| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <assert.h> | 
 | #include <math.h> | 
 |  | 
 | #include "./aom_dsp_rtcd.h" | 
 | #include "./av1_rtcd.h" | 
 |  | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_dsp/blend.h" | 
 | #include "aom_mem/aom_mem.h" | 
 | #include "aom_ports/mem.h" | 
 | #include "aom_ports/system_state.h" | 
 |  | 
 | #include "av1/common/common.h" | 
 | #include "av1/common/common_data.h" | 
 | #include "av1/common/entropy.h" | 
 | #include "av1/common/entropymode.h" | 
 | #include "av1/common/idct.h" | 
 | #include "av1/common/mvref_common.h" | 
 | #include "av1/common/pred_common.h" | 
 | #include "av1/common/quant_common.h" | 
 | #include "av1/common/reconinter.h" | 
 | #include "av1/common/reconintra.h" | 
 | #include "av1/common/scan.h" | 
 | #include "av1/common/seg_common.h" | 
 | #if CONFIG_LV_MAP | 
 | #include "av1/common/txb_common.h" | 
 | #endif | 
 | #if CONFIG_WARPED_MOTION | 
 | #include "av1/common/warped_motion.h" | 
 | #endif  // CONFIG_WARPED_MOTION | 
 |  | 
 | #include "av1/encoder/aq_variance.h" | 
 | #include "av1/encoder/av1_quantize.h" | 
 | #include "av1/encoder/cost.h" | 
 | #include "av1/encoder/encodemb.h" | 
 | #include "av1/encoder/encodemv.h" | 
 | #include "av1/encoder/encoder.h" | 
 | #if CONFIG_LV_MAP | 
 | #include "av1/encoder/encodetxb.h" | 
 | #endif | 
 | #include "av1/encoder/hybrid_fwd_txfm.h" | 
 | #include "av1/encoder/mcomp.h" | 
 | #if CONFIG_PALETTE | 
 | #include "av1/encoder/palette.h" | 
 | #endif  // CONFIG_PALETTE | 
 | #include "av1/encoder/ratectrl.h" | 
 | #include "av1/encoder/rd.h" | 
 | #include "av1/encoder/rdopt.h" | 
 | #include "av1/encoder/tokenize.h" | 
 | #if CONFIG_PVQ | 
 | #include "av1/encoder/pvq_encoder.h" | 
 | #endif  // CONFIG_PVQ | 
 | #if CONFIG_PVQ || CONFIG_DAALA_DIST | 
 | #include "av1/common/pvq.h" | 
 | #endif  // CONFIG_PVQ || CONFIG_DAALA_DIST | 
 | #if CONFIG_DUAL_FILTER | 
 | #define DUAL_FILTER_SET_SIZE (SWITCHABLE_FILTERS * SWITCHABLE_FILTERS) | 
 | static const int filter_sets[DUAL_FILTER_SET_SIZE][2] = { | 
 |   { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 }, { 1, 0 }, { 1, 1 }, | 
 |   { 1, 2 }, { 1, 3 }, { 2, 0 }, { 2, 1 }, { 2, 2 }, { 2, 3 }, | 
 |   { 3, 0 }, { 3, 1 }, { 3, 2 }, { 3, 3 }, | 
 | }; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |  | 
 | #define LAST_FRAME_MODE_MASK                                      \ | 
 |   ((1 << INTRA_FRAME) | (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | \ | 
 |    (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME)) | 
 | #define LAST2_FRAME_MODE_MASK                                    \ | 
 |   ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST3_FRAME) | \ | 
 |    (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME)) | 
 | #define LAST3_FRAME_MODE_MASK                                    \ | 
 |   ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \ | 
 |    (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME)) | 
 | #define GOLDEN_FRAME_MODE_MASK                                   \ | 
 |   ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \ | 
 |    (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME)) | 
 | #define BWDREF_FRAME_MODE_MASK                                   \ | 
 |   ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \ | 
 |    (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME)) | 
 | #define ALTREF_FRAME_MODE_MASK                                   \ | 
 |   ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \ | 
 |    (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME)) | 
 |  | 
 | #else | 
 |  | 
 | #define LAST_FRAME_MODE_MASK \ | 
 |   ((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME)) | 
 | #define GOLDEN_FRAME_MODE_MASK \ | 
 |   ((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME)) | 
 | #define ALTREF_FRAME_MODE_MASK \ | 
 |   ((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | (1 << INTRA_FRAME)) | 
 |  | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 | #define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | (1 << BWDREF_FRAME) | 0x01) | 
 | #else | 
 | #define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01) | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 | #define MIN_EARLY_TERM_INDEX 3 | 
 | #define NEW_MV_DISCOUNT_FACTOR 8 | 
 |  | 
 | #if CONFIG_EXT_INTRA | 
 | #define ANGLE_SKIP_THRESH 10 | 
 | #define FILTER_FAST_SEARCH 1 | 
 | #endif  // CONFIG_EXT_INTRA | 
 |  | 
 | const double ADST_FLIP_SVM[8] = { -6.6623, -2.8062, -3.2531, 3.1671,    // vert | 
 |                                   -7.7051, -3.2234, -3.6193, 3.4533 };  // horz | 
 |  | 
 | typedef struct { | 
 |   PREDICTION_MODE mode; | 
 |   MV_REFERENCE_FRAME ref_frame[2]; | 
 | } MODE_DEFINITION; | 
 |  | 
 | typedef struct { MV_REFERENCE_FRAME ref_frame[2]; } REF_DEFINITION; | 
 |  | 
 | struct rdcost_block_args { | 
 |   const AV1_COMP *cpi; | 
 |   MACROBLOCK *x; | 
 |   ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE]; | 
 |   ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE]; | 
 |   RD_STATS rd_stats; | 
 |   int64_t this_rd; | 
 |   int64_t best_rd; | 
 |   int exit_early; | 
 |   int use_fast_coef_costing; | 
 | }; | 
 |  | 
 | #define LAST_NEW_MV_INDEX 6 | 
 | static const MODE_DEFINITION av1_mode_order[MAX_MODES] = { | 
 |   { NEARESTMV, { LAST_FRAME, NONE_FRAME } }, | 
 | #if CONFIG_EXT_REFS | 
 |   { NEARESTMV, { LAST2_FRAME, NONE_FRAME } }, | 
 |   { NEARESTMV, { LAST3_FRAME, NONE_FRAME } }, | 
 |   { NEARESTMV, { BWDREF_FRAME, NONE_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |   { NEARESTMV, { ALTREF_FRAME, NONE_FRAME } }, | 
 |   { NEARESTMV, { GOLDEN_FRAME, NONE_FRAME } }, | 
 |  | 
 |   { DC_PRED, { INTRA_FRAME, NONE_FRAME } }, | 
 |  | 
 |   { NEWMV, { LAST_FRAME, NONE_FRAME } }, | 
 | #if CONFIG_EXT_REFS | 
 |   { NEWMV, { LAST2_FRAME, NONE_FRAME } }, | 
 |   { NEWMV, { LAST3_FRAME, NONE_FRAME } }, | 
 |   { NEWMV, { BWDREF_FRAME, NONE_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |   { NEWMV, { ALTREF_FRAME, NONE_FRAME } }, | 
 |   { NEWMV, { GOLDEN_FRAME, NONE_FRAME } }, | 
 |  | 
 |   { NEARMV, { LAST_FRAME, NONE_FRAME } }, | 
 | #if CONFIG_EXT_REFS | 
 |   { NEARMV, { LAST2_FRAME, NONE_FRAME } }, | 
 |   { NEARMV, { LAST3_FRAME, NONE_FRAME } }, | 
 |   { NEARMV, { BWDREF_FRAME, NONE_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |   { NEARMV, { ALTREF_FRAME, NONE_FRAME } }, | 
 |   { NEARMV, { GOLDEN_FRAME, NONE_FRAME } }, | 
 |  | 
 |   { ZEROMV, { LAST_FRAME, NONE_FRAME } }, | 
 | #if CONFIG_EXT_REFS | 
 |   { ZEROMV, { LAST2_FRAME, NONE_FRAME } }, | 
 |   { ZEROMV, { LAST3_FRAME, NONE_FRAME } }, | 
 |   { ZEROMV, { BWDREF_FRAME, NONE_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |   { ZEROMV, { GOLDEN_FRAME, NONE_FRAME } }, | 
 |   { ZEROMV, { ALTREF_FRAME, NONE_FRAME } }, | 
 |  | 
 | // TODO(zoeliu): May need to reconsider the order on the modes to check | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |   { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 | #if CONFIG_EXT_REFS | 
 |   { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |   { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |   { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 | #if CONFIG_EXT_REFS | 
 |   { NEAREST_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |   { NEAREST_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { NEAREST_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |   { NEAREST_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 | #else  // CONFIG_EXT_INTER | 
 |  | 
 |   { NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 | #if CONFIG_EXT_REFS | 
 |   { NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |   { NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |   { NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 | #if CONFIG_EXT_REFS | 
 |   { NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |   { NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |   { NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |   { TM_PRED, { INTRA_FRAME, NONE_FRAME } }, | 
 |  | 
 | #if CONFIG_ALT_INTRA | 
 |   { SMOOTH_PRED, { INTRA_FRAME, NONE_FRAME } }, | 
 | #endif  // CONFIG_ALT_INTRA | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |   { NEAR_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 |   { NEAREST_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 |   { NEAR_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 |   { NEW_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 |   { NEAREST_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 |   { NEW_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 |   { NEAR_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 |   { NEW_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 |   { ZERO_ZEROMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   { NEAR_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |   { NEAREST_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |   { NEAR_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |   { NEW_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |   { NEAREST_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |   { NEW_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |   { NEAR_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |   { NEW_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |   { ZERO_ZEROMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |  | 
 |   { NEAR_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 |   { NEAREST_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 |   { NEAR_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 |   { NEW_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 |   { NEAREST_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 |   { NEW_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 |   { NEAR_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 |   { NEW_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 |   { ZERO_ZEROMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   { NEAR_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 |   { NEAREST_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 |   { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 |   { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 |   { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 |   { NEW_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 |   { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 |   { NEW_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 |   { ZERO_ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   { NEAR_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |   { NEAREST_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |   { NEAR_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |   { NEW_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |   { NEAREST_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |   { NEW_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |   { NEAR_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |   { NEW_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |   { ZERO_ZEROMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |  | 
 |   { NEAR_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { NEAREST_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { NEAR_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { NEW_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { NEAREST_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { NEW_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { NEAR_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { NEW_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { ZERO_ZEROMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |  | 
 |   { NEAR_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |   { NEAREST_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |   { NEAR_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |   { NEW_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |   { NEAREST_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |   { NEW_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |   { NEAR_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |   { NEW_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |   { ZERO_ZEROMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |  | 
 |   { NEAR_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 |   { NEAREST_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 |   { NEAR_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 |   { NEW_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 |   { NEAREST_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 |   { NEW_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 |   { NEAR_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 |   { NEW_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 |   { ZERO_ZEROMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 | #else  // CONFIG_EXT_INTER | 
 |  | 
 |   { NEARMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 |   { NEWMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 | #if CONFIG_EXT_REFS | 
 |   { NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |   { NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |   { NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 |   { NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |   { NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 |   { NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   { NEARMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |   { NEWMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |   { NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |   { NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |   { NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 |   { NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   { ZEROMV, { LAST_FRAME, ALTREF_FRAME } }, | 
 | #if CONFIG_EXT_REFS | 
 |   { ZEROMV, { LAST2_FRAME, ALTREF_FRAME } }, | 
 |   { ZEROMV, { LAST3_FRAME, ALTREF_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |   { ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   { ZEROMV, { LAST_FRAME, BWDREF_FRAME } }, | 
 |   { ZEROMV, { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { ZEROMV, { LAST3_FRAME, BWDREF_FRAME } }, | 
 |   { ZEROMV, { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |   { H_PRED, { INTRA_FRAME, NONE_FRAME } }, | 
 |   { V_PRED, { INTRA_FRAME, NONE_FRAME } }, | 
 |   { D135_PRED, { INTRA_FRAME, NONE_FRAME } }, | 
 |   { D207_PRED, { INTRA_FRAME, NONE_FRAME } }, | 
 |   { D153_PRED, { INTRA_FRAME, NONE_FRAME } }, | 
 |   { D63_PRED, { INTRA_FRAME, NONE_FRAME } }, | 
 |   { D117_PRED, { INTRA_FRAME, NONE_FRAME } }, | 
 |   { D45_PRED, { INTRA_FRAME, NONE_FRAME } }, | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |   { ZEROMV, { LAST_FRAME, INTRA_FRAME } }, | 
 |   { NEARESTMV, { LAST_FRAME, INTRA_FRAME } }, | 
 |   { NEARMV, { LAST_FRAME, INTRA_FRAME } }, | 
 |   { NEWMV, { LAST_FRAME, INTRA_FRAME } }, | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   { ZEROMV, { LAST2_FRAME, INTRA_FRAME } }, | 
 |   { NEARESTMV, { LAST2_FRAME, INTRA_FRAME } }, | 
 |   { NEARMV, { LAST2_FRAME, INTRA_FRAME } }, | 
 |   { NEWMV, { LAST2_FRAME, INTRA_FRAME } }, | 
 |  | 
 |   { ZEROMV, { LAST3_FRAME, INTRA_FRAME } }, | 
 |   { NEARESTMV, { LAST3_FRAME, INTRA_FRAME } }, | 
 |   { NEARMV, { LAST3_FRAME, INTRA_FRAME } }, | 
 |   { NEWMV, { LAST3_FRAME, INTRA_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   { ZEROMV, { GOLDEN_FRAME, INTRA_FRAME } }, | 
 |   { NEARESTMV, { GOLDEN_FRAME, INTRA_FRAME } }, | 
 |   { NEARMV, { GOLDEN_FRAME, INTRA_FRAME } }, | 
 |   { NEWMV, { GOLDEN_FRAME, INTRA_FRAME } }, | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   { ZEROMV, { BWDREF_FRAME, INTRA_FRAME } }, | 
 |   { NEARESTMV, { BWDREF_FRAME, INTRA_FRAME } }, | 
 |   { NEARMV, { BWDREF_FRAME, INTRA_FRAME } }, | 
 |   { NEWMV, { BWDREF_FRAME, INTRA_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   { ZEROMV, { ALTREF_FRAME, INTRA_FRAME } }, | 
 |   { NEARESTMV, { ALTREF_FRAME, INTRA_FRAME } }, | 
 |   { NEARMV, { ALTREF_FRAME, INTRA_FRAME } }, | 
 |   { NEWMV, { ALTREF_FRAME, INTRA_FRAME } }, | 
 | #endif  // CONFIG_EXT_INTER | 
 | }; | 
 |  | 
 | static const REF_DEFINITION av1_ref_order[MAX_REFS] = { | 
 |   { { LAST_FRAME, NONE_FRAME } }, | 
 | #if CONFIG_EXT_REFS | 
 |   { { LAST2_FRAME, NONE_FRAME } },    { { LAST3_FRAME, NONE_FRAME } }, | 
 |   { { BWDREF_FRAME, NONE_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |   { { GOLDEN_FRAME, NONE_FRAME } },   { { ALTREF_FRAME, NONE_FRAME } }, | 
 |  | 
 |   { { LAST_FRAME, ALTREF_FRAME } }, | 
 | #if CONFIG_EXT_REFS | 
 |   { { LAST2_FRAME, ALTREF_FRAME } },  { { LAST3_FRAME, ALTREF_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |   { { GOLDEN_FRAME, ALTREF_FRAME } }, | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   { { LAST_FRAME, BWDREF_FRAME } },   { { LAST2_FRAME, BWDREF_FRAME } }, | 
 |   { { LAST3_FRAME, BWDREF_FRAME } },  { { GOLDEN_FRAME, BWDREF_FRAME } }, | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   { { INTRA_FRAME, NONE_FRAME } }, | 
 | }; | 
 |  | 
 | #if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA || CONFIG_PALETTE | 
 | static INLINE int write_uniform_cost(int n, int v) { | 
 |   const int l = get_unsigned_bits(n); | 
 |   const int m = (1 << l) - n; | 
 |   if (l == 0) return 0; | 
 |   if (v < m) | 
 |     return (l - 1) * av1_cost_bit(128, 0); | 
 |   else | 
 |     return l * av1_cost_bit(128, 0); | 
 | } | 
 | #endif  // CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA || CONFIG_PALETTE | 
 |  | 
 | // constants for prune 1 and prune 2 decision boundaries | 
 | #define FAST_EXT_TX_CORR_MID 0.0 | 
 | #define FAST_EXT_TX_EDST_MID 0.1 | 
 | #define FAST_EXT_TX_CORR_MARGIN 0.5 | 
 | #define FAST_EXT_TX_EDST_MARGIN 0.3 | 
 |  | 
 | static const TX_TYPE_1D vtx_tab[TX_TYPES] = { | 
 |   DCT_1D,      ADST_1D, DCT_1D,      ADST_1D, | 
 | #if CONFIG_EXT_TX | 
 |   FLIPADST_1D, DCT_1D,  FLIPADST_1D, ADST_1D, FLIPADST_1D, IDTX_1D, | 
 |   DCT_1D,      IDTX_1D, ADST_1D,     IDTX_1D, FLIPADST_1D, IDTX_1D, | 
 | #endif  // CONFIG_EXT_TX | 
 | }; | 
 |  | 
 | static const TX_TYPE_1D htx_tab[TX_TYPES] = { | 
 |   DCT_1D,  DCT_1D,      ADST_1D,     ADST_1D, | 
 | #if CONFIG_EXT_TX | 
 |   DCT_1D,  FLIPADST_1D, FLIPADST_1D, FLIPADST_1D, ADST_1D, IDTX_1D, | 
 |   IDTX_1D, DCT_1D,      IDTX_1D,     ADST_1D,     IDTX_1D, FLIPADST_1D, | 
 | #endif  // CONFIG_EXT_TX | 
 | }; | 
 |  | 
 | #if CONFIG_DAALA_DIST | 
 | static int od_compute_var_4x4(od_coeff *x, int stride) { | 
 |   int sum; | 
 |   int s2; | 
 |   int i; | 
 |   sum = 0; | 
 |   s2 = 0; | 
 |   for (i = 0; i < 4; i++) { | 
 |     int j; | 
 |     for (j = 0; j < 4; j++) { | 
 |       int t; | 
 |  | 
 |       t = x[i * stride + j]; | 
 |       sum += t; | 
 |       s2 += t * t; | 
 |     } | 
 |   } | 
 |   // TODO(yushin) : Check wheter any changes are required for high bit depth. | 
 |   return (s2 - (sum * sum >> 4)) >> 4; | 
 | } | 
 |  | 
 | /* OD_DIST_LP_MID controls the frequency weighting filter used for computing | 
 |    the distortion. For a value X, the filter is [1 X 1]/(X + 2) and | 
 |    is applied both horizontally and vertically. For X=5, the filter is | 
 |    a good approximation for the OD_QM8_Q4_HVS quantization matrix. */ | 
 | #define OD_DIST_LP_MID (5) | 
 | #define OD_DIST_LP_NORM (OD_DIST_LP_MID + 2) | 
 |  | 
 | static double od_compute_dist_8x8(int qm, int use_activity_masking, od_coeff *x, | 
 |                                   od_coeff *y, od_coeff *e_lp, int stride) { | 
 |   double sum; | 
 |   int min_var; | 
 |   double mean_var; | 
 |   double var_stat; | 
 |   double activity; | 
 |   double calibration; | 
 |   int i; | 
 |   int j; | 
 |   double vardist; | 
 |  | 
 |   vardist = 0; | 
 |   OD_ASSERT(qm != OD_FLAT_QM); | 
 |   (void)qm; | 
 | #if 1 | 
 |   min_var = INT_MAX; | 
 |   mean_var = 0; | 
 |   for (i = 0; i < 3; i++) { | 
 |     for (j = 0; j < 3; j++) { | 
 |       int varx; | 
 |       int vary; | 
 |       varx = od_compute_var_4x4(x + 2 * i * stride + 2 * j, stride); | 
 |       vary = od_compute_var_4x4(y + 2 * i * stride + 2 * j, stride); | 
 |       min_var = OD_MINI(min_var, varx); | 
 |       mean_var += 1. / (1 + varx); | 
 |       /* The cast to (double) is to avoid an overflow before the sqrt.*/ | 
 |       vardist += varx - 2 * sqrt(varx * (double)vary) + vary; | 
 |     } | 
 |   } | 
 |   /* We use a different variance statistic depending on whether activity | 
 |      masking is used, since the harmonic mean appeared slghtly worse with | 
 |      masking off. The calibration constant just ensures that we preserve the | 
 |      rate compared to activity=1. */ | 
 |   if (use_activity_masking) { | 
 |     calibration = 1.95; | 
 |     var_stat = 9. / mean_var; | 
 |   } else { | 
 |     calibration = 1.62; | 
 |     var_stat = min_var; | 
 |   } | 
 |   /* 1.62 is a calibration constant, 0.25 is a noise floor and 1/6 is the | 
 |      activity masking constant. */ | 
 |   activity = calibration * pow(.25 + var_stat, -1. / 6); | 
 | #else | 
 |   activity = 1; | 
 | #endif  // 1 | 
 |   sum = 0; | 
 |   for (i = 0; i < 8; i++) { | 
 |     for (j = 0; j < 8; j++) | 
 |       sum += e_lp[i * stride + j] * (double)e_lp[i * stride + j]; | 
 |   } | 
 |   /* Normalize the filter to unit DC response. */ | 
 |   sum *= 1. / (OD_DIST_LP_NORM * OD_DIST_LP_NORM * OD_DIST_LP_NORM * | 
 |                OD_DIST_LP_NORM); | 
 |   return activity * activity * (sum + vardist); | 
 | } | 
 |  | 
 | // Note : Inputs x and y are in a pixel domain | 
 | static double od_compute_dist(int qm, int activity_masking, od_coeff *x, | 
 |                               od_coeff *y, int bsize_w, int bsize_h, | 
 |                               int qindex) { | 
 |   int i; | 
 |   double sum; | 
 |   sum = 0; | 
 |  | 
 |   assert(bsize_w >= 8 && bsize_h >= 8); | 
 |  | 
 |   if (qm == OD_FLAT_QM) { | 
 |     for (i = 0; i < bsize_w * bsize_h; i++) { | 
 |       double tmp; | 
 |       tmp = x[i] - y[i]; | 
 |       sum += tmp * tmp; | 
 |     } | 
 |   } else { | 
 |     int j; | 
 |     DECLARE_ALIGNED(16, od_coeff, e[MAX_TX_SQUARE]); | 
 |     DECLARE_ALIGNED(16, od_coeff, tmp[MAX_TX_SQUARE]); | 
 |     DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_TX_SQUARE]); | 
 |     int mid = OD_DIST_LP_MID; | 
 |     for (i = 0; i < bsize_h; i++) { | 
 |       for (j = 0; j < bsize_w; j++) { | 
 |         e[i * bsize_w + j] = x[i * bsize_w + j] - y[i * bsize_w + j]; | 
 |       } | 
 |     } | 
 |     for (i = 0; i < bsize_h; i++) { | 
 |       tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1]; | 
 |       tmp[i * bsize_w + bsize_w - 1] = | 
 |           mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2]; | 
 |       for (j = 1; j < bsize_w - 1; j++) { | 
 |         tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + | 
 |                                e[i * bsize_w + j - 1] + e[i * bsize_w + j + 1]; | 
 |       } | 
 |     } | 
 |     for (j = 0; j < bsize_w; j++) { | 
 |       e_lp[j] = mid * tmp[j] + 2 * tmp[bsize_w + j]; | 
 |       e_lp[(bsize_h - 1) * bsize_w + j] = | 
 |           mid * tmp[(bsize_h - 1) * bsize_w + j] + | 
 |           2 * tmp[(bsize_h - 2) * bsize_w + j]; | 
 |     } | 
 |     for (i = 1; i < bsize_h - 1; i++) { | 
 |       for (j = 0; j < bsize_w; j++) { | 
 |         e_lp[i * bsize_w + j] = mid * tmp[i * bsize_w + j] + | 
 |                                 tmp[(i - 1) * bsize_w + j] + | 
 |                                 tmp[(i + 1) * bsize_w + j]; | 
 |       } | 
 |     } | 
 |     for (i = 0; i < bsize_h; i += 8) { | 
 |       for (j = 0; j < bsize_w; j += 8) { | 
 |         sum += od_compute_dist_8x8(qm, activity_masking, &x[i * bsize_w + j], | 
 |                                    &y[i * bsize_w + j], &e_lp[i * bsize_w + j], | 
 |                                    bsize_w); | 
 |       } | 
 |     } | 
 |     /* Scale according to linear regression against SSE, for 8x8 blocks. */ | 
 |     if (activity_masking) { | 
 |       sum *= 2.2 + (1.7 - 2.2) * (qindex - 99) / (210 - 99) + | 
 |              (qindex < 99 ? 2.5 * (qindex - 99) / 99 * (qindex - 99) / 99 : 0); | 
 |     } else { | 
 |       sum *= qindex >= 128 | 
 |                  ? 1.4 + (0.9 - 1.4) * (qindex - 128) / (209 - 128) | 
 |                  : qindex <= 43 | 
 |                        ? 1.5 + (2.0 - 1.5) * (qindex - 43) / (16 - 43) | 
 |                        : 1.5 + (1.4 - 1.5) * (qindex - 43) / (128 - 43); | 
 |     } | 
 |   } | 
 |   return sum; | 
 | } | 
 |  | 
 | static int64_t av1_daala_dist(const uint8_t *src, int src_stride, | 
 |                               const uint8_t *dst, int dst_stride, int bsw, | 
 |                               int bsh, int qm, int use_activity_masking, | 
 |                               int qindex) { | 
 |   int i, j; | 
 |   int64_t d; | 
 |   DECLARE_ALIGNED(16, od_coeff, orig[MAX_TX_SQUARE]); | 
 |   DECLARE_ALIGNED(16, od_coeff, rec[MAX_TX_SQUARE]); | 
 |  | 
 |   assert(qm == OD_HVS_QM); | 
 |  | 
 |   for (j = 0; j < bsh; j++) | 
 |     for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i]; | 
 |  | 
 |   for (j = 0; j < bsh; j++) | 
 |     for (i = 0; i < bsw; i++) rec[j * bsw + i] = dst[j * dst_stride + i]; | 
 |  | 
 |   d = (int64_t)od_compute_dist(qm, use_activity_masking, orig, rec, bsw, bsh, | 
 |                                qindex); | 
 |   return d; | 
 | } | 
 | #endif  // CONFIG_DAALA_DIST | 
 |  | 
 | static void get_energy_distribution_fine(const AV1_COMP *cpi, BLOCK_SIZE bsize, | 
 |                                          const uint8_t *src, int src_stride, | 
 |                                          const uint8_t *dst, int dst_stride, | 
 |                                          double *hordist, double *verdist) { | 
 |   const int bw = block_size_wide[bsize]; | 
 |   const int bh = block_size_high[bsize]; | 
 |   unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | 
 |  | 
 |   const int f_index = bsize - BLOCK_16X16; | 
 |   if (f_index < 0) { | 
 |     const int w_shift = bw == 8 ? 1 : 2; | 
 |     const int h_shift = bh == 8 ? 1 : 2; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |     if (cpi->common.use_highbitdepth) { | 
 |       const uint16_t *src16 = CONVERT_TO_SHORTPTR(src); | 
 |       const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); | 
 |       for (int i = 0; i < bh; ++i) | 
 |         for (int j = 0; j < bw; ++j) { | 
 |           const int index = (j >> w_shift) + ((i >> h_shift) << 2); | 
 |           esq[index] += | 
