
| |
| for (i = 0; i < 3; i++) { |
| YV12_BUFFER_CONFIG *ref = &cm->yv12_fb[cm->ref_frame_map[i]]; |
| |
| if (ref->y_crop_width != cm->width || |
| ref->y_crop_height != cm->height) { |
| int new_fb = get_free_fb(cm); |
| |
| vp9_realloc_frame_buffer(&cm->yv12_fb[new_fb], |
| cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| VP9BORDERINPIXELS); |
| scale_and_extend_frame(ref, &cm->yv12_fb[new_fb]); |
| cpi->scaled_ref_idx[i] = new_fb; |
| } else { |
| cpi->scaled_ref_idx[i] = cm->ref_frame_map[i]; |
| cm->fb_idx_ref_cnt[cm->ref_frame_map[i]]++; |
| } |
| } |
| } |
| |
| static void release_scaled_references(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| int i; |
| |
| for (i = 0; i < 3; i++) |
| cm->fb_idx_ref_cnt[cpi->scaled_ref_idx[i]]--; |
| } |
| |
| static void encode_frame_to_data_rate(VP9_COMP *cpi, |
| unsigned long *size, |
| unsigned char *dest, |
| unsigned int *frame_flags) { |
| VP9_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| |
| int q; |
| int frame_over_shoot_limit; |
| int frame_under_shoot_limit; |
| |
| int loop = 0; |
| int loop_count; |
| |
| int q_low; |
| int q_high; |
| |
| int top_index; |
| int bottom_index; |
| int active_worst_qchanged = 0; |
| |
| int overshoot_seen = 0; |
| int undershoot_seen = 0; |
| |
| SPEED_FEATURES *sf = &cpi->sf; |
| #if RESET_FOREACH_FILTER |
| int q_low0; |
| int q_high0; |
| int Q0; |
| int active_best_quality0; |
| int active_worst_quality0; |
| double rate_correction_factor0; |
| double gf_rate_correction_factor0; |
| #endif |
| |
| /* list of filters to search over */ |
| int mcomp_filters_to_search[] = { |
| EIGHTTAP, EIGHTTAP_SHARP, EIGHTTAP_SMOOTH, SWITCHABLE |
| }; |
| int mcomp_filters = sizeof(mcomp_filters_to_search) / |
| sizeof(*mcomp_filters_to_search); |
| int mcomp_filter_index = 0; |
| int64_t mcomp_filter_cost[4]; |
| |
| /* Scale the source buffer, if required */ |
| if (cm->mb_cols * 16 != cpi->un_scaled_source->y_width || |
| cm->mb_rows * 16 != cpi->un_scaled_source->y_height) { |
| scale_and_extend_frame(cpi->un_scaled_source, &cpi->scaled_source); |
| cpi->Source = &cpi->scaled_source; |
| } else { |
| cpi->Source = cpi->un_scaled_source; |
| } |
| |
| scale_references(cpi); |
| |
| // Clear down mmx registers to allow floating point in what follows |
| vp9_clear_system_state(); |
| |
| |
| // For an alt ref frame in 2 pass we skip the call to the second |
| // pass function that sets the target bandwidth so must set it here |
| if (cpi->refresh_alt_ref_frame) { |
| // Per frame bit target for the alt ref frame |
| cpi->per_frame_bandwidth = cpi->twopass.gf_bits; |
| // per second target bitrate |
| cpi->target_bandwidth = (int)(cpi->twopass.gf_bits * |
| cpi->output_frame_rate); |
| } |
| |
| // Clear zbin over-quant value and mode boost values. |
| cpi->zbin_mode_boost = 0; |
| |
| // Enable or disable mode based tweaking of the zbin |
| // For 2 Pass Only used where GF/ARF prediction quality |
| // is above a threshold |
| cpi->zbin_mode_boost = 0; |
| |
| // if (cpi->oxcf.lossless) |
| cpi->zbin_mode_boost_enabled = 0; |
| // else |
| // cpi->zbin_mode_boost_enabled = 1; |
| |
| // Current default encoder behaviour for the altref sign bias |
| cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = cpi->source_alt_ref_active; |
| |
| // Check to see if a key frame is signaled |
| // For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass. |
| if ((cm->current_video_frame == 0) || |
| (cm->frame_flags & FRAMEFLAGS_KEY) || |
| (cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0))) { |
| // Key frame from VFW/auto-keyframe/first frame |
| cm->frame_type = KEY_FRAME; |
| } |
| |
| // Set default state for segment based loop filter update flags |
| xd->mode_ref_lf_delta_update = 0; |
| |
| |
| // Set various flags etc to special state if it is a key frame |
| if (cm->frame_type == KEY_FRAME) { |
| int i; |
| |
| // Reset the loop filter deltas and segmentation map |
| setup_features(cpi); |
| |
| // If segmentation is enabled force a map update for key frames |
| if (xd->segmentation_enabled) { |
| xd->update_mb_segmentation_map = 1; |
| xd->update_mb_segmentation_data = 1; |
| } |
| |
| // The alternate reference frame cannot be active for a key frame |
| cpi->source_alt_ref_active = 0; |
| |
| // Reset the RD threshold multipliers to default of * 1 (128) |
| for (i = 0; i < MAX_MODES; i++) |
| cpi->rd_thresh_mult[i] = 128; |
| |
| cm->error_resilient_mode = (cpi->oxcf.error_resilient_mode != 0); |
| cm->frame_parallel_decoding_mode = |
| (cpi->oxcf.frame_parallel_decoding_mode != 0); |
| if (cm->error_resilient_mode) { |
| cm->frame_parallel_decoding_mode = 1; |
| cm->refresh_frame_context = 0; |
| } |
| } |
| |
| // Configure experimental use of segmentation for enhanced coding of |
| // static regions if indicated. |
| // Only allowed for now in second pass of two pass (as requires lagged coding) |
| // and if the relevant speed feature flag is set. |
| if ((cpi->pass == 2) && (cpi->sf.static_segmentation)) { |
| configure_static_seg_features(cpi); |
| } |
| |
| // Decide how big to make the frame |
| vp9_pick_frame_size(cpi); |
| |
| vp9_clear_system_state(); |
| |
| // Set an active best quality and if necessary active worst quality |
| q = cpi->active_worst_quality; |
| |
| if (cm->frame_type == KEY_FRAME) { |
| #if !CONFIG_MULTIPLE_ARF |
| // Special case for key frames forced because we have reached |
| // the maximum key frame interval. Here force the Q to a range |
| // based on the ambient Q to reduce the risk of popping |
| if (cpi->this_key_frame_forced) { |
| int delta_qindex; |
| int qindex = cpi->last_boosted_qindex; |
| double last_boosted_q = vp9_convert_qindex_to_q(qindex); |
| |
| delta_qindex = compute_qdelta(cpi, last_boosted_q, |
| (last_boosted_q * 0.75)); |
| |
| cpi->active_best_quality = MAX(qindex + delta_qindex, cpi->best_quality); |
| } else { |
| int high = 5000; |
| int low = 400; |
| double q_adj_factor = 1.0; |
| double q_val; |
| |
| // Baseline value derived from cpi->active_worst_quality and kf boost |
| if (cpi->kf_boost > high) { |
| cpi->active_best_quality = kf_low_motion_minq[q]; |
| } else if (cpi->kf_boost < low) { |
| cpi->active_best_quality = kf_high_motion_minq[q]; |
| } else { |
| const int gap = high - low; |
| const int offset = high - cpi->kf_boost; |
| const int qdiff = kf_high_motion_minq[q] - kf_low_motion_minq[q]; |
| const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; |
| |
| cpi->active_best_quality = kf_low_motion_minq[q] + adjustment; |
| } |
| |
| |
| // Allow somewhat lower kf minq with small image formats. |
| if ((cm->width * cm->height) <= (352 * 288)) { |
