| /* |
| * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // This is an example demonstrating how to implement a multi-layer VPx |
| // encoding scheme based on temporal scalability for video applications |
| // that benefit from a scalable bitstream. |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "./vpx_config.h" |
| #include "../vpx_ports/vpx_timer.h" |
| #include "vpx/vp8cx.h" |
| #include "vpx/vpx_encoder.h" |
| |
| #include "../tools_common.h" |
| #include "../video_writer.h" |
| |
| static const char *exec_name; |
| |
| void usage_exit(void) { |
| exit(EXIT_FAILURE); |
| } |
| |
| // Denoiser states, for temporal denoising. |
| enum denoiserState { |
| kDenoiserOff, |
| kDenoiserOnYOnly, |
| kDenoiserOnYUV, |
| kDenoiserOnYUVAggressive, |
| kDenoiserOnAdaptive |
| }; |
| |
| static int mode_to_num_layers[12] = {1, 2, 2, 3, 3, 3, 3, 5, 2, 3, 3, 3}; |
| |
| // For rate control encoding stats. |
| struct RateControlMetrics { |
| // Number of input frames per layer. |
| int layer_input_frames[VPX_TS_MAX_LAYERS]; |
| // Total (cumulative) number of encoded frames per layer. |
| int layer_tot_enc_frames[VPX_TS_MAX_LAYERS]; |
| // Number of encoded non-key frames per layer. |
| int layer_enc_frames[VPX_TS_MAX_LAYERS]; |
| // Framerate per layer layer (cumulative). |
| double layer_framerate[VPX_TS_MAX_LAYERS]; |
| // Target average frame size per layer (per-frame-bandwidth per layer). |
| double layer_pfb[VPX_TS_MAX_LAYERS]; |
| // Actual average frame size per layer. |
| double layer_avg_frame_size[VPX_TS_MAX_LAYERS]; |
| // Average rate mismatch per layer (|target - actual| / target). |
| double layer_avg_rate_mismatch[VPX_TS_MAX_LAYERS]; |
| // Actual encoding bitrate per layer (cumulative). |
| double layer_encoding_bitrate[VPX_TS_MAX_LAYERS]; |
| // Average of the short-time encoder actual bitrate. |
| // TODO(marpan): Should we add these short-time stats for each layer? |
| double avg_st_encoding_bitrate; |
| // Variance of the short-time encoder actual bitrate. |
| double variance_st_encoding_bitrate; |
| // Window (number of frames) for computing short-timee encoding bitrate. |
| int window_size; |
| // Number of window measurements. |
| int window_count; |
| }; |
| |
| // Note: these rate control metrics assume only 1 key frame in the |
| // sequence (i.e., first frame only). So for temporal pattern# 7 |
| // (which has key frame for every frame on base layer), the metrics |
| // computation will be off/wrong. |
| // TODO(marpan): Update these metrics to account for multiple key frames |
| // in the stream. |
| static void set_rate_control_metrics(struct RateControlMetrics *rc, |
| vpx_codec_enc_cfg_t *cfg) { |
| unsigned int i = 0; |
| // Set the layer (cumulative) framerate and the target layer (non-cumulative) |
| // per-frame-bandwidth, for the rate control encoding stats below. |
| const double framerate = cfg->g_timebase.den / cfg->g_timebase.num; |
| rc->layer_framerate[0] = framerate / cfg->ts_rate_decimator[0]; |
| rc->layer_pfb[0] = 1000.0 * cfg->ts_target_bitrate[0] / |
| rc->layer_framerate[0]; |
| for (i = 0; i < cfg->ts_number_layers; ++i) { |
| if (i > 0) { |
| rc->layer_framerate[i] = framerate / cfg->ts_rate_decimator[i]; |
| rc->layer_pfb[i] = 1000.0 * |
| (cfg->ts_target_bitrate[i] - cfg->ts_target_bitrate[i - 1]) / |
| (rc->layer_framerate[i] - rc->layer_framerate[i - 1]); |
| } |
| rc->layer_input_frames[i] = 0; |
| rc->layer_enc_frames[i] = 0; |
| rc->layer_tot_enc_frames[i] = 0; |
| rc->layer_encoding_bitrate[i] = 0.0; |
| rc->layer_avg_frame_size[i] = 0.0; |
| rc->layer_avg_rate_mismatch[i] = 0.0; |
| } |
| rc->window_count = 0; |
| rc->window_size = 15; |