 |               (src16[j + i * src_stride] - dst16[j + i * dst_stride]) * | 
 |               (src16[j + i * src_stride] - dst16[j + i * dst_stride]); | 
 |         } | 
 |     } else { | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 |       for (int i = 0; i < bh; ++i) | 
 |         for (int j = 0; j < bw; ++j) { | 
 |           const int index = (j >> w_shift) + ((i >> h_shift) << 2); | 
 |           esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) * | 
 |                         (src[j + i * src_stride] - dst[j + i * dst_stride]); | 
 |         } | 
 | #if CONFIG_HIGHBITDEPTH | 
 |     } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |   } else { | 
 |     cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[0]); | 
 |     cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, | 
 |                             &esq[1]); | 
 |     cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, | 
 |                             &esq[2]); | 
 |     cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, | 
 |                             dst_stride, &esq[3]); | 
 |     src += bh / 4 * src_stride; | 
 |     dst += bh / 4 * dst_stride; | 
 |  | 
 |     cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[4]); | 
 |     cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, | 
 |                             &esq[5]); | 
 |     cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, | 
 |                             &esq[6]); | 
 |     cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, | 
 |                             dst_stride, &esq[7]); | 
 |     src += bh / 4 * src_stride; | 
 |     dst += bh / 4 * dst_stride; | 
 |  | 
 |     cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[8]); | 
 |     cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, | 
 |                             &esq[9]); | 
 |     cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, | 
 |                             &esq[10]); | 
 |     cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, | 
 |                             dst_stride, &esq[11]); | 
 |     src += bh / 4 * src_stride; | 
 |     dst += bh / 4 * dst_stride; | 
 |  | 
 |     cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[12]); | 
 |     cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, | 
 |                             &esq[13]); | 
 |     cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, | 
 |                             &esq[14]); | 
 |     cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, | 
 |                             dst_stride, &esq[15]); | 
 |   } | 
 |  | 
 |   double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] + | 
 |                  esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] + | 
 |                  esq[12] + esq[13] + esq[14] + esq[15]; | 
 |   if (total > 0) { | 
 |     const double e_recip = 1.0 / total; | 
 |     hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip; | 
 |     hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip; | 
 |     hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip; | 
 |     verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip; | 
 |     verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip; | 
 |     verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip; | 
 |   } else { | 
 |     hordist[0] = verdist[0] = 0.25; | 
 |     hordist[1] = verdist[1] = 0.25; | 
 |     hordist[2] = verdist[2] = 0.25; | 
 |   } | 
 | } | 
 |  | 
 | static int adst_vs_flipadst(const AV1_COMP *cpi, BLOCK_SIZE bsize, uint8_t *src, | 
 |                             int src_stride, uint8_t *dst, int dst_stride) { | 
 |   int prune_bitmask = 0; | 
 |   double svm_proj_h = 0, svm_proj_v = 0; | 
 |   double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 }; | 
 |   get_energy_distribution_fine(cpi, bsize, src, src_stride, dst, dst_stride, | 
 |                                hdist, vdist); | 
 |  | 
 |   svm_proj_v = vdist[0] * ADST_FLIP_SVM[0] + vdist[1] * ADST_FLIP_SVM[1] + | 
 |                vdist[2] * ADST_FLIP_SVM[2] + ADST_FLIP_SVM[3]; | 
 |   svm_proj_h = hdist[0] * ADST_FLIP_SVM[4] + hdist[1] * ADST_FLIP_SVM[5] + | 
 |                hdist[2] * ADST_FLIP_SVM[6] + ADST_FLIP_SVM[7]; | 
 |   if (svm_proj_v > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN) | 
 |     prune_bitmask |= 1 << FLIPADST_1D; | 
 |   else if (svm_proj_v < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN) | 
 |     prune_bitmask |= 1 << ADST_1D; | 
 |  | 
 |   if (svm_proj_h > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN) | 
 |     prune_bitmask |= 1 << (FLIPADST_1D + 8); | 
 |   else if (svm_proj_h < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN) | 
 |     prune_bitmask |= 1 << (ADST_1D + 8); | 
 |  | 
 |   return prune_bitmask; | 
 | } | 
 |  | 
 | #if CONFIG_EXT_TX | 
 | static void get_horver_correlation(const int16_t *diff, int stride, int w, | 
 |                                    int h, double *hcorr, double *vcorr) { | 
 |   // Returns hor/ver correlation coefficient | 
 |   const int num = (h - 1) * (w - 1); | 
 |   double num_r; | 
 |   int i, j; | 
 |   int64_t xy_sum = 0, xz_sum = 0; | 
 |   int64_t x_sum = 0, y_sum = 0, z_sum = 0; | 
 |   int64_t x2_sum = 0, y2_sum = 0, z2_sum = 0; | 
 |   double x_var_n, y_var_n, z_var_n, xy_var_n, xz_var_n; | 
 |   *hcorr = *vcorr = 1; | 
 |  | 
 |   assert(num > 0); | 
 |   num_r = 1.0 / num; | 
 |   for (i = 1; i < h; ++i) { | 
 |     for (j = 1; j < w; ++j) { | 
 |       const int16_t x = diff[i * stride + j]; | 
 |       const int16_t y = diff[i * stride + j - 1]; | 
 |       const int16_t z = diff[(i - 1) * stride + j]; | 
 |       xy_sum += x * y; | 
 |       xz_sum += x * z; | 
 |       x_sum += x; | 
 |       y_sum += y; | 
 |       z_sum += z; | 
 |       x2_sum += x * x; | 
 |       y2_sum += y * y; | 
 |       z2_sum += z * z; | 
 |     } | 
 |   } | 
 |   x_var_n = x2_sum - (x_sum * x_sum) * num_r; | 
 |   y_var_n = y2_sum - (y_sum * y_sum) * num_r; | 
 |   z_var_n = z2_sum - (z_sum * z_sum) * num_r; | 
 |   xy_var_n = xy_sum - (x_sum * y_sum) * num_r; | 
 |   xz_var_n = xz_sum - (x_sum * z_sum) * num_r; | 
 |   if (x_var_n > 0 && y_var_n > 0) { | 
 |     *hcorr = xy_var_n / sqrt(x_var_n * y_var_n); | 
 |     *hcorr = *hcorr < 0 ? 0 : *hcorr; | 
 |   } | 
 |   if (x_var_n > 0 && z_var_n > 0) { | 
 |     *vcorr = xz_var_n / sqrt(x_var_n * z_var_n); | 
 |     *vcorr = *vcorr < 0 ? 0 : *vcorr; | 
 |   } | 
 | } | 
 |  | 
 | int dct_vs_idtx(const int16_t *diff, int stride, int w, int h) { | 
 |   double hcorr, vcorr; | 
 |   int prune_bitmask = 0; | 
 |   get_horver_correlation(diff, stride, w, h, &hcorr, &vcorr); | 
 |  | 
 |   if (vcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN) | 
 |     prune_bitmask |= 1 << IDTX_1D; | 
 |   else if (vcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN) | 
 |     prune_bitmask |= 1 << DCT_1D; | 
 |  | 
 |   if (hcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN) | 
 |     prune_bitmask |= 1 << (IDTX_1D + 8); | 
 |   else if (hcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN) | 
 |     prune_bitmask |= 1 << (DCT_1D + 8); | 
 |   return prune_bitmask; | 
 | } | 
 |  | 
 | // Performance drop: 0.5%, Speed improvement: 24% | 
 | static int prune_two_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize, | 
 |                              MACROBLOCK *x, const MACROBLOCKD *xd, | 
 |                              int adst_flipadst, int dct_idtx) { | 
 |   int prune = 0; | 
 |  | 
 |   if (adst_flipadst) { | 
 |     const struct macroblock_plane *const p = &x->plane[0]; | 
 |     const struct macroblockd_plane *const pd = &xd->plane[0]; | 
 |     prune |= adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, | 
 |                               pd->dst.buf, pd->dst.stride); | 
 |   } | 
 |   if (dct_idtx) { | 
 |     av1_subtract_plane(x, bsize, 0); | 
 |     const struct macroblock_plane *const p = &x->plane[0]; | 
 |     const int bw = 4 << (b_width_log2_lookup[bsize]); | 
 |     const int bh = 4 << (b_height_log2_lookup[bsize]); | 
 |     prune |= dct_vs_idtx(p->src_diff, bw, bw, bh); | 
 |   } | 
 |  | 
 |   return prune; | 
 | } | 
 | #endif  // CONFIG_EXT_TX | 
 |  | 
 | // Performance drop: 0.3%, Speed improvement: 5% | 
 | static int prune_one_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize, | 
 |                              const MACROBLOCK *x, const MACROBLOCKD *xd) { | 
 |   const struct macroblock_plane *const p = &x->plane[0]; | 
 |   const struct macroblockd_plane *const pd = &xd->plane[0]; | 
 |   return adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, pd->dst.buf, | 
 |                           pd->dst.stride); | 
 | } | 
 |  | 
 | static int prune_tx_types(const AV1_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, | 
 |                           MACROBLOCKD *xd, int tx_set) { | 
 | #if CONFIG_EXT_TX | 
 |   const int *tx_set_1D = ext_tx_used_inter_1D[tx_set]; | 
 | #else | 
 |   const int tx_set_1D[TX_TYPES_1D] = { 0 }; | 
 | #endif  // CONFIG_EXT_TX | 
 |  | 
 |   switch (cpi->sf.tx_type_search.prune_mode) { | 
 |     case NO_PRUNE: return 0; break; | 
 |     case PRUNE_ONE: | 
 |       if ((tx_set >= 0) && !(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) | 
 |         return 0; | 
 |       return prune_one_for_sby(cpi, bsize, x, xd); | 
 |       break; | 
 | #if CONFIG_EXT_TX | 
 |     case PRUNE_TWO: | 
 |       if ((tx_set >= 0) && !(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) { | 
 |         if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) return 0; | 
 |         return prune_two_for_sby(cpi, bsize, x, xd, 0, 1); | 
 |       } | 
 |       if ((tx_set >= 0) && !(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) | 
 |         return prune_two_for_sby(cpi, bsize, x, xd, 1, 0); | 
 |       return prune_two_for_sby(cpi, bsize, x, xd, 1, 1); | 
 |       break; | 
 | #endif  // CONFIG_EXT_TX | 
 |   } | 
 |   assert(0); | 
 |   return 0; | 
 | } | 
 |  | 
 | static int do_tx_type_search(TX_TYPE tx_type, int prune) { | 
 | // TODO(sarahparker) implement for non ext tx | 
 | #if CONFIG_EXT_TX | 
 |   return !(((prune >> vtx_tab[tx_type]) & 1) | | 
 |            ((prune >> (htx_tab[tx_type] + 8)) & 1)); | 
 | #else | 
 |   // temporary to avoid compiler warnings | 
 |   (void)vtx_tab; | 
 |   (void)htx_tab; | 
 |   (void)tx_type; | 
 |   (void)prune; | 
 |   return 1; | 
 | #endif  // CONFIG_EXT_TX | 
 | } | 
 |  | 
 | static void model_rd_from_sse(const AV1_COMP *const cpi, | 
 |                               const MACROBLOCKD *const xd, BLOCK_SIZE bsize, | 
 |                               int plane, int64_t sse, int *rate, | 
 |                               int64_t *dist) { | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   const int dequant_shift = | 
 | #if CONFIG_HIGHBITDEPTH | 
 |       (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |                                                     3; | 
 |  | 
 |   // Fast approximate the modelling function. | 
 |   if (cpi->sf.simple_model_rd_from_var) { | 
 |     const int64_t square_error = sse; | 
 |     int quantizer = (pd->dequant[1] >> dequant_shift); | 
 |  | 
 |     if (quantizer < 120) | 
 |       *rate = (int)((square_error * (280 - quantizer)) >> | 
 |                     (16 - AV1_PROB_COST_SHIFT)); | 
 |     else | 
 |       *rate = 0; | 
 |     *dist = (square_error * quantizer) >> 8; | 
 |   } else { | 
 |     av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[bsize], | 
 |                                  pd->dequant[1] >> dequant_shift, rate, dist); | 
 |   } | 
 |  | 
 |   *dist <<= 4; | 
 | } | 
 |  | 
 | static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize, | 
 |                             MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, | 
 |                             int plane_to, int *out_rate_sum, | 
 |                             int64_t *out_dist_sum, int *skip_txfm_sb, | 
 |                             int64_t *skip_sse_sb) { | 
 |   // Note our transform coeffs are 8 times an orthogonal transform. | 
 |   // Hence quantizer step is also 8 times. To get effective quantizer | 
 |   // we need to divide by 8 before sending to modeling function. | 
 |   int plane; | 
 |   const int ref = xd->mi[0]->mbmi.ref_frame[0]; | 
 |  | 
 |   int64_t rate_sum = 0; | 
 |   int64_t dist_sum = 0; | 
 |   int64_t total_sse = 0; | 
 |  | 
 |   x->pred_sse[ref] = 0; | 
 |  | 
 |   for (plane = plane_from; plane <= plane_to; ++plane) { | 
 |     struct macroblock_plane *const p = &x->plane[plane]; | 
 |     struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 | #if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2 | 
 |     const BLOCK_SIZE bs = AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd)); | 
 | #else | 
 |     const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); | 
 | #endif  // CONFIG_CB4X4 && !CONFIG_CHROMA_2X2 | 
 |  | 
 |     unsigned int sse; | 
 |     int rate; | 
 |     int64_t dist; | 
 |  | 
 | #if CONFIG_CB4X4 | 
 |     if (x->skip_chroma_rd && plane) continue; | 
 | #endif  // CONFIG_CB4X4 | 
 |  | 
 |     // TODO(geza): Write direct sse functions that do not compute | 
 |     // variance as well. | 
 |     cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, | 
 |                        &sse); | 
 |  | 
 |     if (plane == 0) x->pred_sse[ref] = sse; | 
 |  | 
 |     total_sse += sse; | 
 |  | 
 |     model_rd_from_sse(cpi, xd, bs, plane, sse, &rate, &dist); | 
 |  | 
 |     rate_sum += rate; | 
 |     dist_sum += dist; | 
 |   } | 
 |  | 
 |   *skip_txfm_sb = total_sse == 0; | 
 |   *skip_sse_sb = total_sse << 4; | 
 |   *out_rate_sum = (int)rate_sum; | 
 |   *out_dist_sum = dist_sum; | 
 | } | 
 |  | 
 | int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, | 
 |                           intptr_t block_size, int64_t *ssz) { | 
 |   int i; | 
 |   int64_t error = 0, sqcoeff = 0; | 
 |  | 
 |   for (i = 0; i < block_size; i++) { | 
 |     const int diff = coeff[i] - dqcoeff[i]; | 
 |     error += diff * diff; | 
 |     sqcoeff += coeff[i] * coeff[i]; | 
 |   } | 
 |  | 
 |   *ssz = sqcoeff; | 
 |   return error; | 
 | } | 
 |  | 
 | int64_t av1_block_error_fp_c(const int16_t *coeff, const int16_t *dqcoeff, | 
 |                              int block_size) { | 
 |   int i; | 
 |   int64_t error = 0; | 
 |  | 
 |   for (i = 0; i < block_size; i++) { | 
 |     const int diff = coeff[i] - dqcoeff[i]; | 
 |     error += diff * diff; | 
 |   } | 
 |  | 
 |   return error; | 
 | } | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 | int64_t av1_highbd_block_error_c(const tran_low_t *coeff, | 
 |                                  const tran_low_t *dqcoeff, intptr_t block_size, | 
 |                                  int64_t *ssz, int bd) { | 
 |   int i; | 
 |   int64_t error = 0, sqcoeff = 0; | 
 |   int shift = 2 * (bd - 8); | 
 |   int rounding = shift > 0 ? 1 << (shift - 1) : 0; | 
 |  | 
 |   for (i = 0; i < block_size; i++) { | 
 |     const int64_t diff = coeff[i] - dqcoeff[i]; | 
 |     error += diff * diff; | 
 |     sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i]; | 
 |   } | 
 |   assert(error >= 0 && sqcoeff >= 0); | 
 |   error = (error + rounding) >> shift; | 
 |   sqcoeff = (sqcoeff + rounding) >> shift; | 
 |  | 
 |   *ssz = sqcoeff; | 
 |   return error; | 
 | } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 | #if CONFIG_PVQ | 
 | // Without PVQ, av1_block_error_c() return two kind of errors, | 
 | // 1) reconstruction (i.e. decoded) error and | 
 | // 2) Squared sum of transformed residue (i.e. 'coeff') | 
 | // However, if PVQ is enabled, coeff does not keep the transformed residue | 
 | // but instead a transformed original is kept. | 
 | // Hence, new parameter ref vector (i.e. transformed predicted signal) | 
 | // is required to derive the residue signal, | 
 | // i.e. coeff - ref = residue (all transformed). | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 | static int64_t av1_highbd_block_error2_c(const tran_low_t *coeff, | 
 |                                          const tran_low_t *dqcoeff, | 
 |                                          const tran_low_t *ref, | 
 |                                          intptr_t block_size, int64_t *ssz, | 
 |                                          int bd) { | 
 |   int64_t error; | 
 |   int64_t sqcoeff; | 
 |   int shift = 2 * (bd - 8); | 
 |   int rounding = shift > 0 ? 1 << (shift - 1) : 0; | 
 |   // Use the existing sse codes for calculating distortion of decoded signal: | 
 |   // i.e. (orig - decoded)^2 | 
 |   // For high bit depth, throw away ssz until a 32-bit version of | 
 |   // av1_block_error_fp is written. | 
 |   int64_t ssz_trash; | 
 |   error = av1_block_error(coeff, dqcoeff, block_size, &ssz_trash); | 
 |   // prediction residue^2 = (orig - ref)^2 | 
 |   sqcoeff = av1_block_error(coeff, ref, block_size, &ssz_trash); | 
 |   error = (error + rounding) >> shift; | 
 |   sqcoeff = (sqcoeff + rounding) >> shift; | 
 |   *ssz = sqcoeff; | 
 |   return error; | 
 | } | 
 | #else | 
 | // TODO(yushin) : Since 4x4 case does not need ssz, better to refactor into | 
 | // a separate function that does not do the extra computations for ssz. | 
 | static int64_t av1_block_error2_c(const tran_low_t *coeff, | 
 |                                   const tran_low_t *dqcoeff, | 
 |                                   const tran_low_t *ref, intptr_t block_size, | 
 |                                   int64_t *ssz) { | 
 |   int64_t error; | 
 |   // Use the existing sse codes for calculating distortion of decoded signal: | 
 |   // i.e. (orig - decoded)^2 | 
 |   error = av1_block_error_fp(coeff, dqcoeff, block_size); | 
 |   // prediction residue^2 = (orig - ref)^2 | 
 |   *ssz = av1_block_error_fp(coeff, ref, block_size); | 
 |   return error; | 
 | } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 | #if !CONFIG_PVQ || CONFIG_VAR_TX | 
 | /* The trailing '0' is a terminator which is used inside av1_cost_coeffs() to | 
 |  * decide whether to include cost of a trailing EOB node or not (i.e. we | 
 |  * can skip this if the last coefficient in this transform block, e.g. the | 
 |  * 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block, | 
 |  * were non-zero). */ | 
 | #if !CONFIG_LV_MAP | 
 | static int cost_coeffs(const AV1_COMMON *const cm, MACROBLOCK *x, int plane, | 
 |                        int block, TX_SIZE tx_size, const SCAN_ORDER *scan_order, | 
 |                        const ENTROPY_CONTEXT *a, const ENTROPY_CONTEXT *l, | 
 |                        int use_fast_coef_costing) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   const struct macroblock_plane *p = &x->plane[plane]; | 
 |   const struct macroblockd_plane *pd = &xd->plane[plane]; | 
 |   const PLANE_TYPE type = pd->plane_type; | 
 |   const uint16_t *band_count = &band_count_table[tx_size][1]; | 
 |   const int eob = p->eobs[block]; | 
 |   const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); | 
 |   const int tx_size_ctx = txsize_sqr_map[tx_size]; | 
 |   unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = | 
 |       x->token_costs[tx_size_ctx][type][is_inter_block(mbmi)]; | 
 |   uint8_t token_cache[MAX_TX_SQUARE]; | 
 |   int pt = combine_entropy_contexts(*a, *l); | 
 |   int c, cost; | 
 |   const int16_t *scan = scan_order->scan; | 
 |   const int16_t *nb = scan_order->neighbors; | 
 | #if CONFIG_NEW_TOKENSET | 
 |   const int ref = is_inter_block(mbmi); | 
 |   aom_prob *blockz_probs = | 
 |       cm->fc->blockzero_probs[txsize_sqr_map[tx_size]][type][ref]; | 
 |  | 
 | #endif  // CONFIG_NEW_TOKENSET | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd); | 
 | #else | 
 |   const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, 8); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 | #if !CONFIG_VAR_TX && !CONFIG_SUPERTX | 
 |   // Check for consistency of tx_size with mode info | 
 |   assert(tx_size == get_tx_size(plane, xd)); | 
 | #endif  // !CONFIG_VAR_TX && !CONFIG_SUPERTX | 
 |   (void)cm; | 
 |  | 
 |   if (eob == 0) { | 
 | #if CONFIG_NEW_TOKENSET | 
 |     // single eob token | 
 |     cost = av1_cost_bit(blockz_probs[pt], 0); | 
 | #else | 
 |     cost = token_costs[0][0][pt][EOB_TOKEN]; | 
 | #endif  // CONFIG_NEW_TOKENSET | 
 |   } else { | 
 |     if (use_fast_coef_costing) { | 
 |       int band_left = *band_count++; | 
 |  | 
 |       // dc token | 
 |       int v = qcoeff[0]; | 
 |       int16_t prev_t; | 
 |       cost = av1_get_token_cost(v, &prev_t, cat6_bits); | 
 | #if CONFIG_NEW_TOKENSET | 
 |       cost += (*token_costs)[!prev_t][pt][prev_t]; | 
 | #else | 
 |       cost += (*token_costs)[0][pt][prev_t]; | 
 | #endif | 
 |  | 
 |       token_cache[0] = av1_pt_energy_class[prev_t]; | 
 |       ++token_costs; | 
 |  | 
 |       // ac tokens | 
 |       for (c = 1; c < eob; c++) { | 
 |         const int rc = scan[c]; | 
 |         int16_t t; | 
 |  | 
 |         v = qcoeff[rc]; | 
 |         cost += av1_get_token_cost(v, &t, cat6_bits); | 
 | #if CONFIG_NEW_TOKENSET | 
 |         cost += (*token_costs)[!t][!prev_t][t]; | 
 | #else | 
 |         cost += (*token_costs)[!prev_t][!prev_t][t]; | 
 | #endif | 
 |         prev_t = t; | 
 |         if (!--band_left) { | 
 |           band_left = *band_count++; | 
 |           ++token_costs; | 
 |         } | 
 |       } | 
 |  | 
 |       // eob token | 
 |       if (band_left || CONFIG_NEW_TOKENSET) | 
 |         cost += (*token_costs)[0][!prev_t][EOB_TOKEN]; | 
 |  | 
 |     } else {  // !use_fast_coef_costing | 
 |       int band_left = *band_count++; | 
 |  | 
 |       // dc token | 
 |       int v = qcoeff[0]; | 
 |       int16_t tok; | 
 | #if !CONFIG_NEW_TOKENSET | 
 |       unsigned int(*tok_cost_ptr)[COEFF_CONTEXTS][ENTROPY_TOKENS]; | 
 | #endif | 
 |       cost = av1_get_token_cost(v, &tok, cat6_bits); | 
 | #if CONFIG_NEW_TOKENSET | 
 |       cost += (*token_costs)[!tok][pt][tok]; | 
 | #else | 
 |       cost += (*token_costs)[0][pt][tok]; | 
 | #endif | 
 |  | 
 |       token_cache[0] = av1_pt_energy_class[tok]; | 
 |       ++token_costs; | 
 |  | 
 | #if !CONFIG_NEW_TOKENSET | 
 |       tok_cost_ptr = &((*token_costs)[!tok]); | 
 | #endif | 
 |  | 
 |       // ac tokens | 
 |       for (c = 1; c < eob; c++) { | 
 |         const int rc = scan[c]; | 
 |  | 
 |         v = qcoeff[rc]; | 
 |         cost += av1_get_token_cost(v, &tok, cat6_bits); | 
 |         pt = get_coef_context(nb, token_cache, c); | 
 | #if CONFIG_NEW_TOKENSET | 
 |         cost += (*token_costs)[!tok][pt][tok]; | 
 | #else | 
 |         cost += (*tok_cost_ptr)[pt][tok]; | 
 | #endif | 
 |         token_cache[rc] = av1_pt_energy_class[tok]; | 
 |         if (!--band_left) { | 
 |           band_left = *band_count++; | 
 |           ++token_costs; | 
 |         } | 
 | #if !CONFIG_NEW_TOKENSET | 
 |         tok_cost_ptr = &((*token_costs)[!tok]); | 
 | #endif | 
 |       } | 
 |  | 
 |       // eob token | 
 |       if (band_left || CONFIG_NEW_TOKENSET) { | 
 |         pt = get_coef_context(nb, token_cache, c); | 
 |         cost += (*token_costs)[0][pt][EOB_TOKEN]; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return cost; | 
 | } | 
 | #endif  // !CONFIG_LV_MAP | 
 |  | 
 | int av1_cost_coeffs(const AV1_COMP *const cpi, MACROBLOCK *x, int plane, | 
 |                     int block, TX_SIZE tx_size, const SCAN_ORDER *scan_order, | 
 |                     const ENTROPY_CONTEXT *a, const ENTROPY_CONTEXT *l, | 
 |                     int use_fast_coef_costing) { | 
 | #if !CONFIG_LV_MAP | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   return cost_coeffs(cm, x, plane, block, tx_size, scan_order, a, l, | 
 |                      use_fast_coef_costing); | 
 | #else  // !CONFIG_LV_MAP | 
 |   (void)scan_order; | 
 |   (void)use_fast_coef_costing; | 
 |   const MACROBLOCKD *xd = &x->e_mbd; | 
 |   const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   const struct macroblockd_plane *pd = &xd->plane[plane]; | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type; | 
 | #if CONFIG_CB4X4 | 
 | #if CONFIG_CHROMA_2X2 | 
 |   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); | 
 | #else | 
 |   const BLOCK_SIZE plane_bsize = | 
 |       AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd)); | 
 | #endif  // CONFIG_CHROMA_2X2 | 
 | #else   // CONFIG_CB4X4 | 
 |   const BLOCK_SIZE plane_bsize = | 
 |       get_plane_block_size(AOMMAX(BLOCK_8X8, bsize), pd); | 
 | #endif  // CONFIG_CB4X4 | 
 |  | 
 |   TXB_CTX txb_ctx; | 
 |   get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); | 
 |   return av1_cost_coeffs_txb(cpi, x, plane, block, &txb_ctx); | 
 | #endif  // !CONFIG_LV_MAP | 
 | } | 
 | #endif  // !CONFIG_PVQ || CONFIG_VAR_TX | 
 |  | 
 | // Get transform block visible dimensions cropped to the MI units. | 
 | static void get_txb_dimensions(const MACROBLOCKD *xd, int plane, | 
 |                                BLOCK_SIZE plane_bsize, int blk_row, int blk_col, | 
 |                                BLOCK_SIZE tx_bsize, int *width, int *height, | 
 |                                int *visible_width, int *visible_height) { | 
 |   assert(tx_bsize <= plane_bsize); | 
 |   int txb_height = block_size_high[tx_bsize]; | 
 |   int txb_width = block_size_wide[tx_bsize]; | 
 |   const int block_height = block_size_high[plane_bsize]; | 
 |   const int block_width = block_size_wide[plane_bsize]; | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   // TODO(aconverse@google.com): Investigate using crop_width/height here rather | 
 |   // than the MI size | 
 |   const int block_rows = | 
 |       (xd->mb_to_bottom_edge >= 0) | 
 |           ? block_height | 
 |           : (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + block_height; | 
 |   const int block_cols = | 
 |       (xd->mb_to_right_edge >= 0) | 
 |           ? block_width | 
 |           : (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + block_width; | 
 |   const int tx_unit_size = tx_size_wide_log2[0]; | 
 |   if (width) *width = txb_width; | 
 |   if (height) *height = txb_height; | 
 |   *visible_width = clamp(block_cols - (blk_col << tx_unit_size), 0, txb_width); | 
 |   *visible_height = | 
 |       clamp(block_rows - (blk_row << tx_unit_size), 0, txb_height); | 
 | } | 
 |  | 
 | // Compute the pixel domain sum square error on all visible 4x4s in the | 
 | // transform block. | 
 | static unsigned pixel_sse(const AV1_COMP *const cpi, const MACROBLOCKD *xd, | 
 |                           int plane, const uint8_t *src, const int src_stride, | 
 |                           const uint8_t *dst, const int dst_stride, int blk_row, | 
 |                           int blk_col, const BLOCK_SIZE plane_bsize, | 
