blob: 1b6c43a2483b3479a1d558b812c89127951a4839 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include "config/aom_dsp_rtcd.h"
#include "config/aom_config.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/sum_neon.h"
#include "aom/aom_integer.h"
#include "aom_ports/mem.h"
static INLINE void variance_4xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
int16x8_t sum_s16 = vdupq_n_s16(0);
int32x4_t sse_s32 = vdupq_n_s32(0);
// Number of rows we can process before 'sum_s16' overflows:
// 32767 / 255 ~= 128, but we use an 8-wide accumulator; so 256 4-wide rows.
assert(h <= 256);
int i = 0;
do {
uint8x8_t s = load_unaligned_u8(src, src_stride);
uint8x8_t r = load_unaligned_u8(ref, ref_stride);
int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));
sum_s16 = vaddq_s16(sum_s16, diff);
sse_s32 = vmlal_s16(sse_s32, vget_low_s16(diff), vget_low_s16(diff));
sse_s32 = vmlal_s16(sse_s32, vget_high_s16(diff), vget_high_s16(diff));
src += 2 * src_stride;
ref += 2 * ref_stride;
i += 2;
} while (i < h);
*sum = horizontal_add_s16x8(sum_s16);
*sse = (uint32_t)horizontal_add_s32x4(sse_s32);
}
static INLINE void variance_8xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
int16x8_t sum_s16 = vdupq_n_s16(0);
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
// Number of rows we can process before 'sum_s16' overflows:
// 32767 / 255 ~= 128
assert(h <= 128);
int i = 0;
do {
uint8x8_t s = vld1_u8(src);
uint8x8_t r = vld1_u8(ref);
int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));
sum_s16 = vaddq_s16(sum_s16, diff);
sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff), vget_low_s16(diff));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff), vget_high_s16(diff));
src += src_stride;
ref += ref_stride;
i++;
} while (i < h);
*sum = horizontal_add_s16x8(sum_s16);
*sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}
static INLINE void variance_16xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
// Number of rows we can process before 'sum_s16' accumulators overflow:
// 32767 / 255 ~= 128, so 128 16-wide rows.
assert(h <= 128);
int i = 0;
do {
uint8x16_t s = vld1q_u8(src);
uint8x16_t r = vld1q_u8(ref);
int16x8_t diff_l =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
int16x8_t diff_h =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));
sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));
src += src_stride;
ref += ref_stride;
i++;
} while (i < h);
*sum = horizontal_add_s16x8(vaddq_s16(sum_s16[0], sum_s16[1]));
*sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}
static INLINE void variance_large_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
int w, int h, int h_limit, uint32_t *sse,
int *sum) {
int32x4_t sum_s32 = vdupq_n_s32(0);
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
// 'h_limit' is the number of 'w'-width rows we can process before our 16-bit
// accumulator overflows. After hitting this limit we accumulate into 32-bit
// elements.