| q_adj_factor -= 0.25; |
| } |
| |
| // Make a further adjustment based on the kf zero motion measure. |
| q_adj_factor += 0.05 - (0.001 * (double)cpi->kf_zeromotion_pct); |
| |
| // Convert the adjustment factor to a qindex delta on active_best_quality. |
| q_val = vp9_convert_qindex_to_q(cpi->active_best_quality); |
| cpi->active_best_quality += |
| compute_qdelta(cpi, q_val, (q_val * q_adj_factor)); |
| } |
| #else |
| double current_q; |
| |
| // Force the KF quantizer to be 30% of the active_worst_quality. |
| current_q = vp9_convert_qindex_to_q(cpi->active_worst_quality); |
| cpi->active_best_quality = cpi->active_worst_quality |
| + compute_qdelta(cpi, current_q, current_q * 0.3); |
| #endif |
| } else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) { |
| int high = 2000; |
| int low = 400; |
| |
| // Use the lower of cpi->active_worst_quality and recent |
| // average Q as basis for GF/ARF Q limit unless last frame was |
| // a key frame. |
| if (cpi->frames_since_key > 1 && |
| cpi->avg_frame_qindex < cpi->active_worst_quality) { |
| q = cpi->avg_frame_qindex; |
| } |
| |
| // For constrained quality dont allow Q less than the cq level |
| if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && |
| q < cpi->cq_target_quality) { |
| q = cpi->cq_target_quality; |
| } |
| |
| if (cpi->gfu_boost > high) { |
| cpi->active_best_quality = gf_low_motion_minq[q]; |
| } else if (cpi->gfu_boost < low) { |
| cpi->active_best_quality = gf_high_motion_minq[q]; |
| } else { |
| const int gap = high - low; |
| const int offset = high - cpi->gfu_boost; |
| const int qdiff = gf_high_motion_minq[q] - gf_low_motion_minq[q]; |
| const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; |
| |
| cpi->active_best_quality = gf_low_motion_minq[q] + adjustment; |
| } |
| |
| // Constrained quality use slightly lower active best. |
| if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) |
| cpi->active_best_quality = cpi->active_best_quality * 15 / 16; |
| } else { |
| #ifdef ONE_SHOT_Q_ESTIMATE |
| #ifdef STRICT_ONE_SHOT_Q |
| cpi->active_best_quality = q; |
| #else |
| cpi->active_best_quality = inter_minq[q]; |
| #endif |
| #else |
| cpi->active_best_quality = inter_minq[q]; |
| #endif |
| |
| // For the constant/constrained quality mode we don't want |
| // q to fall below the cq level. |
| if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && |
| (cpi->active_best_quality < cpi->cq_target_quality)) { |
| // If we are strongly undershooting the target rate in the last |
| // frames then use the user passed in cq value not the auto |
| // cq value. |
| if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth) |
| cpi->active_best_quality = cpi->oxcf.cq_level; |
| else |
| cpi->active_best_quality = cpi->cq_target_quality; |
| } |
| } |
| |
| // Clip the active best and worst quality values to limits |
| if (cpi->active_worst_quality > cpi->worst_quality) |
| cpi->active_worst_quality = cpi->worst_quality; |
| |
| if (cpi->active_best_quality < cpi->best_quality) |
| cpi->active_best_quality = cpi->best_quality; |
| |
| if (cpi->active_best_quality > cpi->worst_quality) |
| cpi->active_best_quality = cpi->worst_quality; |
| |
| if (cpi->active_worst_quality < cpi->active_best_quality) |
| cpi->active_worst_quality = cpi->active_best_quality; |
| |
| // Special case code to try and match quality with forced key frames |
| if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) { |
| q = cpi->last_boosted_qindex; |
| } else { |
| // Determine initial Q to try |
| q = vp9_regulate_q(cpi, cpi->this_frame_target); |
| } |
| |
| vp9_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, |
| &frame_over_shoot_limit); |
| |
| #if CONFIG_MULTIPLE_ARF |
| // Force the quantizer determined by the coding order pattern. |
| if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME)) { |
| double new_q; |
| double current_q = vp9_convert_qindex_to_q(cpi->active_worst_quality); |
| int level = cpi->this_frame_weight; |
| assert(level >= 0); |
| |
| // Set quantizer steps at 10% increments. |
| new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level))); |
| q = cpi->active_worst_quality + compute_qdelta(cpi, current_q, new_q); |
| |
| bottom_index = q; |
| top_index = q; |
| q_low = q; |
| q_high = q; |
| |
| printf("frame:%d q:%d\n", cm->current_video_frame, q); |
| } else { |
| #endif |
| // Limit Q range for the adaptive loop. |
| bottom_index = cpi->active_best_quality; |
| top_index = cpi->active_worst_quality; |
| q_low = cpi->active_best_quality; |
| q_high = cpi->active_worst_quality; |
| #if CONFIG_MULTIPLE_ARF |
| } |
| #endif |
| loop_count = 0; |
| vpx_memset(cpi->rd_tx_select_threshes, 0, sizeof(cpi->rd_tx_select_threshes)); |
| |
| if (cm->frame_type != KEY_FRAME) { |
| /* TODO: Decide this more intelligently */ |
| if (sf->search_best_filter) { |
| cm->mcomp_filter_type = mcomp_filters_to_search[0]; |
| mcomp_filter_index = 0; |
| } else { |
| cm->mcomp_filter_type = DEFAULT_INTERP_FILTER; |
| } |
| /* TODO: Decide this more intelligently */ |
| xd->allow_high_precision_mv = q < HIGH_PRECISION_MV_QTHRESH; |
| set_mvcost(&cpi->mb); |
| } |
| |
| #if CONFIG_POSTPROC |
| |
| if (cpi->oxcf.noise_sensitivity > 0) { |
| int l = 0; |
| |
| switch (cpi->oxcf.noise_sensitivity) { |
| case 1: |
| l = 20; |
| break; |
| case 2: |
| l = 40; |
| break; |
| case 3: |
| l = 60; |
| break; |
| case 4: |
| case 5: |
| l = 100; |
| break; |
| case 6: |
| l = 150; |
| break; |
| } |
| |
| vp9_denoise(cpi->Source, cpi->Source, l); |
| } |
| |
| #endif |
| |
| #ifdef OUTPUT_YUV_SRC |
| vp9_write_yuv_frame(cpi->Source); |
| #endif |
| |
| #if RESET_FOREACH_FILTER |
| if (sf->search_best_filter) { |
| q_low0 = q_low; |
| q_high0 = q_high; |
| Q0 = Q; |
| rate_correction_factor0 = cpi->rate_correction_factor; |
| gf_rate_correction_factor0 = cpi->gf_rate_correction_factor; |
| active_best_quality0 = cpi->active_best_quality; |
| active_worst_quality0 = cpi->active_worst_quality; |
| } |
| #endif |
| do { |
| vp9_clear_system_state(); // __asm emms; |
| |
| vp9_set_quantizer(cpi, q); |
| |
| if (loop_count == 0) { |
| int k; |
| |
| // setup skip prob for costing in mode/mv decision |
| for (k = 0; k < MBSKIP_CONTEXTS; k++) |
| cm->mbskip_pred_probs[k] = cpi->base_skip_false_prob[q][k]; |
| |
| if (cm->frame_type != KEY_FRAME) { |
| if (cpi->refresh_alt_ref_frame) { |
| for (k = 0; k < MBSKIP_CONTEXTS; k++) { |
| if (cpi->last_skip_false_probs[2][k] != 0) |
| cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[2][k]; |
| } |
| } else if (cpi->refresh_golden_frame) { |
| for (k = 0; k < MBSKIP_CONTEXTS; k++) { |
| if (cpi->last_skip_false_probs[1][k] != 0) |
| cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[1][k]; |
| } |
| } else { |
| int k; |
| for (k = 0; k < MBSKIP_CONTEXTS; k++) { |
| if (cpi->last_skip_false_probs[0][k] != 0) |
| cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[0][k]; |
| } |
| } |
| |
| // as this is for cost estimate, let's make sure it does not |
| // get extreme either way |
| { |
| int k; |
| for (k = 0; k < MBSKIP_CONTEXTS; ++k) { |
| cm->mbskip_pred_probs[k] = clamp(cm->mbskip_pred_probs[k], |
| 5, 250); |
| |
| if (cpi->is_src_frame_alt_ref) |
| cm->mbskip_pred_probs[k] = 1; |
| } |
| } |
| } |
| |
| // Set up entropy depending on frame type. |
| if (cm->frame_type == KEY_FRAME) { |
| /* Choose which entropy context to use. When using a forward reference |
| * frame, it immediately follows the keyframe, and thus benefits from |
| * using the same entropy context established by the keyframe. |
| * Otherwise, use the default context 0. |
| */ |
| cm->frame_context_idx = cpi->oxcf.play_alternate; |
| vp9_setup_key_frame(cpi); |
| } else { |
| /* Choose which entropy context to use. Currently there are only two |
| * contexts used, one for normal frames and one for alt ref frames. |
| */ |
| cpi->common.frame_context_idx = cpi->refresh_alt_ref_frame; |
| vp9_setup_inter_frame(cpi); |
| } |
| } |
| |
| #if CONFIG_IMPLICIT_SEGMENTATION |
| if (!cm->error_resilient_mode && !cpi->sf.static_segmentation) { |
| configure_implicit_segmentation(cpi, q); |
| } |
| #endif |
| |
| // transform / motion compensation build reconstruction frame |
| |
| vp9_encode_frame(cpi); |
| |
| // Update the skip mb flag probabilities based on the distribution |
| // seen in the last encoder iteration. |
| update_base_skip_probs(cpi); |
| |
| vp9_clear_system_state(); // __asm emms; |
| |
| // Dummy pack of the bitstream using up to date stats to get an |
| // accurate estimate of output frame size to determine if we need |
| // to recode. |
| vp9_save_coding_context(cpi); |
| cpi->dummy_packing = 1; |
| vp9_pack_bitstream(cpi, dest, size); |
| cpi->projected_frame_size = (*size) << 3; |
| vp9_restore_coding_context(cpi); |
| |
| if (frame_over_shoot_limit == 0) |
| frame_over_shoot_limit = 1; |
| active_worst_qchanged = 0; |
| |
| // Special case handling for forced key frames |
| if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) { |
| int last_q = q; |
| int kf_err = vp9_calc_ss_err(cpi->Source, |
| &cm->yv12_fb[cm->new_fb_idx]); |
| |
| int high_err_target = cpi->ambient_err; |
| int low_err_target = cpi->ambient_err >> 1; |
| |
| // Prevent possible divide by zero error below for perfect KF |
| kf_err += !kf_err; |
| |
| // The key frame is not good enough or we can afford |
| // to make it better without undue risk of popping. |
| if ((kf_err > high_err_target && |
| cpi->projected_frame_size <= frame_over_shoot_limit) || |
| (kf_err > low_err_target && |
| cpi->projected_frame_size <= frame_under_shoot_limit)) { |
| // Lower q_high |
| q_high = q > q_low ? q - 1 : q_low; |
| |
| // Adjust Q |
| q = (q * high_err_target) / kf_err; |
| q = MIN(q, (q_high + q_low) >> 1); |
| } else if (kf_err < low_err_target && |
| cpi->projected_frame_size >= frame_under_shoot_limit) { |
| // The key frame is much better than the previous frame |
| // Raise q_low |
| q_low = q < q_high ? q + 1 : q_high; |
| |
| // Adjust Q |
| q = (q * low_err_target) / kf_err; |
| q = MIN(q, (q_high + q_low + 1) >> 1); |
| } |
| |
| // Clamp Q to upper and lower limits: |
| q = clamp(q, q_low, q_high); |
| |
| loop = q != last_q; |
| } |
| |
| // Is the projected frame size out of range and are we allowed to attempt to recode. |
| else if (recode_loop_test(cpi, |
| frame_over_shoot_limit, frame_under_shoot_limit, |
| q, top_index, bottom_index)) { |
| int last_q = q; |
| int retries = 0; |
| |
| // Frame size out of permitted range: |
| // Update correction factor & compute new Q to try... |
| |
| // Frame is too large |
| if (cpi->projected_frame_size > cpi->this_frame_target) { |
| // Raise Qlow as to at least the current value |
| q_low = q < q_high ? q + 1 : q_high; |
| |
| if (undershoot_seen || loop_count > 1) { |
| // Update rate_correction_factor unless cpi->active_worst_quality |
| // has changed. |
| if (!active_worst_qchanged) |
| vp9_update_rate_correction_factors(cpi, 1); |
| |
| q = (q_high + q_low + 1) / 2; |
| } else { |
| // Update rate_correction_factor unless cpi->active_worst_quality has changed. |
| if (!active_worst_qchanged) |
| vp9_update_rate_correction_factors(cpi, 0); |
| |
| q = vp9_regulate_q(cpi, cpi->this_frame_target); |
| |
| while (q < q_low && retries < 10) { |
| vp9_update_rate_correction_factors(cpi, 0); |
| q = vp9_regulate_q(cpi, cpi->this_frame_target); |
| retries++; |
| } |
| } |
| |
| overshoot_seen = 1; |
| } else { |
| // Frame is too small |
| q_high = q > q_low ? q - 1 : q_low; |
| |
| if (overshoot_seen || loop_count > 1) { |
| // Update rate_correction_factor unless cpi->active_worst_quality has changed. |
| if (!active_worst_qchanged) |
| vp9_update_rate_correction_factors(cpi, 1); |
| |
| q = (q_high + q_low) / 2; |
| } else { |
| // Update rate_correction_factor unless cpi->active_worst_quality has changed. |
| if (!active_worst_qchanged) |
| vp9_update_rate_correction_factors(cpi, 0); |
| |
| q = vp9_regulate_q(cpi, cpi->this_frame_target); |
| |
| // Special case reset for qlow for constrained quality. |
| // This should only trigger where there is very substantial |
| // undershoot on a frame and the auto cq level is above |
| // the user passsed in value. |
| if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && q < q_low) { |
| q_low = q; |
| } |
| |
| while (q > q_high && retries < 10) { |
| vp9_update_rate_correction_factors(cpi, 0); |
| q = vp9_regulate_q(cpi, cpi->this_frame_target); |
| retries++; |
| } |
| } |
| |
| undershoot_seen = 1; |
| } |
| |
| // Clamp Q to upper and lower limits: |
| q = clamp(q, q_low, q_high); |
| |
| loop = q != last_q; |
| } else { |
| loop = 0; |
| } |
| |
| if (cpi->is_src_frame_alt_ref) |
| loop = 0; |
| |
| if (!loop && cm->frame_type != KEY_FRAME && sf->search_best_filter) { |
| if (mcomp_filter_index < mcomp_filters) { |
| int64_t err = vp9_calc_ss_err(cpi->Source, |
| &cm->yv12_fb[cm->new_fb_idx]); |
| int64_t rate = cpi->projected_frame_size << 8; |
| mcomp_filter_cost[mcomp_filter_index] = |
| (RDCOST(cpi->RDMULT, cpi->RDDIV, rate, err)); |
| mcomp_filter_index++; |
| if (mcomp_filter_index < mcomp_filters) { |
| cm->mcomp_filter_type = mcomp_filters_to_search[mcomp_filter_index]; |
| loop_count = -1; |
| loop = 1; |
| } else { |
| int f; |
| int64_t best_cost = mcomp_filter_cost[0]; |