| rc->avg_st_encoding_bitrate = 0.0; |
| rc->variance_st_encoding_bitrate = 0.0; |
| } |
| |
| static void printout_rate_control_summary(struct RateControlMetrics *rc, |
| vpx_codec_enc_cfg_t *cfg, |
| int frame_cnt) { |
| unsigned int i = 0; |
| int tot_num_frames = 0; |
| double perc_fluctuation = 0.0; |
| printf("Total number of processed frames: %d\n\n", frame_cnt -1); |
| printf("Rate control layer stats for %d layer(s):\n\n", |
| cfg->ts_number_layers); |
| for (i = 0; i < cfg->ts_number_layers; ++i) { |
| const int num_dropped = (i > 0) ? |
| (rc->layer_input_frames[i] - rc->layer_enc_frames[i]) : |
| (rc->layer_input_frames[i] - rc->layer_enc_frames[i] - 1); |
| tot_num_frames += rc->layer_input_frames[i]; |
| rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[i] * |
| rc->layer_encoding_bitrate[i] / tot_num_frames; |
| rc->layer_avg_frame_size[i] = rc->layer_avg_frame_size[i] / |
| rc->layer_enc_frames[i]; |
| rc->layer_avg_rate_mismatch[i] = 100.0 * rc->layer_avg_rate_mismatch[i] / |
| rc->layer_enc_frames[i]; |
| printf("For layer#: %d \n", i); |
| printf("Bitrate (target vs actual): %d %f \n", cfg->ts_target_bitrate[i], |
| rc->layer_encoding_bitrate[i]); |
| printf("Average frame size (target vs actual): %f %f \n", rc->layer_pfb[i], |
| rc->layer_avg_frame_size[i]); |
| printf("Average rate_mismatch: %f \n", rc->layer_avg_rate_mismatch[i]); |
| printf("Number of input frames, encoded (non-key) frames, " |
| "and perc dropped frames: %d %d %f \n", rc->layer_input_frames[i], |
| rc->layer_enc_frames[i], |
| 100.0 * num_dropped / rc->layer_input_frames[i]); |
| printf("\n"); |
| } |
| rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count; |
| rc->variance_st_encoding_bitrate = |
| rc->variance_st_encoding_bitrate / rc->window_count - |
| (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate); |
| perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) / |
| rc->avg_st_encoding_bitrate; |
| printf("Short-time stats, for window of %d frames: \n",rc->window_size); |
| printf("Average, rms-variance, and percent-fluct: %f %f %f \n", |
| rc->avg_st_encoding_bitrate, |
| sqrt(rc->variance_st_encoding_bitrate), |
| perc_fluctuation); |
| if ((frame_cnt - 1) != tot_num_frames) |
| die("Error: Number of input frames not equal to output! \n"); |
| } |
| |
| // Temporal scaling parameters: |
| // NOTE: The 3 prediction frames cannot be used interchangeably due to |
| // differences in the way they are handled throughout the code. The |
| // frames should be allocated to layers in the order LAST, GF, ARF. |
| // Other combinations work, but may produce slightly inferior results. |
| static void set_temporal_layer_pattern(int layering_mode, |
| vpx_codec_enc_cfg_t *cfg, |
| int *layer_flags, |
| int *flag_periodicity) { |
| switch (layering_mode) { |
| case 0: { |
| // 1-layer. |
| int ids[1] = {0}; |
| cfg->ts_periodicity = 1; |
| *flag_periodicity = 1; |
| cfg->ts_number_layers = 1; |
| cfg->ts_rate_decimator[0] = 1; |
| memcpy(cfg->ts_layer_id, ids, sizeof(ids)); |
| // Update L only. |
| layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF | |
| VP8_EFLAG_NO_UPD_ARF; |
| break; |
| } |
| case 1: { |
| // 2-layers, 2-frame period. |
| int ids[2] = {0, 1}; |
| cfg->ts_periodicity = 2; |
| *flag_periodicity = 2; |
| cfg->ts_number_layers = 2; |
| cfg->ts_rate_decimator[0] = 2; |
| cfg->ts_rate_decimator[1] = 1; |
| memcpy(cfg->ts_layer_id, ids, sizeof(ids)); |
| #if 1 |
| // 0=L, 1=GF, Intra-layer prediction enabled. |
| layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF | |
| VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF; |
| layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | |
| VP8_EFLAG_NO_REF_ARF; |