 |                           const BLOCK_SIZE tx_bsize) { | 
 |   int txb_rows, txb_cols, visible_rows, visible_cols; | 
 |   get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, | 
 |                      &txb_cols, &txb_rows, &visible_cols, &visible_rows); | 
 |   assert(visible_rows > 0); | 
 |   assert(visible_cols > 0); | 
 |   if (txb_rows == visible_rows && txb_cols == visible_cols) { | 
 |     unsigned sse; | 
 |     cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); | 
 |     return sse; | 
 |   } | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |     uint64_t sse = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride, | 
 |                                            visible_cols, visible_rows); | 
 |     return (unsigned int)ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2); | 
 |   } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |   unsigned sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, | 
 |                                   visible_cols, visible_rows); | 
 |   return sse; | 
 | } | 
 |  | 
 | // Compute the squares sum squares on all visible 4x4s in the transform block. | 
 | static int64_t sum_squares_visible(const MACROBLOCKD *xd, int plane, | 
 |                                    const int16_t *diff, const int diff_stride, | 
 |                                    int blk_row, int blk_col, | 
 |                                    const BLOCK_SIZE plane_bsize, | 
 |                                    const BLOCK_SIZE tx_bsize) { | 
 |   int visible_rows, visible_cols; | 
 |   get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL, | 
 |                      NULL, &visible_cols, &visible_rows); | 
 |   return aom_sum_squares_2d_i16(diff, diff_stride, visible_cols, visible_rows); | 
 | } | 
 |  | 
 | void av1_dist_block(const AV1_COMP *cpi, MACROBLOCK *x, int plane, | 
 |                     BLOCK_SIZE plane_bsize, int block, int blk_row, int blk_col, | 
 |                     TX_SIZE tx_size, int64_t *out_dist, int64_t *out_sse, | 
 |                     OUTPUT_STATUS output_status) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const struct macroblock_plane *const p = &x->plane[plane]; | 
 | #if CONFIG_DAALA_DIST | 
 |   int qm = OD_HVS_QM; | 
 |   int use_activity_masking = 0; | 
 | #if CONFIG_PVQ | 
 |   use_activity_masking = x->daala_enc.use_activity_masking; | 
 | #endif  // CONFIG_PVQ | 
 |   struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 | #else   // CONFIG_DAALA_DIST | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 | #endif  // CONFIG_DAALA_DIST | 
 |  | 
 |   if (cpi->sf.use_transform_domain_distortion && !CONFIG_DAALA_DIST) { | 
 |     // Transform domain distortion computation is more efficient as it does | 
 |     // not involve an inverse transform, but it is less accurate. | 
 |     const int buffer_length = tx_size_2d[tx_size]; | 
 |     int64_t this_sse; | 
 |     int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)) * 2; | 
 |     tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); | 
 |     tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); | 
 | #if CONFIG_PVQ | 
 |     tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block); | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |     const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8; | 
 |     *out_dist = av1_highbd_block_error2_c(coeff, dqcoeff, ref_coeff, | 
 |                                           buffer_length, &this_sse, bd) >> | 
 |                 shift; | 
 | #else | 
 |     *out_dist = av1_block_error2_c(coeff, dqcoeff, ref_coeff, buffer_length, | 
 |                                    &this_sse) >> | 
 |                 shift; | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 | #elif CONFIG_HIGHBITDEPTH | 
 |     const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8; | 
 |     *out_dist = | 
 |         av1_highbd_block_error(coeff, dqcoeff, buffer_length, &this_sse, bd) >> | 
 |         shift; | 
 | #else | 
 |     *out_dist = | 
 |         av1_block_error(coeff, dqcoeff, buffer_length, &this_sse) >> shift; | 
 | #endif  // CONFIG_PVQ | 
 |     *out_sse = this_sse >> shift; | 
 |   } else { | 
 |     const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; | 
 | #if !CONFIG_PVQ || CONFIG_DAALA_DIST | 
 |     const int bsw = block_size_wide[tx_bsize]; | 
 |     const int bsh = block_size_high[tx_bsize]; | 
 | #endif | 
 |     const int src_stride = x->plane[plane].src.stride; | 
 |     const int dst_stride = xd->plane[plane].dst.stride; | 
 |     // Scale the transform block index to pixel unit. | 
 |     const int src_idx = (blk_row * src_stride + blk_col) | 
 |                         << tx_size_wide_log2[0]; | 
 |     const int dst_idx = (blk_row * dst_stride + blk_col) | 
 |                         << tx_size_wide_log2[0]; | 
 |     const uint8_t *src = &x->plane[plane].src.buf[src_idx]; | 
 |     const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx]; | 
 |     const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); | 
 |     const uint16_t eob = p->eobs[block]; | 
 |  | 
 |     assert(cpi != NULL); | 
 |     assert(tx_size_wide_log2[0] == tx_size_high_log2[0]); | 
 |  | 
 | #if CONFIG_DAALA_DIST | 
 |     if (plane == 0 && bsw >= 8 && bsh >= 8) { | 
 |       if (output_status == OUTPUT_HAS_DECODED_PIXELS) { | 
 |         const int pred_stride = block_size_wide[plane_bsize]; | 
 |         const int pred_idx = (blk_row * pred_stride + blk_col) | 
 |                              << tx_size_wide_log2[0]; | 
 |         const int16_t *pred = &pd->pred[pred_idx]; | 
 |         int i, j; | 
 |         DECLARE_ALIGNED(16, uint8_t, pred8[MAX_TX_SQUARE]); | 
 |  | 
 |         for (j = 0; j < bsh; j++) | 
 |           for (i = 0; i < bsw; i++) | 
 |             pred8[j * bsw + i] = pred[j * pred_stride + i]; | 
 |         *out_sse = av1_daala_dist(src, src_stride, pred8, bsw, bsw, bsh, qm, | 
 |                                   use_activity_masking, x->qindex); | 
 |       } else { | 
 |         *out_sse = av1_daala_dist(src, src_stride, dst, dst_stride, bsw, bsh, | 
 |                                   qm, use_activity_masking, x->qindex); | 
 |       } | 
 |     } else | 
 | #endif  // CONFIG_DAALA_DIST | 
 |     { | 
 |       const int diff_stride = block_size_wide[plane_bsize]; | 
 |       const int diff_idx = (blk_row * diff_stride + blk_col) | 
 |                            << tx_size_wide_log2[0]; | 
 |       const int16_t *diff = &p->src_diff[diff_idx]; | 
 |       *out_sse = sum_squares_visible(xd, plane, diff, diff_stride, blk_row, | 
 |                                      blk_col, plane_bsize, tx_bsize); | 
 | #if CONFIG_HIGHBITDEPTH | 
 |       if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) | 
 |         *out_sse = ROUND_POWER_OF_TWO(*out_sse, (xd->bd - 8) * 2); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |     } | 
 |     *out_sse *= 16; | 
 |  | 
 |     if (eob) { | 
 |       if (output_status == OUTPUT_HAS_DECODED_PIXELS) { | 
 | #if CONFIG_DAALA_DIST | 
 |         if (plane == 0 && bsw >= 8 && bsh >= 8) | 
 |           *out_dist = av1_daala_dist(src, src_stride, dst, dst_stride, bsw, bsh, | 
 |                                      qm, use_activity_masking, x->qindex); | 
 |         else | 
 | #endif  // CONFIG_DAALA_DIST | 
 |           *out_dist = | 
 |               pixel_sse(cpi, xd, plane, src, src_stride, dst, dst_stride, | 
 |                         blk_row, blk_col, plane_bsize, tx_bsize); | 
 |       } else { | 
 | #if CONFIG_HIGHBITDEPTH | 
 |         uint8_t *recon; | 
 |         DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]); | 
 |  | 
 |         if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) | 
 |           recon = CONVERT_TO_BYTEPTR(recon16); | 
 |         else | 
 |           recon = (uint8_t *)recon16; | 
 | #else | 
 |         DECLARE_ALIGNED(16, uint8_t, recon[MAX_TX_SQUARE]); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 | #if !CONFIG_PVQ | 
 | #if CONFIG_HIGHBITDEPTH | 
 |         if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |           aom_highbd_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, NULL, 0, | 
 |                                    NULL, 0, bsw, bsh, xd->bd); | 
 |         } else { | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |           aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, NULL, 0, NULL, | 
 |                             0, bsw, bsh); | 
 | #if CONFIG_HIGHBITDEPTH | 
 |         } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 | #else | 
 |         (void)dst; | 
 | #endif  // !CONFIG_PVQ | 
 |  | 
 |         const PLANE_TYPE plane_type = get_plane_type(plane); | 
 |         TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); | 
 |  | 
 |         av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, recon, | 
 |                                     MAX_TX_SIZE, eob); | 
 |  | 
 | #if CONFIG_DAALA_DIST | 
 |         if (plane == 0 && bsw >= 8 && bsh >= 8) { | 
 |           *out_dist = av1_daala_dist(src, src_stride, recon, MAX_TX_SIZE, bsw, | 
 |                                      bsh, qm, use_activity_masking, x->qindex); | 
 |         } else { | 
 |           if (plane == 0) { | 
 |             // Save decoded pixels for inter block in pd->pred to avoid | 
 |             // block_8x8_rd_txfm_daala_dist() need to produce them | 
 |             // by calling av1_inverse_transform_block() again. | 
 |             const int pred_stride = block_size_wide[plane_bsize]; | 
 |             const int pred_idx = (blk_row * pred_stride + blk_col) | 
 |                                  << tx_size_wide_log2[0]; | 
 |             int16_t *pred = &pd->pred[pred_idx]; | 
 |             int i, j; | 
 |  | 
 |             for (j = 0; j < bsh; j++) | 
 |               for (i = 0; i < bsw; i++) | 
 |                 pred[j * pred_stride + i] = recon[j * MAX_TX_SIZE + i]; | 
 |           } | 
 | #endif  // CONFIG_DAALA_DIST | 
 |           *out_dist = | 
 |               pixel_sse(cpi, xd, plane, src, src_stride, recon, MAX_TX_SIZE, | 
 |                         blk_row, blk_col, plane_bsize, tx_bsize); | 
 | #if CONFIG_DAALA_DIST | 
 |         } | 
 | #endif  // CONFIG_DAALA_DIST | 
 |       } | 
 |       *out_dist *= 16; | 
 |     } else { | 
 |       *out_dist = *out_sse; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void block_rd_txfm(int plane, int block, int blk_row, int blk_col, | 
 |                           BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { | 
 |   struct rdcost_block_args *args = arg; | 
 |   MACROBLOCK *const x = args->x; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   const AV1_COMP *cpi = args->cpi; | 
 |   ENTROPY_CONTEXT *a = args->t_above + blk_col; | 
 |   ENTROPY_CONTEXT *l = args->t_left + blk_row; | 
 | #if !CONFIG_TXK_SEL | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 | #endif | 
 |   int64_t rd1, rd2, rd; | 
 |   RD_STATS this_rd_stats; | 
 |  | 
 |   assert(tx_size == get_tx_size(plane, xd)); | 
 |  | 
 |   av1_init_rd_stats(&this_rd_stats); | 
 |  | 
 |   if (args->exit_early) return; | 
 |  | 
 |   if (!is_inter_block(mbmi)) { | 
 |     av1_predict_intra_block_facade(xd, plane, block, blk_col, blk_row, tx_size); | 
 |     av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); | 
 |   } | 
 |  | 
 | #if !CONFIG_TXK_SEL | 
 |   // full forward transform and quantization | 
 |   int coeff_ctx = combine_entropy_contexts(*a, *l); | 
 |   av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, | 
 |                   coeff_ctx, AV1_XFORM_QUANT_FP); | 
 |   if (x->plane[plane].eobs[block] && !xd->lossless[mbmi->segment_id]) | 
 |     av1_optimize_b(cm, x, plane, block, tx_size, coeff_ctx); | 
 |  | 
 |   if (!is_inter_block(mbmi)) { | 
 |     struct macroblock_plane *const p = &x->plane[plane]; | 
 |     av1_inverse_transform_block_facade(xd, plane, block, blk_row, blk_col, | 
 |                                        p->eobs[block]); | 
 |     av1_dist_block(args->cpi, x, plane, plane_bsize, block, blk_row, blk_col, | 
 |                    tx_size, &this_rd_stats.dist, &this_rd_stats.sse, | 
 |                    OUTPUT_HAS_DECODED_PIXELS); | 
 |   } else { | 
 |     av1_dist_block(args->cpi, x, plane, plane_bsize, block, blk_row, blk_col, | 
 |                    tx_size, &this_rd_stats.dist, &this_rd_stats.sse, | 
 |                    OUTPUT_HAS_PREDICTED_PIXELS); | 
 |   } | 
 |   rd = RDCOST(x->rdmult, x->rddiv, 0, this_rd_stats.dist); | 
 |   if (args->this_rd + rd > args->best_rd) { | 
 |     args->exit_early = 1; | 
 |     return; | 
 |   } | 
 | #if !CONFIG_PVQ | 
 |   PLANE_TYPE plane_type = get_plane_type(plane); | 
 |   TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); | 
 |   const SCAN_ORDER *scan_order = | 
 |       get_scan(cm, tx_size, tx_type, is_inter_block(mbmi)); | 
 |   this_rd_stats.rate = | 
 |       av1_cost_coeffs(cpi, x, plane, block, tx_size, scan_order, a, l, | 
 |                       args->use_fast_coef_costing); | 
 | #else   // !CONFIG_PVQ | 
 |   this_rd_stats.rate = x->rate; | 
 | #endif  // !CONFIG_PVQ | 
 | #else   // !CONFIG_TXK_SEL | 
 |   av1_search_txk_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, | 
 |                       tx_size, a, l, args->use_fast_coef_costing, | 
 |                       &this_rd_stats); | 
 | #endif  // !CONFIG_TXK_SEL | 
 |  | 
 | #if !CONFIG_PVQ | 
 | #if CONFIG_RD_DEBUG | 
 |   av1_update_txb_coeff_cost(&this_rd_stats, plane, tx_size, blk_row, blk_col, | 
 |                             this_rd_stats.rate); | 
 | #endif  // CONFIG_RD_DEBUG | 
 |   av1_set_txb_context(x, plane, block, tx_size, a, l); | 
 | #endif  // !CONFIG_PVQ | 
 |  | 
 |   rd1 = RDCOST(x->rdmult, x->rddiv, this_rd_stats.rate, this_rd_stats.dist); | 
 |   rd2 = RDCOST(x->rdmult, x->rddiv, 0, this_rd_stats.sse); | 
 |  | 
 |   // TODO(jingning): temporarily enabled only for luma component | 
 |   rd = AOMMIN(rd1, rd2); | 
 |  | 
 | #if CONFIG_DAALA_DIST | 
 |   if (plane == 0 && | 
 |       (tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4)) { | 
 |     this_rd_stats.dist = 0; | 
 |     this_rd_stats.sse = 0; | 
 |     rd = 0; | 
 |     x->rate_4x4[block] = this_rd_stats.rate; | 
 |   } | 
 | #endif  // CONFIG_DAALA_DIST | 
 |  | 
 | #if !CONFIG_PVQ | 
 |   this_rd_stats.skip &= !x->plane[plane].eobs[block]; | 
 | #else | 
 |   this_rd_stats.skip &= x->pvq_skip[plane]; | 
 | #endif  // !CONFIG_PVQ | 
 |   av1_merge_rd_stats(&args->rd_stats, &this_rd_stats); | 
 |  | 
 |   args->this_rd += rd; | 
 |  | 
 |   if (args->this_rd > args->best_rd) { | 
 |     args->exit_early = 1; | 
 |     return; | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_DAALA_DIST | 
 | static void block_8x8_rd_txfm_daala_dist(int plane, int block, int blk_row, | 
 |                                          int blk_col, BLOCK_SIZE plane_bsize, | 
 |                                          TX_SIZE tx_size, void *arg) { | 
 |   struct rdcost_block_args *args = arg; | 
 |   MACROBLOCK *const x = args->x; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   int64_t rd, rd1, rd2; | 
 |   RD_STATS this_rd_stats; | 
 |   int qm = OD_HVS_QM; | 
 |   int use_activity_masking = 0; | 
 |  | 
 |   (void)tx_size; | 
 | #if CONFIG_PVQ | 
 |   use_activity_masking = x->daala_enc.use_activity_masking; | 
 | #endif  // CONFIG_PVQ | 
 |   av1_init_rd_stats(&this_rd_stats); | 
 |  | 
 |   if (args->exit_early) return; | 
 |  | 
 |   { | 
 |     const struct macroblock_plane *const p = &x->plane[plane]; | 
 |     struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |  | 
 |     const int src_stride = p->src.stride; | 
 |     const int dst_stride = pd->dst.stride; | 
 |     const int diff_stride = block_size_wide[plane_bsize]; | 
 |  | 
 |     const uint8_t *src = | 
 |         &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; | 
 |     const uint8_t *dst = | 
 |         &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; | 
 |  | 
 |     unsigned int tmp1, tmp2; | 
 |     int qindex = x->qindex; | 
 |     const int pred_stride = block_size_wide[plane_bsize]; | 
 |     const int pred_idx = (blk_row * pred_stride + blk_col) | 
 |                          << tx_size_wide_log2[0]; | 
 |     int16_t *pred = &pd->pred[pred_idx]; | 
 |     int i, j; | 
 |     const int tx_blk_size = 8; | 
 |  | 
 |     DECLARE_ALIGNED(16, uint8_t, pred8[8 * 8]); | 
 |  | 
 |     for (j = 0; j < tx_blk_size; j++) | 
 |       for (i = 0; i < tx_blk_size; i++) | 
 |         pred8[j * tx_blk_size + i] = pred[j * diff_stride + i]; | 
 |  | 
 |     tmp1 = av1_daala_dist(src, src_stride, pred8, tx_blk_size, 8, 8, qm, | 
 |                           use_activity_masking, qindex); | 
 |     tmp2 = av1_daala_dist(src, src_stride, dst, dst_stride, 8, 8, qm, | 
 |                           use_activity_masking, qindex); | 
 |  | 
 |     if (!is_inter_block(mbmi)) { | 
 |       this_rd_stats.sse = (int64_t)tmp1 * 16; | 
 |       this_rd_stats.dist = (int64_t)tmp2 * 16; | 
 |     } else { | 
 |       // For inter mode, the decoded pixels are provided in pd->pred, | 
 |       // while the predicted pixels are in dst. | 
 |       this_rd_stats.sse = (int64_t)tmp2 * 16; | 
 |       this_rd_stats.dist = (int64_t)tmp1 * 16; | 
 |     } | 
 |   } | 
 |  | 
 |   rd = RDCOST(x->rdmult, x->rddiv, 0, this_rd_stats.dist); | 
 |   if (args->this_rd + rd > args->best_rd) { | 
 |     args->exit_early = 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   { | 
 |     const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
 |     // The rate of the current 8x8 block is the sum of four 4x4 blocks in it. | 
 |     this_rd_stats.rate = x->rate_4x4[block - max_blocks_wide - 1] + | 
 |                          x->rate_4x4[block - max_blocks_wide] + | 
 |                          x->rate_4x4[block - 1] + x->rate_4x4[block]; | 
 |   } | 
 |   rd1 = RDCOST(x->rdmult, x->rddiv, this_rd_stats.rate, this_rd_stats.dist); | 
 |   rd2 = RDCOST(x->rdmult, x->rddiv, 0, this_rd_stats.sse); | 
 |   rd = AOMMIN(rd1, rd2); | 
 |  | 
 |   args->rd_stats.dist += this_rd_stats.dist; | 
 |   args->rd_stats.sse += this_rd_stats.sse; | 
 |  | 
 |   args->this_rd += rd; | 
 |  | 
 |   if (args->this_rd > args->best_rd) { | 
 |     args->exit_early = 1; | 
 |     return; | 
 |   } | 
 | } | 
 | #endif  // CONFIG_DAALA_DIST | 
 |  | 
 | static void txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi, | 
 |                              RD_STATS *rd_stats, int64_t ref_best_rd, int plane, | 
 |                              BLOCK_SIZE bsize, TX_SIZE tx_size, | 
 |                              int use_fast_coef_casting) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   struct rdcost_block_args args; | 
 |   av1_zero(args); | 
 |   args.x = x; | 
 |   args.cpi = cpi; | 
 |   args.best_rd = ref_best_rd; | 
 |   args.use_fast_coef_costing = use_fast_coef_casting; | 
 |   av1_init_rd_stats(&args.rd_stats); | 
 |  | 
 |   if (plane == 0) xd->mi[0]->mbmi.tx_size = tx_size; | 
 |  | 
 |   av1_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left); | 
 |  | 
 | #if CONFIG_DAALA_DIST | 
 |   if (plane == 0 && | 
 |       (tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4)) | 
 |     av1_foreach_8x8_transformed_block_in_plane( | 
 |         xd, bsize, plane, block_rd_txfm, block_8x8_rd_txfm_daala_dist, &args); | 
 |   else | 
 | #endif  // CONFIG_DAALA_DIST | 
 |     av1_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm, | 
 |                                            &args); | 
 |  | 
 |   if (args.exit_early) { | 
 |     av1_invalid_rd_stats(rd_stats); | 
 |   } else { | 
 |     *rd_stats = args.rd_stats; | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_SUPERTX | 
 | void av1_txfm_rd_in_plane_supertx(MACROBLOCK *x, const AV1_COMP *cpi, int *rate, | 
 |                                   int64_t *distortion, int *skippable, | 
 |                                   int64_t *sse, int64_t ref_best_rd, int plane, | 
 |                                   BLOCK_SIZE bsize, TX_SIZE tx_size, | 
 |                                   int use_fast_coef_casting) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   struct rdcost_block_args args; | 
 |   av1_zero(args); | 
 |   args.cpi = cpi; | 
 |   args.x = x; | 
 |   args.best_rd = ref_best_rd; | 
 |   args.use_fast_coef_costing = use_fast_coef_casting; | 
 |  | 
 | #if CONFIG_EXT_TX | 
 |   assert(tx_size < TX_SIZES); | 
 | #endif  // CONFIG_EXT_TX | 
 |  | 
 |   if (plane == 0) xd->mi[0]->mbmi.tx_size = tx_size; | 
 |  | 
 |   av1_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left); | 
 |  | 
 |   block_rd_txfm(plane, 0, 0, 0, get_plane_block_size(bsize, pd), tx_size, | 
 |                 &args); | 
 |  | 
 |   if (args.exit_early) { | 
 |     *rate = INT_MAX; | 
 |     *distortion = INT64_MAX; | 
 |     *sse = INT64_MAX; | 
 |     *skippable = 0; | 
 |   } else { | 
 |     *distortion = args.rd_stats.dist; | 
 |     *rate = args.rd_stats.rate; | 
 |     *sse = args.rd_stats.sse; | 
 |     *skippable = !x->plane[plane].eobs[0]; | 
 |   } | 
 | } | 
 | #endif  // CONFIG_SUPERTX | 
 |  | 
 | static int tx_size_cost(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                         BLOCK_SIZE bsize, TX_SIZE tx_size) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |  | 
 |   const int tx_select = | 
 |       cm->tx_mode == TX_MODE_SELECT && mbmi->sb_type >= BLOCK_8X8; | 
 |  | 
 |   if (tx_select) { | 
 |     const int is_inter = is_inter_block(mbmi); | 
 |     const int tx_size_cat = is_inter ? inter_tx_size_cat_lookup[bsize] | 
 |                                      : intra_tx_size_cat_lookup[bsize]; | 
 |     const TX_SIZE coded_tx_size = txsize_sqr_up_map[tx_size]; | 
 |     const int depth = tx_size_to_depth(coded_tx_size); | 
 |     const int tx_size_ctx = get_tx_size_context(xd); | 
 |     const int r_tx_size = cpi->tx_size_cost[tx_size_cat][tx_size_ctx][depth]; | 
 |     return r_tx_size; | 
 |   } else { | 
 |     return 0; | 
 |   } | 
 | } | 
 |  | 
 | // #TODO(angiebird): use this function whenever it's possible | 
 | int av1_tx_type_cost(const AV1_COMP *cpi, const MACROBLOCKD *xd, | 
 |                      BLOCK_SIZE bsize, int plane, TX_SIZE tx_size, | 
 |                      TX_TYPE tx_type) { | 
 |   if (plane > 0) return 0; | 
 |  | 
 |   const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   const int is_inter = is_inter_block(mbmi); | 
 | #if CONFIG_EXT_TX | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   if (get_ext_tx_types(tx_size, bsize, is_inter, cm->reduced_tx_set_used) > 1 && | 
 |       !xd->lossless[xd->mi[0]->mbmi.segment_id]) { | 
 |     const int ext_tx_set = | 
 |         get_ext_tx_set(tx_size, bsize, is_inter, cm->reduced_tx_set_used); | 
 |     if (is_inter) { | 
 |       if (ext_tx_set > 0) | 
 |         return cpi | 
 |             ->inter_tx_type_costs[ext_tx_set][txsize_sqr_map[tx_size]][tx_type]; | 
 |     } else { | 
 |       if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX) | 
 |         return cpi->intra_tx_type_costs[ext_tx_set][txsize_sqr_map[tx_size]] | 
 |                                        [mbmi->mode][tx_type]; | 
 |     } | 
 |   } | 
 | #else | 
 |   (void)bsize; | 
 |   if (tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id] && | 
 |       !FIXED_TX_TYPE) { | 
 |     if (is_inter) { | 
 |       return cpi->inter_tx_type_costs[tx_size][tx_type]; | 
 |     } else { | 
 |       return cpi->intra_tx_type_costs[tx_size] | 
 |                                      [intra_mode_to_tx_type_context[mbmi->mode]] | 
 |                                      [tx_type]; | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_EXT_TX | 
 |   return 0; | 
 | } | 
 | static int64_t txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                         RD_STATS *rd_stats, int64_t ref_best_rd, BLOCK_SIZE bs, | 
 |                         TX_TYPE tx_type, int tx_size) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   int64_t rd = INT64_MAX; | 
 |   aom_prob skip_prob = av1_get_skip_prob(cm, xd); | 
 |   int s0, s1; | 
 |   const int is_inter = is_inter_block(mbmi); | 
 |   const int tx_select = | 
 |       cm->tx_mode == TX_MODE_SELECT && mbmi->sb_type >= BLOCK_8X8; | 
 |  | 
 |   const int r_tx_size = tx_size_cost(cpi, x, bs, tx_size); | 
 |  | 
 |   assert(skip_prob > 0); | 
 | #if CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |   assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs))); | 
 | #endif  // CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |  | 
 |   s0 = av1_cost_bit(skip_prob, 0); | 
 |   s1 = av1_cost_bit(skip_prob, 1); | 
 |  | 
 |   mbmi->tx_type = tx_type; | 
 |   mbmi->tx_size = tx_size; | 
 |   txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, bs, tx_size, | 
 |                    cpi->sf.use_fast_coef_costing); | 
 |   if (rd_stats->rate == INT_MAX) return INT64_MAX; | 
 | #if !CONFIG_TXK_SEL | 
 |   int plane = 0; | 
 |   rd_stats->rate += av1_tx_type_cost(cpi, xd, bs, plane, tx_size, tx_type); | 
 | #endif | 
 |  | 
 |   if (rd_stats->skip) { | 
 |     if (is_inter) { | 
 |       rd = RDCOST(x->rdmult, x->rddiv, s1, rd_stats->sse); | 
 |     } else { | 
 |       rd = RDCOST(x->rdmult, x->rddiv, s1 + r_tx_size * tx_select, | 
 |                   rd_stats->sse); | 
 |     } | 
 |   } else { | 
 |     rd = RDCOST(x->rdmult, x->rddiv, | 
 |                 rd_stats->rate + s0 + r_tx_size * tx_select, rd_stats->dist); | 
 |   } | 
 |  | 
 |   if (tx_select) rd_stats->rate += r_tx_size; | 
 |  | 
 |   if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] && | 
 |       !(rd_stats->skip)) | 
 |     rd = AOMMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, rd_stats->sse)); | 
 |  | 
 |   return rd; | 
 | } | 
 |  | 
 | static int skip_txfm_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs, | 
 |                             TX_TYPE tx_type, TX_SIZE tx_size) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   const TX_SIZE max_tx_size = max_txsize_lookup[bs]; | 
 |   const int is_inter = is_inter_block(mbmi); | 
 |   int prune = 0; | 
 |   if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE) | 
 |     // passing -1 in for tx_type indicates that all 1D | 
 |     // transforms should be considered for pruning | 
 |     prune = prune_tx_types(cpi, bs, x, xd, -1); | 
 |  | 
 | #if CONFIG_REF_MV | 
 |   if (mbmi->ref_mv_idx > 0 && tx_type != DCT_DCT) return 1; | 
 | #endif  // CONFIG_REF_MV | 
 |   if (FIXED_TX_TYPE && tx_type != get_default_tx_type(0, xd, 0, tx_size)) | 
 |     return 1; | 
 |   if (!is_inter && x->use_default_intra_tx_type && | 
