| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include <stdio.h> |
| #include <math.h> |
| #include <limits.h> |
| #include <assert.h> |
| |
| #include "vp9/common/vp9_pragmas.h" |
| #include "vp9/encoder/vp9_tokenize.h" |
| #include "vp9/encoder/vp9_treewriter.h" |
| #include "vp9/encoder/vp9_onyx_int.h" |
| #include "vp9/encoder/vp9_modecosts.h" |
| #include "vp9/encoder/vp9_encodeintra.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_reconintra.h" |
| #include "vp9/common/vp9_findnearmv.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/encoder/vp9_encodemb.h" |
| #include "vp9/encoder/vp9_quantize.h" |
| #include "vp9/encoder/vp9_variance.h" |
| #include "vp9/encoder/vp9_mcomp.h" |
| #include "vp9/encoder/vp9_rdopt.h" |
| #include "vp9/encoder/vp9_ratectrl.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vp9/common/vp9_systemdependent.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9_rtcd.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #include "vp9/common/vp9_common.h" |
| |
| #define INVALID_MV 0x80008000 |
| |
| /* Factor to weigh the rate for switchable interp filters */ |
| #define SWITCHABLE_INTERP_RATE_FACTOR 1 |
| |
| DECLARE_ALIGNED(16, extern const uint8_t, |
| vp9_pt_energy_class[MAX_ENTROPY_TOKENS]); |
| |
| const MODE_DEFINITION vp9_mode_order[MAX_MODES] = { |
| {ZEROMV, LAST_FRAME, NONE}, |
| {DC_PRED, INTRA_FRAME, NONE}, |
| |
| {NEARESTMV, LAST_FRAME, NONE}, |
| {NEARMV, LAST_FRAME, NONE}, |
| |
| {ZEROMV, GOLDEN_FRAME, NONE}, |
| {NEARESTMV, GOLDEN_FRAME, NONE}, |
| |
| {ZEROMV, ALTREF_FRAME, NONE}, |
| {NEARESTMV, ALTREF_FRAME, NONE}, |
| |
| {NEARMV, GOLDEN_FRAME, NONE}, |
| {NEARMV, ALTREF_FRAME, NONE}, |
| |
| {V_PRED, INTRA_FRAME, NONE}, |
| {H_PRED, INTRA_FRAME, NONE}, |
| {D45_PRED, INTRA_FRAME, NONE}, |
| {D135_PRED, INTRA_FRAME, NONE}, |
| {D117_PRED, INTRA_FRAME, NONE}, |
| {D153_PRED, INTRA_FRAME, NONE}, |
| {D27_PRED, INTRA_FRAME, NONE}, |
| {D63_PRED, INTRA_FRAME, NONE}, |
| |
| {TM_PRED, INTRA_FRAME, NONE}, |
| |
| {NEWMV, LAST_FRAME, NONE}, |
| {NEWMV, GOLDEN_FRAME, NONE}, |
| {NEWMV, ALTREF_FRAME, NONE}, |
| |
| {SPLITMV, LAST_FRAME, NONE}, |
| {SPLITMV, GOLDEN_FRAME, NONE}, |
| {SPLITMV, ALTREF_FRAME, NONE}, |
| |
| {I4X4_PRED, INTRA_FRAME, NONE}, |
| |
| /* compound prediction modes */ |
| {ZEROMV, LAST_FRAME, GOLDEN_FRAME}, |
| {NEARESTMV, LAST_FRAME, GOLDEN_FRAME}, |
| {NEARMV, LAST_FRAME, GOLDEN_FRAME}, |
| |
| {ZEROMV, ALTREF_FRAME, LAST_FRAME}, |
| {NEARESTMV, ALTREF_FRAME, LAST_FRAME}, |
| {NEARMV, ALTREF_FRAME, LAST_FRAME}, |
| |
| {ZEROMV, GOLDEN_FRAME, ALTREF_FRAME}, |
| {NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME}, |
| {NEARMV, GOLDEN_FRAME, ALTREF_FRAME}, |
| |
| {NEWMV, LAST_FRAME, GOLDEN_FRAME}, |
| {NEWMV, ALTREF_FRAME, LAST_FRAME }, |
| {NEWMV, GOLDEN_FRAME, ALTREF_FRAME}, |
| |
| {SPLITMV, LAST_FRAME, GOLDEN_FRAME}, |
| {SPLITMV, ALTREF_FRAME, LAST_FRAME }, |
| {SPLITMV, GOLDEN_FRAME, ALTREF_FRAME}, |
| }; |
| |
| #if CONFIG_BALANCED_COEFTREE |
| static void fill_token_costs(vp9_coeff_count *c, |
| vp9_coeff_count *cnoskip, |
| vp9_coeff_probs_model *p, |
| TX_SIZE tx_size) { |
| int i, j, k, l; |
| for (i = 0; i < BLOCK_TYPES; i++) |
| for (j = 0; j < REF_TYPES; j++) |
| for (k = 0; k < COEF_BANDS; k++) |
| for (l = 0; l < PREV_COEF_CONTEXTS; l++) { |
| vp9_prob probs[ENTROPY_NODES]; |
| vp9_model_to_full_probs(p[i][j][k][l], probs); |
| vp9_cost_tokens((int *)cnoskip[i][j][k][l], probs, |
| vp9_coef_tree); |
| // Replace the eob node prob with a very small value so that the |
| // cost approximately equals the cost without the eob node |
| probs[1] = 1; |
| vp9_cost_tokens((int *)c[i][j][k][l], probs, vp9_coef_tree); |
| } |
| } |
| #else |
| static void fill_token_costs(vp9_coeff_count *c, |
| vp9_coeff_probs_model *p, |
| TX_SIZE tx_size) { |
| int i, j, k, l; |
| for (i = 0; i < BLOCK_TYPES; i++) |
| for (j = 0; j < REF_TYPES; j++) |
| for (k = 0; k < COEF_BANDS; k++) |
| for (l = 0; l < PREV_COEF_CONTEXTS; l++) { |
| vp9_prob probs[ENTROPY_NODES]; |
| vp9_model_to_full_probs(p[i][j][k][l], probs); |
| vp9_cost_tokens_skip((int *)c[i][j][k][l], probs, |
| vp9_coef_tree); |
| } |
| } |
| #endif |
| |
| static int rd_iifactor[32] = { 4, 4, 3, 2, 1, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, }; |
| |
| // 3* dc_qlookup[Q]*dc_qlookup[Q]; |
| |
| /* values are now correlated to quantizer */ |
| static int sad_per_bit16lut[QINDEX_RANGE]; |
| static int sad_per_bit4lut[QINDEX_RANGE]; |
| |
| void vp9_init_me_luts() { |
| int i; |
| |
| // Initialize the sad lut tables using a formulaic calculation for now |
| // This is to make it easier to resolve the impact of experimental changes |
| // to the quantizer tables. |
| for (i = 0; i < QINDEX_RANGE; i++) { |
| sad_per_bit16lut[i] = |
| (int)((0.0418 * vp9_convert_qindex_to_q(i)) + 2.4107); |
| sad_per_bit4lut[i] = (int)(0.063 * vp9_convert_qindex_to_q(i) + 2.742); |
| } |
| } |
| |
| static int compute_rd_mult(int qindex) { |
| const int q = vp9_dc_quant(qindex, 0); |
| return (11 * q * q) >> 2; |
| } |
| |
| void vp9_initialize_me_consts(VP9_COMP *cpi, int qindex) { |
| cpi->mb.sadperbit16 = sad_per_bit16lut[qindex]; |
| cpi->mb.sadperbit4 = sad_per_bit4lut[qindex]; |
| } |
| |
| |
| void vp9_initialize_rd_consts(VP9_COMP *cpi, int qindex) { |
| int q, i; |
| |
| vp9_clear_system_state(); // __asm emms; |
| |
| // Further tests required to see if optimum is different |
| // for key frames, golden frames and arf frames. |
| // if (cpi->common.refresh_golden_frame || |
| // cpi->common.refresh_alt_ref_frame) |
| qindex = clamp(qindex, 0, MAXQ); |
| |
| cpi->RDMULT = compute_rd_mult(qindex); |
| if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { |
| if (cpi->twopass.next_iiratio > 31) |
| cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4; |
| else |
| cpi->RDMULT += |
| (cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4; |
| } |
| cpi->mb.errorperbit = cpi->RDMULT >> 6; |
| cpi->mb.errorperbit += (cpi->mb.errorperbit == 0); |
| |
| vp9_set_speed_features(cpi); |
| |
| q = (int)pow(vp9_dc_quant(qindex, 0) >> 2, 1.25); |
| q <<= 2; |
| if (q < 8) |
| q = 8; |
| |
| if (cpi->RDMULT > 1000) { |
| cpi->RDDIV = 1; |
| cpi->RDMULT /= 100; |
| |
| for (i = 0; i < MAX_MODES; i++) { |
| if (cpi->sf.thresh_mult[i] < INT_MAX) { |
| cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100; |
| } else { |
| cpi->rd_threshes[i] = INT_MAX; |
| } |
| cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i]; |
| } |
| } else { |
| cpi->RDDIV = 100; |
| |
| for (i = 0; i < MAX_MODES; i++) { |
| if (cpi->sf.thresh_mult[i] < (INT_MAX / q)) { |
| cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q; |
| } else { |
| cpi->rd_threshes[i] = INT_MAX; |
| } |
| cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i]; |
| } |
| } |
| |
| #if CONFIG_BALANCED_COEFTREE |
| fill_token_costs(cpi->mb.token_costs[TX_4X4], |
| cpi->mb.token_costs_noskip[TX_4X4], |
| cpi->common.fc.coef_probs_4x4, TX_4X4); |
| fill_token_costs(cpi->mb.token_costs[TX_8X8], |
| cpi->mb.token_costs_noskip[TX_8X8], |
| cpi->common.fc.coef_probs_8x8, TX_8X8); |
| fill_token_costs(cpi->mb.token_costs[TX_16X16], |
| cpi->mb.token_costs_noskip[TX_16X16], |
| cpi->common.fc.coef_probs_16x16, TX_16X16); |
| fill_token_costs(cpi->mb.token_costs[TX_32X32], |
| cpi->mb.token_costs_noskip[TX_32X32], |
| cpi->common.fc.coef_probs_32x32, TX_32X32); |
| #else |
| fill_token_costs(cpi->mb.token_costs[TX_4X4], |
| cpi->common.fc.coef_probs_4x4, TX_4X4); |
| fill_token_costs(cpi->mb.token_costs[TX_8X8], |
| cpi->common.fc.coef_probs_8x8, TX_8X8); |
| fill_token_costs(cpi->mb.token_costs[TX_16X16], |
| cpi->common.fc.coef_probs_16x16, TX_16X16); |
| fill_token_costs(cpi->mb.token_costs[TX_32X32], |
| cpi->common.fc.coef_probs_32x32, TX_32X32); |
| #endif |
| |
| for (i = 0; i < NUM_PARTITION_CONTEXTS; i++) |
| vp9_cost_tokens(cpi->mb.partition_cost[i], |
| cpi->common.fc.partition_prob[i], |
| vp9_partition_tree); |
| |
| /*rough estimate for costing*/ |
| cpi->common.kf_ymode_probs_index = cpi->common.base_qindex >> 4; |
| vp9_init_mode_costs(cpi); |
| |
| if (cpi->common.frame_type != KEY_FRAME) { |
| vp9_build_nmv_cost_table( |
| cpi->mb.nmvjointcost, |
| cpi->mb.e_mbd.allow_high_precision_mv ? |
| cpi->mb.nmvcost_hp : cpi->mb.nmvcost, |
| &cpi->common.fc.nmvc, |
| cpi->mb.e_mbd.allow_high_precision_mv, 1, 1); |
| } |
| } |
| |
| int vp9_block_error_c(int16_t *coeff, int16_t *dqcoeff, int block_size) { |
| int i, error = 0; |
| |
| for (i = 0; i < block_size; i++) { |
| int this_diff = coeff[i] - dqcoeff[i]; |
| error += this_diff * this_diff; |
| } |
| |
| return error; |
| } |
| |
| static INLINE int cost_coeffs(VP9_COMMON *const cm, MACROBLOCK *mb, |
| int plane, int block, PLANE_TYPE type, |
| ENTROPY_CONTEXT *A, |
| ENTROPY_CONTEXT *L, |
| TX_SIZE tx_size, |
| int y_blocks) { |
| MACROBLOCKD *const xd = &mb->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; |
| int pt; |
| int c = 0; |
| int cost = 0, pad; |
| const int *scan, *nb; |
| const int eob = xd->plane[plane].eobs[block]; |
| const int16_t *qcoeff_ptr = BLOCK_OFFSET(xd->plane[plane].qcoeff, |
| block, 16); |
| const int ref = mbmi->ref_frame != INTRA_FRAME; |
| unsigned int (*token_costs)[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS] = |
| mb->token_costs[tx_size][type][ref]; |
| ENTROPY_CONTEXT above_ec, left_ec; |
| TX_TYPE tx_type = DCT_DCT; |
| |
| const int segment_id = xd->mode_info_context->mbmi.segment_id; |
| #if CONFIG_BALANCED_COEFTREE |
| unsigned int (*token_costs_noskip)[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS] = |
| mb->token_costs_noskip[tx_size][type][ref]; |
| #else |
| vp9_prob coef_probs[COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES]; |
| #endif |
| |
| int seg_eob, default_eob; |
| uint8_t token_cache[1024]; |
| const uint8_t * band_translate; |
| |
| // Check for consistency of tx_size with mode info |
| assert((!type && !plane) || (type && plane)); |
| if (type == PLANE_TYPE_Y_WITH_DC) { |
| assert(xd->mode_info_context->mbmi.txfm_size == tx_size); |
| } else { |
| TX_SIZE tx_size_uv = get_uv_tx_size(xd); |
| assert(tx_size == tx_size_uv); |
| } |
| |
| switch (tx_size) { |
| case TX_4X4: { |
| tx_type = (type == PLANE_TYPE_Y_WITH_DC) ? |
| get_tx_type_4x4(xd, block) : DCT_DCT; |
| above_ec = A[0] != 0; |
| left_ec = L[0] != 0; |
| #if !CONFIG_BALANCED_COEFTREE |
| vp9_model_to_full_probs_sb(cm->fc.coef_probs_4x4[type][ref], |
| coef_probs); |
| #endif |
| seg_eob = 16; |
| scan = get_scan_4x4(tx_type); |
| band_translate = vp9_coefband_trans_4x4; |
| break; |
| } |
| case TX_8X8: { |
| const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type; |
| const int sz = 1 + b_width_log2(sb_type); |
| const int x = block & ((1 << sz) - 1), y = block - x; |
| TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ? |
| get_tx_type_8x8(xd, y + (x >> 1)) : DCT_DCT; |
| above_ec = (A[0] + A[1]) != 0; |
| left_ec = (L[0] + L[1]) != 0; |
| scan = get_scan_8x8(tx_type); |
| #if !CONFIG_BALANCED_COEFTREE |
| vp9_model_to_full_probs_sb(cm->fc.coef_probs_8x8[type][ref], |
| coef_probs); |
| #endif |
| seg_eob = 64; |
| band_translate = vp9_coefband_trans_8x8plus; |
| break; |
| } |
| case TX_16X16: { |
| const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type; |
| const int sz = 2 + b_width_log2(sb_type); |
| const int x = block & ((1 << sz) - 1), y = block - x; |
| TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ? |
| get_tx_type_16x16(xd, y + (x >> 2)) : DCT_DCT; |
| scan = get_scan_16x16(tx_type); |
| #if !CONFIG_BALANCED_COEFTREE |
| vp9_model_to_full_probs_sb(cm->fc.coef_probs_16x16[type][ref], |
| coef_probs); |
| #endif |
| seg_eob = 256; |
| above_ec = (A[0] + A[1] + A[2] + A[3]) != 0; |
| left_ec = (L[0] + L[1] + L[2] + L[3]) != 0; |
| band_translate = vp9_coefband_trans_8x8plus; |
| break; |
| } |
| case TX_32X32: |
| scan = vp9_default_scan_32x32; |
| #if !CONFIG_BALANCED_COEFTREE |
| vp9_model_to_full_probs_sb(cm->fc.coef_probs_32x32[type][ref], |
| coef_probs); |
| #endif |
| seg_eob = 1024; |
| above_ec = (A[0] + A[1] + A[2] + A[3] + A[4] + A[5] + A[6] + A[7]) != 0; |
| left_ec = (L[0] + L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7]) != 0; |
| band_translate = vp9_coefband_trans_8x8plus; |
| break; |
| default: |
| abort(); |
| break; |
| } |
| assert(eob <= seg_eob); |
| |
| pt = combine_entropy_contexts(above_ec, left_ec); |
| nb = vp9_get_coef_neighbors_handle(scan, &pad); |
| default_eob = seg_eob; |
| |
| if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) |
| seg_eob = 0; |
| |
| /* sanity check to ensure that we do not have spurious non-zero q values */ |
| if (eob < seg_eob) |
| assert(qcoeff_ptr[scan[eob]] == 0); |
| |
| { |
| for (c = 0; c < eob; c++) { |
| int v = qcoeff_ptr[scan[c]]; |
| int t = vp9_dct_value_tokens_ptr[v].token; |
| int band = get_coef_band(band_translate, c); |
| if (c) |
| pt = vp9_get_coef_context(scan, nb, pad, token_cache, c, default_eob); |
| |
| #if CONFIG_BALANCED_COEFTREE |
| if (!c || token_cache[scan[c - 1]]) // do not skip eob |
| cost += token_costs_noskip[band][pt][t] + vp9_dct_value_cost_ptr[v]; |
| else |
| cost += token_costs[band][pt][t] + vp9_dct_value_cost_ptr[v]; |
| #else |
| cost += token_costs[band][pt][t] + vp9_dct_value_cost_ptr[v]; |