int h_tmp = h > h_limit ? h_limit : h;
int i = 0;
do {
int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
do {
int j = 0;
do {
uint8x16_t s = vld1q_u8(src + j);
uint8x16_t r = vld1q_u8(ref + j);
int16x8_t diff_l =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
int16x8_t diff_h =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));
sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));
j += 16;
} while (j < w);
src += src_stride;
ref += ref_stride;
i++;
} while (i < h_tmp);
sum_s32 = vpadalq_s16(sum_s32, sum_s16[0]);
sum_s32 = vpadalq_s16(sum_s32, sum_s16[1]);
h_tmp += h_limit;
} while (i < h);
*sum = horizontal_add_s32x4(sum_s32);
*sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}
static INLINE void variance_32xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 32, h, 64, sse, sum);
}
static INLINE void variance_64xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 64, h, 32, sse, sum);
}
static INLINE void variance_128xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
int h, uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 128, h, 16, sse, sum);
}
#define VARIANCE_WXH_NEON(w, h, shift) \
unsigned int aom_variance##w##x##h##_neon( \
const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
unsigned int *sse) { \
int sum; \
variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, sse, &sum); \
return *sse - (uint32_t)(((int64_t)sum * sum) >> shift); \
}
VARIANCE_WXH_NEON(4, 4, 4)
VARIANCE_WXH_NEON(4, 8, 5)
VARIANCE_WXH_NEON(8, 4, 5)
VARIANCE_WXH_NEON(8, 8, 6)
VARIANCE_WXH_NEON(8, 16, 7)
VARIANCE_WXH_NEON(16, 8, 7)
VARIANCE_WXH_NEON(16, 16, 8)
VARIANCE_WXH_NEON(16, 32, 9)
VARIANCE_WXH_NEON(32, 16, 9)
VARIANCE_WXH_NEON(32, 32, 10)
VARIANCE_WXH_NEON(32, 64, 11)
VARIANCE_WXH_NEON(64, 32, 11)
VARIANCE_WXH_NEON(64, 64, 12)
VARIANCE_WXH_NEON(64, 128, 13)
VARIANCE_WXH_NEON(128, 64, 13)
VARIANCE_WXH_NEON(128, 128, 14)
#undef VARIANCE_WXH_NEON
void aom_get8x8var_neon(const uint8_t *src, int src_stride, const uint8_t *ref,
int ref_stride, unsigned int *sse, int *sum) {
variance_8xh_neon(src, src_stride, ref, ref_stride, 8, sse, sum);
}
void aom_get16x16var_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, unsigned int *sse,
int *sum) {
variance_16xh_neon(src, src_stride, ref, ref_stride, 16, sse, sum);
}
// TODO(yunqingwang): Perform variance of two/four 8x8 blocks similar to that of
// AVX2.
void aom_get_sse_sum_8x8_quad_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse, int *sum) {
// Loop over 4 8x8 blocks. Process one 8x32 block.
for (int k = 0; k < 4; k++) {
variance_8xh_neon(src + (k * 8), src_stride, ref + (k * 8), ref_stride, 8,
&sse[k], &sum[k]);
}
}
unsigned int aom_mse16x16_neon(const unsigned char *src_ptr, int source_stride,
const unsigned char *ref_ptr, int recon_stride,
unsigned int *sse) {
int i;
int16x4_t d22s16, d23s16, d24s16, d25s16, d26s16, d27s16, d28s16, d29s16;
int64x1_t d0s64;
uint8x16_t q0u8, q1u8, q2u8, q3u8;
int32x4_t q7s32, q8s32, q9s32, q10s32;
uint16x8_t q11u16, q12u16, q13u16, q14u16;
int64x2_t q1s64;
q7s32 = vdupq_n_s32(0);