 |       tx_type != get_default_tx_type(0, xd, 0, tx_size)) | 
 |     return 1; | 
 |   if (is_inter && x->use_default_inter_tx_type && | 
 |       tx_type != get_default_tx_type(0, xd, 0, tx_size)) | 
 |     return 1; | 
 |   if (max_tx_size >= TX_32X32 && tx_size == TX_4X4) return 1; | 
 | #if CONFIG_EXT_TX | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   int ext_tx_set = | 
 |       get_ext_tx_set(tx_size, bs, is_inter, cm->reduced_tx_set_used); | 
 |   if (is_inter) { | 
 |     if (!ext_tx_used_inter[ext_tx_set][tx_type]) return 1; | 
 |     if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) { | 
 |       if (!do_tx_type_search(tx_type, prune)) return 1; | 
 |     } | 
 |   } else { | 
 |     if (!ALLOW_INTRA_EXT_TX && bs >= BLOCK_8X8) { | 
 |       if (tx_type != intra_mode_to_tx_type_context[mbmi->mode]) return 1; | 
 |     } | 
 |     if (!ext_tx_used_intra[ext_tx_set][tx_type]) return 1; | 
 |   } | 
 | #else   // CONFIG_EXT_TX | 
 |   if (tx_size >= TX_32X32 && tx_type != DCT_DCT) return 1; | 
 |   if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE && | 
 |       !do_tx_type_search(tx_type, prune)) | 
 |     return 1; | 
 | #endif  // CONFIG_EXT_TX | 
 |   return 0; | 
 | } | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 | static int64_t estimate_yrd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bs, | 
 |                                    MACROBLOCK *x, int *r, int64_t *d, int *s, | 
 |                                    int64_t *sse, int64_t ref_best_rd) { | 
 |   RD_STATS rd_stats; | 
 |   int64_t rd = txfm_yrd(cpi, x, &rd_stats, ref_best_rd, bs, DCT_DCT, | 
 |                         max_txsize_lookup[bs]); | 
 |   *r = rd_stats.rate; | 
 |   *d = rd_stats.dist; | 
 |   *s = rd_stats.skip; | 
 |   *sse = rd_stats.sse; | 
 |   return rd; | 
 | } | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 | static void choose_largest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                    RD_STATS *rd_stats, int64_t ref_best_rd, | 
 |                                    BLOCK_SIZE bs) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   TX_TYPE tx_type, best_tx_type = DCT_DCT; | 
 |   int64_t this_rd, best_rd = INT64_MAX; | 
 |   aom_prob skip_prob = av1_get_skip_prob(cm, xd); | 
 |   int s0 = av1_cost_bit(skip_prob, 0); | 
 |   int s1 = av1_cost_bit(skip_prob, 1); | 
 |   const int is_inter = is_inter_block(mbmi); | 
 |   int prune = 0; | 
 |   const int plane = 0; | 
 | #if CONFIG_EXT_TX | 
 |   int ext_tx_set; | 
 | #endif  // CONFIG_EXT_TX | 
 |   av1_invalid_rd_stats(rd_stats); | 
 |  | 
 |   mbmi->tx_size = tx_size_from_tx_mode(bs, cm->tx_mode, is_inter); | 
 | #if CONFIG_VAR_TX | 
 |   mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size); | 
 | #endif  // CONFIG_VAR_TX | 
 | #if CONFIG_EXT_TX | 
 |   ext_tx_set = | 
 |       get_ext_tx_set(mbmi->tx_size, bs, is_inter, cm->reduced_tx_set_used); | 
 | #endif  // CONFIG_EXT_TX | 
 |  | 
 |   if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE) | 
 | #if CONFIG_EXT_TX | 
 |     prune = prune_tx_types(cpi, bs, x, xd, ext_tx_set); | 
 | #else | 
 |     prune = prune_tx_types(cpi, bs, x, xd, 0); | 
 | #endif  // CONFIG_EXT_TX | 
 | #if CONFIG_EXT_TX | 
 |   if (get_ext_tx_types(mbmi->tx_size, bs, is_inter, cm->reduced_tx_set_used) > | 
 |           1 && | 
 |       !xd->lossless[mbmi->segment_id]) { | 
 | #if CONFIG_PVQ | 
 |     od_rollback_buffer pre_buf, post_buf; | 
 |  | 
 |     od_encode_checkpoint(&x->daala_enc, &pre_buf); | 
 |     od_encode_checkpoint(&x->daala_enc, &post_buf); | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 |     for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) { | 
 |       RD_STATS this_rd_stats; | 
 |       if (is_inter) { | 
 |         if (x->use_default_inter_tx_type && | 
 |             tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size)) | 
 |           continue; | 
 |         if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue; | 
 |         if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) { | 
 |           if (!do_tx_type_search(tx_type, prune)) continue; | 
 |         } | 
 |       } else { | 
 |         if (x->use_default_intra_tx_type && | 
 |             tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size)) | 
 |           continue; | 
 |         if (!ALLOW_INTRA_EXT_TX && bs >= BLOCK_8X8) { | 
 |           if (tx_type != intra_mode_to_tx_type_context[mbmi->mode]) continue; | 
 |         } | 
 |         if (!ext_tx_used_intra[ext_tx_set][tx_type]) continue; | 
 |       } | 
 |  | 
 |       mbmi->tx_type = tx_type; | 
 |  | 
 |       txfm_rd_in_plane(x, cpi, &this_rd_stats, ref_best_rd, 0, bs, | 
 |                        mbmi->tx_size, cpi->sf.use_fast_coef_costing); | 
 | #if CONFIG_PVQ | 
 |       od_encode_rollback(&x->daala_enc, &pre_buf); | 
 | #endif  // CONFIG_PVQ | 
 |       if (this_rd_stats.rate == INT_MAX) continue; | 
 |       av1_tx_type_cost(cpi, xd, bs, plane, mbmi->tx_size, tx_type); | 
 |  | 
 |       if (this_rd_stats.skip) | 
 |         this_rd = RDCOST(x->rdmult, x->rddiv, s1, this_rd_stats.sse); | 
 |       else | 
 |         this_rd = RDCOST(x->rdmult, x->rddiv, this_rd_stats.rate + s0, | 
 |                          this_rd_stats.dist); | 
 |       if (is_inter_block(mbmi) && !xd->lossless[mbmi->segment_id] && | 
 |           !this_rd_stats.skip) | 
 |         this_rd = | 
 |             AOMMIN(this_rd, RDCOST(x->rdmult, x->rddiv, s1, this_rd_stats.sse)); | 
 |  | 
 |       if (this_rd < best_rd) { | 
 |         best_rd = this_rd; | 
 |         best_tx_type = mbmi->tx_type; | 
 |         *rd_stats = this_rd_stats; | 
 | #if CONFIG_PVQ | 
 |         od_encode_checkpoint(&x->daala_enc, &post_buf); | 
 | #endif  // CONFIG_PVQ | 
 |       } | 
 |     } | 
 | #if CONFIG_PVQ | 
 |     od_encode_rollback(&x->daala_enc, &post_buf); | 
 | #endif  // CONFIG_PVQ | 
 |   } else { | 
 |     mbmi->tx_type = DCT_DCT; | 
 |     txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, bs, mbmi->tx_size, | 
 |                      cpi->sf.use_fast_coef_costing); | 
 |   } | 
 | #else   // CONFIG_EXT_TX | 
 |   if (mbmi->tx_size < TX_32X32 && !xd->lossless[mbmi->segment_id]) { | 
 |     for (tx_type = 0; tx_type < TX_TYPES; ++tx_type) { | 
 |       RD_STATS this_rd_stats; | 
 |       if (!is_inter && x->use_default_intra_tx_type && | 
 |           tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size)) | 
 |         continue; | 
 |       if (is_inter && x->use_default_inter_tx_type && | 
 |           tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size)) | 
 |         continue; | 
 |       mbmi->tx_type = tx_type; | 
 |       txfm_rd_in_plane(x, cpi, &this_rd_stats, ref_best_rd, 0, bs, | 
 |                        mbmi->tx_size, cpi->sf.use_fast_coef_costing); | 
 |       if (this_rd_stats.rate == INT_MAX) continue; | 
 |  | 
 |       av1_tx_type_cost(cpi, xd, bs, plane, mbmi->tx_size, tx_type); | 
 |       if (is_inter) { | 
 |         if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE && | 
 |             !do_tx_type_search(tx_type, prune)) | 
 |           continue; | 
 |       } | 
 |       if (this_rd_stats.skip) | 
 |         this_rd = RDCOST(x->rdmult, x->rddiv, s1, this_rd_stats.sse); | 
 |       else | 
 |         this_rd = RDCOST(x->rdmult, x->rddiv, this_rd_stats.rate + s0, | 
 |                          this_rd_stats.dist); | 
 |       if (is_inter && !xd->lossless[mbmi->segment_id] && !this_rd_stats.skip) | 
 |         this_rd = | 
 |             AOMMIN(this_rd, RDCOST(x->rdmult, x->rddiv, s1, this_rd_stats.sse)); | 
 |  | 
 |       if (this_rd < best_rd) { | 
 |         best_rd = this_rd; | 
 |         best_tx_type = mbmi->tx_type; | 
 |         *rd_stats = this_rd_stats; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     mbmi->tx_type = DCT_DCT; | 
 |     txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, bs, mbmi->tx_size, | 
 |                      cpi->sf.use_fast_coef_costing); | 
 |   } | 
 | #endif  // CONFIG_EXT_TX | 
 |   mbmi->tx_type = best_tx_type; | 
 | } | 
 |  | 
 | static void choose_smallest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                     RD_STATS *rd_stats, int64_t ref_best_rd, | 
 |                                     BLOCK_SIZE bs) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |  | 
 |   mbmi->tx_size = TX_4X4; | 
 |   mbmi->tx_type = DCT_DCT; | 
 | #if CONFIG_VAR_TX | 
 |   mbmi->min_tx_size = get_min_tx_size(TX_4X4); | 
 | #endif  // CONFIG_VAR_TX | 
 |  | 
 |   txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, bs, mbmi->tx_size, | 
 |                    cpi->sf.use_fast_coef_costing); | 
 | } | 
 |  | 
 | #if CONFIG_TXK_SEL || CONFIG_VAR_TX | 
 | static INLINE int bsize_to_num_blk(BLOCK_SIZE bsize) { | 
 |   int num_blk = 1 << (num_pels_log2_lookup[bsize] - 2 * tx_size_wide_log2[0]); | 
 |   return num_blk; | 
 | } | 
 | #endif  // CONFIG_TXK_SEL || CONFIG_VAR_TX | 
 |  | 
 | static void choose_tx_size_type_from_rd(const AV1_COMP *const cpi, | 
 |                                         MACROBLOCK *x, RD_STATS *rd_stats, | 
 |                                         int64_t ref_best_rd, BLOCK_SIZE bs) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   int64_t rd = INT64_MAX; | 
 |   int n; | 
 |   int start_tx, end_tx; | 
 |   int64_t best_rd = INT64_MAX, last_rd = INT64_MAX; | 
 |   const TX_SIZE max_tx_size = max_txsize_lookup[bs]; | 
 |   TX_SIZE best_tx_size = max_tx_size; | 
 |   TX_TYPE best_tx_type = DCT_DCT; | 
 | #if CONFIG_TXK_SEL | 
 |   TX_TYPE best_txk_type[MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)]; | 
 |   const int num_blk = bsize_to_num_blk(bs); | 
 | #endif  // CONFIG_TXK_SEL | 
 |   const int tx_select = cm->tx_mode == TX_MODE_SELECT; | 
 |   const int is_inter = is_inter_block(mbmi); | 
 | #if CONFIG_PVQ | 
 |   od_rollback_buffer buf; | 
 |   od_encode_checkpoint(&x->daala_enc, &buf); | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 |   av1_invalid_rd_stats(rd_stats); | 
 |  | 
 | #if CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |   int evaluate_rect_tx = 0; | 
 |   if (tx_select) { | 
 |     evaluate_rect_tx = is_rect_tx_allowed(xd, mbmi); | 
 |   } else { | 
 |     const TX_SIZE chosen_tx_size = | 
 |         tx_size_from_tx_mode(bs, cm->tx_mode, is_inter); | 
 |     evaluate_rect_tx = is_rect_tx(chosen_tx_size); | 
 |     assert(IMPLIES(evaluate_rect_tx, is_rect_tx_allowed(xd, mbmi))); | 
 |   } | 
 |   if (evaluate_rect_tx) { | 
 |     TX_TYPE tx_start = DCT_DCT; | 
 |     TX_TYPE tx_end = TX_TYPES; | 
 | #if CONFIG_TXK_SEL | 
 |     // The tx_type becomes dummy when lv_map is on. The tx_type search will be | 
 |     // performed in av1_search_txk_type() | 
 |     tx_end = DCT_DCT + 1; | 
 | #endif | 
 |     TX_TYPE tx_type; | 
 |     for (tx_type = tx_start; tx_type < tx_end; ++tx_type) { | 
 | #if CONFIG_REF_MV | 
 |       if (mbmi->ref_mv_idx > 0 && tx_type != DCT_DCT) continue; | 
 | #endif  // CONFIG_REF_MV | 
 |       const TX_SIZE rect_tx_size = max_txsize_rect_lookup[bs]; | 
 |       RD_STATS this_rd_stats; | 
 |       int ext_tx_set = | 
 |           get_ext_tx_set(rect_tx_size, bs, is_inter, cm->reduced_tx_set_used); | 
 |       if ((is_inter && ext_tx_used_inter[ext_tx_set][tx_type]) || | 
 |           (!is_inter && ext_tx_used_intra[ext_tx_set][tx_type])) { | 
 |         rd = txfm_yrd(cpi, x, &this_rd_stats, ref_best_rd, bs, tx_type, | 
 |                       rect_tx_size); | 
 |         if (rd < best_rd) { | 
 | #if CONFIG_TXK_SEL | 
 |           memcpy(best_txk_type, mbmi->txk_type, | 
 |                  sizeof(best_txk_type[0]) * num_blk); | 
 | #endif | 
 |           best_tx_type = tx_type; | 
 |           best_tx_size = rect_tx_size; | 
 |           best_rd = rd; | 
 |           *rd_stats = this_rd_stats; | 
 |         } | 
 |       } | 
 | #if CONFIG_CB4X4 && !USE_TXTYPE_SEARCH_FOR_SUB8X8_IN_CB4X4 | 
 |       const int is_inter = is_inter_block(mbmi); | 
 |       if (mbmi->sb_type < BLOCK_8X8 && is_inter) break; | 
 | #endif  // CONFIG_CB4X4 && !USE_TXTYPE_SEARCH_FOR_SUB8X8_IN_CB4X4 | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |  | 
 |   if (tx_select) { | 
 |     start_tx = max_tx_size; | 
 |     end_tx = (max_tx_size >= TX_32X32) ? TX_8X8 : TX_4X4; | 
 |   } else { | 
 |     const TX_SIZE chosen_tx_size = | 
 |         tx_size_from_tx_mode(bs, cm->tx_mode, is_inter); | 
 |     start_tx = chosen_tx_size; | 
 |     end_tx = chosen_tx_size; | 
 |   } | 
 |  | 
 |   last_rd = INT64_MAX; | 
 |   for (n = start_tx; n >= end_tx; --n) { | 
 | #if CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |     if (is_rect_tx(n)) break; | 
 | #endif  // CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |     TX_TYPE tx_start = DCT_DCT; | 
 |     TX_TYPE tx_end = TX_TYPES; | 
 | #if CONFIG_TXK_SEL | 
 |     // The tx_type becomes dummy when lv_map is on. The tx_type search will be | 
 |     // performed in av1_search_txk_type() | 
 |     tx_end = DCT_DCT + 1; | 
 | #endif | 
 |     TX_TYPE tx_type; | 
 |     for (tx_type = tx_start; tx_type < tx_end; ++tx_type) { | 
 |       RD_STATS this_rd_stats; | 
 |       if (skip_txfm_search(cpi, x, bs, tx_type, n)) continue; | 
 |       rd = txfm_yrd(cpi, x, &this_rd_stats, ref_best_rd, bs, tx_type, n); | 
 | #if CONFIG_PVQ | 
 |       od_encode_rollback(&x->daala_enc, &buf); | 
 | #endif  // CONFIG_PVQ | 
 |       // Early termination in transform size search. | 
 |       if (cpi->sf.tx_size_search_breakout && | 
 |           (rd == INT64_MAX || | 
 |            (this_rd_stats.skip == 1 && tx_type != DCT_DCT && n < start_tx) || | 
 |            (n < (int)max_tx_size && rd > last_rd))) | 
 |         break; | 
 |  | 
 |       last_rd = rd; | 
 |       if (rd < best_rd) { | 
 | #if CONFIG_TXK_SEL | 
 |         memcpy(best_txk_type, mbmi->txk_type, | 
 |                sizeof(best_txk_type[0]) * num_blk); | 
 | #endif | 
 |         best_tx_type = tx_type; | 
 |         best_tx_size = n; | 
 |         best_rd = rd; | 
 |         *rd_stats = this_rd_stats; | 
 |       } | 
 | #if CONFIG_CB4X4 && !USE_TXTYPE_SEARCH_FOR_SUB8X8_IN_CB4X4 | 
 |       const int is_inter = is_inter_block(mbmi); | 
 |       if (mbmi->sb_type < BLOCK_8X8 && is_inter) break; | 
 | #endif  // CONFIG_CB4X4 && !USE_TXTYPE_SEARCH_FOR_SUB8X8_IN_CB4X4 | 
 |     } | 
 |   } | 
 |   mbmi->tx_size = best_tx_size; | 
 |   mbmi->tx_type = best_tx_type; | 
 | #if CONFIG_TXK_SEL | 
 |   memcpy(mbmi->txk_type, best_txk_type, sizeof(best_txk_type[0]) * num_blk); | 
 | #endif | 
 |  | 
 | #if CONFIG_VAR_TX | 
 |   mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size); | 
 | #endif  // CONFIG_VAR_TX | 
 |  | 
 | #if !CONFIG_EXT_TX | 
 |   if (mbmi->tx_size >= TX_32X32) assert(mbmi->tx_type == DCT_DCT); | 
 | #endif  // !CONFIG_EXT_TX | 
 | #if CONFIG_PVQ | 
 |   if (best_rd != INT64_MAX) { | 
 |     txfm_yrd(cpi, x, rd_stats, ref_best_rd, bs, best_tx_type, best_tx_size); | 
 |   } | 
 | #endif  // CONFIG_PVQ | 
 | } | 
 |  | 
 | static void super_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                             RD_STATS *rd_stats, BLOCK_SIZE bs, | 
 |                             int64_t ref_best_rd) { | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   av1_init_rd_stats(rd_stats); | 
 |  | 
 |   assert(bs == xd->mi[0]->mbmi.sb_type); | 
 |  | 
 |   if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { | 
 |     choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); | 
 |   } else if (cpi->sf.tx_size_search_method == USE_LARGESTALL) { | 
 |     choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); | 
 |   } else { | 
 |     choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs); | 
 |   } | 
 | } | 
 |  | 
 | static int conditional_skipintra(PREDICTION_MODE mode, | 
 |                                  PREDICTION_MODE best_intra_mode) { | 
 |   if (mode == D117_PRED && best_intra_mode != V_PRED && | 
 |       best_intra_mode != D135_PRED) | 
 |     return 1; | 
 |   if (mode == D63_PRED && best_intra_mode != V_PRED && | 
 |       best_intra_mode != D45_PRED) | 
 |     return 1; | 
 |   if (mode == D207_PRED && best_intra_mode != H_PRED && | 
 |       best_intra_mode != D45_PRED) | 
 |     return 1; | 
 |   if (mode == D153_PRED && best_intra_mode != H_PRED && | 
 |       best_intra_mode != D135_PRED) | 
 |     return 1; | 
 |   return 0; | 
 | } | 
 |  | 
 | // Model based RD estimation for luma intra blocks. | 
 | static int64_t intra_model_yrd(const AV1_COMP *const cpi, MACROBLOCK *const x, | 
 |                                BLOCK_SIZE bsize, int mode_cost) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   RD_STATS this_rd_stats; | 
 |   int row, col; | 
 |   int64_t temp_sse, this_rd; | 
 |   const TX_SIZE tx_size = tx_size_from_tx_mode(bsize, cpi->common.tx_mode, 0); | 
 |   const int stepr = tx_size_high_unit[tx_size]; | 
 |   const int stepc = tx_size_wide_unit[tx_size]; | 
 |   const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
 |   const int max_blocks_high = max_block_high(xd, bsize, 0); | 
 |   mbmi->tx_size = tx_size; | 
 |   // Prediction. | 
 |   const int step = stepr * stepc; | 
 |   int block = 0; | 
 |   for (row = 0; row < max_blocks_high; row += stepr) { | 
 |     for (col = 0; col < max_blocks_wide; col += stepc) { | 
 |       av1_predict_intra_block_facade(xd, 0, block, col, row, tx_size); | 
 |       block += step; | 
 |     } | 
 |   } | 
 |   // RD estimation. | 
 |   model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &this_rd_stats.rate, | 
 |                   &this_rd_stats.dist, &this_rd_stats.skip, &temp_sse); | 
 | #if CONFIG_EXT_INTRA | 
 |   if (av1_is_directional_mode(mbmi->mode, bsize)) { | 
 |     mode_cost += write_uniform_cost(2 * MAX_ANGLE_DELTA + 1, | 
 |                                     MAX_ANGLE_DELTA + mbmi->angle_delta[0]); | 
 |   } | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_FILTER_INTRA | 
 |   if (mbmi->mode == DC_PRED) { | 
 |     const aom_prob prob = cpi->common.fc->filter_intra_probs[0]; | 
 |     if (mbmi->filter_intra_mode_info.use_filter_intra_mode[0]) { | 
 |       const int mode = mbmi->filter_intra_mode_info.filter_intra_mode[0]; | 
 |       mode_cost += (av1_cost_bit(prob, 1) + | 
 |                     write_uniform_cost(FILTER_INTRA_MODES, mode)); | 
 |     } else { | 
 |       mode_cost += av1_cost_bit(prob, 0); | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |   this_rd = RDCOST(x->rdmult, x->rddiv, this_rd_stats.rate + mode_cost, | 
 |                    this_rd_stats.dist); | 
 |   return this_rd; | 
 | } | 
 |  | 
 | #if CONFIG_PALETTE | 
 | // Extends 'color_map' array from 'orig_width x orig_height' to 'new_width x | 
 | // new_height'. Extra rows and columns are filled in by copying last valid | 
 | // row/column. | 
 | static void extend_palette_color_map(uint8_t *const color_map, int orig_width, | 
 |                                      int orig_height, int new_width, | 
 |                                      int new_height) { | 
 |   int j; | 
 |   assert(new_width >= orig_width); | 
 |   assert(new_height >= orig_height); | 
 |   if (new_width == orig_width && new_height == orig_height) return; | 
 |  | 
 |   for (j = orig_height - 1; j >= 0; --j) { | 
 |     memmove(color_map + j * new_width, color_map + j * orig_width, orig_width); | 
 |     // Copy last column to extra columns. | 
 |     memset(color_map + j * new_width + orig_width, | 
 |            color_map[j * new_width + orig_width - 1], new_width - orig_width); | 
 |   } | 
 |   // Copy last row to extra rows. | 
 |   for (j = orig_height; j < new_height; ++j) { | 
 |     memcpy(color_map + j * new_width, color_map + (orig_height - 1) * new_width, | 
 |            new_width); | 
 |   } | 
 | } | 
 |  | 
 | static int rd_pick_palette_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                      BLOCK_SIZE bsize, int palette_ctx, | 
 |                                      int dc_mode_cost, MB_MODE_INFO *best_mbmi, | 
 |                                      uint8_t *best_palette_color_map, | 
 |                                      int64_t *best_rd, int64_t *best_model_rd, | 
 |                                      int *rate, int *rate_tokenonly, | 
 |                                      int64_t *distortion, int *skippable) { | 
 |   int rate_overhead = 0; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MODE_INFO *const mic = xd->mi[0]; | 
 |   MB_MODE_INFO *const mbmi = &mic->mbmi; | 
 |   int this_rate, colors, n; | 
 |   const int src_stride = x->plane[0].src.stride; | 
 |   const uint8_t *const src = x->plane[0].src.buf; | 
 |   uint8_t *const color_map = xd->plane[0].color_index_map; | 
 |   int block_width, block_height, rows, cols; | 
 |   av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows, | 
 |                            &cols); | 
 |  | 
 |   assert(cpi->common.allow_screen_content_tools); | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (cpi->common.use_highbitdepth) | 
 |     colors = av1_count_colors_highbd(src, src_stride, rows, cols, | 
 |                                      cpi->common.bit_depth); | 
 |   else | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |     colors = av1_count_colors(src, src_stride, rows, cols); | 
 | #if CONFIG_FILTER_INTRA | 
 |   mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 |   if (colors > 1 && colors <= 64) { | 
 |     int r, c, i, j, k, palette_mode_cost; | 
 |     const int max_itr = 50; | 
 |     uint8_t color_order[PALETTE_MAX_SIZE]; | 
 |     float *const data = x->palette_buffer->kmeans_data_buf; | 
 |     float centroids[PALETTE_MAX_SIZE]; | 
 |     float lb, ub, val; | 
 |     RD_STATS tokenonly_rd_stats; | 
 |     int64_t this_rd, this_model_rd; | 
 |     PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |     uint16_t *src16 = CONVERT_TO_SHORTPTR(src); | 
 |     if (cpi->common.use_highbitdepth) | 
 |       lb = ub = src16[0]; | 
 |     else | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |       lb = ub = src[0]; | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |     if (cpi->common.use_highbitdepth) { | 
 |       for (r = 0; r < rows; ++r) { | 
 |         for (c = 0; c < cols; ++c) { | 
 |           val = src16[r * src_stride + c]; | 
 |           data[r * cols + c] = val; | 
 |           if (val < lb) | 
 |             lb = val; | 
 |           else if (val > ub) | 
 |             ub = val; | 
 |         } | 
 |       } | 
 |     } else { | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |       for (r = 0; r < rows; ++r) { | 
 |         for (c = 0; c < cols; ++c) { | 
 |           val = src[r * src_stride + c]; | 
 |           data[r * cols + c] = val; | 
 |           if (val < lb) | 
 |             lb = val; | 
 |           else if (val > ub) | 
 |             ub = val; | 
 |         } | 
 |       } | 
 | #if CONFIG_HIGHBITDEPTH | 
 |     } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 |     mbmi->mode = DC_PRED; | 
 | #if CONFIG_FILTER_INTRA | 
 |     mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 |     if (rows * cols > PALETTE_MAX_BLOCK_SIZE) return 0; | 
 |  | 
 |     for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2; | 
 |          --n) { | 
 |       for (i = 0; i < n; ++i) | 
 |         centroids[i] = lb + (2 * i + 1) * (ub - lb) / n / 2; | 
 |       av1_k_means(data, centroids, color_map, rows * cols, n, 1, max_itr); | 
 |       k = av1_remove_duplicates(centroids, n); | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |       if (cpi->common.use_highbitdepth) | 
 |         for (i = 0; i < k; ++i) | 
 |           pmi->palette_colors[i] = | 
 |               clip_pixel_highbd((int)centroids[i], cpi->common.bit_depth); | 
 |       else | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |         for (i = 0; i < k; ++i) | 
 |           pmi->palette_colors[i] = clip_pixel((int)centroids[i]); | 
 |       pmi->palette_size[0] = k; | 
 |  | 
 |       av1_calc_indices(data, centroids, color_map, rows * cols, k, 1); | 
 |       extend_palette_color_map(color_map, cols, rows, block_width, | 
 |                                block_height); | 
 |       palette_mode_cost = | 
 |           dc_mode_cost + | 
 |           cpi->palette_y_size_cost[bsize - BLOCK_8X8][k - PALETTE_MIN_SIZE] + | 
 |           write_uniform_cost(k, color_map[0]) + | 
 |           av1_cost_bit( | 
 |               av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx], | 
 |               1); | 
 |       palette_mode_cost += av1_palette_color_cost_y(pmi, cpi->common.bit_depth); | 
 |       for (i = 0; i < rows; ++i) { | 
 |         for (j = (i == 0 ? 1 : 0); j < cols; ++j) { | 
 |           int color_idx; | 
 |           const int color_ctx = av1_get_palette_color_index_context( | 
 |               color_map, block_width, i, j, k, color_order, &color_idx); | 
 |           assert(color_idx >= 0 && color_idx < k); | 
 |           palette_mode_cost += cpi->palette_y_color_cost[k - PALETTE_MIN_SIZE] | 
 |                                                         [color_ctx][color_idx]; | 
 |         } | 
 |       } | 
 |       this_model_rd = intra_model_yrd(cpi, x, bsize, palette_mode_cost); | 
 |       if (*best_model_rd != INT64_MAX && | 
 |           this_model_rd > *best_model_rd + (*best_model_rd >> 1)) | 
 |         continue; | 
 |       if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; | 
 |       super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); | 
 |       if (tokenonly_rd_stats.rate == INT_MAX) continue; | 
 |       this_rate = tokenonly_rd_stats.rate + palette_mode_cost; | 
 |       this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist); | 
 |       if (!xd->lossless[mbmi->segment_id] && mbmi->sb_type >= BLOCK_8X8) { | 
 |         tokenonly_rd_stats.rate -= tx_size_cost(cpi, x, bsize, mbmi->tx_size); | 
 |       } | 
 |       if (this_rd < *best_rd) { | 
 |         *best_rd = this_rd; | 
 |         memcpy(best_palette_color_map, color_map, | 
 |                block_width * block_height * sizeof(color_map[0])); | 
 |         *best_mbmi = *mbmi; | 
 |         rate_overhead = this_rate - tokenonly_rd_stats.rate; | 
 |         if (rate) *rate = this_rate; | 
 |         if (rate_tokenonly) *rate_tokenonly = tokenonly_rd_stats.rate; | 
 |         if (distortion) *distortion = tokenonly_rd_stats.dist; | 
 |         if (skippable) *skippable = tokenonly_rd_stats.skip; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (best_mbmi->palette_mode_info.palette_size[0] > 0) { | 
 |     memcpy(color_map, best_palette_color_map, | 
 |            rows * cols * sizeof(best_palette_color_map[0])); | 
 |   } | 
 |   *mbmi = *best_mbmi; | 
 |   return rate_overhead; | 
 | } | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 | static int64_t rd_pick_intra_sub_8x8_y_subblock_mode( | 
 |     const AV1_COMP *const cpi, MACROBLOCK *x, int row, int col, | 
 |     PREDICTION_MODE *best_mode, const int *bmode_costs, ENTROPY_CONTEXT *a, | 
 |     ENTROPY_CONTEXT *l, int *bestrate, int *bestratey, int64_t *bestdistortion, | 
 |     BLOCK_SIZE bsize, TX_SIZE tx_size, int *y_skip, int64_t rd_thresh) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   PREDICTION_MODE mode; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   int64_t best_rd = rd_thresh; | 
 |   struct macroblock_plane *p = &x->plane[0]; | 
 |   struct macroblockd_plane *pd = &xd->plane[0]; | 
 |   const int src_stride = p->src.stride; | 
 |   const int dst_stride = pd->dst.stride; | 
 |   const uint8_t *src_init = &p->src.buf[row * 4 * src_stride + col * 4]; | 
 |   uint8_t *dst_init = &pd->dst.buf[row * 4 * dst_stride + col * 4]; | 
 | #if CONFIG_CB4X4 | 
 |   // TODO(jingning): This is a temporal change. The whole function should be | 
 |   // out when cb4x4 is enabled. | 
 |   ENTROPY_CONTEXT ta[4], tempa[4]; | 
 |   ENTROPY_CONTEXT tl[4], templ[4]; | 
 | #else | 
 |   ENTROPY_CONTEXT ta[2], tempa[2]; | 
 |   ENTROPY_CONTEXT tl[2], templ[2]; | 
 | #endif  // CONFIG_CB4X4 | 
 |  | 
 |   const int pred_width_in_4x4_blocks = num_4x4_blocks_wide_lookup[bsize]; | 
 |   const int pred_height_in_4x4_blocks = num_4x4_blocks_high_lookup[bsize]; | 
 |   const int tx_width_unit = tx_size_wide_unit[tx_size]; | 
 |   const int tx_height_unit = tx_size_high_unit[tx_size]; | 
 |   const int pred_block_width = block_size_wide[bsize]; | 
 |   const int pred_block_height = block_size_high[bsize]; | 
 |   const int tx_width = tx_size_wide[tx_size]; | 
 |   const int tx_height = tx_size_high[tx_size]; | 
 |   const int pred_width_in_transform_blocks = pred_block_width / tx_width; | 
 |   const int pred_height_in_transform_blocks = pred_block_height / tx_height; | 
 |   int idx, idy; | 
 |   int best_can_skip = 0; | 
 |   uint8_t best_dst[8 * 8]; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   uint16_t best_dst16[8 * 8]; | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |   const int is_lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; | 
 | #if CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |   const int sub_bsize = bsize; | 
 | #else | 
 |   const int sub_bsize = BLOCK_4X4; | 
 | #endif  // CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |  | 
 | #if CONFIG_PVQ | 
 |   od_rollback_buffer pre_buf, post_buf; | 
 |   od_encode_checkpoint(&x->daala_enc, &pre_buf); | 
 |   od_encode_checkpoint(&x->daala_enc, &post_buf); | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 |   assert(bsize < BLOCK_8X8); | 
 |   assert(tx_width < 8 || tx_height < 8); | 
 | #if CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |   if (is_lossless) | 
 |     assert(tx_width == 4 && tx_height == 4); | 
 |   else | 
 |     assert(tx_width == pred_block_width && tx_height == pred_block_height); | 
 | #else | 
 |   assert(tx_width == 4 && tx_height == 4); | 
 | #endif  // CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |  | 
 |   memcpy(ta, a, pred_width_in_transform_blocks * sizeof(a[0])); | 
 |   memcpy(tl, l, pred_height_in_transform_blocks * sizeof(l[0])); | 
 |  | 
 |   xd->mi[0]->mbmi.tx_size = tx_size; | 
 |  | 
 | #if CONFIG_PALETTE | 
 |   xd->mi[0]->mbmi.palette_mode_info.palette_size[0] = 0; | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 | #if CONFIG_PVQ | 
 |     od_encode_checkpoint(&x->daala_enc, &pre_buf); | 
 | #endif | 
 |     for (mode = DC_PRED; mode <= TM_PRED; ++mode) { | 
 |       int64_t this_rd; | 
 |       int ratey = 0; | 
 |       int64_t distortion = 0; | 
 |       int rate = bmode_costs[mode]; | 
 |       int can_skip = 1; | 
 |  | 
 |       if (!(cpi->sf.intra_y_mode_mask[txsize_sqr_up_map[tx_size]] & | 
 |             (1 << mode))) | 
 |         continue; | 
 |  | 
 |       // Only do the oblique modes if the best so far is | 
 |       // one of the neighboring directional modes | 
 |       if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { | 
 |         if (conditional_skipintra(mode, *best_mode)) continue; | 
 |       } | 
 |  | 
 |       memcpy(tempa, ta, pred_width_in_transform_blocks * sizeof(ta[0])); | 
 |       memcpy(templ, tl, pred_height_in_transform_blocks * sizeof(tl[0])); | 
 |  | 
 |       for (idy = 0; idy < pred_height_in_transform_blocks; ++idy) { | 
 |         for (idx = 0; idx < pred_width_in_transform_blocks; ++idx) { | 
 |           const int block_raster_idx = (row + idy) * 2 + (col + idx); | 
 |           const int block = | 
 |               av1_raster_order_to_block_index(tx_size, block_raster_idx); | 
 |           const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride]; | 
 |           uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride]; | 
 | #if !CONFIG_PVQ | 
 |           int16_t *const src_diff = av1_raster_block_offset_int16( | 
 |               BLOCK_8X8, block_raster_idx, p->src_diff); | 
 | #endif | 
 |           int skip; | 
 |           assert(block < 4); | 
 |           assert(IMPLIES(tx_size == TX_4X8 || tx_size == TX_8X4, | 
 |                          idx == 0 && idy == 0)); | 
 |           assert(IMPLIES(tx_size == TX_4X8 || tx_size == TX_8X4, | 
 |                          block == 0 || block == 2)); | 
 |           xd->mi[0]->bmi[block_raster_idx].as_mode = mode; | 
 |           av1_predict_intra_block( | 
 |               xd, pd->width, pd->height, txsize_to_bsize[tx_size], mode, dst, | 
 |               dst_stride, dst, dst_stride, col + idx, row + idy, 0); | 
 | #if !CONFIG_PVQ | 
 |           aom_highbd_subtract_block(tx_height, tx_width, src_diff, 8, src, | 
 |                                     src_stride, dst, dst_stride, xd->bd); | 
 | #endif | 
 |           if (is_lossless) { | 
 |             TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, tx_size); | 
 |             const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 0); | 
 |             const int coeff_ctx = | 
 |                 combine_entropy_contexts(tempa[idx], templ[idy]); | 
 | #if !CONFIG_PVQ | 
 |             av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8, | 
 |                             tx_size, coeff_ctx, AV1_XFORM_QUANT_FP); | 
 |             ratey += av1_cost_coeffs(cpi, x, 0, block, tx_size, scan_order, | 
 |                                      tempa + idx, templ + idy, | 
 |                                      cpi->sf.use_fast_coef_costing); | 
 |             skip = (p->eobs[block] == 0); | 
 |             can_skip &= skip; | 
 |             tempa[idx] = !skip; | 
 |             templ[idy] = !skip; | 
 | #if CONFIG_EXT_TX | 
 |             if (tx_size == TX_8X4) { | 
 |               tempa[idx + 1] = tempa[idx]; | 
 |             } else if (tx_size == TX_4X8) { | 
 |               templ[idy + 1] = templ[idy]; | 
 |             } | 
 | #endif  // CONFIG_EXT_TX | 
 | #else | 
 |             (void)scan_order; | 
 |  | 
 |             av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8, | 
 |                             tx_size, coeff_ctx, AV1_XFORM_QUANT_B); | 
 |  | 
 |             ratey += x->rate; | 
 |             skip = x->pvq_skip[0]; | 
 |             tempa[idx] = !skip; | 
 |             templ[idy] = !skip; | 
 |             can_skip &= skip; | 
 | #endif | 
 |             if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) | 
 |               goto next_highbd; | 
 | #if CONFIG_PVQ | 
 |             if (!skip) | 
 | #endif | 
 |               av1_inverse_transform_block(xd, BLOCK_OFFSET(pd->dqcoeff, block), | 
 |                                           DCT_DCT, tx_size, dst, dst_stride, | 
 |                                           p->eobs[block]); | 
 |           } else { | 
 |             int64_t dist; | 
 |             unsigned int tmp; | 
 |             TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, tx_size); | 
 |             const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 0); | 
 |             const int coeff_ctx = | 
 |                 combine_entropy_contexts(tempa[idx], templ[idy]); | 
 | #if !CONFIG_PVQ | 
 |             av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8, | 
 |                             tx_size, coeff_ctx, AV1_XFORM_QUANT_FP); | 
 |             av1_optimize_b(cm, x, 0, block, tx_size, coeff_ctx); | 
 |             ratey += av1_cost_coeffs(cpi, x, 0, block, tx_size, scan_order, | 
 |                                      tempa + idx, templ + idy, | 
 |                                      cpi->sf.use_fast_coef_costing); | 
 |             skip = (p->eobs[block] == 0); | 
 |             can_skip &= skip; | 
 |             tempa[idx] = !skip; | 
 |             templ[idy] = !skip; | 
 | #if CONFIG_EXT_TX | 
 |             if (tx_size == TX_8X4) { | 
 |               tempa[idx + 1] = tempa[idx]; | 
 |             } else if (tx_size == TX_4X8) { | 
 |               templ[idy + 1] = templ[idy]; | 
 |             } | 
 | #endif  // CONFIG_EXT_TX | 
 | #else | 
 |             (void)scan_order; | 
 |  | 
 |             av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8, | 
 |                             tx_size, coeff_ctx, AV1_XFORM_QUANT_FP); | 
 |             ratey += x->rate; | 
 |             skip = x->pvq_skip[0]; | 
 |             tempa[idx] = !skip; | 
 |             templ[idy] = !skip; | 
 |             can_skip &= skip; | 
 | #endif | 
 | #if CONFIG_PVQ | 
 |             if (!skip) | 
 | #endif | 
 |               av1_inverse_transform_block(xd, BLOCK_OFFSET(pd->dqcoeff, block), | 
 |                                           tx_type, tx_size, dst, dst_stride, | 
 |                                           p->eobs[block]); | 
 |             cpi->fn_ptr[sub_bsize].vf(src, src_stride, dst, dst_stride, &tmp); | 
 |             dist = (int64_t)tmp << 4; | 
 |             distortion += dist; | 
 |             if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) | 
 |               goto next_highbd; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       rate += ratey; | 
 |       this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); | 
 |  | 
 |       if (this_rd < best_rd) { | 
 |         *bestrate = rate; | 
 |         *bestratey = ratey; | 
 |         *bestdistortion = distortion; | 
 |         best_rd = this_rd; | 
 |         best_can_skip = can_skip; | 
 |         *best_mode = mode; | 
 |         memcpy(a, tempa, pred_width_in_transform_blocks * sizeof(tempa[0])); | 
 |         memcpy(l, templ, pred_height_in_transform_blocks * sizeof(templ[0])); | 
 | #if CONFIG_PVQ | 
 |         od_encode_checkpoint(&x->daala_enc, &post_buf); | 
 | #endif | 
 |         for (idy = 0; idy < pred_height_in_transform_blocks * 4; ++idy) { | 
 |           memcpy(best_dst16 + idy * 8, | 
 |                  CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride), | 
 |                  pred_width_in_transform_blocks * 4 * sizeof(uint16_t)); | 
 |         } | 
 |       } | 
 |     next_highbd : {} | 
 | #if CONFIG_PVQ | 
 |       od_encode_rollback(&x->daala_enc, &pre_buf); | 
 | #endif | 
 |     } | 
 |  | 
 |     if (best_rd >= rd_thresh) return best_rd; | 
 |  | 
 | #if CONFIG_PVQ | 
 |     od_encode_rollback(&x->daala_enc, &post_buf); | 
 | #endif | 
 |  | 
 |     if (y_skip) *y_skip &= best_can_skip; | 
 |  | 
 |     for (idy = 0; idy < pred_height_in_transform_blocks * 4; ++idy) { | 
 |       memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride), | 
 |              best_dst16 + idy * 8, | 
 |              pred_width_in_transform_blocks * 4 * sizeof(uint16_t)); | 
 |     } | 
 |  | 
 |     return best_rd; | 
 |   } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 | #if CONFIG_PVQ | 
 |   od_encode_checkpoint(&x->daala_enc, &pre_buf); | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 |   for (mode = DC_PRED; mode <= TM_PRED; ++mode) { | 
 |     int64_t this_rd; | 
 |     int ratey = 0; | 
 |     int64_t distortion = 0; | 
 |     int rate = bmode_costs[mode]; | 
 |     int can_skip = 1; | 
 |  | 
 |     if (!(cpi->sf.intra_y_mode_mask[txsize_sqr_up_map[tx_size]] & | 
 |           (1 << mode))) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Only do the oblique modes if the best so far is | 
 |     // one of the neighboring directional modes | 
 |     if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { | 
 |       if (conditional_skipintra(mode, *best_mode)) continue; | 
 |     } | 
 |  | 
 |     memcpy(tempa, ta, pred_width_in_transform_blocks * sizeof(ta[0])); | 
 |     memcpy(templ, tl, pred_height_in_transform_blocks * sizeof(tl[0])); | 
 |  | 
 |     for (idy = 0; idy < pred_height_in_4x4_blocks; idy += tx_height_unit) { | 
 |       for (idx = 0; idx < pred_width_in_4x4_blocks; idx += tx_width_unit) { | 
 |         const int block_raster_idx = (row + idy) * 2 + (col + idx); | 
 |         int block = av1_raster_order_to_block_index(tx_size, block_raster_idx); | 
 |         const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride]; | 
 |         uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride]; | 
 | #if !CONFIG_PVQ | 
 |         int16_t *const src_diff = av1_raster_block_offset_int16( | 
 |             BLOCK_8X8, block_raster_idx, p->src_diff); | 
 | #endif  // !CONFIG_PVQ | 
 |         int skip; | 
 |         assert(block < 4); | 
 |         assert(IMPLIES(tx_size == TX_4X8 || tx_size == TX_8X4, | 
 |                        idx == 0 && idy == 0)); | 
 |         assert(IMPLIES(tx_size == TX_4X8 || tx_size == TX_8X4, | 
 |                        block == 0 || block == 2)); | 
 |         xd->mi[0]->bmi[block_raster_idx].as_mode = mode; | 
 |         av1_predict_intra_block(xd, pd->width, pd->height, | 
 |                                 txsize_to_bsize[tx_size], mode, dst, dst_stride, | 
 |                                 dst, dst_stride, | 
 | #if CONFIG_CB4X4 | 
 |                                 2 * (col + idx), 2 * (row + idy), | 
 | #else | 
 |                                 col + idx, row + idy, | 
 | #endif  // CONFIG_CB4X4 | 
 |                                 0); | 
 | #if !CONFIG_PVQ | 
 |         aom_subtract_block(tx_height, tx_width, src_diff, 8, src, src_stride, | 
 |                            dst, dst_stride); | 
 | #endif  // !CONFIG_PVQ | 
 |  | 
 |         if (is_lossless) { | 
 |           TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, tx_size); | 
 |           const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 0); | 
 |           const int coeff_ctx = | 
 |               combine_entropy_contexts(tempa[idx], templ[idy]); | 
 | #if CONFIG_CB4X4 | 
 |           block = 4 * block; | 
 | #endif  // CONFIG_CB4X4 | 
 | #if !CONFIG_PVQ | 
 |           av1_xform_quant(cm, x, 0, block, | 
 | #if CONFIG_CB4X4 | 
 |                           2 * (row + idy), 2 * (col + idx), | 
 | #else | 
 |                           row + idy, col + idx, | 
 | #endif  // CONFIG_CB4X4 | 
 |                           BLOCK_8X8, tx_size, coeff_ctx, AV1_XFORM_QUANT_B); | 
 |           ratey += av1_cost_coeffs(cpi, x, 0, block, tx_size, scan_order, | 
 |                                    tempa + idx, templ + idy, | 
 |                                    cpi->sf.use_fast_coef_costing); | 
 |           skip = (p->eobs[block] == 0); | 
 |           can_skip &= skip; | 
 |           tempa[idx] = !skip; | 
 |           templ[idy] = !skip; | 
 | #if CONFIG_EXT_TX | 
 |           if (tx_size == TX_8X4) { | 
 |             tempa[idx + 1] = tempa[idx]; | 
 |           } else if (tx_size == TX_4X8) { | 
 |             templ[idy + 1] = templ[idy]; | 
 |           } | 
 | #endif  // CONFIG_EXT_TX | 
 | #else | 
 |           (void)scan_order; | 
 |  | 
 |           av1_xform_quant(cm, x, 0, block, | 
 | #if CONFIG_CB4X4 | 
 |                           2 * (row + idy), 2 * (col + idx), | 
 | #else | 
 |                           row + idy, col + idx, | 
 | #endif  // CONFIG_CB4X4 | 
 |                           BLOCK_8X8, tx_size, coeff_ctx, AV1_XFORM_QUANT_B); | 
 |  | 
 |           ratey += x->rate; | 
 |           skip = x->pvq_skip[0]; | 
 |           tempa[idx] = !skip; | 
 |           templ[idy] = !skip; | 
 |           can_skip &= skip; | 
 | #endif  // !CONFIG_PVQ | 
 |           if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) | 
 |             goto next; | 
 | #if CONFIG_PVQ | 
 |           if (!skip) | 
 | #endif  // CONFIG_PVQ | 
 |             av1_inverse_transform_block(xd, BLOCK_OFFSET(pd->dqcoeff, block), | 
 |                                         DCT_DCT, tx_size, dst, dst_stride, | 
 |                                         p->eobs[block]); | 
 |         } else { | 
 |           int64_t dist; | 
 |           unsigned int tmp; | 
 |           TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, tx_size); | 
 |           const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 0); | 
 |           const int coeff_ctx = | 
 |               combine_entropy_contexts(tempa[idx], templ[idy]); | 
 | #if CONFIG_CB4X4 | 
 |           block = 4 * block; | 
 | #endif  // CONFIG_CB4X4 | 
 | #if !CONFIG_PVQ | 
 |           av1_xform_quant(cm, x, 0, block, | 
 | #if CONFIG_CB4X4 | 
 |                           2 * (row + idy), 2 * (col + idx), | 
 | #else | 
 |                           row + idy, col + idx, | 
 | #endif  // CONFIG_CB4X4 | 
 |                           BLOCK_8X8, tx_size, coeff_ctx, AV1_XFORM_QUANT_FP); | 
 |           av1_optimize_b(cm, x, 0, block, tx_size, coeff_ctx); | 
 |           ratey += av1_cost_coeffs(cpi, x, 0, block, tx_size, scan_order, | 
 |                                    tempa + idx, templ + idy, | 
 |                                    cpi->sf.use_fast_coef_costing); | 
 |           skip = (p->eobs[block] == 0); | 
 |           can_skip &= skip; | 
 |           tempa[idx] = !skip; | 
 |           templ[idy] = !skip; | 
 | #if CONFIG_EXT_TX | 
 |           if (tx_size == TX_8X4) { | 
 |             tempa[idx + 1] = tempa[idx]; | 
 |           } else if (tx_size == TX_4X8) { | 
 |             templ[idy + 1] = templ[idy]; | 
 |           } | 
 | #endif  // CONFIG_EXT_TX | 
 | #else | 
 |           (void)scan_order; | 
 |  | 
 |           av1_xform_quant(cm, x, 0, block, | 
 | #if CONFIG_CB4X4 | 
 |                           2 * (row + idy), 2 * (col + idx), | 
 | #else | 
 |                           row + idy, col + idx, | 
 | #endif  // CONFIG_CB4X4 | 
 |                           BLOCK_8X8, tx_size, coeff_ctx, AV1_XFORM_QUANT_FP); | 
 |           ratey += x->rate; | 
 |           skip = x->pvq_skip[0]; | 
 |           tempa[idx] = !skip; | 
 |           templ[idy] = !skip; | 
 |           can_skip &= skip; | 
 | #endif  // !CONFIG_PVQ | 
 | #if CONFIG_PVQ | 
 |           if (!skip) | 
 | #endif  // CONFIG_PVQ | 
 |             av1_inverse_transform_block(xd, BLOCK_OFFSET(pd->dqcoeff, block), | 
 |                                         tx_type, tx_size, dst, dst_stride, | 
 |                                         p->eobs[block]); | 
 |           cpi->fn_ptr[sub_bsize].vf(src, src_stride, dst, dst_stride, &tmp); | 
 |           dist = (int64_t)tmp << 4; | 
 |           distortion += dist; | 
 |           // To use the pixel domain distortion, the step below needs to be | 
 |           // put behind the inv txfm. Compared to calculating the distortion | 
 |           // in the frequency domain, the overhead of encoding effort is low. | 
 |           if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) | 
 |             goto next; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     rate += ratey; | 
 |     this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); | 
 |  | 
 |     if (this_rd < best_rd) { | 
 |       *bestrate = rate; | 
 |       *bestratey = ratey; | 
 |       *bestdistortion = distortion; | 
 |       best_rd = this_rd; | 
 |       best_can_skip = can_skip; | 
 |       *best_mode = mode; | 
 |       memcpy(a, tempa, pred_width_in_transform_blocks * sizeof(tempa[0])); | 
 |       memcpy(l, templ, pred_height_in_transform_blocks * sizeof(templ[0])); | 
 | #if CONFIG_PVQ | 
 |       od_encode_checkpoint(&x->daala_enc, &post_buf); | 
 | #endif  // CONFIG_PVQ | 
 |       for (idy = 0; idy < pred_height_in_transform_blocks * 4; ++idy) | 
 |         memcpy(best_dst + idy * 8, dst_init + idy * dst_stride, | 
 |                pred_width_in_transform_blocks * 4); | 
 |     } | 
 |   next : {} | 
 | #if CONFIG_PVQ | 
 |     od_encode_rollback(&x->daala_enc, &pre_buf); | 
 | #endif  // CONFIG_PVQ | 
 |   }     // mode decision loop | 
 |  | 
 |   if (best_rd >= rd_thresh) return best_rd; | 
 |  | 
 | #if CONFIG_PVQ | 
 |   od_encode_rollback(&x->daala_enc, &post_buf); | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 |   if (y_skip) *y_skip &= best_can_skip; | 
 |  | 
 |   for (idy = 0; idy < pred_height_in_transform_blocks * 4; ++idy) | 
 |     memcpy(dst_init + idy * dst_stride, best_dst + idy * 8, | 
 |            pred_width_in_transform_blocks * 4); | 
 |  | 
 |   return best_rd; | 
 | } | 
 |  | 
 | static int64_t rd_pick_intra_sub_8x8_y_mode(const AV1_COMP *const cpi, | 
 |                                             MACROBLOCK *mb, int *rate, | 
 |                                             int *rate_y, int64_t *distortion, | 
 |                                             int *y_skip, int64_t best_rd) { | 
 |   const MACROBLOCKD *const xd = &mb->e_mbd; | 
 |   MODE_INFO *const mic = xd->mi[0]; | 
 |   const MODE_INFO *above_mi = xd->above_mi; | 
 |   const MODE_INFO *left_mi = xd->left_mi; | 
 |   MB_MODE_INFO *const mbmi = &mic->mbmi; | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |   const int pred_width_in_4x4_blocks = num_4x4_blocks_wide_lookup[bsize]; | 
 |   const int pred_height_in_4x4_blocks = num_4x4_blocks_high_lookup[bsize]; | 
 |   int idx, idy; | 
 |   int cost = 0; | 
 |   int64_t total_distortion = 0; | 
 |   int tot_rate_y = 0; | 
 |   int64_t total_rd = 0; | 
 |   const int *bmode_costs = cpi->mbmode_cost[0]; | 
 |   const int is_lossless = xd->lossless[mbmi->segment_id]; | 
 | #if CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |   const TX_SIZE tx_size = is_lossless ? TX_4X4 : max_txsize_rect_lookup[bsize]; | 
 | #else | 
 |   const TX_SIZE tx_size = TX_4X4; | 
 | #endif  // CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |  | 
 | #if CONFIG_EXT_INTRA | 
 | #if CONFIG_INTRA_INTERP | 
 |   mbmi->intra_filter = INTRA_FILTER_LINEAR; | 
 | #endif  // CONFIG_INTRA_INTERP | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_FILTER_INTRA | 
 |   mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 |   // TODO(any): Add search of the tx_type to improve rd performance at the | 
 |   // expense of speed. | 
 |   mbmi->tx_type = DCT_DCT; | 
 |   mbmi->tx_size = tx_size; | 
 |  | 
 |   if (y_skip) *y_skip = 1; | 
 |  | 
 |   // Pick modes for each prediction sub-block (of size 4x4, 4x8, or 8x4) in this | 
 |   // 8x8 coding block. | 
 |   for (idy = 0; idy < 2; idy += pred_height_in_4x4_blocks) { | 
 |     for (idx = 0; idx < 2; idx += pred_width_in_4x4_blocks) { | 
 |       PREDICTION_MODE best_mode = DC_PRED; | 
 |       int r = INT_MAX, ry = INT_MAX; | 
 |       int64_t d = INT64_MAX, this_rd = INT64_MAX; | 
 |       int j; | 
 |       const int pred_block_idx = idy * 2 + idx; | 
 |       if (cpi->common.frame_type == KEY_FRAME) { | 
 |         const PREDICTION_MODE A = | 
 |             av1_above_block_mode(mic, above_mi, pred_block_idx); | 
 |         const PREDICTION_MODE L = | 
 |             av1_left_block_mode(mic, left_mi, pred_block_idx); | 
 |  | 
 |         bmode_costs = cpi->y_mode_costs[A][L]; | 
 |       } | 
 |       this_rd = rd_pick_intra_sub_8x8_y_subblock_mode( | 
 |           cpi, mb, idy, idx, &best_mode, bmode_costs, | 
 |           xd->plane[0].above_context + idx, xd->plane[0].left_context + idy, &r, | 
 |           &ry, &d, bsize, tx_size, y_skip, best_rd - total_rd); | 
 | #if !CONFIG_DAALA_DIST | 
 |       if (this_rd >= best_rd - total_rd) return INT64_MAX; | 
 | #endif  // !CONFIG_DAALA_DIST | 
 |       total_rd += this_rd; | 
 |       cost += r; | 
 |       total_distortion += d; | 
 |       tot_rate_y += ry; | 
 |  | 
 |       mic->bmi[pred_block_idx].as_mode = best_mode; | 
 |       for (j = 1; j < pred_height_in_4x4_blocks; ++j) | 
 |         mic->bmi[pred_block_idx + j * 2].as_mode = best_mode; | 
 |       for (j = 1; j < pred_width_in_4x4_blocks; ++j) | 
 |         mic->bmi[pred_block_idx + j].as_mode = best_mode; | 
 |  | 
 |       if (total_rd >= best_rd) return INT64_MAX; | 
 |     } | 
 |   } | 
 |   mbmi->mode = mic->bmi[3].as_mode; | 
 |  | 
 | #if CONFIG_DAALA_DIST | 
 |   { | 
 |     const struct macroblock_plane *p = &mb->plane[0]; | 
 |     const struct macroblockd_plane *pd = &xd->plane[0]; | 
 |     const int src_stride = p->src.stride; | 
 |     const int dst_stride = pd->dst.stride; | 
 |     uint8_t *src = p->src.buf; | 
 |     uint8_t *dst = pd->dst.buf; | 
 |     int use_activity_masking = 0; | 
 |     int qm = OD_HVS_QM; | 
 |  | 
 | #if CONFIG_PVQ | 
 |     use_activity_masking = mb->daala_enc.use_activity_masking; | 
 | #endif  // CONFIG_PVQ | 
 |     // Daala-defined distortion computed for the block of 8x8 pixels | 
 |     total_distortion = av1_daala_dist(src, src_stride, dst, dst_stride, 8, 8, | 
 |                                       qm, use_activity_masking, mb->qindex) | 
 |                        << 4; | 
 |   } | 
 | #endif  // CONFIG_DAALA_DIST | 
 |   // Add in the cost of the transform type | 
 |   if (!is_lossless) { | 
 |     int rate_tx_type = 0; | 
 | #if CONFIG_EXT_TX | 
 |     if (get_ext_tx_types(tx_size, bsize, 0, cpi->common.reduced_tx_set_used) > | 
 |         1) { | 
 |       const int eset = | 
 |           get_ext_tx_set(tx_size, bsize, 0, cpi->common.reduced_tx_set_used); | 
 |       rate_tx_type = cpi->intra_tx_type_costs[eset][txsize_sqr_map[tx_size]] | 
 |                                              [mbmi->mode][mbmi->tx_type]; | 
 |     } | 
 | #else | 
 |     rate_tx_type = | 
 |         cpi->intra_tx_type_costs[txsize_sqr_map[tx_size]] | 
 |                                 [intra_mode_to_tx_type_context[mbmi->mode]] | 
 |                                 [mbmi->tx_type]; | 
 | #endif  // CONFIG_EXT_TX | 
 |     assert(mbmi->tx_size == tx_size); | 
 |     cost += rate_tx_type; | 
 |     tot_rate_y += rate_tx_type; | 
 |   } | 
 |  | 
 |   *rate = cost; | 
 |   *rate_y = tot_rate_y; | 
 |   *distortion = total_distortion; | 
 |  | 
 |   return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion); | 
 | } | 
 |  | 
 | #if CONFIG_FILTER_INTRA | 