| int mcomp_best_filter = mcomp_filters_to_search[0]; |
| for (f = 1; f < mcomp_filters; f++) { |
| if (mcomp_filter_cost[f] < best_cost) { |
| mcomp_best_filter = mcomp_filters_to_search[f]; |
| best_cost = mcomp_filter_cost[f]; |
| } |
| } |
| if (mcomp_best_filter != mcomp_filters_to_search[mcomp_filters - 1]) { |
| loop_count = -1; |
| loop = 1; |
| cm->mcomp_filter_type = mcomp_best_filter; |
| } |
| /* |
| printf(" best filter = %d, ( ", mcomp_best_filter); |
| for (f=0;f<mcomp_filters; f++) printf("%d ", mcomp_filter_cost[f]); |
| printf(")\n"); |
| */ |
| } |
| #if RESET_FOREACH_FILTER |
| if (loop) { |
| overshoot_seen = 0; |
| undershoot_seen = 0; |
| q_low = q_low0; |
| q_high = q_high0; |
| q = Q0; |
| cpi->rate_correction_factor = rate_correction_factor0; |
| cpi->gf_rate_correction_factor = gf_rate_correction_factor0; |
| cpi->active_best_quality = active_best_quality0; |
| cpi->active_worst_quality = active_worst_quality0; |
| } |
| #endif |
| } |
| } |
| |
| if (loop) { |
| loop_count++; |
| |
| #if CONFIG_INTERNAL_STATS |
| cpi->tot_recode_hits++; |
| #endif |
| } |
| } while (loop); |
| |
| // Special case code to reduce pulsing when key frames are forced at a |
| // fixed interval. Note the reconstruction error if it is the frame before |
| // the force key frame |
| if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) { |
| cpi->ambient_err = vp9_calc_ss_err(cpi->Source, |
| &cm->yv12_fb[cm->new_fb_idx]); |
| } |
| |
| if (cm->frame_type == KEY_FRAME) |
| cpi->refresh_last_frame = 1; |
| |
| cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx]; |
| |
| #if WRITE_RECON_BUFFER |
| if (cm->show_frame) |
| write_cx_frame_to_file(cm->frame_to_show, |
| cm->current_video_frame); |
| else |
| write_cx_frame_to_file(cm->frame_to_show, |
| cm->current_video_frame + 1000); |
| #endif |
| |
| // Pick the loop filter level for the frame. |
| loopfilter_frame(cpi, cm); |
| |
| #if WRITE_RECON_BUFFER |
| if (cm->show_frame) |
| write_cx_frame_to_file(cm->frame_to_show, |
| cm->current_video_frame + 2000); |
| else |
| write_cx_frame_to_file(cm->frame_to_show, |
| cm->current_video_frame + 3000); |
| #endif |
| |
| // build the bitstream |
| cpi->dummy_packing = 0; |
| vp9_pack_bitstream(cpi, dest, size); |
| |
| #if CONFIG_IMPLICIT_SEGMENTATION |
| // Should we allow implicit update of the segment map. |
| if (xd->allow_implicit_segment_update && !cm->error_resilient_mode) { |
| vp9_implicit_segment_map_update(cm); |
| // or has there been an explicit update |
| } else if (xd->update_mb_segmentation_map) { |
| #else |
| if (xd->update_mb_segmentation_map) { |
| #endif |
| update_reference_segmentation_map(cpi); |
| } |
| |
| release_scaled_references(cpi); |
| update_reference_frames(cpi); |
| |
| vp9_full_to_model_counts(cpi->common.fc.coef_counts_4x4, |
| cpi->coef_counts_4x4); |
| vp9_full_to_model_counts(cpi->common.fc.coef_counts_8x8, |
| cpi->coef_counts_8x8); |
| vp9_full_to_model_counts(cpi->common.fc.coef_counts_16x16, |
| cpi->coef_counts_16x16); |
| vp9_full_to_model_counts(cpi->common.fc.coef_counts_32x32, |
| cpi->coef_counts_32x32); |
| if (!cpi->common.error_resilient_mode && |
| !cpi->common.frame_parallel_decoding_mode) { |
| vp9_adapt_coef_probs(&cpi->common); |
| } |
| |
| if (cpi->common.frame_type != KEY_FRAME) { |
| vp9_copy(cpi->common.fc.sb_ymode_counts, cpi->sb_ymode_count); |
| vp9_copy(cpi->common.fc.ymode_counts, cpi->ymode_count); |
| vp9_copy(cpi->common.fc.uv_mode_counts, cpi->y_uv_mode_count); |
| vp9_copy(cpi->common.fc.bmode_counts, cpi->bmode_count); |
| vp9_copy(cpi->common.fc.partition_counts, cpi->partition_count); |
| cpi->common.fc.NMVcount = cpi->NMVcount; |
| if (!cpi->common.error_resilient_mode && |
| !cpi->common.frame_parallel_decoding_mode) { |
| vp9_adapt_mode_probs(&cpi->common); |
| vp9_adapt_mode_context(&cpi->common); |
| vp9_adapt_nmv_probs(&cpi->common, cpi->mb.e_mbd.allow_high_precision_mv); |
| } |
| } |
| |
| #ifdef ENTROPY_STATS |
| vp9_update_mode_context_stats(cpi); |
| #endif |
| |
| /* Move storing frame_type out of the above loop since it is also |
| * needed in motion search besides loopfilter */ |
| cm->last_frame_type = cm->frame_type; |
| |
| // Update rate control heuristics |
| cpi->total_byte_count += (*size); |
| cpi->projected_frame_size = (*size) << 3; |
| |
| if (!active_worst_qchanged) |
| vp9_update_rate_correction_factors(cpi, 2); |
| |
| cpi->last_q[cm->frame_type] = cm->base_qindex; |
| |
| // Keep record of last boosted (KF/KF/ARF) Q value. |
| // If the current frame is coded at a lower Q then we also update it. |
| // If all mbs in this group are skipped only update if the Q value is |
| // better than that already stored. |
| // This is used to help set quality in forced key frames to reduce popping |
| if ((cm->base_qindex < cpi->last_boosted_qindex) || |
| ((cpi->static_mb_pct < 100) && |
| ((cm->frame_type == KEY_FRAME) || |
| cpi->refresh_alt_ref_frame || |
| (cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) { |
| cpi->last_boosted_qindex = cm->base_qindex; |
| } |
| |
| if (cm->frame_type == KEY_FRAME) { |
| vp9_adjust_key_frame_context(cpi); |
| } |
| |
| // Keep a record of ambient average Q. |
| if (cm->frame_type != KEY_FRAME) |
| cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2; |
| |
| // Keep a record from which we can calculate the average Q excluding GF updates and key frames |
| if (cm->frame_type != KEY_FRAME && |
| !cpi->refresh_golden_frame && |
| !cpi->refresh_alt_ref_frame) { |
| cpi->ni_frames++; |
| cpi->tot_q += vp9_convert_qindex_to_q(q); |
| cpi->avg_q = cpi->tot_q / (double)cpi->ni_frames; |
| |
| // Calculate the average Q for normal inter frames (not key or GFU frames). |
| cpi->ni_tot_qi += q; |
| cpi->ni_av_qi = cpi->ni_tot_qi / cpi->ni_frames; |
| } |
| |
| // Update the buffer level variable. |
| // Non-viewable frames are a special case and are treated as pure overhead. |
| if (!cm->show_frame) |
| cpi->bits_off_target -= cpi->projected_frame_size; |
| else |
| cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size; |
| |
| // Clip the buffer level at the maximum buffer size |
| if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) |
| cpi->bits_off_target = cpi->oxcf.maximum_buffer_size; |
| |
| // Rolling monitors of whether we are over or underspending used to help |
| // regulate min and Max Q in two pass. |
| if (cm->frame_type != KEY_FRAME) { |
| cpi->rolling_target_bits = |
| ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4; |
| cpi->rolling_actual_bits = |
| ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4; |
| cpi->long_rolling_target_bits = |
| ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32; |