| #else |
| // 0=L, 1=GF, Intra-layer prediction disabled. |
| layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF | |
| VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF; |
| layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | |
| VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_LAST; |
| #endif |
| break; |
| } |
| case 2: { |
| // 2-layers, 3-frame period. |
| int ids[3] = {0, 1, 1}; |
| cfg->ts_periodicity = 3; |
| *flag_periodicity = 3; |
| cfg->ts_number_layers = 2; |
| cfg->ts_rate_decimator[0] = 3; |
| cfg->ts_rate_decimator[1] = 1; |
| memcpy(cfg->ts_layer_id, ids, sizeof(ids)); |
| // 0=L, 1=GF, Intra-layer prediction enabled. |
| layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | |
| VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; |
| layer_flags[1] = |
| layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | |
| VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; |
| break; |
| } |
| case 3: { |
| // 3-layers, 6-frame period. |
| int ids[6] = {0, 2, 2, 1, 2, 2}; |
| cfg->ts_periodicity = 6; |
| *flag_periodicity = 6; |
| cfg->ts_number_layers = 3; |
| cfg->ts_rate_decimator[0] = 6; |
| cfg->ts_rate_decimator[1] = 3; |
| cfg->ts_rate_decimator[2] = 1; |
| memcpy(cfg->ts_layer_id, ids, sizeof(ids)); |
| // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled. |
| layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | |
| VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; |
| layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF | |
| VP8_EFLAG_NO_UPD_LAST; |
| layer_flags[1] = |
| layer_flags[2] = |
| layer_flags[4] = |
| layer_flags[5] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_LAST; |
| break; |
| } |
| case 4: { |
| // 3-layers, 4-frame period. |
| int ids[4] = {0, 2, 1, 2}; |
| cfg->ts_periodicity = 4; |
| *flag_periodicity = 4; |
| cfg->ts_number_layers = 3; |
| cfg->ts_rate_decimator[0] = 4; |
| cfg->ts_rate_decimator[1] = 2; |
| cfg->ts_rate_decimator[2] = 1; |
| memcpy(cfg->ts_layer_id, ids, sizeof(ids)); |
| // 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled. |
| layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | |
| VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; |
| layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | |
| VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; |
| layer_flags[1] = |
| layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | |
| VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; |
| break; |
| } |
| case 5: { |
| // 3-layers, 4-frame period. |
| int ids[4] = {0, 2, 1, 2}; |
| cfg->ts_periodicity = 4; |
| *flag_periodicity = 4; |
| cfg->ts_number_layers = 3; |
| cfg->ts_rate_decimator[0] = 4; |
| cfg->ts_rate_decimator[1] = 2; |
| cfg->ts_rate_decimator[2] = 1; |
| memcpy(cfg->ts_layer_id, ids, sizeof(ids)); |
| // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled in layer 1, disabled |
| // in layer 2. |
| layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | |
| VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; |
| layer_flags[2] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | |
| VP8_EFLAG_NO_UPD_ARF; |
| layer_flags[1] = |
| layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | |
| VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; |
| break; |
| } |
| case 6: { |
| // 3-layers, 4-frame period. |
| int ids[4] = {0, 2, 1, 2}; |
| cfg->ts_periodicity = 4; |
| *flag_periodicity = 4; |
| cfg->ts_number_layers = 3; |
| cfg->ts_rate_decimator[0] = 4; |
| cfg->ts_rate_decimator[1] = 2; |
| cfg->ts_rate_decimator[2] = 1; |
| memcpy(cfg->ts_layer_id, ids, sizeof(ids)); |
| // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled. |
| layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | |
| VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; |
| layer_flags[2] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | |
| VP8_EFLAG_NO_UPD_ARF; |
| layer_flags[1] = |
| layer_flags[3] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; |
| break; |
| } |
| case 7: { |
| // NOTE: Probably of academic interest only. |
| // 5-layers, 16-frame period. |
| int ids[16] = {0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4}; |
| cfg->ts_periodicity = 16; |
| *flag_periodicity = 16; |
| cfg->ts_number_layers = 5; |
| cfg->ts_rate_decimator[0] = 16; |
| cfg->ts_rate_decimator[1] = 8; |
| cfg->ts_rate_decimator[2] = 4; |
| cfg->ts_rate_decimator[3] = 2; |
| cfg->ts_rate_decimator[4] = 1; |
| memcpy(cfg->ts_layer_id, ids, sizeof(ids)); |
| layer_flags[0] = VPX_EFLAG_FORCE_KF; |
| layer_flags[1] = |
| layer_flags[3] = |
| layer_flags[5] = |
| layer_flags[7] = |
| layer_flags[9] = |
| layer_flags[11] = |
| layer_flags[13] = |
| layer_flags[15] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | |
| VP8_EFLAG_NO_UPD_ARF; |
| layer_flags[2] = |
| layer_flags[6] = |
| layer_flags[10] = |
| layer_flags[14] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_GF; |
| layer_flags[4] = |
| layer_flags[12] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_UPD_ARF; |
| layer_flags[8] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF; |
| break; |
| } |
| case 8: { |
| // 2-layers, with sync point at first frame of layer 1. |
| int ids[2] = {0, 1}; |
| cfg->ts_periodicity = 2; |
| *flag_periodicity = 8; |
| cfg->ts_number_layers = 2; |
| cfg->ts_rate_decimator[0] = 2; |
| cfg->ts_rate_decimator[1] = 1; |
| memcpy(cfg->ts_layer_id, ids, sizeof(ids)); |
| // 0=L, 1=GF. |
| // ARF is used as predictor for all frames, and is only updated on |
| // key frame. Sync point every 8 frames. |
| |
| // Layer 0: predict from L and ARF, update L and G. |
| layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | |
| VP8_EFLAG_NO_UPD_ARF; |
| // Layer 1: sync point: predict from L and ARF, and update G. |
| layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST | |
| VP8_EFLAG_NO_UPD_ARF; |
| // Layer 0, predict from L and ARF, update L. |
| layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | |
| VP8_EFLAG_NO_UPD_ARF; |
| // Layer 1: predict from L, G and ARF, and update G. |
| layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | |
| VP8_EFLAG_NO_UPD_ENTROPY; |
| // Layer 0. |
| layer_flags[4] = layer_flags[2]; |
| // Layer 1. |
| layer_flags[5] = layer_flags[3]; |
| // Layer 0. |
| layer_flags[6] = layer_flags[4]; |
| // Layer 1. |
| layer_flags[7] = layer_flags[5]; |
| break; |
| } |
| case 9: { |
| // 3-layers: Sync points for layer 1 and 2 every 8 frames. |
| int ids[4] = {0, 2, 1, 2}; |
| cfg->ts_periodicity = 4; |
| *flag_periodicity = 8; |
| cfg->ts_number_layers = 3; |
| cfg->ts_rate_decimator[0] = 4; |
| cfg->ts_rate_decimator[1] = 2; |
| cfg->ts_rate_decimator[2] = 1; |
| memcpy(cfg->ts_layer_id, ids, sizeof(ids)); |
| // 0=L, 1=GF, 2=ARF. |
| layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | |
| VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; |
| layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | |
| VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; |
| layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | |
| VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF; |
| layer_flags[3] = |
| layer_flags[5] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; |
| layer_flags[4] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | |
| VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; |