 | // Return 1 if an filter intra mode is selected; return 0 otherwise. | 
 | static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                     int *rate, int *rate_tokenonly, | 
 |                                     int64_t *distortion, int *skippable, | 
 |                                     BLOCK_SIZE bsize, int mode_cost, | 
 |                                     int64_t *best_rd, int64_t *best_model_rd, | 
 |                                     uint16_t skip_mask) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MODE_INFO *const mic = xd->mi[0]; | 
 |   MB_MODE_INFO *mbmi = &mic->mbmi; | 
 |   int filter_intra_selected_flag = 0; | 
 |   FILTER_INTRA_MODE mode; | 
 |   TX_SIZE best_tx_size = TX_4X4; | 
 |   FILTER_INTRA_MODE_INFO filter_intra_mode_info; | 
 |   TX_TYPE best_tx_type; | 
 |  | 
 |   av1_zero(filter_intra_mode_info); | 
 |   mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 1; | 
 |   mbmi->mode = DC_PRED; | 
 | #if CONFIG_PALETTE | 
 |   mbmi->palette_mode_info.palette_size[0] = 0; | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 |   for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) { | 
 |     int this_rate; | 
 |     int64_t this_rd, this_model_rd; | 
 |     RD_STATS tokenonly_rd_stats; | 
 |     if (skip_mask & (1 << mode)) continue; | 
 |     mbmi->filter_intra_mode_info.filter_intra_mode[0] = mode; | 
 |     this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost); | 
 |     if (*best_model_rd != INT64_MAX && | 
 |         this_model_rd > *best_model_rd + (*best_model_rd >> 1)) | 
 |       continue; | 
 |     if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; | 
 |     super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); | 
 |     if (tokenonly_rd_stats.rate == INT_MAX) continue; | 
 |     this_rate = tokenonly_rd_stats.rate + | 
 |                 av1_cost_bit(cpi->common.fc->filter_intra_probs[0], 1) + | 
 |                 write_uniform_cost(FILTER_INTRA_MODES, mode) + mode_cost; | 
 |     this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist); | 
 |  | 
 |     if (this_rd < *best_rd) { | 
 |       *best_rd = this_rd; | 
 |       best_tx_size = mic->mbmi.tx_size; | 
 |       filter_intra_mode_info = mbmi->filter_intra_mode_info; | 
 |       best_tx_type = mic->mbmi.tx_type; | 
 |       *rate = this_rate; | 
 |       *rate_tokenonly = tokenonly_rd_stats.rate; | 
 |       *distortion = tokenonly_rd_stats.dist; | 
 |       *skippable = tokenonly_rd_stats.skip; | 
 |       filter_intra_selected_flag = 1; | 
 |     } | 
 |   } | 
 |  | 
 |   if (filter_intra_selected_flag) { | 
 |     mbmi->mode = DC_PRED; | 
 |     mbmi->tx_size = best_tx_size; | 
 |     mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = | 
 |         filter_intra_mode_info.use_filter_intra_mode[0]; | 
 |     mbmi->filter_intra_mode_info.filter_intra_mode[0] = | 
 |         filter_intra_mode_info.filter_intra_mode[0]; | 
 |     mbmi->tx_type = best_tx_type; | 
 |     return 1; | 
 |   } else { | 
 |     return 0; | 
 |   } | 
 | } | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 | #if CONFIG_EXT_INTRA | 
 | // Run RD calculation with given luma intra prediction angle., and return | 
 | // the RD cost. Update the best mode info. if the RD cost is the best so far. | 
 | static int64_t calc_rd_given_intra_angle( | 
 |     const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mode_cost, | 
 |     int64_t best_rd_in, int8_t angle_delta, int max_angle_delta, int *rate, | 
 |     RD_STATS *rd_stats, int *best_angle_delta, TX_SIZE *best_tx_size, | 
 |     TX_TYPE *best_tx_type, | 
 | #if CONFIG_INTRA_INTERP | 
 |     INTRA_FILTER *best_filter, | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |     int64_t *best_rd, int64_t *best_model_rd) { | 
 |   int this_rate; | 
 |   RD_STATS tokenonly_rd_stats; | 
 |   int64_t this_rd, this_model_rd; | 
 |   MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi; | 
 |  | 
 |   mbmi->angle_delta[0] = angle_delta; | 
 |   this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost); | 
 |   if (*best_model_rd != INT64_MAX && | 
 |       this_model_rd > *best_model_rd + (*best_model_rd >> 1)) | 
 |     return INT64_MAX; | 
 |   if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; | 
 |   super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in); | 
 |   if (tokenonly_rd_stats.rate == INT_MAX) return INT64_MAX; | 
 |  | 
 |   this_rate = tokenonly_rd_stats.rate + mode_cost + | 
 |               write_uniform_cost(2 * max_angle_delta + 1, | 
 |                                  mbmi->angle_delta[0] + max_angle_delta); | 
 |   this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist); | 
 |  | 
 |   if (this_rd < *best_rd) { | 
 |     *best_rd = this_rd; | 
 |     *best_angle_delta = mbmi->angle_delta[0]; | 
 |     *best_tx_size = mbmi->tx_size; | 
 | #if CONFIG_INTRA_INTERP | 
 |     *best_filter = mbmi->intra_filter; | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |     *best_tx_type = mbmi->tx_type; | 
 |     *rate = this_rate; | 
 |     rd_stats->rate = tokenonly_rd_stats.rate; | 
 |     rd_stats->dist = tokenonly_rd_stats.dist; | 
 |     rd_stats->skip = tokenonly_rd_stats.skip; | 
 |   } | 
 |   return this_rd; | 
 | } | 
 |  | 
 | // With given luma directional intra prediction mode, pick the best angle delta | 
 | // Return the RD cost corresponding to the best angle delta. | 
 | static int64_t rd_pick_intra_angle_sby(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                        int *rate, RD_STATS *rd_stats, | 
 |                                        BLOCK_SIZE bsize, int mode_cost, | 
 |                                        int64_t best_rd, | 
 |                                        int64_t *best_model_rd) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MODE_INFO *const mic = xd->mi[0]; | 
 |   MB_MODE_INFO *mbmi = &mic->mbmi; | 
 |   int i, angle_delta, best_angle_delta = 0; | 
 |   int first_try = 1; | 
 | #if CONFIG_INTRA_INTERP | 
 |   int p_angle; | 
 |   const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd); | 
 |   INTRA_FILTER filter, best_filter = INTRA_FILTER_LINEAR; | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |   int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; | 
 |   TX_SIZE best_tx_size = mic->mbmi.tx_size; | 
 |   TX_TYPE best_tx_type = mbmi->tx_type; | 
 |  | 
 |   for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; | 
 |  | 
 |   for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { | 
 | #if CONFIG_INTRA_INTERP | 
 |     for (filter = INTRA_FILTER_LINEAR; filter < INTRA_FILTERS; ++filter) { | 
 |       if (FILTER_FAST_SEARCH && filter != INTRA_FILTER_LINEAR) continue; | 
 |       mic->mbmi.intra_filter = filter; | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |       for (i = 0; i < 2; ++i) { | 
 |         best_rd_in = (best_rd == INT64_MAX) | 
 |                          ? INT64_MAX | 
 |                          : (best_rd + (best_rd >> (first_try ? 3 : 5))); | 
 |         this_rd = calc_rd_given_intra_angle( | 
 |             cpi, x, bsize, | 
 | #if CONFIG_INTRA_INTERP | 
 |             mode_cost + cpi->intra_filter_cost[intra_filter_ctx][filter], | 
 | #else | 
 |           mode_cost, | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |             best_rd_in, (1 - 2 * i) * angle_delta, MAX_ANGLE_DELTA, rate, | 
 |             rd_stats, &best_angle_delta, &best_tx_size, &best_tx_type, | 
 | #if CONFIG_INTRA_INTERP | 
 |             &best_filter, | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |             &best_rd, best_model_rd); | 
 |         rd_cost[2 * angle_delta + i] = this_rd; | 
 |         if (first_try && this_rd == INT64_MAX) return best_rd; | 
 |         first_try = 0; | 
 |         if (angle_delta == 0) { | 
 |           rd_cost[1] = this_rd; | 
 |           break; | 
 |         } | 
 |       } | 
 | #if CONFIG_INTRA_INTERP | 
 |     } | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |   } | 
 |  | 
 |   assert(best_rd != INT64_MAX); | 
 |   for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { | 
 |     int64_t rd_thresh; | 
 | #if CONFIG_INTRA_INTERP | 
 |     for (filter = INTRA_FILTER_LINEAR; filter < INTRA_FILTERS; ++filter) { | 
 |       if (FILTER_FAST_SEARCH && filter != INTRA_FILTER_LINEAR) continue; | 
 |       mic->mbmi.intra_filter = filter; | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |       for (i = 0; i < 2; ++i) { | 
 |         int skip_search = 0; | 
 |         rd_thresh = best_rd + (best_rd >> 5); | 
 |         if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && | 
 |             rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) | 
 |           skip_search = 1; | 
 |         if (!skip_search) { | 
 |           calc_rd_given_intra_angle( | 
 |               cpi, x, bsize, | 
 | #if CONFIG_INTRA_INTERP | 
 |               mode_cost + cpi->intra_filter_cost[intra_filter_ctx][filter], | 
 | #else | 
 |             mode_cost, | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |               best_rd, (1 - 2 * i) * angle_delta, MAX_ANGLE_DELTA, rate, | 
 |               rd_stats, &best_angle_delta, &best_tx_size, &best_tx_type, | 
 | #if CONFIG_INTRA_INTERP | 
 |               &best_filter, | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |               &best_rd, best_model_rd); | 
 |         } | 
 |       } | 
 | #if CONFIG_INTRA_INTERP | 
 |     } | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |   } | 
 |  | 
 | #if CONFIG_INTRA_INTERP | 
 |   if (FILTER_FAST_SEARCH && rd_stats->rate < INT_MAX) { | 
 |     p_angle = mode_to_angle_map[mbmi->mode] + best_angle_delta * ANGLE_STEP; | 
 |     if (av1_is_intra_filter_switchable(p_angle)) { | 
 |       for (filter = INTRA_FILTER_LINEAR + 1; filter < INTRA_FILTERS; ++filter) { | 
 |         mic->mbmi.intra_filter = filter; | 
 |         this_rd = calc_rd_given_intra_angle( | 
 |             cpi, x, bsize, | 
 |             mode_cost + cpi->intra_filter_cost[intra_filter_ctx][filter], | 
 |             best_rd, best_angle_delta, MAX_ANGLE_DELTA, rate, rd_stats, | 
 |             &best_angle_delta, &best_tx_size, &best_tx_type, &best_filter, | 
 |             &best_rd, best_model_rd); | 
 |       } | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |  | 
 |   mbmi->tx_size = best_tx_size; | 
 |   mbmi->angle_delta[0] = best_angle_delta; | 
 | #if CONFIG_INTRA_INTERP | 
 |   mic->mbmi.intra_filter = best_filter; | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |   mbmi->tx_type = best_tx_type; | 
 |   return best_rd; | 
 | } | 
 |  | 
 | // Indices are sign, integer, and fractional part of the gradient value | 
 | static const uint8_t gradient_to_angle_bin[2][7][16] = { | 
 |   { | 
 |       { 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0 }, | 
 |       { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 }, | 
 |       { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, | 
 |       { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, | 
 |       { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, | 
 |       { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, | 
 |       { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, | 
 |   }, | 
 |   { | 
 |       { 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4 }, | 
 |       { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3 }, | 
 |       { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, | 
 |       { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, | 
 |       { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, | 
 |       { 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, | 
 |       { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, | 
 |   }, | 
 | }; | 
 |  | 
 | static const uint8_t mode_to_angle_bin[INTRA_MODES] = { | 
 |   0, 2, 6, 0, 4, 3, 5, 7, 1, 0, | 
 | }; | 
 |  | 
 | static void angle_estimation(const uint8_t *src, int src_stride, int rows, | 
 |                              int cols, uint8_t *directional_mode_skip_mask) { | 
 |   int i, r, c, index, dx, dy, temp, sn, remd, quot; | 
 |   uint64_t hist[DIRECTIONAL_MODES]; | 
 |   uint64_t hist_sum = 0; | 
 |  | 
 |   memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0])); | 
 |   src += src_stride; | 
 |   for (r = 1; r < rows; ++r) { | 
 |     for (c = 1; c < cols; ++c) { | 
 |       dx = src[c] - src[c - 1]; | 
 |       dy = src[c] - src[c - src_stride]; | 
 |       temp = dx * dx + dy * dy; | 
 |       if (dy == 0) { | 
 |         index = 2; | 
 |       } else { | 
 |         sn = (dx > 0) ^ (dy > 0); | 
 |         dx = abs(dx); | 
 |         dy = abs(dy); | 
 |         remd = dx % dy; | 
 |         quot = dx / dy; | 
 |         remd = remd * 16 / dy; | 
 |         index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)]; | 
 |       } | 
 |       hist[index] += temp; | 
 |     } | 
 |     src += src_stride; | 
 |   } | 
 |  | 
 |   for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i]; | 
 |   for (i = 0; i < INTRA_MODES; ++i) { | 
 |     if (i != DC_PRED && i != TM_PRED) { | 
 |       const uint8_t angle_bin = mode_to_angle_bin[i]; | 
 |       uint64_t score = 2 * hist[angle_bin]; | 
 |       int weight = 2; | 
 |       if (angle_bin > 0) { | 
 |         score += hist[angle_bin - 1]; | 
 |         ++weight; | 
 |       } | 
 |       if (angle_bin < DIRECTIONAL_MODES - 1) { | 
 |         score += hist[angle_bin + 1]; | 
 |         ++weight; | 
 |       } | 
 |       if (score * ANGLE_SKIP_THRESH < hist_sum * weight) | 
 |         directional_mode_skip_mask[i] = 1; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 | static void highbd_angle_estimation(const uint8_t *src8, int src_stride, | 
 |                                     int rows, int cols, | 
 |                                     uint8_t *directional_mode_skip_mask) { | 
 |   int i, r, c, index, dx, dy, temp, sn, remd, quot; | 
 |   uint64_t hist[DIRECTIONAL_MODES]; | 
 |   uint64_t hist_sum = 0; | 
 |   uint16_t *src = CONVERT_TO_SHORTPTR(src8); | 
 |  | 
 |   memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0])); | 
 |   src += src_stride; | 
 |   for (r = 1; r < rows; ++r) { | 
 |     for (c = 1; c < cols; ++c) { | 
 |       dx = src[c] - src[c - 1]; | 
 |       dy = src[c] - src[c - src_stride]; | 
 |       temp = dx * dx + dy * dy; | 
 |       if (dy == 0) { | 
 |         index = 2; | 
 |       } else { | 
 |         sn = (dx > 0) ^ (dy > 0); | 
 |         dx = abs(dx); | 
 |         dy = abs(dy); | 
 |         remd = dx % dy; | 
 |         quot = dx / dy; | 
 |         remd = remd * 16 / dy; | 
 |         index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)]; | 
 |       } | 
 |       hist[index] += temp; | 
 |     } | 
 |     src += src_stride; | 
 |   } | 
 |  | 
 |   for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i]; | 
 |   for (i = 0; i < INTRA_MODES; ++i) { | 
 |     if (i != DC_PRED && i != TM_PRED) { | 
 |       const uint8_t angle_bin = mode_to_angle_bin[i]; | 
 |       uint64_t score = 2 * hist[angle_bin]; | 
 |       int weight = 2; | 
 |       if (angle_bin > 0) { | 
 |         score += hist[angle_bin - 1]; | 
 |         ++weight; | 
 |       } | 
 |       if (angle_bin < DIRECTIONAL_MODES - 1) { | 
 |         score += hist[angle_bin + 1]; | 
 |         ++weight; | 
 |       } | 
 |       if (score * ANGLE_SKIP_THRESH < hist_sum * weight) | 
 |         directional_mode_skip_mask[i] = 1; | 
 |     } | 
 |   } | 
 | } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 | #endif  // CONFIG_EXT_INTRA | 
 |  | 
 | // This function is used only for intra_only frames | 
 | static int64_t rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                       int *rate, int *rate_tokenonly, | 
 |                                       int64_t *distortion, int *skippable, | 
 |                                       BLOCK_SIZE bsize, int64_t best_rd) { | 
 |   uint8_t mode_idx; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MODE_INFO *const mic = xd->mi[0]; | 
 |   MB_MODE_INFO *const mbmi = &mic->mbmi; | 
 |   MB_MODE_INFO best_mbmi = *mbmi; | 
 |   int64_t best_model_rd = INT64_MAX; | 
 | #if CONFIG_EXT_INTRA | 
 |   const int rows = block_size_high[bsize]; | 
 |   const int cols = block_size_wide[bsize]; | 
 | #if CONFIG_INTRA_INTERP | 
 |   const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd); | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |   int is_directional_mode; | 
 |   uint8_t directional_mode_skip_mask[INTRA_MODES]; | 
 |   const int src_stride = x->plane[0].src.stride; | 
 |   const uint8_t *src = x->plane[0].src.buf; | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_FILTER_INTRA | 
 |   int beat_best_rd = 0; | 
 |   uint16_t filter_intra_mode_skip_mask = (1 << FILTER_INTRA_MODES) - 1; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |   const int *bmode_costs; | 
 | #if CONFIG_PALETTE | 
 |   PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
 |   uint8_t *best_palette_color_map = | 
 |       cpi->common.allow_screen_content_tools | 
 |           ? x->palette_buffer->best_palette_color_map | 
 |           : NULL; | 
 |   int palette_y_mode_ctx = 0; | 
 |   const int try_palette = | 
 |       cpi->common.allow_screen_content_tools && bsize >= BLOCK_8X8; | 
 | #endif  // CONFIG_PALETTE | 
 |   const MODE_INFO *above_mi = xd->above_mi; | 
 |   const MODE_INFO *left_mi = xd->left_mi; | 
 |   const PREDICTION_MODE A = av1_above_block_mode(mic, above_mi, 0); | 
 |   const PREDICTION_MODE L = av1_left_block_mode(mic, left_mi, 0); | 
 |   const PREDICTION_MODE FINAL_MODE_SEARCH = TM_PRED + 1; | 
 | #if CONFIG_PVQ | 
 |   od_rollback_buffer pre_buf, post_buf; | 
 |  | 
 |   od_encode_checkpoint(&x->daala_enc, &pre_buf); | 
 |   od_encode_checkpoint(&x->daala_enc, &post_buf); | 
 | #endif  // CONFIG_PVQ | 
 |   bmode_costs = cpi->y_mode_costs[A][L]; | 
 |  | 
 | #if CONFIG_EXT_INTRA | 
 |   mbmi->angle_delta[0] = 0; | 
 |   memset(directional_mode_skip_mask, 0, | 
 |          sizeof(directional_mode_skip_mask[0]) * INTRA_MODES); | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) | 
 |     highbd_angle_estimation(src, src_stride, rows, cols, | 
 |                             directional_mode_skip_mask); | 
 |   else | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |     angle_estimation(src, src_stride, rows, cols, directional_mode_skip_mask); | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_FILTER_INTRA | 
 |   mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 | #if CONFIG_PALETTE | 
 |   pmi->palette_size[0] = 0; | 
 |   if (above_mi) | 
 |     palette_y_mode_ctx += | 
 |         (above_mi->mbmi.palette_mode_info.palette_size[0] > 0); | 
 |   if (left_mi) | 
 |     palette_y_mode_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0); | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 |   if (cpi->sf.tx_type_search.fast_intra_tx_type_search) | 
 |     x->use_default_intra_tx_type = 1; | 
 |   else | 
 |     x->use_default_intra_tx_type = 0; | 
 |  | 
 |   /* Y Search for intra prediction mode */ | 
 |   for (mode_idx = DC_PRED; mode_idx <= FINAL_MODE_SEARCH; ++mode_idx) { | 
 |     RD_STATS this_rd_stats; | 
 |     int this_rate, this_rate_tokenonly, s; | 
 |     int64_t this_distortion, this_rd, this_model_rd; | 
 |     if (mode_idx == FINAL_MODE_SEARCH) { | 
 |       if (x->use_default_intra_tx_type == 0) break; | 
 |       mbmi->mode = best_mbmi.mode; | 
 |       x->use_default_intra_tx_type = 0; | 
 |     } else { | 
 |       mbmi->mode = mode_idx; | 
 |     } | 
 | #if CONFIG_PVQ | 
 |     od_encode_rollback(&x->daala_enc, &pre_buf); | 
 | #endif  // CONFIG_PVQ | 
 | #if CONFIG_EXT_INTRA | 
 |     mbmi->angle_delta[0] = 0; | 
 | #endif  // CONFIG_EXT_INTRA | 
 |     this_model_rd = intra_model_yrd(cpi, x, bsize, bmode_costs[mbmi->mode]); | 
 |     if (best_model_rd != INT64_MAX && | 
 |         this_model_rd > best_model_rd + (best_model_rd >> 1)) | 
 |       continue; | 
 |     if (this_model_rd < best_model_rd) best_model_rd = this_model_rd; | 
 | #if CONFIG_EXT_INTRA | 
 |     is_directional_mode = av1_is_directional_mode(mbmi->mode, bsize); | 
 |     if (is_directional_mode && directional_mode_skip_mask[mbmi->mode]) continue; | 
 |     if (is_directional_mode) { | 
 |       this_rd_stats.rate = INT_MAX; | 
 |       rd_pick_intra_angle_sby(cpi, x, &this_rate, &this_rd_stats, bsize, | 
 |                               bmode_costs[mbmi->mode], best_rd, &best_model_rd); | 
 |     } else { | 
 |       super_block_yrd(cpi, x, &this_rd_stats, bsize, best_rd); | 
 |     } | 
 | #else | 
 |     super_block_yrd(cpi, x, &this_rd_stats, bsize, best_rd); | 
 | #endif  // CONFIG_EXT_INTRA | 
 |     this_rate_tokenonly = this_rd_stats.rate; | 
 |     this_distortion = this_rd_stats.dist; | 
 |     s = this_rd_stats.skip; | 
 |  | 
 |     if (this_rate_tokenonly == INT_MAX) continue; | 
 |  | 
 |     this_rate = this_rate_tokenonly + bmode_costs[mbmi->mode]; | 
 |  | 
 |     if (!xd->lossless[mbmi->segment_id] && mbmi->sb_type >= BLOCK_8X8) { | 
 |       // super_block_yrd above includes the cost of the tx_size in the | 
 |       // tokenonly rate, but for intra blocks, tx_size is always coded | 
 |       // (prediction granularity), so we account for it in the full rate, | 
 |       // not the tokenonly rate. | 
 |       this_rate_tokenonly -= tx_size_cost(cpi, x, bsize, mbmi->tx_size); | 
 |     } | 
 | #if CONFIG_PALETTE | 
 |     if (try_palette && mbmi->mode == DC_PRED) { | 
 |       this_rate += | 
 |           av1_cost_bit(av1_default_palette_y_mode_prob[bsize - BLOCK_8X8] | 
 |                                                       [palette_y_mode_ctx], | 
 |                        0); | 
 |     } | 
 | #endif  // CONFIG_PALETTE | 
 | #if CONFIG_FILTER_INTRA | 
 |     if (mbmi->mode == DC_PRED) | 
 |       this_rate += av1_cost_bit(cpi->common.fc->filter_intra_probs[0], 0); | 
 | #endif  // CONFIG_FILTER_INTRA | 
 | #if CONFIG_EXT_INTRA | 
 |     if (is_directional_mode) { | 
 | #if CONFIG_INTRA_INTERP | 
 |       const int p_angle = | 
 |           mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; | 
 |       if (av1_is_intra_filter_switchable(p_angle)) | 
 |         this_rate += | 
 |             cpi->intra_filter_cost[intra_filter_ctx][mbmi->intra_filter]; | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |       this_rate += write_uniform_cost(2 * MAX_ANGLE_DELTA + 1, | 
 |                                       MAX_ANGLE_DELTA + mbmi->angle_delta[0]); | 
 |     } | 
 | #endif  // CONFIG_EXT_INTRA | 
 |     this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); | 
 | #if CONFIG_FILTER_INTRA | 
 |     if (best_rd == INT64_MAX || this_rd - best_rd < (best_rd >> 4)) { | 
 |       filter_intra_mode_skip_mask ^= (1 << mbmi->mode); | 
 |     } | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 |     if (this_rd < best_rd) { | 
 |       best_mbmi = *mbmi; | 
 |       best_rd = this_rd; | 
 | #if CONFIG_FILTER_INTRA | 
 |       beat_best_rd = 1; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |       *rate = this_rate; | 
 |       *rate_tokenonly = this_rate_tokenonly; | 
 |       *distortion = this_distortion; | 
 |       *skippable = s; | 
 | #if CONFIG_PVQ | 
 |       od_encode_checkpoint(&x->daala_enc, &post_buf); | 
 | #endif  // CONFIG_PVQ | 
 |     } | 
 |   } | 
 |  | 
 | #if CONFIG_PVQ | 
 |   od_encode_rollback(&x->daala_enc, &post_buf); | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 | #if CONFIG_CFL | 
 |   // Perform one extra txfm_rd_in_plane() call, this time with the best value so | 
 |   // we can store reconstructed luma values | 
 |   RD_STATS this_rd_stats; | 
 |   x->cfl_store_y = 1; | 
 |   txfm_rd_in_plane(x, cpi, &this_rd_stats, INT64_MAX, 0, bsize, | 
 |                    mic->mbmi.tx_size, cpi->sf.use_fast_coef_costing); | 
 |   x->cfl_store_y = 0; | 
 | #endif | 
 |  | 
 | #if CONFIG_PALETTE | 
 |   if (try_palette) { | 
 |     rd_pick_palette_intra_sby(cpi, x, bsize, palette_y_mode_ctx, | 
 |                               bmode_costs[DC_PRED], &best_mbmi, | 
 |                               best_palette_color_map, &best_rd, &best_model_rd, | 
 |                               rate, rate_tokenonly, distortion, skippable); | 
 |   } | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 | #if CONFIG_FILTER_INTRA | 
 |   if (beat_best_rd) { | 
 |     if (rd_pick_filter_intra_sby(cpi, x, rate, rate_tokenonly, distortion, | 
 |                                  skippable, bsize, bmode_costs[DC_PRED], | 
 |                                  &best_rd, &best_model_rd, | 
 |                                  filter_intra_mode_skip_mask)) { | 
 |       best_mbmi = *mbmi; | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 |   *mbmi = best_mbmi; | 
 |   return best_rd; | 
 | } | 
 |  | 
 | // Return value 0: early termination triggered, no valid rd cost available; | 
 | //              1: rd cost values are valid. | 
 | static int super_block_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                             RD_STATS *rd_stats, BLOCK_SIZE bsize, | 
 |                             int64_t ref_best_rd) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   const TX_SIZE uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]); | 
 |   int plane; | 
 |   int is_cost_valid = 1; | 
 |   av1_init_rd_stats(rd_stats); | 
 |  | 
 |   if (ref_best_rd < 0) is_cost_valid = 0; | 
 |  | 
 | #if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2 | 
 |   if (x->skip_chroma_rd) return is_cost_valid; | 
 |  | 
 |   bsize = scale_chroma_bsize(bsize, xd->plane[1].subsampling_x, | 
 |                              xd->plane[1].subsampling_y); | 
 | #endif  // CONFIG_CB4X4 && !CONFIG_CHROMA_2X2 | 
 |  | 
 | #if !CONFIG_PVQ | 
 |   if (is_inter_block(mbmi) && is_cost_valid) { | 
 |     for (plane = 1; plane < MAX_MB_PLANE; ++plane) | 
 |       av1_subtract_plane(x, bsize, plane); | 
 |   } | 
 | #endif  // !CONFIG_PVQ | 
 |  | 
 |   if (is_cost_valid) { | 
 |     for (plane = 1; plane < MAX_MB_PLANE; ++plane) { | 
 |       RD_STATS pn_rd_stats; | 
 |       txfm_rd_in_plane(x, cpi, &pn_rd_stats, ref_best_rd, plane, bsize, | 
 |                        uv_tx_size, cpi->sf.use_fast_coef_costing); | 
 |       if (pn_rd_stats.rate == INT_MAX) { | 
 |         is_cost_valid = 0; | 
 |         break; | 
 |       } | 
 |       av1_merge_rd_stats(rd_stats, &pn_rd_stats); | 
 |       if (RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist) > | 
 |               ref_best_rd && | 
 |           RDCOST(x->rdmult, x->rddiv, 0, rd_stats->sse) > ref_best_rd) { | 
 |         is_cost_valid = 0; | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (!is_cost_valid) { | 
 |     // reset cost value | 