| cpi->long_rolling_actual_bits = |
| ((cpi->long_rolling_actual_bits * 31) + |
| cpi->projected_frame_size + 16) / 32; |
| } |
| |
| // Actual bits spent |
| cpi->total_actual_bits += cpi->projected_frame_size; |
| |
| // Debug stats |
| cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size); |
| |
| cpi->buffer_level = cpi->bits_off_target; |
| |
| // Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames |
| if (cm->frame_type == KEY_FRAME) { |
| cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size; |
| |
| cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0); |
| } else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) { |
| cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size; |
| |
| cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0); |
| } |
| |
| // Update the skip mb flag probabilities based on the distribution seen |
| // in this frame. |
| update_base_skip_probs(cpi); |
| |
| #if 0 && CONFIG_INTERNAL_STATS |
| { |
| FILE *f = fopen("tmp.stt", "a"); |
| int recon_err; |
| |
| vp9_clear_system_state(); // __asm emms; |
| |
| recon_err = vp9_calc_ss_err(cpi->Source, |
| &cm->yv12_fb[cm->new_fb_idx]); |
| |
| if (cpi->twopass.total_left_stats.coded_error != 0.0) |
| fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d" |
| "%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f" |
| "%6d %6d %5d %5d %5d %8.2f %10d %10.3f" |
| "%10.3f %8d %10d %10d %10d\n", |
| cpi->common.current_video_frame, cpi->this_frame_target, |
| cpi->projected_frame_size, 0, //loop_size_estimate, |
| (cpi->projected_frame_size - cpi->this_frame_target), |
| (int)cpi->total_target_vs_actual, |
| (int)(cpi->oxcf.starting_buffer_level - cpi->bits_off_target), |
| (int)cpi->total_actual_bits, |
| vp9_convert_qindex_to_q(cm->base_qindex), |
| (double)vp9_dc_quant(cm->base_qindex, 0) / 4.0, |
| vp9_convert_qindex_to_q(cpi->active_best_quality), |
| vp9_convert_qindex_to_q(cpi->active_worst_quality), |
| cpi->avg_q, |
| vp9_convert_qindex_to_q(cpi->ni_av_qi), |
| vp9_convert_qindex_to_q(cpi->cq_target_quality), |
| cpi->refresh_last_frame, |
| cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame, |
| cm->frame_type, cpi->gfu_boost, |
| cpi->twopass.est_max_qcorrection_factor, |
| (int)cpi->twopass.bits_left, |
| cpi->twopass.total_left_stats.coded_error, |
| (double)cpi->twopass.bits_left / |
| cpi->twopass.total_left_stats.coded_error, |
| cpi->tot_recode_hits, recon_err, cpi->kf_boost, |
| cpi->kf_zeromotion_pct); |
| else |
| fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d" |
| "%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f" |
| "%5d %5d %5d %8d %8d %8.2f %10d %10.3f" |
| "%8d %10d %10d %10d\n", |
| cpi->common.current_video_frame, |
| cpi->this_frame_target, cpi->projected_frame_size, |
| 0, //loop_size_estimate, |
| (cpi->projected_frame_size - cpi->this_frame_target), |
| (int)cpi->total_target_vs_actual, |
| (int)(cpi->oxcf.starting_buffer_level - cpi->bits_off_target), |
| (int)cpi->total_actual_bits, |
| vp9_convert_qindex_to_q(cm->base_qindex), |
| (double)vp9_dc_quant(cm->base_qindex, 0) / 4.0, |
| vp9_convert_qindex_to_q(cpi->active_best_quality), |
| vp9_convert_qindex_to_q(cpi->active_worst_quality), |
| cpi->avg_q, |
| vp9_convert_qindex_to_q(cpi->ni_av_qi), |
| vp9_convert_qindex_to_q(cpi->cq_target_quality), |
| cpi->refresh_last_frame, |
| cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame, |
| cm->frame_type, cpi->gfu_boost, |
| cpi->twopass.est_max_qcorrection_factor, |
| (int)cpi->twopass.bits_left, |
| cpi->twopass.total_left_stats.coded_error, |
| cpi->tot_recode_hits, recon_err, cpi->kf_boost, |
| cpi->kf_zeromotion_pct); |
| |
| fclose(f); |
| |
| if (0) { |
| FILE *fmodes = fopen("Modes.stt", "a"); |
| int i; |
| |
| fprintf(fmodes, "%6d:%1d:%1d:%1d ", |
| cpi->common.current_video_frame, |
| cm->frame_type, cpi->refresh_golden_frame, |
| cpi->refresh_alt_ref_frame); |
| |
| for (i = 0; i < MAX_MODES; i++) |
| fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]); |
| |
| fprintf(fmodes, "\n"); |
| |
| fclose(fmodes); |
| } |
| } |
| |
| #endif |
| |
| #if 0 |
| // Debug stats for segment feature experiments. |
| print_seg_map(cpi); |
| #endif |
| |
| // If this was a kf or Gf note the Q |
| if ((cm->frame_type == KEY_FRAME) |
| || cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) |
| cm->last_kf_gf_q = cm->base_qindex; |
| |
| if (cpi->refresh_golden_frame == 1) |
| cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN; |
| else |
| cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN; |
| |
| if (cpi->refresh_alt_ref_frame == 1) |
| cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF; |
| else |
| cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF; |
| |
| |
| if (cpi->refresh_last_frame & cpi->refresh_golden_frame) |
| cpi->gold_is_last = 1; |
| else if (cpi->refresh_last_frame ^ cpi->refresh_golden_frame) |
| cpi->gold_is_last = 0; |
| |
| if (cpi->refresh_last_frame & cpi->refresh_alt_ref_frame) |
| cpi->alt_is_last = 1; |
| else if (cpi->refresh_last_frame ^ cpi->refresh_alt_ref_frame) |
| cpi->alt_is_last = 0; |
| |
| if (cpi->refresh_alt_ref_frame & cpi->refresh_golden_frame) |
| cpi->gold_is_alt = 1; |
| else if (cpi->refresh_alt_ref_frame ^ cpi->refresh_golden_frame) |
| cpi->gold_is_alt = 0; |
| |
| cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG; |
| |
| if (cpi->gold_is_last) |
| cpi->ref_frame_flags &= ~VP9_GOLD_FLAG; |
| |
| if (cpi->alt_is_last) |
| cpi->ref_frame_flags &= ~VP9_ALT_FLAG; |
| |
| if (cpi->gold_is_alt) |
| cpi->ref_frame_flags &= ~VP9_ALT_FLAG; |
| |
| if (cpi->oxcf.play_alternate && cpi->refresh_alt_ref_frame |
| && (cm->frame_type != KEY_FRAME)) |
| // Update the alternate reference frame stats as appropriate. |
| update_alt_ref_frame_stats(cpi); |
| else |
| // Update the Golden frame stats as appropriate. |
| update_golden_frame_stats(cpi); |
| |
| if (cm->frame_type == KEY_FRAME) { |
| // Tell the caller that the frame was coded as a key frame |
| *frame_flags = cm->frame_flags | FRAMEFLAGS_KEY; |
| |
| #if CONFIG_MULTIPLE_ARF |
| // Reset the sequence number. |
| if (cpi->multi_arf_enabled) { |
| cpi->sequence_number = 0; |
| cpi->frame_coding_order_period = cpi->new_frame_coding_order_period; |
| cpi->new_frame_coding_order_period = -1; |
| } |
| #endif |
| |
| // As this frame is a key frame the next defaults to an inter frame. |
| cm->frame_type = INTER_FRAME; |
| } else { |
| *frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY; |
| |
| #if CONFIG_MULTIPLE_ARF |
| /* Increment position in the coded frame sequence. */ |
| if (cpi->multi_arf_enabled) { |
| ++cpi->sequence_number; |