| layer_flags[6] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | |
| VP8_EFLAG_NO_UPD_ARF; |
| layer_flags[7] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | |
| VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_ENTROPY; |
| break; |
| } |
| case 10: { |
| // 3-layers structure where ARF is used as predictor for all frames, |
| // and is only updated on key frame. |
| // Sync points for layer 1 and 2 every 8 frames. |
| |
| int ids[4] = {0, 2, 1, 2}; |
| cfg->ts_periodicity = 4; |
| *flag_periodicity = 8; |
| cfg->ts_number_layers = 3; |
| cfg->ts_rate_decimator[0] = 4; |
| cfg->ts_rate_decimator[1] = 2; |
| cfg->ts_rate_decimator[2] = 1; |
| memcpy(cfg->ts_layer_id, ids, sizeof(ids)); |
| // 0=L, 1=GF, 2=ARF. |
| // Layer 0: predict from L and ARF; update L and G. |
| layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_ARF | |
| VP8_EFLAG_NO_REF_GF; |
| // Layer 2: sync point: predict from L and ARF; update none. |
| layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | |
| VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | |
| VP8_EFLAG_NO_UPD_ENTROPY; |
| // Layer 1: sync point: predict from L and ARF; update G. |
| layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF | |
| VP8_EFLAG_NO_UPD_LAST; |
| // Layer 2: predict from L, G, ARF; update none. |
| layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | |
| VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY; |
| // Layer 0: predict from L and ARF; update L. |
| layer_flags[4] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | |
| VP8_EFLAG_NO_REF_GF; |
| // Layer 2: predict from L, G, ARF; update none. |
| layer_flags[5] = layer_flags[3]; |
| // Layer 1: predict from L, G, ARF; update G. |
| layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; |
| // Layer 2: predict from L, G, ARF; update none. |
| layer_flags[7] = layer_flags[3]; |
| break; |
| } |
| case 11: |
| default: { |
| // 3-layers structure as in case 10, but no sync/refresh points for |
| // layer 1 and 2. |
| int ids[4] = {0, 2, 1, 2}; |
| cfg->ts_periodicity = 4; |
| *flag_periodicity = 8; |
| cfg->ts_number_layers = 3; |
| cfg->ts_rate_decimator[0] = 4; |
| cfg->ts_rate_decimator[1] = 2; |
| cfg->ts_rate_decimator[2] = 1; |
| memcpy(cfg->ts_layer_id, ids, sizeof(ids)); |
| // 0=L, 1=GF, 2=ARF. |
| // Layer 0: predict from L and ARF; update L. |
| layer_flags[0] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | |
| VP8_EFLAG_NO_REF_GF; |
| layer_flags[4] = layer_flags[0]; |
| // Layer 1: predict from L, G, ARF; update G. |
| layer_flags[2] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; |
| layer_flags[6] = layer_flags[2]; |
| // Layer 2: predict from L, G, ARF; update none. |
| layer_flags[1] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | |
| VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY; |
| layer_flags[3] = layer_flags[1]; |
| layer_flags[5] = layer_flags[1]; |
| layer_flags[7] = layer_flags[1]; |
| break; |
| } |
| } |
| } |
| |
| int main(int argc, char **argv) { |
| VpxVideoWriter *outfile[VPX_TS_MAX_LAYERS] = {NULL}; |
| vpx_codec_ctx_t codec; |
| vpx_codec_enc_cfg_t cfg; |
| int frame_cnt = 0; |
| vpx_image_t raw; |
| vpx_codec_err_t res; |
| unsigned int width; |
| unsigned int height; |
| int speed; |
| int frame_avail; |
| int got_data; |
| int flags = 0; |
| unsigned int i; |
| int pts = 0; // PTS starts at 0. |
| int frame_duration = 1; // 1 timebase tick per frame. |
| int layering_mode = 0; |
| int layer_flags[VPX_TS_MAX_PERIODICITY] = {0}; |
| int flag_periodicity = 1; |
| #if VPX_ENCODER_ABI_VERSION > (4 + VPX_CODEC_ABI_VERSION) |
| vpx_svc_layer_id_t layer_id = {0, 0}; |
| #else |
| vpx_svc_layer_id_t layer_id = {0}; |