| if (!c || token_cache[scan[c - 1]]) |
| cost += vp9_cost_bit(coef_probs[band][pt][0], 1); |
| #endif |
| token_cache[scan[c]] = vp9_pt_energy_class[t]; |
| } |
| if (c < seg_eob) { |
| if (c) |
| pt = vp9_get_coef_context(scan, nb, pad, token_cache, c, default_eob); |
| #if CONFIG_BALANCED_COEFTREE |
| cost += mb->token_costs_noskip[tx_size][type][ref] |
| [get_coef_band(band_translate, c)] |
| [pt][DCT_EOB_TOKEN]; |
| #else |
| cost += mb->token_costs[tx_size][type][ref] |
| [get_coef_band(band_translate, c)] |
| [pt][DCT_EOB_TOKEN]; |
| #endif |
| } |
| } |
| |
| // is eob first coefficient; |
| for (pt = 0; pt < (1 << tx_size); pt++) { |
| A[pt] = L[pt] = c > 0; |
| } |
| |
| return cost; |
| } |
| |
| static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x, |
| int (*r)[2], int *rate, |
| int *d, int *distortion, |
| int *s, int *skip, |
| int64_t txfm_cache[NB_TXFM_MODES], |
| TX_SIZE max_txfm_size) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; |
| vp9_prob skip_prob = vp9_get_pred_prob(cm, xd, PRED_MBSKIP); |
| int64_t rd[TX_SIZE_MAX_SB][2]; |
| int n, m; |
| int s0, s1; |
| |
| for (n = TX_4X4; n <= max_txfm_size; n++) { |
| r[n][1] = r[n][0]; |
| for (m = 0; m <= n - (n == max_txfm_size); m++) { |
| if (m == n) |
| r[n][1] += vp9_cost_zero(cm->prob_tx[m]); |
| else |
| r[n][1] += vp9_cost_one(cm->prob_tx[m]); |
| } |
| } |
| |
| assert(skip_prob > 0); |
| s0 = vp9_cost_bit(skip_prob, 0); |
| s1 = vp9_cost_bit(skip_prob, 1); |
| |
| for (n = TX_4X4; n <= max_txfm_size; n++) { |
| if (s[n]) { |
| rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]); |
| } else { |
| rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]); |
| rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]); |
| } |
| } |
| |
| if (max_txfm_size == TX_32X32 && |
| (cm->txfm_mode == ALLOW_32X32 || |
| (cm->txfm_mode == TX_MODE_SELECT && |
| rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] && |
| rd[TX_32X32][1] < rd[TX_4X4][1]))) { |
| mbmi->txfm_size = TX_32X32; |
| } else if (max_txfm_size >= TX_16X16 && |
| (cm->txfm_mode == ALLOW_16X16 || |
| cm->txfm_mode == ALLOW_32X32 || |
| (cm->txfm_mode == TX_MODE_SELECT && |
| rd[TX_16X16][1] < rd[TX_8X8][1] && |
| rd[TX_16X16][1] < rd[TX_4X4][1]))) { |
| mbmi->txfm_size = TX_16X16; |
| } else if (cm->txfm_mode == ALLOW_8X8 || |
| cm->txfm_mode == ALLOW_16X16 || |
| cm->txfm_mode == ALLOW_32X32 || |
| (cm->txfm_mode == TX_MODE_SELECT && rd[TX_8X8][1] < rd[TX_4X4][1])) { |
| mbmi->txfm_size = TX_8X8; |
| } else { |
| mbmi->txfm_size = TX_4X4; |
| } |
| |
| *distortion = d[mbmi->txfm_size]; |
| *rate = r[mbmi->txfm_size][cm->txfm_mode == TX_MODE_SELECT]; |
| *skip = s[mbmi->txfm_size]; |
| |
| txfm_cache[ONLY_4X4] = rd[TX_4X4][0]; |
| txfm_cache[ALLOW_8X8] = rd[TX_8X8][0]; |
| txfm_cache[ALLOW_16X16] = rd[MIN(max_txfm_size, TX_16X16)][0]; |
| txfm_cache[ALLOW_32X32] = rd[MIN(max_txfm_size, TX_32X32)][0]; |
| if (max_txfm_size == TX_32X32 && |
| rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] && |
| rd[TX_32X32][1] < rd[TX_4X4][1]) |
| txfm_cache[TX_MODE_SELECT] = rd[TX_32X32][1]; |
| else if (max_txfm_size >= TX_16X16 && |
| rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1]) |
| txfm_cache[TX_MODE_SELECT] = rd[TX_16X16][1]; |
| else |
| txfm_cache[TX_MODE_SELECT] = rd[TX_4X4][1] < rd[TX_8X8][1] ? |
| rd[TX_4X4][1] : rd[TX_8X8][1]; |
| } |
| |
| static int block_error(int16_t *coeff, int16_t *dqcoeff, |
| int block_size, int shift) { |
| int i; |
| int64_t error = 0; |
| |
| for (i = 0; i < block_size; i++) { |
| int this_diff = coeff[i] - dqcoeff[i]; |
| error += (unsigned)this_diff * this_diff; |
| } |
| error >>= shift; |
| |
| return error > INT_MAX ? INT_MAX : (int)error; |
| } |
| |
| static int block_error_sby(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize, int shift) { |
| const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize); |
| return block_error(x->plane[0].coeff, x->e_mbd.plane[0].dqcoeff, |
| 16 << (bwl + bhl), shift); |
| } |
| |
| static int block_error_sbuv(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize, int shift) { |
| const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize); |
| int64_t sum = 0; |
| int plane; |
| |
| for (plane = 1; plane < MAX_MB_PLANE; plane++) { |
| const int subsampling = x->e_mbd.plane[plane].subsampling_x + |
| x->e_mbd.plane[plane].subsampling_y; |
| sum += block_error(x->plane[plane].coeff, x->e_mbd.plane[plane].dqcoeff, |
| 16 << (bwl + bhl - subsampling), 0); |
| } |
| sum >>= shift; |
| return sum > INT_MAX ? INT_MAX : (int)sum; |
| } |
| |
| static int rdcost_plane(VP9_COMMON *const cm, MACROBLOCK *x, |
| int plane, BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; |
| const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y; |
| const int bw = 1 << bwl, bh = 1 << bhl; |
| ENTROPY_CONTEXT t_above[16], t_left[16]; |
| int block, cost; |
| |
| vpx_memcpy(&t_above, xd->plane[plane].above_context, |
| sizeof(ENTROPY_CONTEXT) * bw); |
| vpx_memcpy(&t_left, xd->plane[plane].left_context, |
| sizeof(ENTROPY_CONTEXT) * bh); |
| |
| cost = 0; |
| for (block = 0; block < bw * bh; block += 1 << (tx_size * 2)) { |
| int x_idx, y_idx; |
| |
| txfrm_block_to_raster_xy(xd, bsize, plane, block, tx_size * 2, |
| &x_idx, &y_idx); |
| |
| cost += cost_coeffs(cm, x, plane, block, xd->plane[plane].plane_type, |
| t_above + x_idx, t_left + y_idx, |
| tx_size, bw * bh); |
| } |
| |
| return cost; |
| } |
| |
| static int rdcost_uv(VP9_COMMON *const cm, MACROBLOCK *x, |
| BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) { |
| int cost = 0, plane; |
| |
| for (plane = 1; plane < MAX_MB_PLANE; plane++) { |
| cost += rdcost_plane(cm, x, plane, bsize, tx_size); |
| } |
| return cost; |
| } |
| |
| static void super_block_yrd_for_txfm(VP9_COMMON *const cm, MACROBLOCK *x, |
| int *rate, int *distortion, int *skippable, |
| BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| xd->mode_info_context->mbmi.txfm_size = tx_size; |
| vp9_xform_quant_sby(cm, x, bsize); |
| |
| *distortion = block_error_sby(x, bsize, tx_size == TX_32X32 ? 0 : 2); |
| *rate = rdcost_plane(cm, x, 0, bsize, tx_size); |
| *skippable = vp9_sby_is_skippable(xd, bsize); |
| } |
| |
| static void super_block_yrd(VP9_COMP *cpi, |
| MACROBLOCK *x, int *rate, int *distortion, |
| int *skip, BLOCK_SIZE_TYPE bs, |
| int64_t txfm_cache[NB_TXFM_MODES]) { |
| VP9_COMMON *const cm = &cpi->common; |
| int r[TX_SIZE_MAX_SB][2], d[TX_SIZE_MAX_SB], s[TX_SIZE_MAX_SB]; |
| |
| vp9_subtract_sby(x, bs); |
| |
| if (bs >= BLOCK_SIZE_SB32X32) |
| super_block_yrd_for_txfm(cm, x, &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32], |
| bs, TX_32X32); |
| if (bs >= BLOCK_SIZE_MB16X16) |
| super_block_yrd_for_txfm(cm, x, &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16], |
| bs, TX_16X16); |
| super_block_yrd_for_txfm(cm, x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8], bs, |
| TX_8X8); |
| super_block_yrd_for_txfm(cm, x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4], bs, |
| TX_4X4); |
| |
| choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s, skip, txfm_cache, |
| TX_32X32 - (bs < BLOCK_SIZE_SB32X32) |
| - (bs < BLOCK_SIZE_MB16X16)); |
| } |
| |
| static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib, |
| MB_PREDICTION_MODE *best_mode, |
| int *bmode_costs, |
| ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, |
| int *bestrate, int *bestratey, |
| int *bestdistortion, |
| BLOCK_SIZE_TYPE bsize) { |
| MB_PREDICTION_MODE mode; |
| MACROBLOCKD *xd = &x->e_mbd; |
| int64_t best_rd = INT64_MAX; |
| int rate = 0; |
| int distortion; |
| VP9_COMMON *const cm = &cpi->common; |
| const int src_stride = x->plane[0].src.stride; |
| uint8_t *src, *dst; |
| int16_t *src_diff, *coeff; |
| |
| ENTROPY_CONTEXT ta[2], tempa[2]; |
| ENTROPY_CONTEXT tl[2], templ[2]; |
| TX_TYPE tx_type = DCT_DCT; |
| TX_TYPE best_tx_type = DCT_DCT; |
| int bw = 1 << b_width_log2(bsize); |
| int bh = 1 << b_height_log2(bsize); |
| int idx, idy, block; |
| DECLARE_ALIGNED(16, int16_t, best_dqcoeff[4][16]); |
| |
| assert(ib < 4); |
| |
| vpx_memcpy(ta, a, sizeof(ta)); |
| vpx_memcpy(tl, l, sizeof(tl)); |
| xd->mode_info_context->mbmi.txfm_size = TX_4X4; |
| |
| for (mode = DC_PRED; mode <= TM_PRED; ++mode) { |
| int64_t this_rd; |
| int ratey = 0; |
| |
| if (cm->frame_type == KEY_FRAME) |
| rate = bmode_costs[mode]; |
| else |
| rate = x->mbmode_cost[cm->frame_type][mode]; |
| distortion = 0; |
| |
| vpx_memcpy(tempa, ta, sizeof(ta)); |
| vpx_memcpy(templ, tl, sizeof(tl)); |
| |
| for (idy = 0; idy < bh; ++idy) { |
| for (idx = 0; idx < bw; ++idx) { |
| block = ib + idy * 2 + idx; |
| xd->mode_info_context->bmi[block].as_mode.first = mode; |
| src = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, block, |
| x->plane[0].src.buf, src_stride); |
| src_diff = raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, block, |
| x->plane[0].src_diff); |
| coeff = BLOCK_OFFSET(x->plane[0].coeff, block, 16); |
| dst = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, block, |
| xd->plane[0].dst.buf, |
| xd->plane[0].dst.stride); |
| vp9_intra4x4_predict(xd, block, BLOCK_SIZE_SB8X8, mode, |
| dst, xd->plane[0].dst.stride); |
| vp9_subtract_block(4, 4, src_diff, 8, |
| src, src_stride, |
| dst, xd->plane[0].dst.stride); |
| |
| tx_type = get_tx_type_4x4(xd, block); |
| if (tx_type != DCT_DCT) { |
| vp9_short_fht4x4(src_diff, coeff, 8, tx_type); |
| x->quantize_b_4x4(x, block, tx_type, 16); |
| } else { |
| x->fwd_txm4x4(src_diff, coeff, 16); |
| x->quantize_b_4x4(x, block, tx_type, 16); |
| } |
| |
| ratey += cost_coeffs(cm, x, 0, block, PLANE_TYPE_Y_WITH_DC, |
| tempa + idx, templ + idy, TX_4X4, 16); |
| distortion += vp9_block_error(coeff, BLOCK_OFFSET(xd->plane[0].dqcoeff, |
| block, 16), 16) >> 2; |
| |
| if (best_tx_type != DCT_DCT) |
| vp9_short_iht4x4_add(BLOCK_OFFSET(xd->plane[0].dqcoeff, block, 16), |
| dst, xd->plane[0].dst.stride, best_tx_type); |
| else |
| xd->inv_txm4x4_add(BLOCK_OFFSET(xd->plane[0].dqcoeff, block, 16), |
| dst, xd->plane[0].dst.stride); |
| } |
| } |
| |
| rate += ratey; |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); |
| |
| if (this_rd < best_rd) { |
| *bestrate = rate; |
| *bestratey = ratey; |
| *bestdistortion = distortion; |
| best_rd = this_rd; |
| *best_mode = mode; |
| best_tx_type = tx_type; |
| vpx_memcpy(a, tempa, sizeof(tempa)); |
| vpx_memcpy(l, templ, sizeof(templ)); |
| for (idy = 0; idy < bh; ++idy) { |
| for (idx = 0; idx < bw; ++idx) { |
| block = ib + idy * 2 + idx; |
| vpx_memcpy(best_dqcoeff[idy * 2 + idx], |
| BLOCK_OFFSET(xd->plane[0].dqcoeff, block, 16), |
| sizeof(best_dqcoeff[0])); |
| } |
| } |
| } |
| } |
| |
| for (idy = 0; idy < bh; ++idy) { |
| for (idx = 0; idx < bw; ++idx) { |
| block = ib + idy * 2 + idx; |
| xd->mode_info_context->bmi[block].as_mode.first = *best_mode; |
| dst = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, block, |
| xd->plane[0].dst.buf, |
| xd->plane[0].dst.stride); |
| |
| vp9_intra4x4_predict(xd, block, BLOCK_SIZE_SB8X8, *best_mode, |
| dst, xd->plane[0].dst.stride); |
| // inverse transform |
| if (best_tx_type != DCT_DCT) |
| vp9_short_iht4x4_add(best_dqcoeff[idy * 2 + idx], dst, |
| xd->plane[0].dst.stride, best_tx_type); |
| else |
| xd->inv_txm4x4_add(best_dqcoeff[idy * 2 + idx], dst, |
| xd->plane[0].dst.stride); |
| } |
| } |
| |
| return best_rd; |
| } |
| |
| static int64_t rd_pick_intra4x4mby_modes(VP9_COMP *cpi, MACROBLOCK *mb, |
| int *Rate, int *rate_y, |
| int *Distortion, int64_t best_rd) { |
| int i, j; |
| MACROBLOCKD *const xd = &mb->e_mbd; |
| BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type; |
| int bw = 1 << b_width_log2(bsize); |
| int bh = 1 << b_height_log2(bsize); |
| int idx, idy; |
| int cost = 0; |
| int distortion = 0; |
| int tot_rate_y = 0; |
| int64_t total_rd = 0; |
| ENTROPY_CONTEXT t_above[4], t_left[4]; |
| int *bmode_costs; |
| |
| vpx_memcpy(t_above, xd->plane[0].above_context, sizeof(t_above)); |
| vpx_memcpy(t_left, xd->plane[0].left_context, sizeof(t_left)); |
| |
| xd->mode_info_context->mbmi.mode = I4X4_PRED; |
| bmode_costs = mb->mbmode_cost[cpi->common.frame_type]; |
| |
| for (idy = 0; idy < 2; idy += bh) { |
| for (idx = 0; idx < 2; idx += bw) { |
| MODE_INFO *const mic = xd->mode_info_context; |
| const int mis = xd->mode_info_stride; |
| MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode); |
| int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry); |
| int UNINITIALIZED_IS_SAFE(d); |
| i = idy * 2 + idx; |
| |
| if (xd->frame_type == KEY_FRAME) { |
| const MB_PREDICTION_MODE A = above_block_mode(mic, i, mis); |
| const MB_PREDICTION_MODE L = (xd->left_available || idx) ? |
| left_block_mode(mic, i) : DC_PRED; |
| |
| bmode_costs = mb->bmode_costs[A][L]; |
| } |
| |
| total_rd += rd_pick_intra4x4block(cpi, mb, i, &best_mode, bmode_costs, |
| t_above + idx, t_left + idy, |
| &r, &ry, &d, bsize); |
| cost += r; |
| distortion += d; |
| tot_rate_y += ry; |
| |
| mic->bmi[i].as_mode.first = best_mode; |
| for (j = 1; j < bh; ++j) |
| mic->bmi[i + j * 2].as_mode.first = best_mode; |
| for (j = 1; j < bw; ++j) |
| mic->bmi[i + j].as_mode.first = best_mode; |
| |
| if (total_rd >= best_rd) |
| break; |
| } |
| } |
| |
| if (total_rd >= best_rd) |
| return INT64_MAX; |