| if (cpi->sequence_number >= cpi->frame_coding_order_period) { |
| cpi->sequence_number = 0; |
| cpi->frame_coding_order_period = cpi->new_frame_coding_order_period; |
| cpi->new_frame_coding_order_period = -1; |
| } |
| cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number]; |
| assert(cpi->this_frame_weight >= 0); |
| } |
| #endif |
| } |
| |
| // Clear the one shot update flags for segmentation map and mode/ref loop filter deltas. |
| xd->update_mb_segmentation_map = 0; |
| xd->update_mb_segmentation_data = 0; |
| xd->mode_ref_lf_delta_update = 0; |
| |
| // keep track of the last coded dimensions |
| cm->last_width = cm->width; |
| cm->last_height = cm->height; |
| |
| // Don't increment frame counters if this was an altref buffer |
| // update not a real frame |
| cm->last_show_frame = cm->show_frame; |
| if (cm->show_frame) { |
| ++cm->current_video_frame; |
| ++cpi->frames_since_key; |
| } |
| |
| // reset to normal state now that we are done. |
| |
| #if 0 |
| { |
| char filename[512]; |
| FILE *recon_file; |
| sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); |
| recon_file = fopen(filename, "wb"); |
| fwrite(cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]].buffer_alloc, |
| cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]].frame_size, |
| 1, recon_file); |
| fclose(recon_file); |
| } |
| #endif |
| #ifdef OUTPUT_YUV_REC |
| vp9_write_yuv_rec_frame(cm); |
| #endif |
| |
| if (cm->show_frame) { |
| vpx_memcpy(cm->prev_mip, cm->mip, |
| cm->mode_info_stride * (cm->mi_rows + 1) * |
| sizeof(MODE_INFO)); |
| } else { |
| vpx_memset(cm->prev_mip, 0, |
| cm->mode_info_stride * (cm->mi_rows + 1) * |
| sizeof(MODE_INFO)); |
| } |
| } |
| |
| static void Pass2Encode(VP9_COMP *cpi, unsigned long *size, |
| unsigned char *dest, unsigned int *frame_flags) { |
| |
| if (!cpi->refresh_alt_ref_frame) |
| vp9_second_pass(cpi); |
| |
| encode_frame_to_data_rate(cpi, size, dest, frame_flags); |
| |
| #ifdef DISABLE_RC_LONG_TERM_MEM |
| cpi->twopass.bits_left -= cpi->this_frame_target; |
| #else |
| cpi->twopass.bits_left -= 8 * *size; |
| #endif |
| |
| if (!cpi->refresh_alt_ref_frame) { |
| double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.frame_rate; |
| double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth |
| * cpi->oxcf.two_pass_vbrmin_section / 100); |
| |
| if (two_pass_min_rate < lower_bounds_min_rate) |
| two_pass_min_rate = lower_bounds_min_rate; |
| |
| cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->oxcf.frame_rate); |
| } |
| } |
| |
| |
| int vp9_receive_raw_frame(VP9_PTR ptr, unsigned int frame_flags, |
| YV12_BUFFER_CONFIG *sd, int64_t time_stamp, |
| int64_t end_time) { |
| VP9_COMP *cpi = (VP9_COMP *) ptr; |
| VP9_COMMON *cm = &cpi->common; |
| struct vpx_usec_timer timer; |
| int res = 0; |
| |
| if (!cpi->initial_width) { |
| // TODO(jkoleszar): Support 1/4 subsampling? |
| cm->subsampling_x = sd->uv_width < sd->y_width; |
| cm->subsampling_y = sd->uv_height < sd->y_height; |
| alloc_raw_frame_buffers(cpi); |
| |
| cpi->initial_width = cm->width; |
| cpi->initial_height = cm->height; |
| } |
| vpx_usec_timer_start(&timer); |
| if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags, |
| cpi->active_map_enabled ? cpi->active_map : NULL)) |
| res = -1; |
| cm->clr_type = sd->clrtype; |
| vpx_usec_timer_mark(&timer); |
| cpi->time_receive_data += vpx_usec_timer_elapsed(&timer); |
| |
| return res; |
| } |
| |
| |
| static int frame_is_reference(const VP9_COMP *cpi) { |
| const VP9_COMMON *cm = &cpi->common; |
| const MACROBLOCKD *mb = &cpi->mb.e_mbd; |
| |
| return cm->frame_type == KEY_FRAME || |
| cpi->refresh_last_frame || |
| cpi->refresh_golden_frame || |
| cpi->refresh_alt_ref_frame || |
| cm->refresh_frame_context || |
| mb->mode_ref_lf_delta_update || |
| mb->update_mb_segmentation_map || |
| mb->update_mb_segmentation_data; |
| } |
| |
| #if CONFIG_MULTIPLE_ARF |
| int is_next_frame_arf(VP9_COMP *cpi) { |
| // Negative entry in frame_coding_order indicates an ARF at this position. |
| return cpi->frame_coding_order[cpi->sequence_number + 1] < 0 ? 1 : 0; |
| } |
| #endif |
| |
| int vp9_get_compressed_data(VP9_PTR ptr, unsigned int *frame_flags, |
| unsigned long *size, unsigned char *dest, |
| int64_t *time_stamp, int64_t *time_end, int flush) { |
| VP9_COMP *cpi = (VP9_COMP *) ptr; |
| VP9_COMMON *cm = &cpi->common; |
| struct vpx_usec_timer cmptimer; |
| YV12_BUFFER_CONFIG *force_src_buffer = NULL; |
| int i; |
| // FILE *fp_out = fopen("enc_frame_type.txt", "a"); |
| |
| if (!cpi) |
| return -1; |
| |
| vpx_usec_timer_start(&cmptimer); |
| |
| cpi->source = NULL; |
| |
| cpi->mb.e_mbd.allow_high_precision_mv = ALTREF_HIGH_PRECISION_MV; |
| set_mvcost(&cpi->mb); |
| |
| // Should we code an alternate reference frame. |
| if (cpi->oxcf.play_alternate && cpi->source_alt_ref_pending) { |
| int frames_to_arf; |
| |
| #if CONFIG_MULTIPLE_ARF |
| assert(!cpi->multi_arf_enabled || |
| cpi->frame_coding_order[cpi->sequence_number] < 0); |
| |
| if (cpi->multi_arf_enabled && (cpi->pass == 2)) |
| frames_to_arf = (-cpi->frame_coding_order[cpi->sequence_number]) |
| - cpi->next_frame_in_order; |
| else |
| #endif |
| frames_to_arf = cpi->frames_till_gf_update_due; |
| |
| assert(frames_to_arf < cpi->twopass.frames_to_key); |
| |
| if ((cpi->source = vp9_lookahead_peek(cpi->lookahead, frames_to_arf))) { |
| #if CONFIG_MULTIPLE_ARF |
| cpi->alt_ref_source[cpi->arf_buffered] = cpi->source; |
| #else |
| cpi->alt_ref_source = cpi->source; |
| #endif |
| |
| if (cpi->oxcf.arnr_max_frames > 0) { |
| // Produce the filtered ARF frame. |
| // TODO(agrange) merge these two functions. |
| configure_arnr_filter(cpi, cm->current_video_frame + frames_to_arf, |
| cpi->gfu_boost); |
| vp9_temporal_filter_prepare(cpi, frames_to_arf); |
| force_src_buffer = &cpi->alt_ref_buffer; |
| } |
| |
| cm->show_frame = 0; |
| cpi->refresh_alt_ref_frame = 1; |
| cpi->refresh_golden_frame = 0; |
| cpi->refresh_last_frame = 0; |
| cpi->is_src_frame_alt_ref = 0; |
| |
| // TODO(agrange) This needs to vary depending on where the next ARF is. |
| cm->frames_till_alt_ref_frame = frames_to_arf; |
| |
| #if CONFIG_MULTIPLE_ARF |
| if (!cpi->multi_arf_enabled) |
| #endif |
| cpi->source_alt_ref_pending = 0; // Clear Pending altf Ref flag. |
| } |
| } |
| |
| if (!cpi->source) { |
| #if CONFIG_MULTIPLE_ARF |
| int i; |
| #endif |
| if ((cpi->source = vp9_lookahead_pop(cpi->lookahead, flush))) { |
| cm->show_frame = 1; |
| |
| #if CONFIG_MULTIPLE_ARF |
| // Is this frame the ARF overlay. |
| cpi->is_src_frame_alt_ref = 0; |
| for (i = 0; i < cpi->arf_buffered; ++i) { |
| if (cpi->source == cpi->alt_ref_source[i]) { |