| #endif |
| const VpxInterface *encoder = NULL; |
| FILE *infile = NULL; |
| struct RateControlMetrics rc; |
| int64_t cx_time = 0; |
| const int min_args_base = 11; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vpx_bit_depth_t bit_depth = VPX_BITS_8; |
| int input_bit_depth = 8; |
| const int min_args = min_args_base + 1; |
| #else |
| const int min_args = min_args_base; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| double sum_bitrate = 0.0; |
| double sum_bitrate2 = 0.0; |
| double framerate = 30.0; |
| |
| exec_name = argv[0]; |
| // Check usage and arguments. |
| if (argc < min_args) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> " |
| "<rate_num> <rate_den> <speed> <frame_drop_threshold> <mode> " |
| "<Rate_0> ... <Rate_nlayers-1> <bit-depth> \n", argv[0]); |
| #else |
| die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> " |
| "<rate_num> <rate_den> <speed> <frame_drop_threshold> <mode> " |
| "<Rate_0> ... <Rate_nlayers-1> \n", argv[0]); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| |
| encoder = get_vpx_encoder_by_name(argv[3]); |
| if (!encoder) |
| die("Unsupported codec."); |
| |
| printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface())); |
| |
| width = strtol(argv[4], NULL, 0); |
| height = strtol(argv[5], NULL, 0); |
| if (width < 16 || width % 2 || height < 16 || height % 2) { |
| die("Invalid resolution: %d x %d", width, height); |
| } |
| |
| layering_mode = strtol(argv[10], NULL, 0); |
| if (layering_mode < 0 || layering_mode > 12) { |
| die("Invalid layering mode (0..12) %s", argv[10]); |
| } |
| |
| if (argc != min_args + mode_to_num_layers[layering_mode]) { |
| die("Invalid number of arguments"); |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| switch (strtol(argv[argc-1], NULL, 0)) { |
| case 8: |
| bit_depth = VPX_BITS_8; |
| input_bit_depth = 8; |
| break; |
| case 10: |
| bit_depth = VPX_BITS_10; |
| input_bit_depth = 10; |
| break; |
| case 12: |
| bit_depth = VPX_BITS_12; |
| input_bit_depth = 12; |
| break; |
| default: |
| die("Invalid bit depth (8, 10, 12) %s", argv[argc-1]); |
| } |
| if (!vpx_img_alloc(&raw, |
| bit_depth == VPX_BITS_8 ? VPX_IMG_FMT_I420 : |
| VPX_IMG_FMT_I42016, |
| width, height, 32)) { |
| die("Failed to allocate image", width, height); |
| } |
| #else |
| if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, width, height, 32)) { |
| die("Failed to allocate image", width, height); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Populate encoder configuration. |
| res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0); |
| if (res) { |
| printf("Failed to get config: %s\n", vpx_codec_err_to_string(res)); |
| return EXIT_FAILURE; |
| } |
| |
| // Update the default configuration with our settings. |
| cfg.g_w = width; |
| cfg.g_h = height; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (bit_depth != VPX_BITS_8) { |
| cfg.g_bit_depth = bit_depth; |
| cfg.g_input_bit_depth = input_bit_depth; |
| cfg.g_profile = 2; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Timebase format e.g. 30fps: numerator=1, demoninator = 30. |
| cfg.g_timebase.num = strtol(argv[6], NULL, 0); |
| cfg.g_timebase.den = strtol(argv[7], NULL, 0); |
| |
| speed = strtol(argv[8], NULL, 0); |
| if (speed < 0) { |
| die("Invalid speed setting: must be positive"); |
| } |
| |
| for (i = min_args_base; |
| (int)i < min_args_base + mode_to_num_layers[layering_mode]; |
| ++i) { |
| cfg.ts_target_bitrate[i - 11] = strtol(argv[i], NULL, 0); |
| } |
| |
| // Real time parameters. |
| cfg.rc_dropframe_thresh = strtol(argv[9], NULL, 0); |
| cfg.rc_end_usage = VPX_CBR; |
| cfg.rc_resize_allowed = 0; |
| cfg.rc_min_quantizer = 2; |