q8s32 = vdupq_n_s32(0);
q9s32 = vdupq_n_s32(0);
q10s32 = vdupq_n_s32(0);
for (i = 0; i < 8; i++) { // mse16x16_neon_loop
q0u8 = vld1q_u8(src_ptr);
src_ptr += source_stride;
q1u8 = vld1q_u8(src_ptr);
src_ptr += source_stride;
q2u8 = vld1q_u8(ref_ptr);
ref_ptr += recon_stride;
q3u8 = vld1q_u8(ref_ptr);
ref_ptr += recon_stride;
q11u16 = vsubl_u8(vget_low_u8(q0u8), vget_low_u8(q2u8));
q12u16 = vsubl_u8(vget_high_u8(q0u8), vget_high_u8(q2u8));
q13u16 = vsubl_u8(vget_low_u8(q1u8), vget_low_u8(q3u8));
q14u16 = vsubl_u8(vget_high_u8(q1u8), vget_high_u8(q3u8));
d22s16 = vreinterpret_s16_u16(vget_low_u16(q11u16));
d23s16 = vreinterpret_s16_u16(vget_high_u16(q11u16));
q7s32 = vmlal_s16(q7s32, d22s16, d22s16);
q8s32 = vmlal_s16(q8s32, d23s16, d23s16);
d24s16 = vreinterpret_s16_u16(vget_low_u16(q12u16));
d25s16 = vreinterpret_s16_u16(vget_high_u16(q12u16));
q9s32 = vmlal_s16(q9s32, d24s16, d24s16);
q10s32 = vmlal_s16(q10s32, d25s16, d25s16);
d26s16 = vreinterpret_s16_u16(vget_low_u16(q13u16));
d27s16 = vreinterpret_s16_u16(vget_high_u16(q13u16));
q7s32 = vmlal_s16(q7s32, d26s16, d26s16);
q8s32 = vmlal_s16(q8s32, d27s16, d27s16);
d28s16 = vreinterpret_s16_u16(vget_low_u16(q14u16));
d29s16 = vreinterpret_s16_u16(vget_high_u16(q14u16));
q9s32 = vmlal_s16(q9s32, d28s16, d28s16);
q10s32 = vmlal_s16(q10s32, d29s16, d29s16);
}
q7s32 = vaddq_s32(q7s32, q8s32);
q9s32 = vaddq_s32(q9s32, q10s32);
q10s32 = vaddq_s32(q7s32, q9s32);
q1s64 = vpaddlq_s32(q10s32);
d0s64 = vadd_s64(vget_low_s64(q1s64), vget_high_s64(q1s64));
vst1_lane_u32((uint32_t *)sse, vreinterpret_u32_s64(d0s64), 0);
return vget_lane_u32(vreinterpret_u32_s64(d0s64), 0);
}
unsigned int aom_get4x4sse_cs_neon(const unsigned char *src_ptr,
int source_stride,
const unsigned char *ref_ptr,
int recon_stride) {
int16x4_t d22s16, d24s16, d26s16, d28s16;
int64x1_t d0s64;
uint8x8_t d0u8, d1u8, d2u8, d3u8, d4u8, d5u8, d6u8, d7u8;
int32x4_t q7s32, q8s32, q9s32, q10s32;
uint16x8_t q11u16, q12u16, q13u16, q14u16;
int64x2_t q1s64;
d0u8 = vld1_u8(src_ptr);
src_ptr += source_stride;
d4u8 = vld1_u8(ref_ptr);
ref_ptr += recon_stride;
d1u8 = vld1_u8(src_ptr);
src_ptr += source_stride;
d5u8 = vld1_u8(ref_ptr);
ref_ptr += recon_stride;
d2u8 = vld1_u8(src_ptr);
src_ptr += source_stride;
d6u8 = vld1_u8(ref_ptr);
ref_ptr += recon_stride;
d3u8 = vld1_u8(src_ptr);
d7u8 = vld1_u8(ref_ptr);
q11u16 = vsubl_u8(d0u8, d4u8);
q12u16 = vsubl_u8(d1u8, d5u8);
q13u16 = vsubl_u8(d2u8, d6u8);
q14u16 = vsubl_u8(d3u8, d7u8);
d22s16 = vget_low_s16(vreinterpretq_s16_u16(q11u16));
d24s16 = vget_low_s16(vreinterpretq_s16_u16(q12u16));
d26s16 = vget_low_s16(vreinterpretq_s16_u16(q13u16));
d28s16 = vget_low_s16(vreinterpretq_s16_u16(q14u16));
q7s32 = vmull_s16(d22s16, d22s16);
q8s32 = vmull_s16(d24s16, d24s16);
q9s32 = vmull_s16(d26s16, d26s16);
q10s32 = vmull_s16(d28s16, d28s16);
q7s32 = vaddq_s32(q7s32, q8s32);
q9s32 = vaddq_s32(q9s32, q10s32);
q9s32 = vaddq_s32(q7s32, q9s32);
q1s64 = vpaddlq_s32(q9s32);
d0s64 = vadd_s64(vget_low_s64(q1s64), vget_high_s64(q1s64));
return vget_lane_u32(vreinterpret_u32_s64(d0s64), 0);
}