| |
| *Rate = cost; |
| *rate_y = tot_rate_y; |
| *Distortion = distortion; |
| |
| return RDCOST(mb->rdmult, mb->rddiv, cost, distortion); |
| } |
| |
| static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int *distortion, int *skippable, |
| BLOCK_SIZE_TYPE bsize, |
| int64_t txfm_cache[NB_TXFM_MODES]) { |
| MB_PREDICTION_MODE mode; |
| MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected); |
| MACROBLOCKD *xd = &x->e_mbd; |
| int this_rate, this_rate_tokenonly; |
| int this_distortion, s; |
| int64_t best_rd = INT64_MAX, this_rd; |
| TX_SIZE UNINITIALIZED_IS_SAFE(best_tx); |
| int i; |
| |
| if (bsize < BLOCK_SIZE_SB8X8) { |
| x->e_mbd.mode_info_context->mbmi.txfm_size = TX_4X4; |
| return best_rd; |
| } |
| |
| for (i = 0; i < NB_TXFM_MODES; i++) |
| txfm_cache[i] = INT64_MAX; |
| |
| /* Y Search for 32x32 intra prediction mode */ |
| for (mode = DC_PRED; mode <= TM_PRED; mode++) { |
| int64_t local_txfm_cache[NB_TXFM_MODES]; |
| MODE_INFO *const mic = xd->mode_info_context; |
| const int mis = xd->mode_info_stride; |
| const MB_PREDICTION_MODE A = above_block_mode(mic, 0, mis); |
| const MB_PREDICTION_MODE L = xd->left_available ? |
| left_block_mode(mic, 0) : DC_PRED; |
| |
| int *bmode_costs = x->bmode_costs[A][L]; |
| |
| x->e_mbd.mode_info_context->mbmi.mode = mode; |
| vp9_build_intra_predictors_sby_s(&x->e_mbd, bsize); |
| |
| super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, |
| bsize, local_txfm_cache); |
| this_rate = this_rate_tokenonly + bmode_costs[mode]; |
| this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); |
| |
| if (this_rd < best_rd) { |
| mode_selected = mode; |
| best_rd = this_rd; |
| best_tx = x->e_mbd.mode_info_context->mbmi.txfm_size; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = this_distortion; |
| *skippable = s; |
| } |
| |
| for (i = 0; i < NB_TXFM_MODES; i++) { |
| int64_t adj_rd = this_rd + local_txfm_cache[i] - |
| local_txfm_cache[cpi->common.txfm_mode]; |
| if (adj_rd < txfm_cache[i]) { |
| txfm_cache[i] = adj_rd; |
| } |
| } |
| } |
| |
| x->e_mbd.mode_info_context->mbmi.mode = mode_selected; |
| x->e_mbd.mode_info_context->mbmi.txfm_size = best_tx; |
| |
| return best_rd; |
| } |
| |
| static void super_block_uvrd_for_txfm(VP9_COMMON *const cm, MACROBLOCK *x, |
| int *rate, int *distortion, |
| int *skippable, BLOCK_SIZE_TYPE bsize, |
| TX_SIZE uv_tx_size) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| vp9_xform_quant_sbuv(cm, x, bsize); |
| |
| *distortion = block_error_sbuv(x, bsize, uv_tx_size == TX_32X32 ? 0 : 2); |
| *rate = rdcost_uv(cm, x, bsize, uv_tx_size); |
| *skippable = vp9_sbuv_is_skippable(xd, bsize); |
| } |
| |
| static void super_block_uvrd(VP9_COMMON *const cm, MACROBLOCK *x, |
| int *rate, int *distortion, int *skippable, |
| BLOCK_SIZE_TYPE bsize) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; |
| |
| vp9_subtract_sbuv(x, bsize); |
| |
| if (mbmi->txfm_size >= TX_32X32 && bsize >= BLOCK_SIZE_SB64X64) { |
| super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize, |
| TX_32X32); |
| } else if (mbmi->txfm_size >= TX_16X16 && bsize >= BLOCK_SIZE_SB32X32) { |
| super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize, |
| TX_16X16); |
| } else if (mbmi->txfm_size >= TX_8X8 && bsize >= BLOCK_SIZE_MB16X16) { |
| super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize, |
| TX_8X8); |
| } else { |
| super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize, |
| TX_4X4); |
| } |
| } |
| |
| static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int *distortion, int *skippable, |
| BLOCK_SIZE_TYPE bsize) { |
| MB_PREDICTION_MODE mode; |
| MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected); |
| int64_t best_rd = INT64_MAX, this_rd; |
| int this_rate_tokenonly, this_rate; |
| int this_distortion, s; |
| |
| for (mode = DC_PRED; mode <= TM_PRED; mode++) { |
| x->e_mbd.mode_info_context->mbmi.uv_mode = mode; |
| vp9_build_intra_predictors_sbuv_s(&x->e_mbd, bsize); |
| |
| super_block_uvrd(&cpi->common, x, &this_rate_tokenonly, |
| &this_distortion, &s, bsize); |
| this_rate = this_rate_tokenonly + |
| x->intra_uv_mode_cost[x->e_mbd.frame_type][mode]; |
| this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); |
| |
| if (this_rd < best_rd) { |
| mode_selected = mode; |
| best_rd = this_rd; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = this_distortion; |
| *skippable = s; |
| } |
| } |
| |
| x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected; |
| |
| return best_rd; |
| } |
| |
| int vp9_cost_mv_ref(VP9_COMP *cpi, |
| MB_PREDICTION_MODE m, |
| const int mode_context) { |
| MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| int segment_id = xd->mode_info_context->mbmi.segment_id; |
| |
| // Dont account for mode here if segment skip is enabled. |
| if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) { |
| VP9_COMMON *pc = &cpi->common; |
| |
| vp9_prob p [VP9_MVREFS - 1]; |
| assert(NEARESTMV <= m && m <= SPLITMV); |
| vp9_mv_ref_probs(pc, p, mode_context); |
| return cost_token(vp9_mv_ref_tree, p, |
| vp9_mv_ref_encoding_array - NEARESTMV + m); |
| } else |
| return 0; |
| } |
| |
| void vp9_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) { |
| x->e_mbd.mode_info_context->mbmi.mode = mb; |
| x->e_mbd.mode_info_context->mbmi.mv[0].as_int = mv->as_int; |
| } |
| |
| static int labels2mode(MACROBLOCK *x, |
| int const *labelings, int i, |
| MB_PREDICTION_MODE this_mode, |
| int_mv *this_mv, int_mv *this_second_mv, |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], |
| int_mv seg_mvs[MAX_REF_FRAMES - 1], |
| int_mv *best_ref_mv, |
| int_mv *second_best_ref_mv, |
| int *mvjcost, int *mvcost[2], VP9_COMP *cpi) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mic = xd->mode_info_context; |
| MB_MODE_INFO * mbmi = &mic->mbmi; |
| int cost = 0, thismvcost = 0; |
| int idx, idy; |
| int bw = 1 << b_width_log2(mbmi->sb_type); |
| int bh = 1 << b_height_log2(mbmi->sb_type); |
| |
| /* We have to be careful retrieving previously-encoded motion vectors. |
| Ones from this macroblock have to be pulled from the BLOCKD array |
| as they have not yet made it to the bmi array in our MB_MODE_INFO. */ |
| MB_PREDICTION_MODE m; |
| |
| // the only time we should do costing for new motion vector or mode |
| // is when we are on a new label (jbb May 08, 2007) |
| switch (m = this_mode) { |
| case NEWMV: |
| if (mbmi->second_ref_frame > 0) { |
| this_mv->as_int = seg_mvs[mbmi->ref_frame - 1].as_int; |
| this_second_mv->as_int = |
| seg_mvs[mbmi->second_ref_frame - 1].as_int; |
| } |
| |
| thismvcost = vp9_mv_bit_cost(this_mv, best_ref_mv, mvjcost, mvcost, |
| 102, xd->allow_high_precision_mv); |
| if (mbmi->second_ref_frame > 0) { |
| thismvcost += vp9_mv_bit_cost(this_second_mv, second_best_ref_mv, |
| mvjcost, mvcost, 102, |
| xd->allow_high_precision_mv); |
| } |
| break; |
| case NEARESTMV: |
| this_mv->as_int = frame_mv[NEARESTMV][mbmi->ref_frame].as_int; |
| if (mbmi->second_ref_frame > 0) |
| this_second_mv->as_int = |
| frame_mv[NEARESTMV][mbmi->second_ref_frame].as_int; |
| break; |
| case NEARMV: |
| this_mv->as_int = frame_mv[NEARMV][mbmi->ref_frame].as_int; |
| if (mbmi->second_ref_frame > 0) |
| this_second_mv->as_int = |
| frame_mv[NEARMV][mbmi->second_ref_frame].as_int; |
| break; |
| case ZEROMV: |
| this_mv->as_int = 0; |
| if (mbmi->second_ref_frame > 0) |
| this_second_mv->as_int = 0; |
| break; |
| default: |
| break; |
| } |
| |
| cost = vp9_cost_mv_ref(cpi, this_mode, |
| mbmi->mb_mode_context[mbmi->ref_frame]); |
| |
| mic->bmi[i].as_mv[0].as_int = this_mv->as_int; |
| if (mbmi->second_ref_frame > 0) |
| mic->bmi[i].as_mv[1].as_int = this_second_mv->as_int; |
| |
| x->partition_info->bmi[i].mode = m; |
| x->partition_info->bmi[i].mv.as_int = this_mv->as_int; |
| if (mbmi->second_ref_frame > 0) |
| x->partition_info->bmi[i].second_mv.as_int = this_second_mv->as_int; |
| for (idy = 0; idy < bh; ++idy) { |
| for (idx = 0; idx < bw; ++idx) { |
| vpx_memcpy(&mic->bmi[i + idy * 2 + idx], |
| &mic->bmi[i], sizeof(mic->bmi[i])); |
| vpx_memcpy(&x->partition_info->bmi[i + idy * 2 + idx], |
| &x->partition_info->bmi[i], |
| sizeof(x->partition_info->bmi[i])); |
| } |
| } |
| |
| cost += thismvcost; |
| return cost; |
| } |
| |
| static int64_t encode_inter_mb_segment(VP9_COMMON *const cm, |
| MACROBLOCK *x, |
| int const *labels, |
| int which_label, |
| int *labelyrate, |
| int *distortion, |
| ENTROPY_CONTEXT *ta, |
| ENTROPY_CONTEXT *tl) { |
| int i, k; |
| MACROBLOCKD *xd = &x->e_mbd; |
| BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type; |
| int bwl = b_width_log2(bsize), bw = 1 << bwl; |
| int bhl = b_height_log2(bsize), bh = 1 << bhl; |
| int idx, idy; |
| |
| *labelyrate = 0; |
| *distortion = 0; |
| for (i = 0; i < 4; i++) { |
| if (labels[i] == which_label) { |
| const int src_stride = x->plane[0].src.stride; |
| uint8_t* const src = |
| raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i, |
| x->plane[0].src.buf, src_stride); |
| int16_t* src_diff = |
| raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, i, |
| x->plane[0].src_diff); |
| int16_t* coeff = BLOCK_OFFSET(x->plane[0].coeff, 16, i); |
| uint8_t* const pre = |
| raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i, |
| xd->plane[0].pre[0].buf, |
| xd->plane[0].pre[0].stride); |
| uint8_t* const dst = |
| raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i, |
| xd->plane[0].dst.buf, |
| xd->plane[0].dst.stride); |
| int thisdistortion = 0; |
| int thisrate = 0; |
| |
| vp9_build_inter_predictor(pre, |
| xd->plane[0].pre[0].stride, |
| dst, |
| xd->plane[0].dst.stride, |
| &xd->mode_info_context->bmi[i].as_mv[0], |
| &xd->scale_factor[0], |
| 4 * bw, 4 * bh, 0 /* no avg */, &xd->subpix); |
| |
| // TODO(debargha): Make this work properly with the |
| // implicit-compoundinter-weight experiment when implicit |
| // weighting for splitmv modes is turned on. |
| if (xd->mode_info_context->mbmi.second_ref_frame > 0) { |
| uint8_t* const second_pre = |
| raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i, |
| xd->plane[0].pre[1].buf, |
| xd->plane[0].pre[1].stride); |
| vp9_build_inter_predictor(second_pre, xd->plane[0].pre[1].stride, |
| dst, xd->plane[0].dst.stride, |
| &xd->mode_info_context->bmi[i].as_mv[1], |
| &xd->scale_factor[1], 4 * bw, 4 * bh, 1, |
| &xd->subpix); |
| } |
| |
| vp9_subtract_block(4 * bh, 4 * bw, src_diff, 8, |
| src, src_stride, |
| dst, xd->plane[0].dst.stride); |
| |
| k = i; |
| for (idy = 0; idy < bh; ++idy) { |
| for (idx = 0; idx < bw; ++idx) { |
| k += (idy * 2 + idx); |
| src_diff = raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, k, |
| x->plane[0].src_diff); |
| coeff = BLOCK_OFFSET(x->plane[0].coeff, 16, k); |
| x->fwd_txm4x4(src_diff, coeff, 16); |
| x->quantize_b_4x4(x, k, DCT_DCT, 16); |
| thisdistortion += vp9_block_error(coeff, |
| BLOCK_OFFSET(xd->plane[0].dqcoeff, |
| k, 16), 16); |
| thisrate += cost_coeffs(cm, x, 0, k, PLANE_TYPE_Y_WITH_DC, |
| ta + (k & 1), |
| tl + (k >> 1), TX_4X4, 16); |
| } |
| } |
| *distortion += thisdistortion; |
| *labelyrate += thisrate; |
| } |
| } |
| *distortion >>= 2; |
| return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion); |
| } |
| |
| typedef struct { |
| int_mv *ref_mv, *second_ref_mv; |
| int_mv mvp; |
| |
| int64_t segment_rd; |
| int r; |
| int d; |
| int segment_yrate; |
| MB_PREDICTION_MODE modes[4]; |
| int_mv mvs[4], second_mvs[4]; |
| int eobs[4]; |
| int mvthresh; |
| } BEST_SEG_INFO; |
| |
| static INLINE int mv_check_bounds(MACROBLOCK *x, int_mv *mv) { |
| int r = 0; |
| r |= (mv->as_mv.row >> 3) < x->mv_row_min; |
| r |= (mv->as_mv.row >> 3) > x->mv_row_max; |
| r |= (mv->as_mv.col >> 3) < x->mv_col_min; |
| r |= (mv->as_mv.col >> 3) > x->mv_col_max; |
| return r; |
| } |
| |
| static enum BlockSize get_block_size(int bw, int bh) { |
| if (bw == 4 && bh == 4) |
| return BLOCK_4X4; |
| |
| if (bw == 4 && bh == 8) |
| return BLOCK_4X8; |
| |
| if (bw == 8 && bh == 4) |
| return BLOCK_8X4; |
| |
| if (bw == 8 && bh == 8) |
| return BLOCK_8X8; |
| |
| if (bw == 8 && bh == 16) |
| return BLOCK_8X16; |
| |
| if (bw == 16 && bh == 8) |
| return BLOCK_16X8; |
| |
| if (bw == 16 && bh == 16) |
| return BLOCK_16X16; |
| |
| if (bw == 32 && bh == 32) |
| return BLOCK_32X32; |
| |
| if (bw == 32 && bh == 16) |
| return BLOCK_32X16; |
| |
| if (bw == 16 && bh == 32) |
| return BLOCK_16X32; |
| |
| if (bw == 64 && bh == 32) |
| return BLOCK_64X32; |
| |
| if (bw == 32 && bh == 64) |
| return BLOCK_32X64; |
| |
| if (bw == 64 && bh == 64) |
| return BLOCK_64X64; |
| |
| assert(0); |
| return -1; |
| } |
| |
| static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x, |
| BEST_SEG_INFO *bsi, |
| int_mv seg_mvs[4][MAX_REF_FRAMES - 1]) { |
| int i, j; |
| static const int labels[4] = { 0, 1, 2, 3 }; |
| int br = 0, bd = 0; |
| MB_PREDICTION_MODE this_mode; |
| MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi; |
| const int label_count = 4; |
| int64_t this_segment_rd = 0, other_segment_rd; |
| int label_mv_thresh; |
| int rate = 0; |
| int sbr = 0, sbd = 0; |
| int segmentyrate = 0; |
| int best_eobs[4] = { 0 }; |
| BLOCK_SIZE_TYPE bsize = mbmi->sb_type; |
| int bwl = b_width_log2(bsize), bw = 1 << bwl; |
| int bhl = b_height_log2(bsize), bh = 1 << bhl; |