| cfg.rc_max_quantizer = 56; |
| if (strncmp(encoder->name, "vp9", 3) == 0) |
| cfg.rc_max_quantizer = 52; |
| cfg.rc_undershoot_pct = 50; |
| cfg.rc_overshoot_pct = 50; |
| cfg.rc_buf_initial_sz = 500; |
| cfg.rc_buf_optimal_sz = 600; |
| cfg.rc_buf_sz = 1000; |
| |
| // Use 1 thread as default. |
| cfg.g_threads = 1; |
| |
| // Enable error resilient mode. |
| cfg.g_error_resilient = 1; |
| cfg.g_lag_in_frames = 0; |
| cfg.kf_mode = VPX_KF_AUTO; |
| |
| // Disable automatic keyframe placement. |
| cfg.kf_min_dist = cfg.kf_max_dist = 3000; |
| |
| set_temporal_layer_pattern(layering_mode, |
| &cfg, |
| layer_flags, |
| &flag_periodicity); |
| |
| set_rate_control_metrics(&rc, &cfg); |
| |
| // Target bandwidth for the whole stream. |
| // Set to ts_target_bitrate for highest layer (total bitrate). |
| cfg.rc_target_bitrate = cfg.ts_target_bitrate[cfg.ts_number_layers - 1]; |
| |
| // Open input file. |
| if (!(infile = fopen(argv[1], "rb"))) { |
| die("Failed to open %s for reading", argv[1]); |
| } |
| |
| framerate = cfg.g_timebase.den / cfg.g_timebase.num; |
| // Open an output file for each stream. |
| for (i = 0; i < cfg.ts_number_layers; ++i) { |
| char file_name[PATH_MAX]; |
| VpxVideoInfo info; |
| info.codec_fourcc = encoder->fourcc; |
| info.frame_width = cfg.g_w; |
| info.frame_height = cfg.g_h; |
| info.time_base.numerator = cfg.g_timebase.num; |
| info.time_base.denominator = cfg.g_timebase.den; |
| |
| snprintf(file_name, sizeof(file_name), "%s_%d.ivf", argv[2], i); |
| outfile[i] = vpx_video_writer_open(file_name, kContainerIVF, &info); |
| if (!outfile[i]) |
| die("Failed to open %s for writing", file_name); |
| |
| assert(outfile[i] != NULL); |
| } |
| // No spatial layers in this encoder. |
| cfg.ss_number_layers = 1; |
| |
| // Initialize codec. |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (vpx_codec_enc_init( |
| &codec, encoder->codec_interface(), &cfg, |
| bit_depth == VPX_BITS_8 ? 0 : VPX_CODEC_USE_HIGHBITDEPTH)) |
| #else |
| if (vpx_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0)) |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| die_codec(&codec, "Failed to initialize encoder"); |
| |
| if (strncmp(encoder->name, "vp8", 3) == 0) { |
| vpx_codec_control(&codec, VP8E_SET_CPUUSED, -speed); |
| vpx_codec_control(&codec, VP8E_SET_NOISE_SENSITIVITY, kDenoiserOff); |
| vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 0); |
| } else if (strncmp(encoder->name, "vp9", 3) == 0) { |
| vpx_codec_control(&codec, VP8E_SET_CPUUSED, speed); |
| vpx_codec_control(&codec, VP9E_SET_AQ_MODE, 3); |
| vpx_codec_control(&codec, VP9E_SET_FRAME_PERIODIC_BOOST, 0); |
| vpx_codec_control(&codec, VP9E_SET_NOISE_SENSITIVITY, 0); |
| vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 0); |
| vpx_codec_control(&codec, VP9E_SET_TILE_COLUMNS, (cfg.g_threads >> 1)); |
| if (vpx_codec_control(&codec, VP9E_SET_SVC, layering_mode > 0 ? 1: 0)) { |
| die_codec(&codec, "Failed to set SVC"); |
| } |
| } |
| if (strncmp(encoder->name, "vp8", 3) == 0) { |
| vpx_codec_control(&codec, VP8E_SET_SCREEN_CONTENT_MODE, 0); |
| } |
| vpx_codec_control(&codec, VP8E_SET_TOKEN_PARTITIONS, 1); |
| // This controls the maximum target size of the key frame. |
| // For generating smaller key frames, use a smaller max_intra_size_pct |
| // value, like 100 or 200. |
| { |
| const int max_intra_size_pct = 900; |
| vpx_codec_control(&codec, VP8E_SET_MAX_INTRA_BITRATE_PCT, |
| max_intra_size_pct); |
| } |
| |
| frame_avail = 1; |
| while (frame_avail || got_data) { |
| struct vpx_usec_timer timer; |
| vpx_codec_iter_t iter = NULL; |
| const vpx_codec_cx_pkt_t *pkt; |
| #if VPX_ENCODER_ABI_VERSION > (4 + VPX_CODEC_ABI_VERSION) |