| cpi->is_src_frame_alt_ref = 1; |
| cpi->refresh_golden_frame = 1; |
| break; |
| } |
| } |
| #else |
| cpi->is_src_frame_alt_ref = cpi->alt_ref_source |
| && (cpi->source == cpi->alt_ref_source); |
| #endif |
| if (cpi->is_src_frame_alt_ref) { |
| // Current frame is an ARF overlay frame. |
| #if CONFIG_MULTIPLE_ARF |
| cpi->alt_ref_source[i] = NULL; |
| #else |
| cpi->alt_ref_source = NULL; |
| #endif |
| // Don't refresh the last buffer for an ARF overlay frame. It will |
| // become the GF so preserve last as an alternative prediction option. |
| cpi->refresh_last_frame = 0; |
| } |
| #if CONFIG_MULTIPLE_ARF |
| ++cpi->next_frame_in_order; |
| #endif |
| } |
| } |
| |
| if (cpi->source) { |
| cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer |
| : &cpi->source->img; |
| *time_stamp = cpi->source->ts_start; |
| *time_end = cpi->source->ts_end; |
| *frame_flags = cpi->source->flags; |
| |
| // fprintf(fp_out, " Frame:%d", cm->current_video_frame); |
| #if CONFIG_MULTIPLE_ARF |
| if (cpi->multi_arf_enabled) { |
| // fprintf(fp_out, " seq_no:%d this_frame_weight:%d", |
| // cpi->sequence_number, cpi->this_frame_weight); |
| } else { |
| // fprintf(fp_out, "\n"); |
| } |
| #else |
| // fprintf(fp_out, "\n"); |
| #endif |
| |
| #if CONFIG_MULTIPLE_ARF |
| if ((cm->frame_type != KEY_FRAME) && (cpi->pass == 2)) |
| cpi->source_alt_ref_pending = is_next_frame_arf(cpi); |
| #endif |
| } else { |
| *size = 0; |
| if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) { |
| vp9_end_first_pass(cpi); /* get last stats packet */ |
| cpi->twopass.first_pass_done = 1; |
| } |
| |
| // fclose(fp_out); |
| return -1; |
| } |
| |
| if (cpi->source->ts_start < cpi->first_time_stamp_ever) { |
| cpi->first_time_stamp_ever = cpi->source->ts_start; |
| cpi->last_end_time_stamp_seen = cpi->source->ts_start; |
| } |
| |
| // adjust frame rates based on timestamps given |
| if (!cpi->refresh_alt_ref_frame) { |
| int64_t this_duration; |
| int step = 0; |
| |
| if (cpi->source->ts_start == cpi->first_time_stamp_ever) { |
| this_duration = cpi->source->ts_end - cpi->source->ts_start; |
| step = 1; |
| } else { |
| int64_t last_duration = cpi->last_end_time_stamp_seen |
| - cpi->last_time_stamp_seen; |
| |
| this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen; |
| |
| // do a step update if the duration changes by 10% |
| if (last_duration) |
| step = (int)((this_duration - last_duration) * 10 / last_duration); |
| } |
| |
| if (this_duration) { |
| if (step) { |
| vp9_new_frame_rate(cpi, 10000000.0 / this_duration); |
| } else { |
| // Average this frame's rate into the last second's average |
| // frame rate. If we haven't seen 1 second yet, then average |
| // over the whole interval seen. |
| const double interval = MIN((double)(cpi->source->ts_end |
| - cpi->first_time_stamp_ever), 10000000.0); |
| double avg_duration = 10000000.0 / cpi->oxcf.frame_rate; |
| avg_duration *= (interval - avg_duration + this_duration); |
| avg_duration /= interval; |
| |
| vp9_new_frame_rate(cpi, 10000000.0 / avg_duration); |
| } |
| } |
| |
| cpi->last_time_stamp_seen = cpi->source->ts_start; |
| cpi->last_end_time_stamp_seen = cpi->source->ts_end; |
| } |
| |
| // start with a 0 size frame |
| *size = 0; |
| |
| // Clear down mmx registers |
| vp9_clear_system_state(); // __asm emms; |
| |
| /* find a free buffer for the new frame, releasing the reference previously |
| * held. |
| */ |
| cm->fb_idx_ref_cnt[cm->new_fb_idx]--; |
| cm->new_fb_idx = get_free_fb(cm); |
| |
| #if CONFIG_MULTIPLE_ARF |
| /* Set up the correct ARF frame. */ |
| if (cpi->refresh_alt_ref_frame) { |
| ++cpi->arf_buffered; |
| } |
| if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) && |
| (cpi->pass == 2)) { |
| cpi->alt_fb_idx = cpi->arf_buffer_idx[cpi->sequence_number]; |
| } |
| #endif |
| |
| /* Get the mapping of L/G/A to the reference buffer pool */ |
| cm->active_ref_idx[0] = cm->ref_frame_map[cpi->lst_fb_idx]; |
| cm->active_ref_idx[1] = cm->ref_frame_map[cpi->gld_fb_idx]; |
| cm->active_ref_idx[2] = cm->ref_frame_map[cpi->alt_fb_idx]; |
| |
| #if 0 // CONFIG_MULTIPLE_ARF |
| if (cpi->multi_arf_enabled) { |
| fprintf(fp_out, " idx(%d, %d, %d, %d) active(%d, %d, %d)", |
| cpi->lst_fb_idx, cpi->gld_fb_idx, cpi->alt_fb_idx, cm->new_fb_idx, |
| cm->active_ref_idx[0], cm->active_ref_idx[1], cm->active_ref_idx[2]); |
| if (cpi->refresh_alt_ref_frame) |
| fprintf(fp_out, " type:ARF"); |
| if (cpi->is_src_frame_alt_ref) |
| fprintf(fp_out, " type:OVERLAY[%d]", cpi->alt_fb_idx); |
| fprintf(fp_out, "\n"); |
| } |
| #endif |
| |
| cm->frame_type = INTER_FRAME; |
| cm->frame_flags = *frame_flags; |
| |
| // Reset the frame pointers to the current frame size |
| vp9_realloc_frame_buffer(&cm->yv12_fb[cm->new_fb_idx], |
| cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| VP9BORDERINPIXELS); |
| |
| // Calculate scaling factors for each of the 3 available references |
| for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) |
| vp9_setup_scale_factors(cm, i); |
| |
| vp9_setup_interp_filters(&cpi->mb.e_mbd, DEFAULT_INTERP_FILTER, cm); |
| |
| if (cpi->pass == 1) { |
| Pass1Encode(cpi, size, dest, frame_flags); |
| } else if (cpi->pass == 2) { |
| Pass2Encode(cpi, size, dest, frame_flags); |
| } else { |
| encode_frame_to_data_rate(cpi, size, dest, frame_flags); |
| } |
| |
| if (cm->refresh_frame_context) |
| cm->frame_contexts[cm->frame_context_idx] = cm->fc; |
| |
| if (*size > 0) { |
| // if its a dropped frame honor the requests on subsequent frames |
| cpi->droppable = !frame_is_reference(cpi); |
| |
| // return to normal state |
| cm->refresh_frame_context = 1; |
| cpi->refresh_alt_ref_frame = 0; |
| cpi->refresh_golden_frame = 0; |
| cpi->refresh_last_frame = 1; |
| cm->frame_type = INTER_FRAME; |
| } |
| |
| vpx_usec_timer_mark(&cmptimer); |
| cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer); |
| |
| if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame) |
| generate_psnr_packet(cpi); |
| |
| #if CONFIG_INTERNAL_STATS |
| |
| if (cpi->pass != 1) { |
| cpi->bytes += *size; |
| |
| if (cm->show_frame) { |
| |
| cpi->count++; |
| |
| if (cpi->b_calculate_psnr) { |
| double ye, ue, ve; |
| double frame_psnr; |
| YV12_BUFFER_CONFIG *orig = cpi->Source; |
| YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; |
| YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer; |
| int y_samples = orig->y_height * orig->y_width; |
| int uv_samples = orig->uv_height * orig->uv_width; |
| int t_samples = y_samples + 2 * uv_samples; |
| double sq_error; |
| |
| ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride, |
| recon->y_buffer, recon->y_stride, orig->y_width, |