| int idx, idy; |
| vp9_variance_fn_ptr_t *v_fn_ptr; |
| |
| ENTROPY_CONTEXT t_above[4], t_left[4]; |
| ENTROPY_CONTEXT t_above_b[4], t_left_b[4]; |
| |
| vpx_memcpy(t_above, x->e_mbd.plane[0].above_context, sizeof(t_above)); |
| vpx_memcpy(t_left, x->e_mbd.plane[0].left_context, sizeof(t_left)); |
| |
| v_fn_ptr = &cpi->fn_ptr[get_block_size(4 << bwl, 4 << bhl)]; |
| |
| // 64 makes this threshold really big effectively |
| // making it so that we very rarely check mvs on |
| // segments. setting this to 1 would make mv thresh |
| // roughly equal to what it is for macroblocks |
| label_mv_thresh = 1 * bsi->mvthresh / label_count; |
| |
| // Segmentation method overheads |
| other_segment_rd = this_segment_rd; |
| |
| for (idy = 0; idy < 2; idy += bh) { |
| for (idx = 0; idx < 2; idx += bw) { |
| // TODO(jingning,rbultje): rewrite the rate-distortion optimization |
| // loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop |
| int_mv mode_mv[MB_MODE_COUNT], second_mode_mv[MB_MODE_COUNT]; |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| int64_t best_label_rd = INT64_MAX, best_other_rd = INT64_MAX; |
| MB_PREDICTION_MODE mode_selected = ZEROMV; |
| int bestlabelyrate = 0; |
| i = idy * 2 + idx; |
| |
| frame_mv[ZEROMV][mbmi->ref_frame].as_int = 0; |
| frame_mv[ZEROMV][mbmi->second_ref_frame].as_int = 0; |
| vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd, |
| &frame_mv[NEARESTMV][mbmi->ref_frame], |
| &frame_mv[NEARMV][mbmi->ref_frame], |
| i, 0); |
| if (mbmi->second_ref_frame > 0) |
| vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd, |
| &frame_mv[NEARESTMV][mbmi->second_ref_frame], |
| &frame_mv[NEARMV][mbmi->second_ref_frame], |
| i, 1); |
| |
| // search for the best motion vector on this segment |
| for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { |
| int64_t this_rd; |
| int distortion; |
| int labelyrate; |
| ENTROPY_CONTEXT t_above_s[4], t_left_s[4]; |
| |
| vpx_memcpy(t_above_s, t_above, sizeof(t_above_s)); |
| vpx_memcpy(t_left_s, t_left, sizeof(t_left_s)); |
| |
| // motion search for newmv (single predictor case only) |
| if (mbmi->second_ref_frame <= 0 && this_mode == NEWMV) { |
| int sseshift, n; |
| int step_param = 0; |
| int further_steps; |
| int thissme, bestsme = INT_MAX; |
| const struct buf_2d orig_src = x->plane[0].src; |
| const struct buf_2d orig_pre = x->e_mbd.plane[0].pre[0]; |
| |
| /* Is the best so far sufficiently good that we cant justify doing |
| * and new motion search. */ |
| if (best_label_rd < label_mv_thresh) |
| break; |
| |
| if (cpi->compressor_speed) { |
| // use previous block's result as next block's MV predictor. |
| if (i > 0) { |
| bsi->mvp.as_int = |
| x->e_mbd.mode_info_context->bmi[i - 1].as_mv[0].as_int; |
| if (i == 2) |
| bsi->mvp.as_int = |
| x->e_mbd.mode_info_context->bmi[i - 2].as_mv[0].as_int; |
| step_param = 2; |
| } |
| } |
| |
| further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; |
| |
| { |
| int sadpb = x->sadperbit4; |
| int_mv mvp_full; |
| |
| mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3; |
| mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3; |
| |
| // find first label |
| n = i; |
| |
| // adjust src pointer for this segment |
| x->plane[0].src.buf = |
| raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, n, |
| x->plane[0].src.buf, |
| x->plane[0].src.stride); |
| assert(((intptr_t)x->e_mbd.plane[0].pre[0].buf & 0x7) == 0); |
| x->e_mbd.plane[0].pre[0].buf = |
| raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, n, |
| x->e_mbd.plane[0].pre[0].buf, |
| x->e_mbd.plane[0].pre[0].stride); |
| |
| bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param, |
| sadpb, further_steps, 0, v_fn_ptr, |
| bsi->ref_mv, &mode_mv[NEWMV]); |
| |
| sseshift = 0; |
| |
| // Should we do a full search (best quality only) |
| if ((cpi->compressor_speed == 0) && (bestsme >> sseshift) > 4000) { |
| /* Check if mvp_full is within the range. */ |
| clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max, |
| x->mv_row_min, x->mv_row_max); |
| |
| thissme = cpi->full_search_sad(x, &mvp_full, |
| sadpb, 16, v_fn_ptr, |
| x->nmvjointcost, x->mvcost, |
| bsi->ref_mv, |
| n); |
| |
| if (thissme < bestsme) { |
| bestsme = thissme; |
| mode_mv[NEWMV].as_int = |
| x->e_mbd.mode_info_context->bmi[n].as_mv[0].as_int; |
| } else { |
| /* The full search result is actually worse so re-instate the |
| * previous best vector */ |
| x->e_mbd.mode_info_context->bmi[n].as_mv[0].as_int = |
| mode_mv[NEWMV].as_int; |
| } |
| } |
| } |
| |
| if (bestsme < INT_MAX) { |
| int distortion; |
| unsigned int sse; |
| cpi->find_fractional_mv_step(x, &mode_mv[NEWMV], |
| bsi->ref_mv, x->errorperbit, v_fn_ptr, |
| x->nmvjointcost, x->mvcost, |
| &distortion, &sse); |
| |
| // safe motion search result for use in compound prediction |
| seg_mvs[i][mbmi->ref_frame - 1].as_int = mode_mv[NEWMV].as_int; |
| } |
| |
| // restore src pointers |
| x->plane[0].src = orig_src; |
| x->e_mbd.plane[0].pre[0] = orig_pre; |
| } else if (mbmi->second_ref_frame > 0 && this_mode == NEWMV) { |
| /* NEW4X4 */ |
| /* motion search not completed? Then skip newmv for this block with |
| * comppred */ |
| if (seg_mvs[i][mbmi->second_ref_frame - 1].as_int == INVALID_MV || |
| seg_mvs[i][mbmi->ref_frame - 1].as_int == INVALID_MV) { |
| continue; |
| } |
| } |
| |
| rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode], |
| &second_mode_mv[this_mode], frame_mv, seg_mvs[i], |
| bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost, |
| x->mvcost, cpi); |
| |
| // Trap vectors that reach beyond the UMV borders |
| if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) || |
| ((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) || |
| ((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) || |
| ((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) { |
| continue; |
| } |
| if (mbmi->second_ref_frame > 0 && |
| mv_check_bounds(x, &second_mode_mv[this_mode])) |
| continue; |
| |
| this_rd = encode_inter_mb_segment(&cpi->common, |
| x, labels, i, &labelyrate, |
| &distortion, t_above_s, t_left_s); |
| this_rd += RDCOST(x->rdmult, x->rddiv, rate, 0); |
| rate += labelyrate; |
| |
| if (this_rd < best_label_rd) { |
| sbr = rate; |
| sbd = distortion; |
| bestlabelyrate = labelyrate; |
| mode_selected = this_mode; |
| best_label_rd = this_rd; |
| for (j = 0; j < 4; j++) |
| if (labels[j] == i) |
| best_eobs[j] = x->e_mbd.plane[0].eobs[j]; |
| |
| vpx_memcpy(t_above_b, t_above_s, sizeof(t_above_s)); |
| vpx_memcpy(t_left_b, t_left_s, sizeof(t_left_s)); |
| } |
| } /*for each 4x4 mode*/ |
| |
| vpx_memcpy(t_above, t_above_b, sizeof(t_above)); |
| vpx_memcpy(t_left, t_left_b, sizeof(t_left)); |
| |
| labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected], |
| &second_mode_mv[mode_selected], frame_mv, seg_mvs[i], |
| bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost, |
| x->mvcost, cpi); |
| |
| br += sbr; |
| bd += sbd; |
| segmentyrate += bestlabelyrate; |
| this_segment_rd += best_label_rd; |
| other_segment_rd += best_other_rd; |
| |
| for (j = 1; j < bh; ++j) |
| vpx_memcpy(&x->partition_info->bmi[i + j * 2], |
| &x->partition_info->bmi[i], |
| sizeof(x->partition_info->bmi[i])); |
| for (j = 1; j < bw; ++j) |
| vpx_memcpy(&x->partition_info->bmi[i + j], |
| &x->partition_info->bmi[i], |
| sizeof(x->partition_info->bmi[i])); |
| } |
| } /* for each label */ |
| |
| if (this_segment_rd < bsi->segment_rd) { |
| bsi->r = br; |
| bsi->d = bd; |
| bsi->segment_yrate = segmentyrate; |
| bsi->segment_rd = this_segment_rd; |
| |
| // store everything needed to come back to this!! |
| for (i = 0; i < 4; i++) { |
| bsi->mvs[i].as_mv = x->partition_info->bmi[i].mv.as_mv; |
| if (mbmi->second_ref_frame > 0) |
| bsi->second_mvs[i].as_mv = x->partition_info->bmi[i].second_mv.as_mv; |
| bsi->modes[i] = x->partition_info->bmi[i].mode; |
| bsi->eobs[i] = best_eobs[i]; |
| } |
| } |
| } |
| |
| static void rd_check_segment(VP9_COMP *cpi, MACROBLOCK *x, |
| BEST_SEG_INFO *bsi, |
| int_mv seg_mvs[4][MAX_REF_FRAMES - 1]) { |
| rd_check_segment_txsize(cpi, x, bsi, seg_mvs); |
| } |
| |
| static int rd_pick_best_mbsegmentation(VP9_COMP *cpi, MACROBLOCK *x, |
| int_mv *best_ref_mv, |
| int_mv *second_best_ref_mv, |
| int64_t best_rd, |
| int *returntotrate, |
| int *returnyrate, |
| int *returndistortion, |
| int *skippable, int mvthresh, |
| int_mv seg_mvs[4][MAX_REF_FRAMES - 1]) { |
| int i; |
| BEST_SEG_INFO bsi; |
| MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi; |
| |
| vpx_memset(&bsi, 0, sizeof(bsi)); |
| |
| bsi.segment_rd = best_rd; |
| bsi.ref_mv = best_ref_mv; |
| bsi.second_ref_mv = second_best_ref_mv; |
| bsi.mvp.as_int = best_ref_mv->as_int; |
| bsi.mvthresh = mvthresh; |
| |
| for (i = 0; i < 4; i++) |
| bsi.modes[i] = ZEROMV; |
| |
| rd_check_segment(cpi, x, &bsi, seg_mvs); |
| |
| /* set it to the best */ |
| for (i = 0; i < 4; i++) { |
| x->e_mbd.mode_info_context->bmi[i].as_mv[0].as_int = bsi.mvs[i].as_int; |
| if (mbmi->second_ref_frame > 0) |
| x->e_mbd.mode_info_context->bmi[i].as_mv[1].as_int = |
| bsi.second_mvs[i].as_int; |
| x->e_mbd.plane[0].eobs[i] = bsi.eobs[i]; |
| } |
| |
| /* save partitions */ |
| x->partition_info->count = 4; |
| |
| for (i = 0; i < x->partition_info->count; i++) { |
| x->partition_info->bmi[i].mode = bsi.modes[i]; |
| x->partition_info->bmi[i].mv.as_mv = bsi.mvs[i].as_mv; |
| if (mbmi->second_ref_frame > 0) |
| x->partition_info->bmi[i].second_mv.as_mv = bsi.second_mvs[i].as_mv; |
| } |
| /* |
| * used to set mbmi->mv.as_int |
| */ |
| x->partition_info->bmi[3].mv.as_int = bsi.mvs[3].as_int; |
| if (mbmi->second_ref_frame > 0) |
| x->partition_info->bmi[3].second_mv.as_int = bsi.second_mvs[3].as_int; |
| |
| *returntotrate = bsi.r; |
| *returndistortion = bsi.d; |
| *returnyrate = bsi.segment_yrate; |
| *skippable = vp9_sby_is_skippable(&x->e_mbd, BLOCK_SIZE_SB8X8); |
| |
| return (int)(bsi.segment_rd); |
| } |
| |
| static void mv_pred(VP9_COMP *cpi, MACROBLOCK *x, |
| uint8_t *ref_y_buffer, int ref_y_stride, |
| int ref_frame, enum BlockSize block_size ) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; |
| int_mv this_mv; |
| int i; |
| int zero_seen = 0; |
| int best_index = 0; |
| int best_sad = INT_MAX; |
| int this_sad = INT_MAX; |
| |
| uint8_t *src_y_ptr = x->plane[0].src.buf; |
| uint8_t *ref_y_ptr; |
| int row_offset, col_offset; |
| |
| // Get the sad for each candidate reference mv |
| for (i = 0; i < MAX_MV_REF_CANDIDATES; i++) { |
| this_mv.as_int = mbmi->ref_mvs[ref_frame][i].as_int; |
| |
| // The list is at an end if we see 0 for a second time. |
| if (!this_mv.as_int && zero_seen) |
| break; |
| zero_seen = zero_seen || !this_mv.as_int; |
| |
| row_offset = this_mv.as_mv.row >> 3; |
| col_offset = this_mv.as_mv.col >> 3; |
| ref_y_ptr = ref_y_buffer + (ref_y_stride * row_offset) + col_offset; |
| |
| // Find sad for current vector. |
| this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride, |
| ref_y_ptr, ref_y_stride, |
| 0x7fffffff); |
| |
| // Note if it is the best so far. |
| if (this_sad < best_sad) { |
| best_sad = this_sad; |
| best_index = i; |
| } |
| } |
| |
| // Note the index of the mv that worked best in the reference list. |
| x->mv_best_ref_index[ref_frame] = best_index; |
| } |
| |
| extern void vp9_calc_ref_probs(int *count, vp9_prob *probs); |
| static void estimate_curframe_refprobs(VP9_COMP *cpi, |
| vp9_prob mod_refprobs[3], |
| int pred_ref) { |
| int norm_cnt[MAX_REF_FRAMES]; |
| const int *const rfct = cpi->count_mb_ref_frame_usage; |
| int intra_count = rfct[INTRA_FRAME]; |
| int last_count = rfct[LAST_FRAME]; |
| int gf_count = rfct[GOLDEN_FRAME]; |
| int arf_count = rfct[ALTREF_FRAME]; |
| |
| // Work out modified reference frame probabilities to use where prediction |
| // of the reference frame fails |
| if (pred_ref == INTRA_FRAME) { |
| norm_cnt[0] = 0; |
| norm_cnt[1] = last_count; |
| norm_cnt[2] = gf_count; |
| norm_cnt[3] = arf_count; |
| vp9_calc_ref_probs(norm_cnt, mod_refprobs); |
| mod_refprobs[0] = 0; // This branch implicit |
| } else if (pred_ref == LAST_FRAME) { |
| norm_cnt[0] = intra_count; |
| norm_cnt[1] = 0; |
| norm_cnt[2] = gf_count; |
| norm_cnt[3] = arf_count; |
| vp9_calc_ref_probs(norm_cnt, mod_refprobs); |
| mod_refprobs[1] = 0; // This branch implicit |
| } else if (pred_ref == GOLDEN_FRAME) { |
| norm_cnt[0] = intra_count; |
| norm_cnt[1] = last_count; |
| norm_cnt[2] = 0; |
| norm_cnt[3] = arf_count; |
| vp9_calc_ref_probs(norm_cnt, mod_refprobs); |
| mod_refprobs[2] = 0; // This branch implicit |
| } else { |
| norm_cnt[0] = intra_count; |
| norm_cnt[1] = last_count; |
| norm_cnt[2] = gf_count; |
| norm_cnt[3] = 0; |
| vp9_calc_ref_probs(norm_cnt, mod_refprobs); |
| mod_refprobs[2] = 0; // This branch implicit |
| } |
| } |
| |
| static INLINE unsigned weighted_cost(vp9_prob *tab0, vp9_prob *tab1, |
| int idx, int val, int weight) { |
| unsigned cost0 = tab0[idx] ? vp9_cost_bit(tab0[idx], val) : 0; |
| unsigned cost1 = tab1[idx] ? vp9_cost_bit(tab1[idx], val) : 0; |
| // weight is 16-bit fixed point, so this basically calculates: |
| // 0.5 + weight * cost1 + (1.0 - weight) * cost0 |
| return (0x8000 + weight * cost1 + (0x10000 - weight) * cost0) >> 16; |
| } |
| |
| static void estimate_ref_frame_costs(VP9_COMP *cpi, int segment_id, |