| // Update the temporal layer_id. No spatial layers in this test. |
| layer_id.spatial_layer_id = 0; |
| #endif |
| layer_id.temporal_layer_id = |
| cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity]; |
| if (strncmp(encoder->name, "vp9", 3) == 0) { |
| vpx_codec_control(&codec, VP9E_SET_SVC_LAYER_ID, &layer_id); |
| } else if (strncmp(encoder->name, "vp8", 3) == 0) { |
| vpx_codec_control(&codec, VP8E_SET_TEMPORAL_LAYER_ID, |
| layer_id.temporal_layer_id); |
| } |
| flags = layer_flags[frame_cnt % flag_periodicity]; |
| if (layering_mode == 0) |
| flags = 0; |
| frame_avail = vpx_img_read(&raw, infile); |
| if (frame_avail) |
| ++rc.layer_input_frames[layer_id.temporal_layer_id]; |
| vpx_usec_timer_start(&timer); |
| if (vpx_codec_encode(&codec, frame_avail? &raw : NULL, pts, 1, flags, |
| VPX_DL_REALTIME)) { |
| die_codec(&codec, "Failed to encode frame"); |
| } |
| vpx_usec_timer_mark(&timer); |
| cx_time += vpx_usec_timer_elapsed(&timer); |
| // Reset KF flag. |
| if (layering_mode != 7) { |
| layer_flags[0] &= ~VPX_EFLAG_FORCE_KF; |
| } |
| got_data = 0; |
| while ( (pkt = vpx_codec_get_cx_data(&codec, &iter)) ) { |
| got_data = 1; |
| switch (pkt->kind) { |
| case VPX_CODEC_CX_FRAME_PKT: |
| for (i = cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity]; |
| i < cfg.ts_number_layers; ++i) { |
| vpx_video_writer_write_frame(outfile[i], pkt->data.frame.buf, |
| pkt->data.frame.sz, pts); |
| ++rc.layer_tot_enc_frames[i]; |
| rc.layer_encoding_bitrate[i] += 8.0 * pkt->data.frame.sz; |
| // Keep count of rate control stats per layer (for non-key frames). |
| if (i == cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity] && |
| !(pkt->data.frame.flags & VPX_FRAME_IS_KEY)) { |
| rc.layer_avg_frame_size[i] += 8.0 * pkt->data.frame.sz; |
| rc.layer_avg_rate_mismatch[i] += |
| fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[i]) / |
| rc.layer_pfb[i]; |
| ++rc.layer_enc_frames[i]; |
| } |
| } |
| // Update for short-time encoding bitrate states, for moving window |
| // of size rc->window, shifted by rc->window / 2. |
| // Ignore first window segment, due to key frame. |
| if (frame_cnt > rc.window_size) { |
| sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate; |
| if (frame_cnt % rc.window_size == 0) { |
| rc.window_count += 1; |
| rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size; |
| rc.variance_st_encoding_bitrate += |
| (sum_bitrate / rc.window_size) * |
| (sum_bitrate / rc.window_size); |
| sum_bitrate = 0.0; |
| } |
| } |
| // Second shifted window. |
| if (frame_cnt > rc.window_size + rc.window_size / 2) { |
| sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate; |
| if (frame_cnt > 2 * rc.window_size && |
| frame_cnt % rc.window_size == 0) { |
| rc.window_count += 1; |
| rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size; |
| rc.variance_st_encoding_bitrate += |
| (sum_bitrate2 / rc.window_size) * |
| (sum_bitrate2 / rc.window_size); |
| sum_bitrate2 = 0.0; |
| } |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| ++frame_cnt; |
| pts += frame_duration; |
| } |
| fclose(infile); |
| printout_rate_control_summary(&rc, &cfg, frame_cnt); |
| printf("\n"); |
| printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n", |
| frame_cnt, |
| 1000 * (float)cx_time / (double)(frame_cnt * 1000000), |
| 1000000 * (double)frame_cnt / (double)cx_time); |
| |
| if (vpx_codec_destroy(&codec)) |
| die_codec(&codec, "Failed to destroy codec"); |
| |
| // Try to rewrite the output file headers with the actual frame count. |
| for (i = 0; i < cfg.ts_number_layers; ++i) |
| vpx_video_writer_close(outfile[i]); |
| |
| vpx_img_free(&raw); |
| return EXIT_SUCCESS; |
| } |