| orig->y_height); |
| |
| ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride, |
| recon->u_buffer, recon->uv_stride, orig->uv_width, |
| orig->uv_height); |
| |
| ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride, |
| recon->v_buffer, recon->uv_stride, orig->uv_width, |
| orig->uv_height); |
| |
| sq_error = ye + ue + ve; |
| |
| frame_psnr = vp9_mse2psnr(t_samples, 255.0, sq_error); |
| |
| cpi->total_y += vp9_mse2psnr(y_samples, 255.0, ye); |
| cpi->total_u += vp9_mse2psnr(uv_samples, 255.0, ue); |
| cpi->total_v += vp9_mse2psnr(uv_samples, 255.0, ve); |
| cpi->total_sq_error += sq_error; |
| cpi->total += frame_psnr; |
| { |
| double frame_psnr2, frame_ssim2 = 0; |
| double weight = 0; |
| #if CONFIG_POSTPROC |
| vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer, |
| cm->filter_level * 10 / 6); |
| #endif |
| vp9_clear_system_state(); |
| |
| ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride, |
| pp->y_buffer, pp->y_stride, orig->y_width, |
| orig->y_height); |
| |
| ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride, |
| pp->u_buffer, pp->uv_stride, orig->uv_width, |
| orig->uv_height); |
| |
| ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride, |
| pp->v_buffer, pp->uv_stride, orig->uv_width, |
| orig->uv_height); |
| |
| sq_error = ye + ue + ve; |
| |
| frame_psnr2 = vp9_mse2psnr(t_samples, 255.0, sq_error); |
| |
| cpi->totalp_y += vp9_mse2psnr(y_samples, 255.0, ye); |
| cpi->totalp_u += vp9_mse2psnr(uv_samples, 255.0, ue); |
| cpi->totalp_v += vp9_mse2psnr(uv_samples, 255.0, ve); |
| cpi->total_sq_error2 += sq_error; |
| cpi->totalp += frame_psnr2; |
| |
| frame_ssim2 = vp9_calc_ssim(cpi->Source, |
| recon, 1, &weight); |
| |
| cpi->summed_quality += frame_ssim2 * weight; |
| cpi->summed_weights += weight; |
| |
| frame_ssim2 = vp9_calc_ssim(cpi->Source, |
| &cm->post_proc_buffer, 1, &weight); |
| |
| cpi->summedp_quality += frame_ssim2 * weight; |
| cpi->summedp_weights += weight; |
| #if 0 |
| { |
| FILE *f = fopen("q_used.stt", "a"); |
| fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n", |
| cpi->common.current_video_frame, y2, u2, v2, |
| frame_psnr2, frame_ssim2); |
| fclose(f); |
| } |
| #endif |
| } |
| } |
| |
| if (cpi->b_calculate_ssimg) { |
| double y, u, v, frame_all; |
| frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show, |
| &y, &u, &v); |
| cpi->total_ssimg_y += y; |
| cpi->total_ssimg_u += u; |
| cpi->total_ssimg_v += v; |
| cpi->total_ssimg_all += frame_all; |
| } |
| } |
| } |
| |
| #endif |
| // fclose(fp_out); |
| return 0; |
| } |
| |
| int vp9_get_preview_raw_frame(VP9_PTR comp, YV12_BUFFER_CONFIG *dest, |
| vp9_ppflags_t *flags) { |
| VP9_COMP *cpi = (VP9_COMP *) comp; |
| |
| if (!cpi->common.show_frame) |
| return -1; |
| else { |
| int ret; |
| #if CONFIG_POSTPROC |
| ret = vp9_post_proc_frame(&cpi->common, dest, flags); |
| #else |
| |
| if (cpi->common.frame_to_show) { |
| *dest = *cpi->common.frame_to_show; |
| dest->y_width = cpi->common.width; |
| dest->y_height = cpi->common.height; |
| dest->uv_height = cpi->common.height / 2; |
| ret = 0; |
| } else { |
| ret = -1; |
| } |
| |
| #endif // !CONFIG_POSTPROC |
| vp9_clear_system_state(); |
| return ret; |
| } |
| } |
| |
| int vp9_set_roimap(VP9_PTR comp, unsigned char *map, unsigned int rows, |
| unsigned int cols, int delta_q[MAX_MB_SEGMENTS], |
| int delta_lf[MAX_MB_SEGMENTS], |
| unsigned int threshold[MAX_MB_SEGMENTS]) { |
| VP9_COMP *cpi = (VP9_COMP *) comp; |
| signed char feature_data[SEG_LVL_MAX][MAX_MB_SEGMENTS]; |
| MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| int i; |
| |
| if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols) |
| return -1; |
| |
| if (!map) { |
| vp9_disable_segmentation((VP9_PTR)cpi); |
| return 0; |
| } |
| |
| // Set the segmentation Map |
| vp9_set_segmentation_map((VP9_PTR)cpi, map); |
| |
| // Activate segmentation. |
| vp9_enable_segmentation((VP9_PTR)cpi); |
| |
| // Set up the quan, LF and breakout threshold segment data |
| for (i = 0; i < MAX_MB_SEGMENTS; i++) { |
| feature_data[SEG_LVL_ALT_Q][i] = delta_q[i]; |
| feature_data[SEG_LVL_ALT_LF][i] = delta_lf[i]; |
| cpi->segment_encode_breakout[i] = threshold[i]; |
| } |
| |
| // Enable the loop and quant changes in the feature mask |
| for (i = 0; i < MAX_MB_SEGMENTS; i++) { |
| if (delta_q[i]) |
| vp9_enable_segfeature(xd, i, SEG_LVL_ALT_Q); |
| else |
| vp9_disable_segfeature(xd, i, SEG_LVL_ALT_Q); |
| |
| if (delta_lf[i]) |
| vp9_enable_segfeature(xd, i, SEG_LVL_ALT_LF); |
| else |
| vp9_disable_segfeature(xd, i, SEG_LVL_ALT_LF); |
| } |
| |
| // Initialise the feature data structure |
| // SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1 |
| vp9_set_segment_data((VP9_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA); |
| |
| return 0; |
| } |
| |
| int vp9_set_active_map(VP9_PTR comp, unsigned char *map, |
| unsigned int rows, unsigned int cols) { |
| VP9_COMP *cpi = (VP9_COMP *) comp; |
| |
| if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) { |
| if (map) { |
| vpx_memcpy(cpi->active_map, map, rows * cols); |
| cpi->active_map_enabled = 1; |
| } else { |
| cpi->active_map_enabled = 0; |
| } |
| |
| return 0; |
| } else { |
| // cpi->active_map_enabled = 0; |
| return -1; |
| } |
| } |
| |
| int vp9_set_internal_size(VP9_PTR comp, |
| VPX_SCALING horiz_mode, VPX_SCALING vert_mode) { |
| VP9_COMP *cpi = (VP9_COMP *) comp; |
| VP9_COMMON *cm = &cpi->common; |
| int hr = 0, hs = 0, vr = 0, vs = 0; |
| |
| if (horiz_mode > ONETWO || vert_mode > ONETWO) |
| return -1; |
| |
| Scale2Ratio(horiz_mode, &hr, &hs); |
| Scale2Ratio(vert_mode, &vr, &vs); |
| |
| // always go to the next whole number |
| cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs; |
| cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs; |
| |
| assert(cm->width <= cpi->initial_width); |
| assert(cm->height <= cpi->initial_height); |
| update_frame_size(cpi); |
| return 0; |
| } |
| |
| |
| |
| int vp9_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) { |
| int i, j; |
| int total = 0; |
| |
| uint8_t *src = source->y_buffer; |
| uint8_t *dst = dest->y_buffer; |
| |
| // Loop through the Y plane raw and reconstruction data summing |
| // (square differences) |
| for (i = 0; i < source->y_height; i += 16) { |
| for (j = 0; j < source->y_width; j += 16) { |
| unsigned int sse; |
| total += vp9_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride, |
| &sse); |
| } |
| |
| src += 16 * source->y_stride; |
| dst += 16 * dest->y_stride; |
| } |
| |
| return total; |
| } |
| |
| |
| int vp9_get_quantizer(VP9_PTR c) { |
| return ((VP9_COMP *)c)->common.base_qindex; |
| } |