| unsigned int *ref_costs) { |
| VP9_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| vp9_prob *mod_refprobs; |
| |
| unsigned int cost; |
| int pred_ref; |
| int pred_flag; |
| int pred_ctx; |
| int i; |
| |
| vp9_prob pred_prob, new_pred_prob; |
| int seg_ref_active; |
| int seg_ref_count = 0; |
| seg_ref_active = vp9_segfeature_active(xd, |
| segment_id, |
| SEG_LVL_REF_FRAME); |
| |
| if (seg_ref_active) { |
| seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) + |
| vp9_check_segref(xd, segment_id, LAST_FRAME) + |
| vp9_check_segref(xd, segment_id, GOLDEN_FRAME) + |
| vp9_check_segref(xd, segment_id, ALTREF_FRAME); |
| } |
| |
| // Get the predicted reference for this mb |
| pred_ref = vp9_get_pred_ref(cm, xd); |
| |
| // Get the context probability for the prediction flag (based on last frame) |
| pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF); |
| |
| // Predict probability for current frame based on stats so far |
| pred_ctx = vp9_get_pred_context(cm, xd, PRED_REF); |
| new_pred_prob = get_binary_prob(cpi->ref_pred_count[pred_ctx][0], |
| cpi->ref_pred_count[pred_ctx][1]); |
| |
| // Get the set of probabilities to use if prediction fails |
| mod_refprobs = cm->mod_refprobs[pred_ref]; |
| |
| // For each possible selected reference frame work out a cost. |
| for (i = 0; i < MAX_REF_FRAMES; i++) { |
| if (seg_ref_active && seg_ref_count == 1) { |
| cost = 0; |
| } else { |
| pred_flag = (i == pred_ref); |
| |
| // Get the prediction for the current mb |
| cost = weighted_cost(&pred_prob, &new_pred_prob, 0, |
| pred_flag, cpi->seg0_progress); |
| if (cost > 1024) cost = 768; // i.e. account for 4 bits max. |
| |
| // for incorrectly predicted cases |
| if (!pred_flag) { |
| vp9_prob curframe_mod_refprobs[3]; |
| |
| if (cpi->seg0_progress) { |
| estimate_curframe_refprobs(cpi, curframe_mod_refprobs, pred_ref); |
| } else { |
| vpx_memset(curframe_mod_refprobs, 0, sizeof(curframe_mod_refprobs)); |
| } |
| |
| cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 0, |
| (i != INTRA_FRAME), cpi->seg0_progress); |
| if (i != INTRA_FRAME) { |
| cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 1, |
| (i != LAST_FRAME), cpi->seg0_progress); |
| if (i != LAST_FRAME) { |
| cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 2, |
| (i != GOLDEN_FRAME), cpi->seg0_progress); |
| } |
| } |
| } |
| } |
| |
| ref_costs[i] = cost; |
| } |
| } |
| |
| static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, |
| int mode_index, |
| PARTITION_INFO *partition, |
| int_mv *ref_mv, |
| int_mv *second_ref_mv, |
| int64_t comp_pred_diff[NB_PREDICTION_TYPES], |
| int64_t txfm_size_diff[NB_TXFM_MODES]) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| // Take a snapshot of the coding context so it can be |
| // restored if we decide to encode this way |
| ctx->skip = x->skip; |
| ctx->best_mode_index = mode_index; |
| vpx_memcpy(&ctx->mic, xd->mode_info_context, |
| sizeof(MODE_INFO)); |
| if (partition) |
| vpx_memcpy(&ctx->partition_info, partition, |
| sizeof(PARTITION_INFO)); |
| ctx->best_ref_mv.as_int = ref_mv->as_int; |
| ctx->second_best_ref_mv.as_int = second_ref_mv->as_int; |
| |
| ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_PREDICTION_ONLY]; |
| ctx->comp_pred_diff = (int)comp_pred_diff[COMP_PREDICTION_ONLY]; |
| ctx->hybrid_pred_diff = (int)comp_pred_diff[HYBRID_PREDICTION]; |
| |
| memcpy(ctx->txfm_rd_diff, txfm_size_diff, sizeof(ctx->txfm_rd_diff)); |
| } |
| |
| static void setup_pred_block(const MACROBLOCKD *xd, |
| struct buf_2d dst[MAX_MB_PLANE], |
| const YV12_BUFFER_CONFIG *src, |
| int mi_row, int mi_col, |
| const struct scale_factors *scale, |
| const struct scale_factors *scale_uv) { |
| int i; |
| |
| dst[0].buf = src->y_buffer; |
| dst[0].stride = src->y_stride; |
| dst[1].buf = src->u_buffer; |
| dst[2].buf = src->v_buffer; |
| dst[1].stride = dst[2].stride = src->uv_stride; |
| #if CONFIG_ALPHA |
| dst[3].buf = src->alpha_buffer; |
| dst[3].stride = src->alpha_stride; |
| #endif |
| |
| // TODO(jkoleszar): Make scale factors per-plane data |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col, |
| i ? scale_uv : scale, |
| xd->plane[i].subsampling_x, xd->plane[i].subsampling_y); |
| } |
| } |
| |
| static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x, |
| int idx, MV_REFERENCE_FRAME frame_type, |
| enum BlockSize block_size, |
| int mi_row, int mi_col, |
| int_mv frame_nearest_mv[MAX_REF_FRAMES], |
| int_mv frame_near_mv[MAX_REF_FRAMES], |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE], |
| struct scale_factors scale[MAX_REF_FRAMES]) { |
| VP9_COMMON *cm = &cpi->common; |
| YV12_BUFFER_CONFIG *yv12 = &cm->yv12_fb[cpi->common.ref_frame_map[idx]]; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; |
| int use_prev_in_find_mv_refs; |
| |
| // set up scaling factors |
| scale[frame_type] = cpi->common.active_ref_scale[frame_type - 1]; |
| scale[frame_type].x_offset_q4 = |
| (mi_col * MI_SIZE * scale[frame_type].x_num / |
| scale[frame_type].x_den) & 0xf; |
| scale[frame_type].y_offset_q4 = |
| (mi_row * MI_SIZE * scale[frame_type].y_num / |
| scale[frame_type].y_den) & 0xf; |
| |
| // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this |
| // use the UV scaling factors. |
| setup_pred_block(xd, yv12_mb[frame_type], yv12, mi_row, mi_col, |
| &scale[frame_type], &scale[frame_type]); |
| |
| // Gets an initial list of candidate vectors from neighbours and orders them |
| use_prev_in_find_mv_refs = cm->width == cm->last_width && |
| cm->height == cm->last_height && |
| !cpi->common.error_resilient_mode; |
| vp9_find_mv_refs(&cpi->common, xd, xd->mode_info_context, |
| use_prev_in_find_mv_refs ? xd->prev_mode_info_context : NULL, |
| frame_type, |
| mbmi->ref_mvs[frame_type], |
| cpi->common.ref_frame_sign_bias); |
| |
| // Candidate refinement carried out at encoder and decoder |
| vp9_find_best_ref_mvs(xd, |
| mbmi->ref_mvs[frame_type], |
| &frame_nearest_mv[frame_type], |
| &frame_near_mv[frame_type]); |
| |
| // Further refinement that is encode side only to test the top few candidates |
| // in full and choose the best as the centre point for subsequent searches. |
| // The current implementation doesn't support scaling. |
| if (scale[frame_type].x_num == scale[frame_type].x_den && |
| scale[frame_type].y_num == scale[frame_type].y_den) |
| mv_pred(cpi, x, yv12_mb[frame_type][0].buf, yv12->y_stride, |
| frame_type, block_size); |
| } |
| |
| static void model_rd_from_var_lapndz(int var, int n, int qstep, |
| int *rate, int *dist) { |
| // This function models the rate and distortion for a Laplacian |
| // source with given variance when quantized with a uniform quantizer |
| // with given stepsize. The closed form expressions are in: |
| // Hang and Chen, "Source Model for transform video coder and its |
| // application - Part I: Fundamental Theory", IEEE Trans. Circ. |
| // Sys. for Video Tech., April 1997. |
| // The function is implemented as piecewise approximation to the |
| // exact computation. |
| // TODO(debargha): Implement the functions by interpolating from a |
| // look-up table |
| vp9_clear_system_state(); |
| { |
| double D, R; |
| double s2 = (double) var / n; |
| double s = sqrt(s2); |
| double x = qstep / s; |
| if (x > 1.0) { |
| double y = exp(-x / 2); |
| double y2 = y * y; |
| D = 2.069981728764738 * y2 - 2.764286806516079 * y + 1.003956960819275; |
| R = 0.924056758535089 * y2 + 2.738636469814024 * y - 0.005169662030017; |
| } else { |
| double x2 = x * x; |
| D = 0.075303187668830 * x2 + 0.004296954321112 * x - 0.000413209252807; |
| if (x > 0.125) |
| R = 1 / (-0.03459733614226 * x2 + 0.36561675733603 * x + |
| 0.1626989668625); |
| else |
| R = -1.442252874826093 * log(x) + 1.944647760719664; |
| } |
| if (R < 0) { |
| *rate = 0; |
| *dist = var; |
| } else { |
| *rate = (n * R * 256 + 0.5); |
| *dist = (n * D * s2 + 0.5); |
| } |
| } |
| vp9_clear_system_state(); |
| } |
| |
| static enum BlockSize get_plane_block_size(BLOCK_SIZE_TYPE bsize, |
| struct macroblockd_plane *pd) { |
| const int bwl = b_width_log2(bsize) - pd->subsampling_x; |
| const int bhl = b_height_log2(bsize) - pd->subsampling_y; |
| return get_block_size(4 << bwl, 4 << bhl); |
| } |
| |
| static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE_TYPE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| int *out_rate_sum, int *out_dist_sum) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| unsigned int sse, var; |
| int i, rate_sum = 0, dist_sum = 0; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| struct macroblock_plane *const p = &x->plane[i]; |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| |
| // TODO(dkovalev) the same code in get_plane_block_size |
| const int bwl = b_width_log2(bsize) - pd->subsampling_x; |
| const int bhl = b_height_log2(bsize) - pd->subsampling_y; |
| const enum BlockSize bs = get_block_size(4 << bwl, 4 << bhl); |
| int rate, dist; |
| var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride, &sse); |
| model_rd_from_var_lapndz(var, 16 << (bwl + bhl), |
| pd->dequant[1] >> 3, &rate, &dist); |
| |
| rate_sum += rate; |
| dist_sum += dist; |
| } |
| |
| *out_rate_sum = rate_sum; |
| *out_dist_sum = dist_sum; |
| } |
| |
| static INLINE int get_switchable_rate(VP9_COMMON *cm, MACROBLOCK *x) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; |
| |
| const int c = vp9_get_pred_context(cm, xd, PRED_SWITCHABLE_INTERP); |
| const int m = vp9_switchable_interp_map[mbmi->interp_filter]; |
| return SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs[c][m]; |
| } |
| |
| static void iterative_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE_TYPE bsize, |
| int_mv *frame_mv, |
| YV12_BUFFER_CONFIG **scaled_ref_frame, |
| int mi_row, int mi_col, |
| int_mv single_newmv[MAX_REF_FRAMES]) { |
| int pw = 4 << b_width_log2(bsize), ph = 4 << b_height_log2(bsize); |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; |
| int refs[2] = { mbmi->ref_frame, |
| (mbmi->second_ref_frame < 0 ? 0 : mbmi->second_ref_frame) }; |
| int_mv ref_mv[2]; |
| const enum BlockSize block_size = get_plane_block_size(bsize, &xd->plane[0]); |
| int ite; |
| // Prediction buffer from second frame. |
| uint8_t *second_pred = vpx_memalign(16, pw * ph * sizeof(uint8_t)); |
| |
| // Do joint motion search in compound mode to get more accurate mv. |
| struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}}; |
| struct buf_2d backup_second_yv12[MAX_MB_PLANE] = {{0}}; |
| struct buf_2d scaled_first_yv12; |
| int last_besterr[2] = {INT_MAX, INT_MAX}; |
| |
| ref_mv[0] = mbmi->ref_mvs[refs[0]][0]; |
| ref_mv[1] = mbmi->ref_mvs[refs[1]][0]; |
| |
| if (scaled_ref_frame[0]) { |
| int i; |
| |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| backup_yv12[i] = xd->plane[i].pre[0]; |
| |
| setup_pre_planes(xd, scaled_ref_frame[0], NULL, mi_row, mi_col, |
| NULL, NULL); |
| } |
| |
| if (scaled_ref_frame[1]) { |
| int i; |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| backup_second_yv12[i] = xd->plane[i].pre[1]; |
| |
| setup_pre_planes(xd, scaled_ref_frame[1], NULL, mi_row, mi_col, |
| NULL, NULL); |
| } |
| xd->scale_factor[0].set_scaled_offsets(&xd->scale_factor[0], |
| mi_row, mi_col); |
| xd->scale_factor[1].set_scaled_offsets(&xd->scale_factor[1], |
| mi_row, mi_col); |
| |
| scaled_first_yv12 = xd->plane[0].pre[0]; |
| |
| // Initialize mv using single prediction mode result. |
| frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; |
| frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; |
| |
| // Allow joint search multiple times iteratively for each ref frame |
| // and break out the search loop if it couldn't find better mv. |
| for (ite = 0; ite < 4; ite++) { |
| struct buf_2d ref_yv12[2]; |
| int bestsme = INT_MAX; |
| int sadpb = x->sadperbit16; |
| int_mv tmp_mv; |
| int search_range = 3; |
| |
| int tmp_col_min = x->mv_col_min; |
| int tmp_col_max = x->mv_col_max; |
| int tmp_row_min = x->mv_row_min; |
| int tmp_row_max = x->mv_row_max; |
| int id = ite % 2; |
| |
| // Initialized here because of compiler problem in Visual Studio. |
| ref_yv12[0] = xd->plane[0].pre[0]; |
| ref_yv12[1] = xd->plane[0].pre[1]; |
| |
| // Get pred block from second frame. |
| vp9_build_inter_predictor(ref_yv12[!id].buf, |
| ref_yv12[!id].stride, |
| second_pred, pw, |
| &frame_mv[refs[!id]], |
| &xd->scale_factor[!id], |
| pw, ph, 0, |
| &xd->subpix); |
| |
| // Compound motion search on first ref frame. |
| if (id) |
| xd->plane[0].pre[0] = ref_yv12[id]; |
| vp9_clamp_mv_min_max(x, &ref_mv[id]); |
| |
| // Use mv result from single mode as mvp. |
| tmp_mv.as_int = frame_mv[refs[id]].as_int; |
| |
| tmp_mv.as_mv.col >>= 3; |
| tmp_mv.as_mv.row >>= 3; |
| |
| // Small-range full-pixel motion search |
| bestsme = vp9_refining_search_8p_c(x, &tmp_mv, sadpb, |
| search_range, |
| &cpi->fn_ptr[block_size], |
| x->nmvjointcost, x->mvcost, |
| &ref_mv[id], second_pred, |
| pw, ph); |
| |
| x->mv_col_min = tmp_col_min; |
| x->mv_col_max = tmp_col_max; |
| x->mv_row_min = tmp_row_min; |
| x->mv_row_max = tmp_row_max; |
| |
| if (bestsme < INT_MAX) { |
| int dis; /* TODO: use dis in distortion calculation later. */ |
| unsigned int sse; |
| |
| bestsme = vp9_find_best_sub_pixel_comp(x, &tmp_mv, |
| &ref_mv[id], |
| x->errorperbit, |