 |     av1_invalid_rd_stats(rd_stats); | 
 |   } | 
 |  | 
 |   return is_cost_valid; | 
 | } | 
 |  | 
 | #if CONFIG_VAR_TX | 
 | // FIXME crop these calls | 
 | static uint64_t sum_squares_2d(const int16_t *diff, int diff_stride, | 
 |                                TX_SIZE tx_size) { | 
 |   return aom_sum_squares_2d_i16(diff, diff_stride, tx_size_wide[tx_size], | 
 |                                 tx_size_high[tx_size]); | 
 | } | 
 |  | 
 | void av1_tx_block_rd_b(const AV1_COMP *cpi, MACROBLOCK *x, TX_SIZE tx_size, | 
 |                        int blk_row, int blk_col, int plane, int block, | 
 |                        int plane_bsize, const ENTROPY_CONTEXT *a, | 
 |                        const ENTROPY_CONTEXT *l, RD_STATS *rd_stats) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   const struct macroblock_plane *const p = &x->plane[plane]; | 
 |   struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   int64_t tmp; | 
 |   tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); | 
 |   PLANE_TYPE plane_type = get_plane_type(plane); | 
 |   TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); | 
 |   const SCAN_ORDER *const scan_order = | 
 |       get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi)); | 
 |   BLOCK_SIZE txm_bsize = txsize_to_bsize[tx_size]; | 
 |   int bh = block_size_high[txm_bsize]; | 
 |   int bw = block_size_wide[txm_bsize]; | 
 |   int txb_h = tx_size_high_unit[tx_size]; | 
 |   int txb_w = tx_size_wide_unit[tx_size]; | 
 |  | 
 |   int src_stride = p->src.stride; | 
 |   uint8_t *src = | 
 |       &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; | 
 |   uint8_t *dst = | 
 |       &pd->dst | 
 |            .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   DECLARE_ALIGNED(16, uint16_t, rec_buffer16[MAX_TX_SQUARE]); | 
 |   uint8_t *rec_buffer; | 
 | #else | 
 |   DECLARE_ALIGNED(16, uint8_t, rec_buffer[MAX_TX_SQUARE]); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |   int max_blocks_high = block_size_high[plane_bsize]; | 
 |   int max_blocks_wide = block_size_wide[plane_bsize]; | 
 |   const int diff_stride = max_blocks_wide; | 
 |   const int16_t *diff = | 
 |       &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; | 
 |   int txb_coeff_cost; | 
 |  | 
 |   assert(tx_size < TX_SIZES_ALL); | 
 |  | 
 |   if (xd->mb_to_bottom_edge < 0) | 
 |     max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y); | 
 |   if (xd->mb_to_right_edge < 0) | 
 |     max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x); | 
 |  | 
 |   max_blocks_high >>= tx_size_wide_log2[0]; | 
 |   max_blocks_wide >>= tx_size_wide_log2[0]; | 
 |  | 
 |   int coeff_ctx = get_entropy_context(tx_size, a, l); | 
 |  | 
 |   av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, | 
 |                   coeff_ctx, AV1_XFORM_QUANT_FP); | 
 |  | 
 |   av1_optimize_b(cm, x, plane, block, tx_size, coeff_ctx); | 
 |  | 
 | // TODO(any): Use av1_dist_block to compute distortion | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |     rec_buffer = CONVERT_TO_BYTEPTR(rec_buffer16); | 
 |     aom_highbd_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE, NULL, | 
 |                              0, NULL, 0, bw, bh, xd->bd); | 
 |   } else { | 
 |     rec_buffer = (uint8_t *)rec_buffer16; | 
 |     aom_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE, NULL, 0, | 
 |                       NULL, 0, bw, bh); | 
 |   } | 
 | #else | 
 |   aom_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE, NULL, 0, NULL, | 
 |                     0, bw, bh); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 |   if (blk_row + txb_h > max_blocks_high || blk_col + txb_w > max_blocks_wide) { | 
 |     int idx, idy; | 
 |     int blocks_height = AOMMIN(txb_h, max_blocks_high - blk_row); | 
 |     int blocks_width = AOMMIN(txb_w, max_blocks_wide - blk_col); | 
 |     tmp = 0; | 
 |     for (idy = 0; idy < blocks_height; ++idy) { | 
 |       for (idx = 0; idx < blocks_width; ++idx) { | 
 |         const int16_t *d = | 
 |             diff + ((idy * diff_stride + idx) << tx_size_wide_log2[0]); | 
 |         tmp += sum_squares_2d(d, diff_stride, 0); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     tmp = sum_squares_2d(diff, diff_stride, tx_size); | 
 |   } | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) | 
 |     tmp = ROUND_POWER_OF_TWO(tmp, (xd->bd - 8) * 2); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |   rd_stats->sse += tmp * 16; | 
 |   const int eob = p->eobs[block]; | 
 |  | 
 |   av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, rec_buffer, | 
 |                               MAX_TX_SIZE, eob); | 
 |   if (eob > 0) { | 
 |     if (txb_w + blk_col > max_blocks_wide || | 
 |         txb_h + blk_row > max_blocks_high) { | 
 |       int idx, idy; | 
 |       unsigned int this_dist; | 
 |       int blocks_height = AOMMIN(txb_h, max_blocks_high - blk_row); | 
 |       int blocks_width = AOMMIN(txb_w, max_blocks_wide - blk_col); | 
 |       tmp = 0; | 
 |       for (idy = 0; idy < blocks_height; ++idy) { | 
 |         for (idx = 0; idx < blocks_width; ++idx) { | 
 |           uint8_t *const s = | 
 |               src + ((idy * src_stride + idx) << tx_size_wide_log2[0]); | 
 |           uint8_t *const r = | 
 |               rec_buffer + ((idy * MAX_TX_SIZE + idx) << tx_size_wide_log2[0]); | 
 |           cpi->fn_ptr[0].vf(s, src_stride, r, MAX_TX_SIZE, &this_dist); | 
 |           tmp += this_dist; | 
 |         } | 
 |       } | 
 |     } else { | 
 |       uint32_t this_dist; | 
 |       cpi->fn_ptr[txm_bsize].vf(src, src_stride, rec_buffer, MAX_TX_SIZE, | 
 |                                 &this_dist); | 
 |       tmp = this_dist; | 
 |     } | 
 |   } | 
 |   rd_stats->dist += tmp * 16; | 
 |   txb_coeff_cost = | 
 |       av1_cost_coeffs(cpi, x, plane, block, tx_size, scan_order, a, l, 0); | 
 |   rd_stats->rate += txb_coeff_cost; | 
 |   rd_stats->skip &= (eob == 0); | 
 |  | 
 | #if CONFIG_RD_DEBUG | 
 |   av1_update_txb_coeff_cost(rd_stats, plane, tx_size, blk_row, blk_col, | 
 |                             txb_coeff_cost); | 
 | #endif  // CONFIG_RD_DEBUG | 
 | } | 
 |  | 
 | static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, | 
 |                             int blk_col, int plane, int block, int block32, | 
 |                             TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, | 
 |                             ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl, | 
 |                             TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, | 
 |                             RD_STATS *rd_stats, int64_t ref_best_rd, | 
 |                             int *is_cost_valid, RD_STATS *rd_stats_stack) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   struct macroblock_plane *const p = &x->plane[plane]; | 
 |   struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   const int tx_row = blk_row >> (1 - pd->subsampling_y); | 
 |   const int tx_col = blk_col >> (1 - pd->subsampling_x); | 
 |   TX_SIZE(*const inter_tx_size) | 
 |   [MAX_MIB_SIZE] = | 
 |       (TX_SIZE(*)[MAX_MIB_SIZE]) & mbmi->inter_tx_size[tx_row][tx_col]; | 
 |   const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
 |   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
 |   const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; | 
 |   int64_t this_rd = INT64_MAX; | 
 |   ENTROPY_CONTEXT *pta = ta + blk_col; | 
 |   ENTROPY_CONTEXT *ptl = tl + blk_row; | 
 |   int coeff_ctx, i; | 
 |   int ctx = | 
 |       txfm_partition_context(tx_above + (blk_col >> 1), | 
 |                              tx_left + (blk_row >> 1), mbmi->sb_type, tx_size); | 
 |   int64_t sum_rd = INT64_MAX; | 
 |   int tmp_eob = 0; | 
 |   int zero_blk_rate; | 
 |   RD_STATS sum_rd_stats; | 
 |   const int tx_size_ctx = txsize_sqr_map[tx_size]; | 
 |  | 
 |   av1_init_rd_stats(&sum_rd_stats); | 
 |  | 
 |   assert(tx_size < TX_SIZES_ALL); | 
 |  | 
 |   if (ref_best_rd < 0) { | 
 |     *is_cost_valid = 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   coeff_ctx = get_entropy_context(tx_size, pta, ptl); | 
 |  | 
 |   av1_init_rd_stats(rd_stats); | 
 |  | 
 |   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
 |  | 
 |   zero_blk_rate = x->token_costs[tx_size_ctx][pd->plane_type][1][0][0] | 
 |                                 [coeff_ctx][EOB_TOKEN]; | 
 |  | 
 |   if (cpi->common.tx_mode == TX_MODE_SELECT || tx_size == TX_4X4) { | 
 |     inter_tx_size[0][0] = tx_size; | 
 |  | 
 |     if (tx_size == TX_32X32 && mbmi->tx_type != DCT_DCT && | 
 |         rd_stats_stack[block32].rate != INT_MAX) { | 
 |       *rd_stats = rd_stats_stack[block32]; | 
 |       p->eobs[block] = !rd_stats->skip; | 
 |       x->blk_skip[plane][blk_row * bw + blk_col] = rd_stats->skip; | 
 |     } else { | 
 |       av1_tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block, | 
 |                         plane_bsize, pta, ptl, rd_stats); | 
 |       if (tx_size == TX_32X32) { | 
 |         rd_stats_stack[block32] = *rd_stats; | 
 |       } | 
 |     } | 
 |  | 
 |     if ((RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist) >= | 
 |              RDCOST(x->rdmult, x->rddiv, zero_blk_rate, rd_stats->sse) || | 
 |          rd_stats->skip == 1) && | 
 |         !xd->lossless[mbmi->segment_id]) { | 
 | #if CONFIG_RD_DEBUG | 
 |       av1_update_txb_coeff_cost(rd_stats, plane, tx_size, blk_row, blk_col, | 
 |                                 zero_blk_rate - rd_stats->rate); | 
 | #endif  // CONFIG_RD_DEBUG | 
 |       rd_stats->rate = zero_blk_rate; | 
 |       rd_stats->dist = rd_stats->sse; | 
 |       rd_stats->skip = 1; | 
 |       x->blk_skip[plane][blk_row * bw + blk_col] = 1; | 
 |       p->eobs[block] = 0; | 
 |     } else { | 
 |       x->blk_skip[plane][blk_row * bw + blk_col] = 0; | 
 |       rd_stats->skip = 0; | 
 |     } | 
 |  | 
 |     if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) | 
 |       rd_stats->rate += | 
 |           av1_cost_bit(cpi->common.fc->txfm_partition_prob[ctx], 0); | 
 |     this_rd = RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist); | 
 |     tmp_eob = p->eobs[block]; | 
 |   } | 
 |  | 
 |   if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) { | 
 |     const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
 |     const int bsl = tx_size_wide_unit[sub_txs]; | 
 |     int sub_step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs]; | 
 |     RD_STATS this_rd_stats; | 
 |     int this_cost_valid = 1; | 
 |     int64_t tmp_rd = 0; | 
 |  | 
 |     sum_rd_stats.rate = | 
 |         av1_cost_bit(cpi->common.fc->txfm_partition_prob[ctx], 1); | 
 |  | 
 |     assert(tx_size < TX_SIZES_ALL); | 
 |  | 
 |     for (i = 0; i < 4 && this_cost_valid; ++i) { | 
 |       int offsetr = blk_row + (i >> 1) * bsl; | 
 |       int offsetc = blk_col + (i & 0x01) * bsl; | 
 |  | 
 |       if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; | 
 |  | 
 |       select_tx_block(cpi, x, offsetr, offsetc, plane, block, block32, sub_txs, | 
 |                       depth + 1, plane_bsize, ta, tl, tx_above, tx_left, | 
 |                       &this_rd_stats, ref_best_rd - tmp_rd, &this_cost_valid, | 
 |                       rd_stats_stack); | 
 |  | 
 |       av1_merge_rd_stats(&sum_rd_stats, &this_rd_stats); | 
 |  | 
 |       tmp_rd = | 
 |           RDCOST(x->rdmult, x->rddiv, sum_rd_stats.rate, sum_rd_stats.dist); | 
 |       if (this_rd < tmp_rd) break; | 
 |       block += sub_step; | 
 |     } | 
 |     if (this_cost_valid) sum_rd = tmp_rd; | 
 |   } | 
 |  | 
 |   if (this_rd < sum_rd) { | 
 |     int idx, idy; | 
 |     for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) pta[i] = !(tmp_eob == 0); | 
 |     for (i = 0; i < tx_size_high_unit[tx_size]; ++i) ptl[i] = !(tmp_eob == 0); | 
 |     txfm_partition_update(tx_above + (blk_col >> 1), tx_left + (blk_row >> 1), | 
 |                           tx_size, tx_size); | 
 |     inter_tx_size[0][0] = tx_size; | 
 |     for (idy = 0; idy < tx_size_high_unit[tx_size] / 2; ++idy) | 
 |       for (idx = 0; idx < tx_size_wide_unit[tx_size] / 2; ++idx) | 
 |         inter_tx_size[idy][idx] = tx_size; | 
 |     mbmi->tx_size = tx_size; | 
 |     if (this_rd == INT64_MAX) *is_cost_valid = 0; | 
 |     x->blk_skip[plane][blk_row * bw + blk_col] = rd_stats->skip; | 
 |   } else { | 
 |     *rd_stats = sum_rd_stats; | 
 |     if (sum_rd == INT64_MAX) *is_cost_valid = 0; | 
 |   } | 
 | } | 
 |  | 
 | static void inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, | 
 |                             RD_STATS *rd_stats, BLOCK_SIZE bsize, | 
 |                             int64_t ref_best_rd, RD_STATS *rd_stats_stack) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   int is_cost_valid = 1; | 
 |   int64_t this_rd = 0; | 
 |  | 
 |   if (ref_best_rd < 0) is_cost_valid = 0; | 
 |  | 
 |   av1_init_rd_stats(rd_stats); | 
 |  | 
 |   if (is_cost_valid) { | 
 |     const struct macroblockd_plane *const pd = &xd->plane[0]; | 
 |     const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); | 
 |     const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; | 
 |     const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; | 
 |     const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize]; | 
 |     const int bh = tx_size_high_unit[max_tx_size]; | 
 |     const int bw = tx_size_wide_unit[max_tx_size]; | 
 |     int idx, idy; | 
 |     int block = 0; | 
 |     int block32 = 0; | 
 |     int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; | 
 |     ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE]; | 
 |     ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE]; | 
 |     TXFM_CONTEXT tx_above[MAX_MIB_SIZE]; | 
 |     TXFM_CONTEXT tx_left[MAX_MIB_SIZE]; | 
 |  | 
 |     RD_STATS pn_rd_stats; | 
 |     av1_init_rd_stats(&pn_rd_stats); | 
 |  | 
 |     av1_get_entropy_contexts(bsize, 0, pd, ctxa, ctxl); | 
 |     memcpy(tx_above, xd->above_txfm_context, | 
 |            sizeof(TXFM_CONTEXT) * (mi_width >> 1)); | 
 |     memcpy(tx_left, xd->left_txfm_context, | 
 |            sizeof(TXFM_CONTEXT) * (mi_height >> 1)); | 
 |  | 
 |     for (idy = 0; idy < mi_height; idy += bh) { | 
 |       for (idx = 0; idx < mi_width; idx += bw) { | 
 |         select_tx_block(cpi, x, idy, idx, 0, block, block32, max_tx_size, | 
 |                         mi_height != mi_width, plane_bsize, ctxa, ctxl, | 
 |                         tx_above, tx_left, &pn_rd_stats, ref_best_rd - this_rd, | 
 |                         &is_cost_valid, rd_stats_stack); | 
 |         av1_merge_rd_stats(rd_stats, &pn_rd_stats); | 
 |         this_rd += AOMMIN( | 
 |             RDCOST(x->rdmult, x->rddiv, pn_rd_stats.rate, pn_rd_stats.dist), | 
 |             RDCOST(x->rdmult, x->rddiv, 0, pn_rd_stats.sse)); | 
 |         block += step; | 
 |         ++block32; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   this_rd = AOMMIN(RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist), | 
 |                    RDCOST(x->rdmult, x->rddiv, 0, rd_stats->sse)); | 
 |   if (this_rd > ref_best_rd) is_cost_valid = 0; | 
 |  | 
 |   if (!is_cost_valid) { | 
 |     // reset cost value | 
 |     av1_invalid_rd_stats(rd_stats); | 
 |   } | 
 | } | 
 |  | 
 | static int64_t select_tx_size_fix_type(const AV1_COMP *cpi, MACROBLOCK *x, | 
 |                                        RD_STATS *rd_stats, BLOCK_SIZE bsize, | 
 |                                        int64_t ref_best_rd, TX_TYPE tx_type, | 
 |                                        RD_STATS *rd_stats_stack) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   const int is_inter = is_inter_block(mbmi); | 
 |   aom_prob skip_prob = av1_get_skip_prob(cm, xd); | 
 |   int s0 = av1_cost_bit(skip_prob, 0); | 
 |   int s1 = av1_cost_bit(skip_prob, 1); | 
 |   int64_t rd; | 
 |   int row, col; | 
 |   const int max_blocks_high = max_block_high(xd, bsize, 0); | 
 |   const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
 |  | 
 |   mbmi->tx_type = tx_type; | 
 |   mbmi->min_tx_size = TX_SIZES_ALL; | 
 |   inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, rd_stats_stack); | 
 |  | 
 |   if (rd_stats->rate == INT_MAX) return INT64_MAX; | 
 |  | 
 |   for (row = 0; row < max_blocks_high / 2; ++row) | 
 |     for (col = 0; col < max_blocks_wide / 2; ++col) | 
 |       mbmi->min_tx_size = AOMMIN( | 
 |           mbmi->min_tx_size, get_min_tx_size(mbmi->inter_tx_size[row][col])); | 
 |  | 
 | #if CONFIG_EXT_TX | 
 |   if (get_ext_tx_types(mbmi->min_tx_size, bsize, is_inter, | 
 |                        cm->reduced_tx_set_used) > 1 && | 
 |       !xd->lossless[xd->mi[0]->mbmi.segment_id]) { | 
 |     const int ext_tx_set = get_ext_tx_set(mbmi->min_tx_size, bsize, is_inter, | 
 |                                           cm->reduced_tx_set_used); | 
 |     if (is_inter) { | 
 |       if (ext_tx_set > 0) | 
 |         rd_stats->rate += | 
 |             cpi->inter_tx_type_costs[ext_tx_set] | 
 |                                     [txsize_sqr_map[mbmi->min_tx_size]] | 
 |                                     [mbmi->tx_type]; | 
 |     } else { | 
 |       if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX) | 
 |         rd_stats->rate += | 
 |             cpi->intra_tx_type_costs[ext_tx_set][mbmi->min_tx_size][mbmi->mode] | 
 |                                     [mbmi->tx_type]; | 
 |     } | 
 |   } | 
 | #else   // CONFIG_EXT_TX | 
 |   if (mbmi->min_tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id]) | 
 |     rd_stats->rate += | 
 |         cpi->inter_tx_type_costs[mbmi->min_tx_size][mbmi->tx_type]; | 
 | #endif  // CONFIG_EXT_TX | 
 |  | 
 |   if (rd_stats->skip) | 
 |     rd = RDCOST(x->rdmult, x->rddiv, s1, rd_stats->sse); | 
 |   else | 
 |     rd = RDCOST(x->rdmult, x->rddiv, rd_stats->rate + s0, rd_stats->dist); | 
 |  | 
 |   if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] && | 
 |       !(rd_stats->skip)) | 
 |     rd = AOMMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, rd_stats->sse)); | 
 |  | 
 |   return rd; | 
 | } | 
 |  | 
 | static void select_tx_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x, | 
 |                                RD_STATS *rd_stats, BLOCK_SIZE bsize, | 
 |                                int64_t ref_best_rd) { | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   int64_t rd = INT64_MAX; | 
 |   int64_t best_rd = INT64_MAX; | 
 |   TX_TYPE tx_type, best_tx_type = DCT_DCT; | 
 |   const int is_inter = is_inter_block(mbmi); | 
 |   TX_SIZE best_tx_size[MAX_MIB_SIZE][MAX_MIB_SIZE]; | 
 |   TX_SIZE best_tx = max_txsize_lookup[bsize]; | 
 |   TX_SIZE best_min_tx_size = TX_SIZES_ALL; | 
 |   uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE * 8]; | 
 |   const int n4 = bsize_to_num_blk(bsize); | 
 |   int idx, idy; | 
 |   int prune = 0; | 
 |   const int count32 = | 
 |       1 << (2 * (cm->mib_size_log2 - mi_width_log2_lookup[BLOCK_32X32])); | 
 | #if CONFIG_EXT_PARTITION | 
 |   RD_STATS rd_stats_stack[16]; | 
 | #else | 
 |   RD_STATS rd_stats_stack[4]; | 
 | #endif  // CONFIG_EXT_PARTITION | 
 | #if CONFIG_EXT_TX | 
 |   const int ext_tx_set = | 
 |       get_ext_tx_set(max_tx_size, bsize, is_inter, cm->reduced_tx_set_used); | 
 | #endif  // CONFIG_EXT_TX | 
 |  | 
 |   if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE) | 
 | #if CONFIG_EXT_TX | 
 |     prune = prune_tx_types(cpi, bsize, x, xd, ext_tx_set); | 
 | #else | 
 |     prune = prune_tx_types(cpi, bsize, x, xd, 0); | 
 | #endif  // CONFIG_EXT_TX | 
 |  | 
 |   av1_invalid_rd_stats(rd_stats); | 
 |  | 
 |   for (idx = 0; idx < count32; ++idx) | 
 |     av1_invalid_rd_stats(&rd_stats_stack[idx]); | 
 |  | 
 |   for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) { | 
 |     RD_STATS this_rd_stats; | 
 |     av1_init_rd_stats(&this_rd_stats); | 
 | #if CONFIG_EXT_TX | 
 |     if (is_inter) { | 
 |       if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue; | 
 |       if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) { | 
 |         if (!do_tx_type_search(tx_type, prune)) continue; | 
 |       } | 
 |     } else { | 
 |       if (!ALLOW_INTRA_EXT_TX && bsize >= BLOCK_8X8) { | 
 |         if (tx_type != intra_mode_to_tx_type_context[mbmi->mode]) continue; | 
 |       } | 
 |       if (!ext_tx_used_intra[ext_tx_set][tx_type]) continue; | 
 |     } | 
 | #else   // CONFIG_EXT_TX | 
 |     if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE && | 
 |         !do_tx_type_search(tx_type, prune)) | 
 |       continue; | 
 | #endif  // CONFIG_EXT_TX | 
 |     if (is_inter && x->use_default_inter_tx_type && | 
 |         tx_type != get_default_tx_type(0, xd, 0, max_tx_size)) | 
 |       continue; | 
 |  | 
 |     if (xd->lossless[mbmi->segment_id]) | 
 |       if (tx_type != DCT_DCT) continue; | 
 |  | 
 |     rd = select_tx_size_fix_type(cpi, x, &this_rd_stats, bsize, ref_best_rd, | 
 |                                  tx_type, rd_stats_stack); | 
 |  | 
 |     if (rd < best_rd) { | 
 |       best_rd = rd; | 
 |       *rd_stats = this_rd_stats; | 
 |       best_tx_type = mbmi->tx_type; | 
 |       best_tx = mbmi->tx_size; | 
 |       best_min_tx_size = mbmi->min_tx_size; | 
 |       memcpy(best_blk_skip, x->blk_skip[0], sizeof(best_blk_skip[0]) * n4); | 
 |       for (idy = 0; idy < xd->n8_h; ++idy) | 
 |         for (idx = 0; idx < xd->n8_w; ++idx) | 
 |           best_tx_size[idy][idx] = mbmi->inter_tx_size[idy][idx]; | 
 |     } | 
 |   } | 
 |  | 
 |   mbmi->tx_type = best_tx_type; | 
 |   for (idy = 0; idy < xd->n8_h; ++idy) | 
 |     for (idx = 0; idx < xd->n8_w; ++idx) | 
 |       mbmi->inter_tx_size[idy][idx] = best_tx_size[idy][idx]; | 
 |   mbmi->tx_size = best_tx; | 
 |   mbmi->min_tx_size = best_min_tx_size; | 
 |   memcpy(x->blk_skip[0], best_blk_skip, sizeof(best_blk_skip[0]) * n4); | 
 | } | 
 |  | 
 | static void tx_block_rd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, | 
 |                         int blk_col, int plane, int block, TX_SIZE tx_size, | 
 |                         BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *above_ctx, | 
 |                         ENTROPY_CONTEXT *left_ctx, RD_STATS *rd_stats) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   struct macroblock_plane *const p = &x->plane[plane]; | 
 |   struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; | 
 |   const int tx_row = blk_row >> (1 - pd->subsampling_y); | 
 |   const int tx_col = blk_col >> (1 - pd->subsampling_x); | 
 |   TX_SIZE plane_tx_size; | 
 |   const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
 |   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
 |  | 
 |   assert(tx_size < TX_SIZES_ALL); | 
 |  | 
 |   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
 |  | 
 |   plane_tx_size = | 
 |       plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0] | 
 |             : mbmi->inter_tx_size[tx_row][tx_col]; | 
 |  | 
 |   if (tx_size == plane_tx_size) { | 
 |     int i; | 
 |     ENTROPY_CONTEXT *ta = above_ctx + blk_col; | 
 |     ENTROPY_CONTEXT *tl = left_ctx + blk_row; | 
 |     av1_tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block, | 
 |                       plane_bsize, ta, tl, rd_stats); | 
 |  | 
 |     for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) | 
 |       ta[i] = !(p->eobs[block] == 0); | 
 |     for (i = 0; i < tx_size_high_unit[tx_size]; ++i) | 
 |       tl[i] = !(p->eobs[block] == 0); | 
 |   } else { | 
 |     const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
 |     const int bsl = tx_size_wide_unit[sub_txs]; | 
 |     int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs]; | 
 |     int i; | 
 |  | 
 |     assert(bsl > 0); | 
 |  | 
 |     for (i = 0; i < 4; ++i) { | 
 |       int offsetr = blk_row + (i >> 1) * bsl; | 
 |       int offsetc = blk_col + (i & 0x01) * bsl; | 
 |  | 
 |       if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; | 
 |  | 
 |       tx_block_rd(cpi, x, offsetr, offsetc, plane, block, sub_txs, plane_bsize, | 
 |                   above_ctx, left_ctx, rd_stats); | 
 |       block += step; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Return value 0: early termination triggered, no valid rd cost available; | 
 | //              1: rd cost values are valid. | 
 | static int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, | 
 |                             RD_STATS *rd_stats, BLOCK_SIZE bsize, | 
 |                             int64_t ref_best_rd) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   int plane; | 
 |   int is_cost_valid = 1; | 
 |   int64_t this_rd; | 
 |  | 
 |   if (ref_best_rd < 0) is_cost_valid = 0; | 
 |  | 
 |   av1_init_rd_stats(rd_stats); | 
 |  | 
 | #if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2 | 
 |   if (x->skip_chroma_rd) return is_cost_valid; | 
 |   bsize = AOMMAX(BLOCK_8X8, bsize); | 
 | #endif  // CONFIG_CB4X4 && !CONFIG_CHROMA_2X2 | 
 |  | 
 | #if CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |   if (is_rect_tx(mbmi->tx_size)) { | 
 |     return super_block_uvrd(cpi, x, rd_stats, bsize, ref_best_rd); | 
 |   } | 
 | #endif  // CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |  | 
 |   if (is_inter_block(mbmi) && is_cost_valid) { | 
 |     for (plane = 1; plane < MAX_MB_PLANE; ++plane) | 
 |       av1_subtract_plane(x, bsize, plane); | 
 |   } | 
 |  | 
 |   for (plane = 1; plane < MAX_MB_PLANE; ++plane) { | 
 |     const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |     const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); | 
 |     const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; | 
 |     const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; | 
 |     const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize]; | 
 |     const int bh = tx_size_high_unit[max_tx_size]; | 
 |     const int bw = tx_size_wide_unit[max_tx_size]; | 
 |     int idx, idy; | 
 |     int block = 0; | 
 |     const int step = bh * bw; | 
 |     ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE]; | 
 |     ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE]; | 
 |     RD_STATS pn_rd_stats; | 
 |     av1_init_rd_stats(&pn_rd_stats); | 
 |  | 
 |     av1_get_entropy_contexts(bsize, 0, pd, ta, tl); | 
 |  | 
 |     for (idy = 0; idy < mi_height; idy += bh) { | 
 |       for (idx = 0; idx < mi_width; idx += bw) { | 
 |         tx_block_rd(cpi, x, idy, idx, plane, block, max_tx_size, plane_bsize, | 
 |                     ta, tl, &pn_rd_stats); | 
 |         block += step; | 
 |       } | 
 |     } | 
 |  | 
 |     if (pn_rd_stats.rate == INT_MAX) { | 
 |       is_cost_valid = 0; | 
 |       break; | 
 |     } | 
 |  | 
 |     av1_merge_rd_stats(rd_stats, &pn_rd_stats); | 