| &cpi->fn_ptr[block_size], |
| x->nmvjointcost, x->mvcost, |
| &dis, &sse, second_pred, |
| pw, ph); |
| } |
| |
| if (id) |
| xd->plane[0].pre[0] = scaled_first_yv12; |
| |
| if (bestsme < last_besterr[id]) { |
| frame_mv[refs[id]].as_int = |
| xd->mode_info_context->bmi[0].as_mv[1].as_int = tmp_mv.as_int; |
| last_besterr[id] = bestsme; |
| } else { |
| break; |
| } |
| } |
| |
| // restore the predictor |
| if (scaled_ref_frame[0]) { |
| int i; |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| xd->plane[i].pre[0] = backup_yv12[i]; |
| } |
| |
| if (scaled_ref_frame[1]) { |
| int i; |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| xd->plane[i].pre[1] = backup_second_yv12[i]; |
| } |
| |
| vpx_free(second_pred); |
| } |
| |
| static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE_TYPE bsize, |
| int64_t txfm_cache[], |
| int *rate2, int *distortion, int *skippable, |
| int *compmode_cost, |
| int *rate_y, int *distortion_y, |
| int *rate_uv, int *distortion_uv, |
| int *mode_excluded, int *disable_skip, |
| INTERPOLATIONFILTERTYPE *best_filter, |
| int_mv *frame_mv, |
| YV12_BUFFER_CONFIG **scaled_ref_frame, |
| int mi_row, int mi_col, |
| int_mv single_newmv[MAX_REF_FRAMES]) { |
| const int bw = 1 << mi_width_log2(bsize), bh = 1 << mi_height_log2(bsize); |
| |
| VP9_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| const enum BlockSize block_size = get_plane_block_size(bsize, &xd->plane[0]); |
| const enum BlockSize uv_block_size = get_plane_block_size(bsize, |
| &xd->plane[1]); |
| MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; |
| const int is_comp_pred = (mbmi->second_ref_frame > 0); |
| const int num_refs = is_comp_pred ? 2 : 1; |
| const int this_mode = mbmi->mode; |
| int i; |
| int refs[2] = { mbmi->ref_frame, |
| (mbmi->second_ref_frame < 0 ? 0 : mbmi->second_ref_frame) }; |
| int_mv cur_mv[2]; |
| int_mv ref_mv[2]; |
| int64_t this_rd = 0; |
| unsigned char tmp_buf[MAX_MB_PLANE][64 * 64]; |
| int pred_exists = 0; |
| int interpolating_intpel_seen = 0; |
| int intpel_mv; |
| int64_t rd, best_rd = INT64_MAX; |
| |
| switch (this_mode) { |
| case NEWMV: |
| ref_mv[0] = mbmi->ref_mvs[refs[0]][0]; |
| ref_mv[1] = mbmi->ref_mvs[refs[1]][0]; |
| |
| if (is_comp_pred) { |
| if (cpi->sf.comp_inter_joint_serach) |
| iterative_motion_search(cpi, x, bsize, frame_mv, scaled_ref_frame, |
| mi_row, mi_col, single_newmv); |
| |
| if (frame_mv[refs[0]].as_int == INVALID_MV || |
| frame_mv[refs[1]].as_int == INVALID_MV) |
| return INT64_MAX; |
| *rate2 += vp9_mv_bit_cost(&frame_mv[refs[0]], |
| &ref_mv[0], |
| x->nmvjointcost, x->mvcost, 96, |
| x->e_mbd.allow_high_precision_mv); |
| *rate2 += vp9_mv_bit_cost(&frame_mv[refs[1]], |
| &ref_mv[1], |
| x->nmvjointcost, x->mvcost, 96, |
| x->e_mbd.allow_high_precision_mv); |
| } else { |
| struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}}; |
| int bestsme = INT_MAX; |
| int further_steps, step_param = cpi->sf.first_step; |
| int sadpb = x->sadperbit16; |
| int_mv mvp_full, tmp_mv; |
| int sr = 0; |
| |
| int tmp_col_min = x->mv_col_min; |
| int tmp_col_max = x->mv_col_max; |
| int tmp_row_min = x->mv_row_min; |
| int tmp_row_max = x->mv_row_max; |
| |
| if (scaled_ref_frame[0]) { |
| int i; |
| |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| backup_yv12[i] = xd->plane[i].pre[0]; |
| |
| setup_pre_planes(xd, scaled_ref_frame[0], NULL, mi_row, mi_col, |
| NULL, NULL); |
| } |
| |
| vp9_clamp_mv_min_max(x, &ref_mv[0]); |
| |
| sr = vp9_init_search_range(cpi->common.width, cpi->common.height); |
| |
| // mvp_full.as_int = ref_mv[0].as_int; |
| mvp_full.as_int = |
| mbmi->ref_mvs[refs[0]][x->mv_best_ref_index[refs[0]]].as_int; |
| |
| mvp_full.as_mv.col >>= 3; |
| mvp_full.as_mv.row >>= 3; |
| |
| // adjust search range according to sr from mv prediction |
| step_param = MAX(step_param, sr); |
| |
| // Further step/diamond searches as necessary |
| further_steps = (cpi->sf.max_step_search_steps - 1) - step_param; |
| |
| bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param, |
| sadpb, further_steps, 1, |
| &cpi->fn_ptr[block_size], |
| &ref_mv[0], &tmp_mv); |
| |
| x->mv_col_min = tmp_col_min; |
| x->mv_col_max = tmp_col_max; |
| x->mv_row_min = tmp_row_min; |
| x->mv_row_max = tmp_row_max; |
| |
| if (bestsme < INT_MAX) { |
| int dis; /* TODO: use dis in distortion calculation later. */ |
| unsigned int sse; |
| cpi->find_fractional_mv_step(x, &tmp_mv, |
| &ref_mv[0], |
| x->errorperbit, |
| &cpi->fn_ptr[block_size], |
| x->nmvjointcost, x->mvcost, |
| &dis, &sse); |
| } |
| frame_mv[refs[0]].as_int = |
| xd->mode_info_context->bmi[0].as_mv[0].as_int = tmp_mv.as_int; |
| single_newmv[refs[0]].as_int = tmp_mv.as_int; |
| |
| // Add the new motion vector cost to our rolling cost variable |
| *rate2 += vp9_mv_bit_cost(&tmp_mv, &ref_mv[0], |
| x->nmvjointcost, x->mvcost, |
| 96, xd->allow_high_precision_mv); |
| |
| // restore the predictor, if required |
| if (scaled_ref_frame[0]) { |
| int i; |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| xd->plane[i].pre[0] = backup_yv12[i]; |
| } |
| } |
| break; |
| case NEARMV: |
| case NEARESTMV: |
| case ZEROMV: |
| default: |
| break; |
| } |
| for (i = 0; i < num_refs; ++i) { |
| cur_mv[i] = frame_mv[refs[i]]; |
| // Clip "next_nearest" so that it does not extend to far out of image |
| if (this_mode == NEWMV) |
| assert(!clamp_mv2(&cur_mv[i], xd)); |
| else |
| clamp_mv2(&cur_mv[i], xd); |
| |
| if (mv_check_bounds(x, &cur_mv[i])) |
| return INT64_MAX; |
| mbmi->mv[i].as_int = cur_mv[i].as_int; |
| } |
| |
| |
| /* We don't include the cost of the second reference here, because there |
| * are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other |
| * words if you present them in that order, the second one is always known |
| * if the first is known */ |
| *compmode_cost = vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_COMP), |
| is_comp_pred); |
| *rate2 += vp9_cost_mv_ref(cpi, this_mode, |
| mbmi->mb_mode_context[mbmi->ref_frame]); |
| |
| pred_exists = 0; |
| interpolating_intpel_seen = 0; |
| // Are all MVs integer pel for Y and UV |
| intpel_mv = (mbmi->mv[0].as_mv.row & 15) == 0 && |
| (mbmi->mv[0].as_mv.col & 15) == 0; |
| if (is_comp_pred) |
| intpel_mv &= (mbmi->mv[1].as_mv.row & 15) == 0 && |
| (mbmi->mv[1].as_mv.col & 15) == 0; |
| // Search for best switchable filter by checking the variance of |
| // pred error irrespective of whether the filter will be used |
| if (1) { |
| int i, newbest; |
| int tmp_rate_sum = 0, tmp_dist_sum = 0; |
| for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) { |
| int rs = 0; |
| const INTERPOLATIONFILTERTYPE filter = vp9_switchable_interp[i]; |
| const int is_intpel_interp = intpel_mv && |
| vp9_is_interpolating_filter[filter]; |
| mbmi->interp_filter = filter; |
| vp9_setup_interp_filters(xd, mbmi->interp_filter, cm); |
| |
| if (cm->mcomp_filter_type == SWITCHABLE) |
| rs = get_switchable_rate(cm, x); |
| |
| if (interpolating_intpel_seen && is_intpel_interp) { |
| rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_sum, tmp_dist_sum); |
| } else { |
| int rate_sum = 0, dist_sum = 0; |
| vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); |
| model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum); |
| rd = RDCOST(x->rdmult, x->rddiv, rs + rate_sum, dist_sum); |
| if (!interpolating_intpel_seen && is_intpel_interp) { |
| tmp_rate_sum = rate_sum; |
| tmp_dist_sum = dist_sum; |
| } |
| } |
| newbest = i == 0 || rd < best_rd; |
| |
| if (newbest) { |
| best_rd = rd; |
| *best_filter = mbmi->interp_filter; |
| } |
| |
| if ((cm->mcomp_filter_type == SWITCHABLE && newbest) || |
| (cm->mcomp_filter_type != SWITCHABLE && |
| cm->mcomp_filter_type == mbmi->interp_filter)) { |
| int p; |
| |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| const int y = (MI_SIZE * bh) >> xd->plane[p].subsampling_y; |
| const int x = (MI_SIZE * bw) >> xd->plane[p].subsampling_x; |
| int i; |
| |
| for (i = 0; i < y; i++) |
| vpx_memcpy(&tmp_buf[p][64 * i], |
| xd->plane[p].dst.buf + i * xd->plane[p].dst.stride, x); |
| } |
| pred_exists = 1; |
| } |
| interpolating_intpel_seen |= is_intpel_interp; |
| } |
| } |
| |
| // Set the appripriate filter |
| mbmi->interp_filter = cm->mcomp_filter_type != SWITCHABLE ? |
| cm->mcomp_filter_type : *best_filter; |
| vp9_setup_interp_filters(xd, mbmi->interp_filter, cm); |
| |
| |
| if (pred_exists) { |
| int p; |
| |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| const int y = (MI_SIZE * bh) >> xd->plane[p].subsampling_y; |
| const int x = (MI_SIZE * bw) >> xd->plane[p].subsampling_x; |
| int i; |
| |
| for (i = 0; i < y; i++) |
| vpx_memcpy(xd->plane[p].dst.buf + i * xd->plane[p].dst.stride, |
| &tmp_buf[p][64 * i], x); |
| } |
| } else { |
| // Handles the special case when a filter that is not in the |
| // switchable list (ex. bilinear, 6-tap) is indicated at the frame level |
| vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); |
| } |
| |
| if (cpi->common.mcomp_filter_type == SWITCHABLE) |
| *rate2 += get_switchable_rate(cm, x); |
| |
| if (cpi->active_map_enabled && x->active_ptr[0] == 0) |
| x->skip = 1; |
| else if (x->encode_breakout) { |
| unsigned int var, sse; |
| int threshold = (xd->plane[0].dequant[1] |
| * xd->plane[0].dequant[1] >> 4); |
| |
| if (threshold < x->encode_breakout) |
| threshold = x->encode_breakout; |
| |
| var = cpi->fn_ptr[block_size].vf(x->plane[0].src.buf, |
| x->plane[0].src.stride, |
| xd->plane[0].dst.buf, |
| xd->plane[0].dst.stride, |
| &sse); |
| |
| if ((int)sse < threshold) { |
| unsigned int q2dc = xd->plane[0].dequant[0]; |
| /* If there is no codeable 2nd order dc |
| or a very small uniform pixel change change */ |
| if ((sse - var < q2dc * q2dc >> 4) || |
| (sse / 2 > var && sse - var < 64)) { |
| // Check u and v to make sure skip is ok |
| int sse2; |
| unsigned int sse2u, sse2v; |
| var = cpi->fn_ptr[uv_block_size].vf(x->plane[1].src.buf, |
| x->plane[1].src.stride, |
| xd->plane[1].dst.buf, |
| xd->plane[1].dst.stride, &sse2u); |
| var = cpi->fn_ptr[uv_block_size].vf(x->plane[2].src.buf, |
| x->plane[1].src.stride, |
| xd->plane[2].dst.buf, |
| xd->plane[1].dst.stride, &sse2v); |
| sse2 = sse2u + sse2v; |
| |
| if (sse2 * 2 < threshold) { |
| x->skip = 1; |
| *distortion = sse + sse2; |
| *rate2 = 500; |
| |
| /* for best_yrd calculation */ |
| *rate_uv = 0; |
| *distortion_uv = sse2; |
| |
| *disable_skip = 1; |
| this_rd = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion); |
| } |
| } |
| } |
| } |
| |
| if (!x->skip) { |
| int skippable_y, skippable_uv; |
| |
| // Y cost and distortion |
| super_block_yrd(cpi, x, rate_y, distortion_y, &skippable_y, |
| bsize, txfm_cache); |
| *rate2 += *rate_y; |
| *distortion += *distortion_y; |
| |
| super_block_uvrd(cm, x, rate_uv, distortion_uv, |
| &skippable_uv, bsize); |
| |
| *rate2 += *rate_uv; |
| *distortion += *distortion_uv; |
| *skippable = skippable_y && skippable_uv; |
| } |
| |
| if (!(*mode_excluded)) { |
| if (is_comp_pred) { |
| *mode_excluded = (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY); |
| } else { |
| *mode_excluded = (cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY); |
| } |
| } |
| |
| return this_rd; // if 0, this will be re-calculated by caller |
| } |
| |
| void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x, |
| int *returnrate, int *returndist, |
| BLOCK_SIZE_TYPE bsize, |
| PICK_MODE_CONTEXT *ctx) { |
| VP9_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| int rate_y = 0, rate_uv; |
| int rate_y_tokenonly = 0, rate_uv_tokenonly; |
| int dist_y = 0, dist_uv; |
| int y_skip = 0, uv_skip; |
| int64_t txfm_cache[NB_TXFM_MODES], err; |
| MB_PREDICTION_MODE mode; |
| TX_SIZE txfm_size; |
| int rate4x4_y, rate4x4_y_tokenonly, dist4x4_y; |
| int64_t err4x4 = INT64_MAX; |
| int i; |
| |
| ctx->skip = 0; |
| xd->mode_info_context->mbmi.mode = DC_PRED; |
| err = rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, |
| &dist_y, &y_skip, bsize, txfm_cache); |
| mode = xd->mode_info_context->mbmi.mode; |
| txfm_size = xd->mode_info_context->mbmi.txfm_size; |
| rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, |
| &dist_uv, &uv_skip, |
| (bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 : |
| bsize); |
| if (bsize < BLOCK_SIZE_SB8X8) |
| err4x4 = rd_pick_intra4x4mby_modes(cpi, x, &rate4x4_y, |
| &rate4x4_y_tokenonly, |
| &dist4x4_y, err); |
| |
| if (y_skip && uv_skip) { |
| *returnrate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly + |
| vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 1); |
| *returndist = dist_y + (dist_uv >> 2); |
| memset(ctx->txfm_rd_diff, 0, sizeof(ctx->txfm_rd_diff)); |
| xd->mode_info_context->mbmi.mode = mode; |
| xd->mode_info_context->mbmi.txfm_size = txfm_size; |
| } else if (bsize < BLOCK_SIZE_SB8X8 && err4x4 < err) { |
| *returnrate = rate4x4_y + rate_uv + |
| vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0); |
| *returndist = dist4x4_y + (dist_uv >> 2); |
| for (i = 0; i < NB_TXFM_MODES; i++) { |
| ctx->txfm_rd_diff[i] = MIN(err4x4, err - txfm_cache[i]); |
| } |
| xd->mode_info_context->mbmi.txfm_size = TX_4X4; |
| } else { |
| *returnrate = rate_y + rate_uv + |
| vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0); |
| *returndist = dist_y + (dist_uv >> 2); |
| for (i = 0; i < NB_TXFM_MODES; i++) { |
| ctx->txfm_rd_diff[i] = MIN(err4x4, err - txfm_cache[i]); |
| } |
| xd->mode_info_context->mbmi.txfm_size = txfm_size; |
| xd->mode_info_context->mbmi.mode = mode; |
| } |
| |
| vpx_memcpy(&ctx->mic, xd->mode_info_context, sizeof(MODE_INFO)); |
| } |
| |
| int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x, |
| int mi_row, int mi_col, |
| int *returnrate, |
| int *returndistortion, |
| BLOCK_SIZE_TYPE bsize, |
| PICK_MODE_CONTEXT *ctx) { |
| VP9_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; |
| const enum BlockSize block_size = get_plane_block_size(bsize, &xd->plane[0]); |
| MB_PREDICTION_MODE this_mode; |
| MB_PREDICTION_MODE best_mode = DC_PRED; |
| MV_REFERENCE_FRAME ref_frame, second_ref = INTRA_FRAME; |
| unsigned char segment_id = xd->mode_info_context->mbmi.segment_id; |
| int comp_pred, i; |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE]; |
| int_mv single_newmv[MAX_REF_FRAMES]; |
| static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, |
| VP9_ALT_FLAG }; |
| int idx_list[4] = {0, |
| cpi->lst_fb_idx, |
| cpi->gld_fb_idx, |
| cpi->alt_fb_idx}; |
| int64_t best_rd = INT64_MAX; |
| int64_t best_txfm_rd[NB_TXFM_MODES]; |
| int64_t best_txfm_diff[NB_TXFM_MODES]; |
| int64_t best_pred_diff[NB_PREDICTION_TYPES]; |
| int64_t best_pred_rd[NB_PREDICTION_TYPES]; |
| MB_MODE_INFO best_mbmode; |
| int j; |
| int mode_index, best_mode_index = 0; |
| unsigned int ref_costs[MAX_REF_FRAMES]; |
| int64_t best_overall_rd = INT64_MAX; |
| INTERPOLATIONFILTERTYPE best_filter = SWITCHABLE; |
| INTERPOLATIONFILTERTYPE tmp_best_filter = SWITCHABLE; |
| int rate_uv_intra[TX_SIZE_MAX_SB], rate_uv_tokenonly[TX_SIZE_MAX_SB]; |
| int dist_uv[TX_SIZE_MAX_SB], skip_uv[TX_SIZE_MAX_SB]; |
| MB_PREDICTION_MODE mode_uv[TX_SIZE_MAX_SB]; |
| struct scale_factors scale_factor[4]; |
| unsigned int ref_frame_mask = 0; |
| unsigned int mode_mask = 0; |
| int64_t mode_distortions[MB_MODE_COUNT] = {-1}; |
| int64_t frame_distortions[MAX_REF_FRAMES] = {-1}; |
| int intra_cost_penalty = 20 * vp9_dc_quant(cpi->common.base_qindex, |
| cpi->common.y_dc_delta_q); |
| int_mv seg_mvs[4][MAX_REF_FRAMES - 1]; |
| union b_mode_info best_bmodes[4]; |
| PARTITION_INFO best_partition; |
| |
| for (i = 0; i < 4; i++) { |
| int j; |
| |
| for (j = 0; j < MAX_REF_FRAMES - 1; j++) |
| seg_mvs[i][j].as_int = INVALID_MV; |
| } |
| // Everywhere the flag is set the error is much higher than its neighbors. |
| ctx->frames_with_high_error = 0; |
| ctx->modes_with_high_error = 0; |
| |
| xd->mode_info_context->mbmi.segment_id = segment_id; |
| estimate_ref_frame_costs(cpi, segment_id, ref_costs); |
| vpx_memset(&best_mbmode, 0, sizeof(best_mbmode)); |
| vpx_memset(&single_newmv, 0, sizeof(single_newmv)); |
| |
| for (i = 0; i < NB_PREDICTION_TYPES; ++i) |
| best_pred_rd[i] = INT64_MAX; |
| for (i = 0; i < NB_TXFM_MODES; i++) |
| best_txfm_rd[i] = INT64_MAX; |
| |
| // Create a mask set to 1 for each frame used by a smaller resolution. |
| if (cpi->speed > 0) { |
| switch (block_size) { |
| case BLOCK_64X64: |
| for (i = 0; i < 4; i++) { |
| for (j = 0; j < 4; j++) { |
| ref_frame_mask |= x->mb_context[i][j].frames_with_high_error; |
| mode_mask |= x->mb_context[i][j].modes_with_high_error; |
| } |
| } |
| for (i = 0; i < 4; i++) { |
| ref_frame_mask |= x->sb32_context[i].frames_with_high_error; |
| mode_mask |= x->sb32_context[i].modes_with_high_error; |
| } |
| break; |
| case BLOCK_32X32: |
| for (i = 0; i < 4; i++) { |
| ref_frame_mask |= |
| x->mb_context[xd->sb_index][i].frames_with_high_error; |
| mode_mask |= x->mb_context[xd->sb_index][i].modes_with_high_error; |
| } |
| break; |
| default: |
| // Until we handle all block sizes set it to present; |
| ref_frame_mask = 0; |
| mode_mask = 0; |
| break; |
| } |
| ref_frame_mask = ~ref_frame_mask; |
| mode_mask = ~mode_mask; |
| } |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { |
| if (cpi->ref_frame_flags & flag_list[ref_frame]) { |
| setup_buffer_inter(cpi, x, idx_list[ref_frame], ref_frame, block_size, |
| mi_row, mi_col, frame_mv[NEARESTMV], frame_mv[NEARMV], |
| yv12_mb, scale_factor); |
| } |
| frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; |
| frame_mv[ZEROMV][ref_frame].as_int = 0; |
| } |
| if (cpi->speed == 0 |
| || (cpi->speed > 0 && (ref_frame_mask & (1 << INTRA_FRAME)))) { |
| mbmi->mode = DC_PRED; |
| for (i = 0; i <= (bsize < BLOCK_SIZE_MB16X16 ? TX_4X4 : |
| (bsize < BLOCK_SIZE_SB32X32 ? TX_8X8 : |
| (bsize < BLOCK_SIZE_SB64X64 ? TX_16X16 : TX_32X32))); |
| i++) { |
| mbmi->txfm_size = i; |
| rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_intra[i], &rate_uv_tokenonly[i], |
| &dist_uv[i], &skip_uv[i], |
| (bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 : |
| bsize); |
| mode_uv[i] = mbmi->uv_mode; |
| } |
| } |
| |
| for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) { |
| int mode_excluded = 0; |
| int64_t this_rd = INT64_MAX; |
| int disable_skip = 0; |
| int other_cost = 0; |
| int compmode_cost = 0; |
| int rate2 = 0, rate_y = 0, rate_uv = 0; |
| int distortion2 = 0, distortion_y = 0, distortion_uv = 0; |
| int skippable; |
| int64_t txfm_cache[NB_TXFM_MODES]; |
| int i; |
| |
| for (i = 0; i < NB_TXFM_MODES; ++i) |
| txfm_cache[i] = INT64_MAX; |
| |
| // Test best rd so far against threshold for trying this mode. |
| if (bsize >= BLOCK_SIZE_SB8X8 && |
| (best_rd < cpi->rd_threshes[mode_index] || |
| cpi->rd_threshes[mode_index] == INT_MAX)) |
| continue; |
| |
| x->skip = 0; |
| this_mode = vp9_mode_order[mode_index].mode; |
| ref_frame = vp9_mode_order[mode_index].ref_frame; |
| |
| if (!(ref_frame == INTRA_FRAME |
| || (cpi->ref_frame_flags & flag_list[ref_frame]))) { |
| continue; |
| } |
| |
| if (cpi->speed > 0 && bsize >= BLOCK_SIZE_SB8X8) { |
| if (!(ref_frame_mask & (1 << ref_frame))) { |
| continue; |
| } |
| if (!(mode_mask & (1 << this_mode))) { |
| continue; |
| } |
| if (vp9_mode_order[mode_index].second_ref_frame != NONE |
| && !(ref_frame_mask |
| & (1 << vp9_mode_order[mode_index].second_ref_frame))) { |
| continue; |
| } |
| } |
| |
| mbmi->ref_frame = ref_frame; |
| mbmi->second_ref_frame = vp9_mode_order[mode_index].second_ref_frame; |
| |
| // TODO(jingning, jkoleszar): scaling reference frame not supported for |
| // SPLITMV. |
| if (mbmi->ref_frame > 0 && |
| (scale_factor[mbmi->ref_frame].x_num != |
| scale_factor[mbmi->ref_frame].x_den || |
| scale_factor[mbmi->ref_frame].y_num != |
| scale_factor[mbmi->ref_frame].y_den) && |
| this_mode == SPLITMV) |
| continue; |
| |
| if (mbmi->second_ref_frame > 0 && |
| (scale_factor[mbmi->second_ref_frame].x_num != |
| scale_factor[mbmi->second_ref_frame].x_den || |
| scale_factor[mbmi->second_ref_frame].y_num != |
| scale_factor[mbmi->second_ref_frame].y_den) && |
| this_mode == SPLITMV) |
| continue; |
| |
| set_scale_factors(xd, mbmi->ref_frame, mbmi->second_ref_frame, |
| scale_factor); |
| comp_pred = mbmi->second_ref_frame > INTRA_FRAME; |
| mbmi->mode = this_mode; |
| mbmi->uv_mode = DC_PRED; |
| |
| // Evaluate all sub-pel filters irrespective of whether we can use |
| // them for this frame. |
| mbmi->interp_filter = cm->mcomp_filter_type; |
| vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common); |
| |
| if (bsize >= BLOCK_SIZE_SB8X8 && |
| (this_mode == I4X4_PRED || this_mode == SPLITMV)) |
| continue; |
| if (bsize < BLOCK_SIZE_SB8X8 && |
| !(this_mode == I4X4_PRED || this_mode == SPLITMV)) |
| continue; |
| |
| if (comp_pred) { |
| if (ref_frame == ALTREF_FRAME) { |
| second_ref = LAST_FRAME; |
| } else { |
| second_ref = ref_frame + 1; |
| } |
| if (!(cpi->ref_frame_flags & flag_list[second_ref])) |
| continue; |
| mbmi->second_ref_frame = second_ref; |
| set_scale_factors(xd, mbmi->ref_frame, mbmi->second_ref_frame, |
| scale_factor); |
| |
| mode_excluded = |
| mode_excluded ? |
| mode_excluded : cm->comp_pred_mode == SINGLE_PREDICTION_ONLY; |
| } else { |
| // mbmi->second_ref_frame = vp9_mode_order[mode_index].second_ref_frame; |
| if (ref_frame != INTRA_FRAME) { |
| if (mbmi->second_ref_frame != INTRA_FRAME) |
| mode_excluded = |
| mode_excluded ? |
| mode_excluded : cm->comp_pred_mode == COMP_PREDICTION_ONLY; |
| } |
| } |
| |
| // Select predictors |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| if (comp_pred) |
| xd->plane[i].pre[1] = yv12_mb[second_ref][i]; |
| } |
| |
| // If the segment reference frame feature is enabled.... |
| // then do nothing if the current ref frame is not allowed.. |
| if (vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) && |
| !vp9_check_segref(xd, segment_id, ref_frame)) { |
| continue; |
| // If the segment skip feature is enabled.... |
| // then do nothing if the current mode is not allowed.. |
| } else if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP) && |
| (this_mode != ZEROMV)) { |
| continue; |
| // Disable this drop out case if the ref frame |
| // segment level feature is enabled for this segment. This is to |
| // prevent the possibility that we end up unable to pick any mode. |
| } else if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME)) { |
| // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, |
| // unless ARNR filtering is enabled in which case we want |
| // an unfiltered alternative |
| if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { |
| if (this_mode != ZEROMV || ref_frame != ALTREF_FRAME) { |
| continue; |
| } |
| } |
| } |
| |
| if (this_mode == I4X4_PRED) { |
| int rate; |
| |
| mbmi->txfm_size = TX_4X4; |
| rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y, |
| &distortion_y, INT64_MAX); |
| rate2 += rate; |
| rate2 += intra_cost_penalty; |
| distortion2 += distortion_y; |
| |
| rate2 += rate_uv_intra[TX_4X4]; |
| rate_uv = rate_uv_intra[TX_4X4]; |
| distortion2 += dist_uv[TX_4X4]; |
| distortion_uv = dist_uv[TX_4X4]; |
| mbmi->uv_mode = mode_uv[TX_4X4]; |
| txfm_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); |
| for (i = 0; i < NB_TXFM_MODES; ++i) |
| txfm_cache[i] = txfm_cache[ONLY_4X4]; |
| } else if (ref_frame == INTRA_FRAME) { |
| TX_SIZE uv_tx; |
| vp9_build_intra_predictors_sby_s(xd, bsize); |
| super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, |
| bsize, txfm_cache); |
| |
| uv_tx = mbmi->txfm_size; |
| if (bsize < BLOCK_SIZE_MB16X16 && uv_tx == TX_8X8) |
| uv_tx = TX_4X4; |
| if (bsize < BLOCK_SIZE_SB32X32 && uv_tx == TX_16X16) |
| uv_tx = TX_8X8; |
| else if (bsize < BLOCK_SIZE_SB64X64 && uv_tx == TX_32X32) |
| uv_tx = TX_16X16; |
| |
| rate_uv = rate_uv_intra[uv_tx]; |
| distortion_uv = dist_uv[uv_tx]; |
| skippable = skippable && skip_uv[uv_tx]; |
| mbmi->uv_mode = mode_uv[uv_tx]; |
| |
| rate2 = rate_y + x->mbmode_cost[cm->frame_type][mbmi->mode] + rate_uv; |
| if (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED) |
| rate2 += intra_cost_penalty; |
| distortion2 = distortion_y + distortion_uv; |
| } else if (this_mode == SPLITMV) { |
| const int is_comp_pred = mbmi->second_ref_frame > 0; |
| int rate, distortion; |
| int64_t this_rd_thresh; |
| int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX; |
| int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX; |
| int tmp_best_distortion = INT_MAX, tmp_best_skippable = 0; |
| int switchable_filter_index; |
| int_mv *second_ref = is_comp_pred ? |
| &mbmi->ref_mvs[mbmi->second_ref_frame][0] : NULL; |
| union b_mode_info tmp_best_bmodes[16]; |
| MB_MODE_INFO tmp_best_mbmode; |
| PARTITION_INFO tmp_best_partition; |
| int pred_exists = 0; |
| int uv_skippable; |
| |
| this_rd_thresh = (mbmi->ref_frame == LAST_FRAME) ? |
| cpi->rd_threshes[THR_NEWMV] : cpi->rd_threshes[THR_NEWA]; |
| this_rd_thresh = (mbmi->ref_frame == GOLDEN_FRAME) ? |
| cpi->rd_threshes[THR_NEWG] : this_rd_thresh; |
| xd->mode_info_context->mbmi.txfm_size = TX_4X4; |
| |
| for (switchable_filter_index = 0; |
| switchable_filter_index < VP9_SWITCHABLE_FILTERS; |
| ++switchable_filter_index) { |
| int newbest; |
| mbmi->interp_filter = |
| vp9_switchable_interp[switchable_filter_index]; |
| vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common); |
| |
| tmp_rd = rd_pick_best_mbsegmentation(cpi, x, |
| &mbmi->ref_mvs[mbmi->ref_frame][0], |
| second_ref, INT64_MAX, |
| &rate, &rate_y, &distortion, |
| &skippable, |
| (int)this_rd_thresh, seg_mvs); |
| if (cpi->common.mcomp_filter_type == SWITCHABLE) { |
| const int rs = get_switchable_rate(cm, x); |
| tmp_rd += RDCOST(x->rdmult, x->rddiv, rs, 0); |
| } |
| newbest = (tmp_rd < tmp_best_rd); |
| if (newbest) { |
| tmp_best_filter = mbmi->interp_filter; |
| tmp_best_rd = tmp_rd; |
| } |
| if ((newbest && cm->mcomp_filter_type == SWITCHABLE) || |
| (mbmi->interp_filter == cm->mcomp_filter_type && |
| cm->mcomp_filter_type != SWITCHABLE)) { |
| tmp_best_rdu = tmp_rd; |
| tmp_best_rate = rate; |
| tmp_best_ratey = rate_y; |
| tmp_best_distortion = distortion; |
| tmp_best_skippable = skippable; |
| vpx_memcpy(&tmp_best_mbmode, mbmi, sizeof(MB_MODE_INFO)); |
| vpx_memcpy(&tmp_best_partition, x->partition_info, |
| sizeof(PARTITION_INFO)); |
| for (i = 0; i < 4; i++) { |
| tmp_best_bmodes[i] = xd->mode_info_context->bmi[i]; |
| } |
| pred_exists = 1; |
| } |
| } // switchable_filter_index loop |
| |
| mbmi->interp_filter = (cm->mcomp_filter_type == SWITCHABLE ? |
| tmp_best_filter : cm->mcomp_filter_type); |
| vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common); |
| if (!pred_exists) { |
| // Handles the special case when a filter that is not in the |
| // switchable list (bilinear, 6-tap) is indicated at the frame level |
| tmp_rd = rd_pick_best_mbsegmentation(cpi, x, |
| &mbmi->ref_mvs[mbmi->ref_frame][0], |
| second_ref, INT64_MAX, |
| &rate, &rate_y, &distortion, |
| &skippable, |
| (int)this_rd_thresh, seg_mvs); |
| } else { |
| if (cpi->common.mcomp_filter_type == SWITCHABLE) { |
| int rs = get_switchable_rate(cm, x); |
| tmp_best_rdu -= RDCOST(x->rdmult, x->rddiv, rs, 0); |
| } |
| tmp_rd = tmp_best_rdu; |
| rate = tmp_best_rate; |
| rate_y = tmp_best_ratey; |
| distortion = tmp_best_distortion; |
| skippable = tmp_best_skippable; |
| vpx_memcpy(mbmi, &tmp_best_mbmode, sizeof(MB_MODE_INFO)); |
| vpx_memcpy(x->partition_info, &tmp_best_partition, |
| sizeof(PARTITION_INFO)); |
| for (i = 0; i < 4; i++) { |
| xd->mode_info_context->bmi[i] = tmp_best_bmodes[i]; |
| } |
| } |
| |
| rate2 += rate; |
| distortion2 += distortion; |
| |
| if (cpi->common.mcomp_filter_type == SWITCHABLE) |
| rate2 += get_switchable_rate(cm, x); |
| |
| // If even the 'Y' rd value of split is higher than best so far |
| // then dont bother looking at UV |
| vp9_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, |
| BLOCK_SIZE_SB8X8); |
| vp9_subtract_sbuv(x, BLOCK_SIZE_SB8X8); |
| super_block_uvrd_for_txfm(cm, x, &rate_uv, &distortion_uv, |
| &uv_skippable, BLOCK_SIZE_SB8X8, TX_4X4); |
| rate2 += rate_uv; |
| distortion2 += distortion_uv; |
| skippable = skippable && uv_skippable; |
| |
| txfm_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); |
| for (i = 0; i < NB_TXFM_MODES; ++i) |
| txfm_cache[i] = txfm_cache[ONLY_4X4]; |
| |
| if (!mode_excluded) { |
| if (is_comp_pred) |
| mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY; |
| else |
| mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY; |
| } |
| |
| compmode_cost = |
| vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_COMP), is_comp_pred); |
| mbmi->mode = this_mode; |
| } else { |
| YV12_BUFFER_CONFIG *scaled_ref_frame[2] = {NULL, NULL}; |
| int fb = get_ref_frame_idx(cpi, mbmi->ref_frame); |
| if (cpi->scaled_ref_idx[fb] != cm->ref_frame_map[fb]) |
| scaled_ref_frame[0] = &cm->yv12_fb[cpi->scaled_ref_idx[fb]]; |
| |
| if (comp_pred) { |
| fb = get_ref_frame_idx(cpi, mbmi->second_ref_frame); |
| if (cpi->scaled_ref_idx[fb] != cm->ref_frame_map[fb]) |
| scaled_ref_frame[1] = &cm->yv12_fb[cpi->scaled_ref_idx[fb]]; |
| } |
| |
| this_rd = handle_inter_mode(cpi, x, bsize, |
| txfm_cache, |
| &rate2, &distortion2, &skippable, |
| &compmode_cost, |
| &rate_y, &distortion_y, |
| &rate_uv, &distortion_uv, |
| &mode_excluded, &disable_skip, |
| &tmp_best_filter, frame_mv[this_mode], |
| scaled_ref_frame, mi_row, mi_col, |
| single_newmv); |
| if (this_rd == INT64_MAX) |
| continue; |
| } |
| |
| if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { |
| rate2 += compmode_cost; |
| } |
| |
| // Estimate the reference frame signaling cost and add it |
| // to the rolling cost variable. |
| rate2 += ref_costs[xd->mode_info_context->mbmi.ref_frame]; |
| |
| if (!disable_skip) { |
| // Test for the condition where skip block will be activated |
| // because there are no non zero coefficients and make any |
| // necessary adjustment for rate. Ignore if skip is coded at |
| // segment level as the cost wont have been added in. |
| int mb_skip_allowed; |
| |
| // Is Mb level skip allowed (i.e. not coded at segment level). |
| mb_skip_allowed = !vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP); |
| |
| if (skippable && bsize >= BLOCK_SIZE_SB8X8) { |
| // Back out the coefficient coding costs |
| rate2 -= (rate_y + rate_uv); |
| // for best_yrd calculation |
| rate_uv = 0; |
| |
| if (mb_skip_allowed) { |
| int prob_skip_cost; |
| |
| // Cost the skip mb case |
| vp9_prob skip_prob = |
| vp9_get_pred_prob(cm, xd, PRED_MBSKIP); |
| |
| if (skip_prob) { |
| prob_skip_cost = vp9_cost_bit(skip_prob, 1); |
| rate2 += prob_skip_cost; |
| other_cost += prob_skip_cost; |
| } |
| } |
| } else if (mb_skip_allowed) { |
| // Add in the cost of the no skip flag. |
| int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob(cm, xd, |
| PRED_MBSKIP), 0); |
| rate2 += prob_skip_cost; |
| other_cost += prob_skip_cost; |
| } |
| |
| // Calculate the final RD estimate for this mode. |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); |
| } |
| |
| #if 0 |
| // Keep record of best intra distortion |
| if ((xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) && |
| (this_rd < best_intra_rd)) { |
| best_intra_rd = this_rd; |
| *returnintra = distortion2; |
| } |
| #endif |
| |
| if (!disable_skip && mbmi->ref_frame == INTRA_FRAME) |
| for (i = 0; i < NB_PREDICTION_TYPES; ++i) |
| best_pred_rd[i] = MIN(best_pred_rd[i], this_rd); |
| |
| if (this_rd < best_overall_rd) { |
| best_overall_rd = this_rd; |
| best_filter = tmp_best_filter; |
| best_mode = this_mode; |
| } |
| |
| // Store the respective mode distortions for later use. |
| if (mode_distortions[this_mode] == -1 |
| || distortion2 < mode_distortions[this_mode]) { |
| mode_distortions[this_mode] = distortion2; |
| } |
| if (frame_distortions[mbmi->ref_frame] == -1 |
| || distortion2 < frame_distortions[mbmi->ref_frame]) { |
| frame_distortions[mbmi->ref_frame] = distortion2; |
| } |
| |
| // Did this mode help.. i.e. is it the new best mode |
| if (this_rd < best_rd || x->skip) { |
| if (!mode_excluded) { |
| // Note index of best mode so far |
| best_mode_index = mode_index; |
| |
| if (this_mode <= I4X4_PRED) { |
| /* required for left and above block mv */ |
| mbmi->mv[0].as_int = 0; |
| } |
| |
| other_cost += ref_costs[xd->mode_info_context->mbmi.ref_frame]; |
| *returnrate = rate2; |
| *returndistortion = distortion2; |
| best_rd = this_rd; |
| vpx_memcpy(&best_mbmode, mbmi, sizeof(MB_MODE_INFO)); |
| vpx_memcpy(&best_partition, x->partition_info, sizeof(PARTITION_INFO)); |
| |
| if (this_mode == I4X4_PRED || this_mode == SPLITMV) { |
| for (i = 0; i < 4; i++) { |
| best_bmodes[i] = xd->mode_info_context->bmi[i]; |
| } |
| } |
| } |
| #if 0 |
| // Testing this mode gave rise to an improvement in best error score. |
| // Lower threshold a bit for next time |
| cpi->rd_thresh_mult[mode_index] = |
| (cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ? |
| cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT; |
| cpi->rd_threshes[mode_index] = |
| (cpi->rd_baseline_thresh[mode_index] >> 7) |
| * cpi->rd_thresh_mult[mode_index]; |
| #endif |
| } else { |
| // If the mode did not help improve the best error case then |
| // raise the threshold for testing that mode next time around. |
| #if 0 |
| cpi->rd_thresh_mult[mode_index] += 4; |
| |
| if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT) |
| cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT; |
| |
| cpi->rd_threshes[mode_index] = |
| (cpi->rd_baseline_thresh[mode_index] >> 7) |
| * cpi->rd_thresh_mult[mode_index]; |
| #endif |
| } |
| |
| /* keep record of best compound/single-only prediction */ |
| if (!disable_skip && mbmi->ref_frame != INTRA_FRAME) { |
| int single_rd, hybrid_rd, single_rate, hybrid_rate; |
| |
| if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { |
| single_rate = rate2 - compmode_cost; |
| hybrid_rate = rate2; |
| } else { |
| single_rate = rate2; |
| hybrid_rate = rate2 + compmode_cost; |
| } |
| |
| single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); |
| hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); |
| |
| if (mbmi->second_ref_frame <= INTRA_FRAME && |
| single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) { |
| best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd; |
| } else if (mbmi->second_ref_frame > INTRA_FRAME && |
| single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) { |
| best_pred_rd[COMP_PREDICTION_ONLY] = single_rd; |
| } |
| if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION]) |
| best_pred_rd[HYBRID_PREDICTION] = hybrid_rd; |
| } |
| |
| /* keep record of best txfm size */ |
| if (bsize < BLOCK_SIZE_SB32X32) { |
| if (bsize < BLOCK_SIZE_MB16X16) { |
| if (this_mode == SPLITMV || this_mode == I4X4_PRED) |
| txfm_cache[ALLOW_8X8] = txfm_cache[ONLY_4X4]; |
| txfm_cache[ALLOW_16X16] = txfm_cache[ALLOW_8X8]; |
| } |
| txfm_cache[ALLOW_32X32] = txfm_cache[ALLOW_16X16]; |
| } |
| if (!mode_excluded && this_rd != INT64_MAX) { |
| for (i = 0; i < NB_TXFM_MODES; i++) { |
| int64_t adj_rd = INT64_MAX; |
| if (this_mode != I4X4_PRED) { |
| adj_rd = this_rd + txfm_cache[i] - txfm_cache[cm->txfm_mode]; |
| } else { |
| adj_rd = this_rd; |
| } |
| |
| if (adj_rd < best_txfm_rd[i]) |
| best_txfm_rd[i] = adj_rd; |
| } |
| } |
| |
| if (x->skip && !mode_excluded) |
| break; |
| } |
| // Flag all modes that have a distortion thats > 2x the best we found at |
| // this level. |
| for (mode_index = 0; mode_index < MB_MODE_COUNT; ++mode_index) { |
| if (mode_index == NEARESTMV || mode_index == NEARMV || mode_index == NEWMV |
| || mode_index == SPLITMV) |
| continue; |
| |
| if (mode_distortions[mode_index] > 2 * *returndistortion) { |
| ctx->modes_with_high_error |= (1 << mode_index); |
| } |
| } |
| |
| // Flag all ref frames that have a distortion thats > 2x the best we found at |
| // this level. |
| for (ref_frame = INTRA_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { |
| if (frame_distortions[ref_frame] > 2 * *returndistortion) { |
| ctx->frames_with_high_error |= (1 << ref_frame); |
| } |
| } |
| |
| if (best_rd == INT64_MAX && bsize < BLOCK_SIZE_SB8X8) { |
| *returnrate = INT_MAX; |
| *returndistortion = INT_MAX; |
| return best_rd; |
| } |
| |
| assert((cm->mcomp_filter_type == SWITCHABLE) || |
| (cm->mcomp_filter_type == best_mbmode.interp_filter) || |
| (best_mbmode.mode <= I4X4_PRED)); |
| |
| // Accumulate filter usage stats |
| // TODO(agrange): Use RD criteria to select interpolation filter mode. |
| if (is_inter_mode(best_mode)) |
| ++cpi->best_switchable_interp_count[vp9_switchable_interp_map[best_filter]]; |
| |
| // TODO(rbultje) integrate with RD thresholding |
| #if 0 |
| // Reduce the activation RD thresholds for the best choice mode |
| if ((cpi->rd_baseline_thresh[best_mode_index] > 0) && |
| (cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) { |
| int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2); |
| |
| cpi->rd_thresh_mult[best_mode_index] = |
| (cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ? |
| cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT; |
| cpi->rd_threshes[best_mode_index] = |
| (cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index]; |
| } |
| #endif |
| |
| // This code forces Altref,0,0 and skip for the frame that overlays a |
| // an alrtef unless Altref is filtered. However, this is unsafe if |
| // segment level coding of ref frame is enabled for this segment. |
| if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) && |
| cpi->is_src_frame_alt_ref && |
| (cpi->oxcf.arnr_max_frames == 0) && |
| (best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME) |
| && bsize >= BLOCK_SIZE_SB8X8) { |
| mbmi->mode = ZEROMV; |
| mbmi->ref_frame = ALTREF_FRAME; |
| mbmi->second_ref_frame = NONE; |
| mbmi->mv[0].as_int = 0; |
| mbmi->uv_mode = DC_PRED; |
| mbmi->mb_skip_coeff = 1; |
| if (cm->txfm_mode == TX_MODE_SELECT) { |
| if (bsize >= BLOCK_SIZE_SB32X32) |
| mbmi->txfm_size = TX_32X32; |
| else if (bsize >= BLOCK_SIZE_MB16X16) |
| mbmi->txfm_size = TX_16X16; |
| else |
| mbmi->txfm_size = TX_8X8; |
| } |
| |
| vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff)); |
| vpx_memset(best_pred_diff, 0, sizeof(best_pred_diff)); |
| goto end; |
| } |
| |
| // macroblock modes |
| vpx_memcpy(mbmi, &best_mbmode, sizeof(MB_MODE_INFO)); |
| if (best_mbmode.mode == I4X4_PRED) { |
| for (i = 0; i < 4; i++) { |
| xd->mode_info_context->bmi[i].as_mode = best_bmodes[i].as_mode; |
| } |
| } |
| |
| if (best_mbmode.mode == SPLITMV) { |
| for (i = 0; i < 4; i++) |
| xd->mode_info_context->bmi[i].as_mv[0].as_int = |
| best_bmodes[i].as_mv[0].as_int; |
| if (mbmi->second_ref_frame > 0) |
| for (i = 0; i < 4; i++) |
| xd->mode_info_context->bmi[i].as_mv[1].as_int = |
| best_bmodes[i].as_mv[1].as_int; |
| |
| vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO)); |
| |
| mbmi->mv[0].as_int = x->partition_info->bmi[3].mv.as_int; |
| mbmi->mv[1].as_int = x->partition_info->bmi[3].second_mv.as_int; |
| } |
| |
| for (i = 0; i < NB_PREDICTION_TYPES; ++i) { |
| if (best_pred_rd[i] == INT64_MAX) |
| best_pred_diff[i] = INT_MIN; |
| else |
| best_pred_diff[i] = best_rd - best_pred_rd[i]; |
| } |
| |
| if (!x->skip) { |
| for (i = 0; i < NB_TXFM_MODES; i++) { |
| if (best_txfm_rd[i] == INT64_MAX) |
| best_txfm_diff[i] = 0; |
| else |
| best_txfm_diff[i] = best_rd - best_txfm_rd[i]; |
| } |
| } else { |
| vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff)); |
| } |
| |
| end: |
| set_scale_factors(xd, mbmi->ref_frame, mbmi->second_ref_frame, |
| scale_factor); |
| store_coding_context(x, ctx, best_mode_index, |
| &best_partition, |
| &mbmi->ref_mvs[mbmi->ref_frame][0], |
| &mbmi->ref_mvs[mbmi->second_ref_frame < 0 ? 0 : |
| mbmi->second_ref_frame][0], |
| best_pred_diff, best_txfm_diff); |
| |
| return best_rd; |
| } |