 |  | 
 |     this_rd = | 
 |         AOMMIN(RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist), | 
 |                RDCOST(x->rdmult, x->rddiv, 0, rd_stats->sse)); | 
 |  | 
 |     if (this_rd > ref_best_rd) { | 
 |       is_cost_valid = 0; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!is_cost_valid) { | 
 |     // reset cost value | 
 |     av1_invalid_rd_stats(rd_stats); | 
 |   } | 
 |  | 
 |   return is_cost_valid; | 
 | } | 
 | #endif  // CONFIG_VAR_TX | 
 |  | 
 | #if CONFIG_PALETTE | 
 | static void rd_pick_palette_intra_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                        int dc_mode_cost, | 
 |                                        uint8_t *best_palette_color_map, | 
 |                                        MB_MODE_INFO *const best_mbmi, | 
 |                                        int64_t *best_rd, int *rate, | 
 |                                        int *rate_tokenonly, int64_t *distortion, | 
 |                                        int *skippable) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |   int this_rate; | 
 |   int64_t this_rd; | 
 |   int colors_u, colors_v, colors; | 
 |   const int src_stride = x->plane[1].src.stride; | 
 |   const uint8_t *const src_u = x->plane[1].src.buf; | 
 |   const uint8_t *const src_v = x->plane[2].src.buf; | 
 |   uint8_t *const color_map = xd->plane[1].color_index_map; | 
 |   RD_STATS tokenonly_rd_stats; | 
 |   int plane_block_width, plane_block_height, rows, cols; | 
 |   av1_get_block_dimensions(bsize, 1, xd, &plane_block_width, | 
 |                            &plane_block_height, &rows, &cols); | 
 |   if (rows * cols > PALETTE_MAX_BLOCK_SIZE) return; | 
 |  | 
 |   mbmi->uv_mode = DC_PRED; | 
 | #if CONFIG_FILTER_INTRA | 
 |   mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (cpi->common.use_highbitdepth) { | 
 |     colors_u = av1_count_colors_highbd(src_u, src_stride, rows, cols, | 
 |                                        cpi->common.bit_depth); | 
 |     colors_v = av1_count_colors_highbd(src_v, src_stride, rows, cols, | 
 |                                        cpi->common.bit_depth); | 
 |   } else { | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |     colors_u = av1_count_colors(src_u, src_stride, rows, cols); | 
 |     colors_v = av1_count_colors(src_v, src_stride, rows, cols); | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 |   colors = colors_u > colors_v ? colors_u : colors_v; | 
 |   if (colors > 1 && colors <= 64) { | 
 |     int r, c, n, i, j; | 
 |     const int max_itr = 50; | 
 |     uint8_t color_order[PALETTE_MAX_SIZE]; | 
 |     float lb_u, ub_u, val_u; | 
 |     float lb_v, ub_v, val_v; | 
 |     float *const data = x->palette_buffer->kmeans_data_buf; | 
 |     float centroids[2 * PALETTE_MAX_SIZE]; | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |     uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src_u); | 
 |     uint16_t *src_v16 = CONVERT_TO_SHORTPTR(src_v); | 
 |     if (cpi->common.use_highbitdepth) { | 
 |       lb_u = src_u16[0]; | 
 |       ub_u = src_u16[0]; | 
 |       lb_v = src_v16[0]; | 
 |       ub_v = src_v16[0]; | 
 |     } else { | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |       lb_u = src_u[0]; | 
 |       ub_u = src_u[0]; | 
 |       lb_v = src_v[0]; | 
 |       ub_v = src_v[0]; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |     } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 |     for (r = 0; r < rows; ++r) { | 
 |       for (c = 0; c < cols; ++c) { | 
 | #if CONFIG_HIGHBITDEPTH | 
 |         if (cpi->common.use_highbitdepth) { | 
 |           val_u = src_u16[r * src_stride + c]; | 
 |           val_v = src_v16[r * src_stride + c]; | 
 |           data[(r * cols + c) * 2] = val_u; | 
 |           data[(r * cols + c) * 2 + 1] = val_v; | 
 |         } else { | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |           val_u = src_u[r * src_stride + c]; | 
 |           val_v = src_v[r * src_stride + c]; | 
 |           data[(r * cols + c) * 2] = val_u; | 
 |           data[(r * cols + c) * 2 + 1] = val_v; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |         } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |         if (val_u < lb_u) | 
 |           lb_u = val_u; | 
 |         else if (val_u > ub_u) | 
 |           ub_u = val_u; | 
 |         if (val_v < lb_v) | 
 |           lb_v = val_v; | 
 |         else if (val_v > ub_v) | 
 |           ub_v = val_v; | 
 |       } | 
 |     } | 
 |  | 
 |     for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2; | 
 |          --n) { | 
 |       for (i = 0; i < n; ++i) { | 
 |         centroids[i * 2] = lb_u + (2 * i + 1) * (ub_u - lb_u) / n / 2; | 
 |         centroids[i * 2 + 1] = lb_v + (2 * i + 1) * (ub_v - lb_v) / n / 2; | 
 |       } | 
 |       av1_k_means(data, centroids, color_map, rows * cols, n, 2, max_itr); | 
 | #if CONFIG_PALETTE_DELTA_ENCODING | 
 |       // Sort the U channel colors in ascending order. | 
 |       for (i = 0; i < 2 * (n - 1); i += 2) { | 
 |         int min_idx = i; | 
 |         float min_val = centroids[i]; | 
 |         for (j = i + 2; j < 2 * n; j += 2) | 
 |           if (centroids[j] < min_val) min_val = centroids[j], min_idx = j; | 
 |         if (min_idx != i) { | 
 |           float temp_u = centroids[i], temp_v = centroids[i + 1]; | 
 |           centroids[i] = centroids[min_idx]; | 
 |           centroids[i + 1] = centroids[min_idx + 1]; | 
 |           centroids[min_idx] = temp_u, centroids[min_idx + 1] = temp_v; | 
 |         } | 
 |       } | 
 |       av1_calc_indices(data, centroids, color_map, rows * cols, n, 2); | 
 | #endif  // CONFIG_PALETTE_DELTA_ENCODING | 
 |       extend_palette_color_map(color_map, cols, rows, plane_block_width, | 
 |                                plane_block_height); | 
 |       pmi->palette_size[1] = n; | 
 |       for (i = 1; i < 3; ++i) { | 
 |         for (j = 0; j < n; ++j) { | 
 | #if CONFIG_HIGHBITDEPTH | 
 |           if (cpi->common.use_highbitdepth) | 
 |             pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = clip_pixel_highbd( | 
 |                 (int)centroids[j * 2 + i - 1], cpi->common.bit_depth); | 
 |           else | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |             pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = | 
 |                 clip_pixel((int)centroids[j * 2 + i - 1]); | 
 |         } | 
 |       } | 
 |  | 
 |       super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); | 
 |       if (tokenonly_rd_stats.rate == INT_MAX) continue; | 
 |       this_rate = | 
 |           tokenonly_rd_stats.rate + dc_mode_cost + | 
 |           cpi->palette_uv_size_cost[bsize - BLOCK_8X8][n - PALETTE_MIN_SIZE] + | 
 |           write_uniform_cost(n, color_map[0]) + | 
 |           av1_cost_bit( | 
 |               av1_default_palette_uv_mode_prob[pmi->palette_size[0] > 0], 1); | 
 |       this_rate += av1_palette_color_cost_uv(pmi, cpi->common.bit_depth); | 
 |       for (i = 0; i < rows; ++i) { | 
 |         for (j = (i == 0 ? 1 : 0); j < cols; ++j) { | 
 |           int color_idx; | 
 |           const int color_ctx = av1_get_palette_color_index_context( | 
 |               color_map, plane_block_width, i, j, n, color_order, &color_idx); | 
 |           assert(color_idx >= 0 && color_idx < n); | 
 |           this_rate += cpi->palette_uv_color_cost[n - PALETTE_MIN_SIZE] | 
 |                                                  [color_ctx][color_idx]; | 
 |         } | 
 |       } | 
 |  | 
 |       this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist); | 
 |       if (this_rd < *best_rd) { | 
 |         *best_rd = this_rd; | 
 |         *best_mbmi = *mbmi; | 
 |         memcpy(best_palette_color_map, color_map, | 
 |                plane_block_width * plane_block_height * | 
 |                    sizeof(best_palette_color_map[0])); | 
 |         *rate = this_rate; | 
 |         *distortion = tokenonly_rd_stats.dist; | 
 |         *rate_tokenonly = tokenonly_rd_stats.rate; | 
 |         *skippable = tokenonly_rd_stats.skip; | 
 |       } | 
 |     } | 
 |   } | 
 |   if (best_mbmi->palette_mode_info.palette_size[1] > 0) { | 
 |     memcpy(color_map, best_palette_color_map, | 
 |            rows * cols * sizeof(best_palette_color_map[0])); | 
 |   } | 
 | } | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 | #if CONFIG_FILTER_INTRA | 
 | // Return 1 if an filter intra mode is selected; return 0 otherwise. | 
 | static int rd_pick_filter_intra_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                      int *rate, int *rate_tokenonly, | 
 |                                      int64_t *distortion, int *skippable, | 
 |                                      BLOCK_SIZE bsize, int64_t *best_rd) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   int filter_intra_selected_flag = 0; | 
 |   int this_rate; | 
 |   int64_t this_rd; | 
 |   FILTER_INTRA_MODE mode; | 
 |   FILTER_INTRA_MODE_INFO filter_intra_mode_info; | 
 |   RD_STATS tokenonly_rd_stats; | 
 |  | 
 |   av1_zero(filter_intra_mode_info); | 
 |   mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 1; | 
 |   mbmi->uv_mode = DC_PRED; | 
 | #if CONFIG_PALETTE | 
 |   mbmi->palette_mode_info.palette_size[1] = 0; | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 |   for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) { | 
 |     mbmi->filter_intra_mode_info.filter_intra_mode[1] = mode; | 
 |     if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd)) | 
 |       continue; | 
 |  | 
 |     this_rate = tokenonly_rd_stats.rate + | 
 |                 av1_cost_bit(cpi->common.fc->filter_intra_probs[1], 1) + | 
 |                 cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode] + | 
 |                 write_uniform_cost(FILTER_INTRA_MODES, mode); | 
 |     this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist); | 
 |     if (this_rd < *best_rd) { | 
 |       *best_rd = this_rd; | 
 |       *rate = this_rate; | 
 |       *rate_tokenonly = tokenonly_rd_stats.rate; | 
 |       *distortion = tokenonly_rd_stats.dist; | 
 |       *skippable = tokenonly_rd_stats.skip; | 
 |       filter_intra_mode_info = mbmi->filter_intra_mode_info; | 
 |       filter_intra_selected_flag = 1; | 
 |     } | 
 |   } | 
 |  | 
 |   if (filter_intra_selected_flag) { | 
 |     mbmi->uv_mode = DC_PRED; | 
 |     mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = | 
 |         filter_intra_mode_info.use_filter_intra_mode[1]; | 
 |     mbmi->filter_intra_mode_info.filter_intra_mode[1] = | 
 |         filter_intra_mode_info.filter_intra_mode[1]; | 
 |     return 1; | 
 |   } else { | 
 |     return 0; | 
 |   } | 
 | } | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 | #if CONFIG_EXT_INTRA | 
 | // Run RD calculation with given chroma intra prediction angle., and return | 
 | // the RD cost. Update the best mode info. if the RD cost is the best so far. | 
 | static int64_t pick_intra_angle_routine_sbuv( | 
 |     const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, | 
 |     int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats, | 
 |     int *best_angle_delta, int64_t *best_rd) { | 
 |   MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi; | 
 |   int this_rate; | 
 |   int64_t this_rd; | 
 |   RD_STATS tokenonly_rd_stats; | 
 |  | 
 |   if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in)) | 
 |     return INT64_MAX; | 
 |   this_rate = tokenonly_rd_stats.rate + rate_overhead; | 
 |   this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist); | 
 |   if (this_rd < *best_rd) { | 
 |     *best_rd = this_rd; | 
 |     *best_angle_delta = mbmi->angle_delta[1]; | 
 |     *rate = this_rate; | 
 |     rd_stats->rate = tokenonly_rd_stats.rate; | 
 |     rd_stats->dist = tokenonly_rd_stats.dist; | 
 |     rd_stats->skip = tokenonly_rd_stats.skip; | 
 |   } | 
 |   return this_rd; | 
 | } | 
 |  | 
 | // With given chroma directional intra prediction mode, pick the best angle | 
 | // delta. Return true if a RD cost that is smaller than the input one is found. | 
 | static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                     BLOCK_SIZE bsize, int rate_overhead, | 
 |                                     int64_t best_rd, int *rate, | 
 |                                     RD_STATS *rd_stats) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   int i, angle_delta, best_angle_delta = 0; | 
 |   int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; | 
 |  | 
 |   rd_stats->rate = INT_MAX; | 
 |   rd_stats->skip = 0; | 
 |   rd_stats->dist = INT64_MAX; | 
 |   for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; | 
 |  | 
 |   for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { | 
 |     for (i = 0; i < 2; ++i) { | 
 |       best_rd_in = (best_rd == INT64_MAX) | 
 |                        ? INT64_MAX | 
 |                        : (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5))); | 
 |       mbmi->angle_delta[1] = (1 - 2 * i) * angle_delta; | 
 |       this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, | 
 |                                               best_rd_in, rate, rd_stats, | 
 |                                               &best_angle_delta, &best_rd); | 
 |       rd_cost[2 * angle_delta + i] = this_rd; | 
 |       if (angle_delta == 0) { | 
 |         if (this_rd == INT64_MAX) return 0; | 
 |         rd_cost[1] = this_rd; | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   assert(best_rd != INT64_MAX); | 
 |   for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { | 
 |     int64_t rd_thresh; | 
 |     for (i = 0; i < 2; ++i) { | 
 |       int skip_search = 0; | 
 |       rd_thresh = best_rd + (best_rd >> 5); | 
 |       if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && | 
 |           rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) | 
 |         skip_search = 1; | 
 |       if (!skip_search) { | 
 |         mbmi->angle_delta[1] = (1 - 2 * i) * angle_delta; | 
 |         pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd, | 
 |                                       rate, rd_stats, &best_angle_delta, | 
 |                                       &best_rd); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   mbmi->angle_delta[1] = best_angle_delta; | 
 |   return rd_stats->rate != INT_MAX; | 
 | } | 
 | #endif  // CONFIG_EXT_INTRA | 
 |  | 
 | static int64_t rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                        int *rate, int *rate_tokenonly, | 
 |                                        int64_t *distortion, int *skippable, | 
 |                                        BLOCK_SIZE bsize, TX_SIZE max_tx_size) { | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   MB_MODE_INFO best_mbmi = *mbmi; | 
 |   PREDICTION_MODE mode; | 
 |   int64_t best_rd = INT64_MAX, this_rd; | 
 |   int this_rate; | 
 |   RD_STATS tokenonly_rd_stats; | 
 | #if CONFIG_PVQ | 
 |   od_rollback_buffer buf; | 
 |   od_encode_checkpoint(&x->daala_enc, &buf); | 
 | #endif  // CONFIG_PVQ | 
 | #if CONFIG_PALETTE | 
 |   PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
 |   uint8_t *best_palette_color_map = NULL; | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 | #if CONFIG_FILTER_INTRA | 
 |   mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 | #if CONFIG_PALETTE | 
 |   pmi->palette_size[1] = 0; | 
 | #endif  // CONFIG_PALETTE | 
 |   for (mode = DC_PRED; mode <= TM_PRED; ++mode) { | 
 | #if CONFIG_EXT_INTRA | 
 |     const int is_directional_mode = | 
 |         av1_is_directional_mode(mode, mbmi->sb_type); | 
 | #endif  // CONFIG_EXT_INTRA | 
 |     if (!(cpi->sf.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] & | 
 |           (1 << mode))) | 
 |       continue; | 
 |  | 
 |     mbmi->uv_mode = mode; | 
 | #if CONFIG_EXT_INTRA | 
 |     mbmi->angle_delta[1] = 0; | 
 |     if (is_directional_mode) { | 
 |       const int rate_overhead = cpi->intra_uv_mode_cost[mbmi->mode][mode] + | 
 |                                 write_uniform_cost(2 * MAX_ANGLE_DELTA + 1, 0); | 
 |       if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd, | 
 |                                     &this_rate, &tokenonly_rd_stats)) | 
 |         continue; | 
 |     } else { | 
 | #endif  // CONFIG_EXT_INTRA | 
 |       if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) { | 
 | #if CONFIG_PVQ | 
 |         od_encode_rollback(&x->daala_enc, &buf); | 
 | #endif  // CONFIG_PVQ | 
 |         continue; | 
 |       } | 
 | #if CONFIG_EXT_INTRA | 
 |     } | 
 | #endif  // CONFIG_EXT_INTRA | 
 |     this_rate = | 
 |         tokenonly_rd_stats.rate + cpi->intra_uv_mode_cost[mbmi->mode][mode]; | 
 |  | 
 | #if CONFIG_EXT_INTRA | 
 |     if (is_directional_mode) { | 
 |       this_rate += write_uniform_cost(2 * MAX_ANGLE_DELTA + 1, | 
 |                                       MAX_ANGLE_DELTA + mbmi->angle_delta[1]); | 
 |     } | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_FILTER_INTRA | 
 |     if (mbmi->sb_type >= BLOCK_8X8 && mode == DC_PRED) | 
 |       this_rate += av1_cost_bit(cpi->common.fc->filter_intra_probs[1], 0); | 
 | #endif  // CONFIG_FILTER_INTRA | 
 | #if CONFIG_PALETTE | 
 |     if (cpi->common.allow_screen_content_tools && mbmi->sb_type >= BLOCK_8X8 && | 
 |         mode == DC_PRED) | 
 |       this_rate += av1_cost_bit( | 
 |           av1_default_palette_uv_mode_prob[pmi->palette_size[0] > 0], 0); | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 | #if CONFIG_PVQ | 
 |     od_encode_rollback(&x->daala_enc, &buf); | 
 | #endif  // CONFIG_PVQ | 
 |     this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist); | 
 |  | 
 |     if (this_rd < best_rd) { | 
 |       best_mbmi = *mbmi; | 
 |       best_rd = this_rd; | 
 |       *rate = this_rate; | 
 |       *rate_tokenonly = tokenonly_rd_stats.rate; | 
 |       *distortion = tokenonly_rd_stats.dist; | 
 |       *skippable = tokenonly_rd_stats.skip; | 
 |     } | 
 |   } | 
 |  | 
 | #if CONFIG_PALETTE | 
 |   if (cpi->common.allow_screen_content_tools && mbmi->sb_type >= BLOCK_8X8) { | 
 |     best_palette_color_map = x->palette_buffer->best_palette_color_map; | 
 |     rd_pick_palette_intra_sbuv(cpi, x, | 
 |                                cpi->intra_uv_mode_cost[mbmi->mode][DC_PRED], | 
 |                                best_palette_color_map, &best_mbmi, &best_rd, | 
 |                                rate, rate_tokenonly, distortion, skippable); | 
 |   } | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 | #if CONFIG_FILTER_INTRA | 
 |   if (mbmi->sb_type >= BLOCK_8X8) { | 
 |     if (rd_pick_filter_intra_sbuv(cpi, x, rate, rate_tokenonly, distortion, | 
 |                                   skippable, bsize, &best_rd)) | 
 |       best_mbmi = *mbmi; | 
 |   } | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 |   *mbmi = best_mbmi; | 
 |   // Make sure we actually chose a mode | 
 |   assert(best_rd < INT64_MAX); | 
 |   return best_rd; | 
 | } | 
 |  | 
 | static void choose_intra_uv_mode(const AV1_COMP *const cpi, MACROBLOCK *const x, | 
 |                                  PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize, | 
 |                                  TX_SIZE max_tx_size, int *rate_uv, | 
 |                                  int *rate_uv_tokenonly, int64_t *dist_uv, | 
 |                                  int *skip_uv, PREDICTION_MODE *mode_uv) { | 
 |   // Use an estimated rd for uv_intra based on DC_PRED if the | 
 |   // appropriate speed flag is set. | 
 |   (void)ctx; | 
 | #if CONFIG_CB4X4 | 
 | #if CONFIG_CHROMA_2X2 | 
 |   rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, | 
 |                           bsize, max_tx_size); | 
 | #else | 
 |   max_tx_size = AOMMAX(max_tx_size, TX_4X4); | 
 |   if (x->skip_chroma_rd) { | 
 |     *rate_uv = 0; | 
 |     *rate_uv_tokenonly = 0; | 
 |     *dist_uv = 0; | 
 |     *skip_uv = 1; | 
 |     *mode_uv = DC_PRED; | 
 |     return; | 
 |   } | 
 |   BLOCK_SIZE bs = scale_chroma_bsize(bsize, x->e_mbd.plane[1].subsampling_x, | 
 |                                      x->e_mbd.plane[1].subsampling_y); | 
 |   rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, | 
 |                           bs, max_tx_size); | 
 | #endif  // CONFIG_CHROMA_2X2 | 
 | #else | 
 |   rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, | 
 |                           bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, max_tx_size); | 
 | #endif  // CONFIG_CB4X4 | 
 |   *mode_uv = x->e_mbd.mi[0]->mbmi.uv_mode; | 
 | } | 
 |  | 
 | static int cost_mv_ref(const AV1_COMP *const cpi, PREDICTION_MODE mode, | 
 |                        int16_t mode_context) { | 
 | #if CONFIG_EXT_INTER | 
 |   if (is_inter_compound_mode(mode)) { | 
 |     return cpi | 
 |         ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)]; | 
 |   } | 
 | #endif | 
 |  | 
 | #if CONFIG_REF_MV | 
 |   int mode_cost = 0; | 
 |   int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; | 
 |   int16_t is_all_zero_mv = mode_context & (1 << ALL_ZERO_FLAG_OFFSET); | 
 |  | 
 |   assert(is_inter_mode(mode)); | 
 |  | 
 |   if (mode == NEWMV) { | 
 |     mode_cost = cpi->newmv_mode_cost[mode_ctx][0]; | 
 |     return mode_cost; | 
 |   } else { | 
 |     mode_cost = cpi->newmv_mode_cost[mode_ctx][1]; | 
 |     mode_ctx = (mode_context >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK; | 
 |  | 
 |     if (is_all_zero_mv) return mode_cost; | 
 |  | 
 |     if (mode == ZEROMV) { | 
 |       mode_cost += cpi->zeromv_mode_cost[mode_ctx][0]; | 
 |       return mode_cost; | 
 |     } else { | 
 |       mode_cost += cpi->zeromv_mode_cost[mode_ctx][1]; | 
 |       mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; | 
 |  | 
 |       if (mode_context & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6; | 
 |       if (mode_context & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7; | 
 |       if (mode_context & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8; | 
 |  | 
 |       mode_cost += cpi->refmv_mode_cost[mode_ctx][mode != NEARESTMV]; | 
 |       return mode_cost; | 
 |     } | 
 |   } | 
 | #else | 
 |   assert(is_inter_mode(mode)); | 
 |   return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)]; | 
 | #endif  // CONFIG_REF_MV | 
 | } | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 | static int get_interinter_compound_type_bits(BLOCK_SIZE bsize, | 
 |                                              COMPOUND_TYPE comp_type) { | 
 |   (void)bsize; | 
 |   switch (comp_type) { | 
 |     case COMPOUND_AVERAGE: return 0; | 
 | #if CONFIG_WEDGE | 
 |     case COMPOUND_WEDGE: return get_interinter_wedge_bits(bsize); | 
 | #endif  // CONFIG_WEDGE | 
 | #if CONFIG_COMPOUND_SEGMENT | 
 |     case COMPOUND_SEG: return 1; | 
 | #endif  // CONFIG_COMPOUND_SEGMENT | 
 |     default: assert(0); return 0; | 
 |   } | 
 | } | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 | static int set_and_cost_bmi_mvs( | 
 |     const AV1_COMP *const cpi, MACROBLOCK *x, MACROBLOCKD *xd, int i, | 
 |     PREDICTION_MODE mode, int_mv this_mv[2], | 
 |     int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME], | 
 |     int_mv seg_mvs[TOTAL_REFS_PER_FRAME], | 
 | #if CONFIG_EXT_INTER | 
 |     int_mv compound_seg_newmvs[2], | 
 | #endif  // CONFIG_EXT_INTER | 
 |     int_mv *best_ref_mv[2], const int *mvjcost, int *mvcost[2], int mi_row, | 
 |     int mi_col) { | 
 |   MODE_INFO *const mic = xd->mi[0]; | 
 |   const MB_MODE_INFO *const mbmi = &mic->mbmi; | 
 |   const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; | 
 |   int thismvcost = 0; | 
 |   int idx, idy; | 
 |   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type]; | 
 |   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type]; | 
 |   const int is_compound = has_second_ref(mbmi); | 
 |   int mode_ctx; | 
 |   (void)mi_row; | 
 |   (void)mi_col; | 
 |  | 
 |   switch (mode) { | 
 |     case NEWMV: this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int; | 
 | #if CONFIG_EXT_INTER | 
 |       if (!cpi->common.allow_high_precision_mv) | 
 |         lower_mv_precision(&this_mv[0].as_mv, 0); | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 | #if CONFIG_REF_MV | 
 |       for (idx = 0; idx < 1 + is_compound; ++idx) { | 
 |         this_mv[idx] = seg_mvs[mbmi->ref_frame[idx]]; | 
 |         av1_set_mvcost(x, mbmi->ref_frame[idx], idx, mbmi->ref_mv_idx); | 
 |         thismvcost += | 
 |             av1_mv_bit_cost(&this_mv[idx].as_mv, &best_ref_mv[idx]->as_mv, | 
 |                             x->nmvjointcost, x->mvcost, MV_COST_WEIGHT_SUB); | 
 |       } | 
 |       (void)mvjcost; | 
 |       (void)mvcost; | 
 | #else | 
 |       thismvcost += av1_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv, | 
 |                                     mvjcost, mvcost, MV_COST_WEIGHT_SUB); | 
 | #if !CONFIG_EXT_INTER | 
 |       if (is_compound) { | 
 |         this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int; | 
 |         thismvcost += av1_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv, | 
 |                                       mvjcost, mvcost, MV_COST_WEIGHT_SUB); | 
 |       } | 
 | #endif  // !CONFIG_EXT_INTER | 
 | #endif  // CONFIG_REF_MV | 
 |       break; | 
 |     case NEARMV: | 
 |     case NEARESTMV: | 
 |       this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int; | 
 |       if (is_compound) | 
 |         this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int; | 
 |       break; | 
 |     case ZEROMV: { | 
 |       int ref; | 
 |       for (ref = 0; ref < 1 + is_compound; ++ref) { | 
 | #if CONFIG_GLOBAL_MOTION | 
 |         this_mv[ref].as_int = | 
 |             gm_get_motion_vector( | 
 |                 &cpi->common.global_motion[mbmi->ref_frame[ref]], | 
 |                 cpi->common.allow_high_precision_mv, mbmi->sb_type, mi_col, | 
 |                 mi_row, i) | 
 |                 .as_int; | 
 | #else | 
 |         this_mv[ref].as_int = 0; | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |       } | 
 |       break; | 
 |     } | 
 | #if CONFIG_EXT_INTER | 
 |     case NEW_NEWMV: | 
 |       if (compound_seg_newmvs[0].as_int == INVALID_MV || | 
 |           compound_seg_newmvs[1].as_int == INVALID_MV) { | 
 |         this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int; | 
 |         this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int; | 
 |       } else { | 
 |         this_mv[0].as_int = compound_seg_newmvs[0].as_int; | 
 |         this_mv[1].as_int = compound_seg_newmvs[1].as_int; | 
 |       } | 
 |       if (!cpi->common.allow_high_precision_mv) | 
 |         lower_mv_precision(&this_mv[0].as_mv, 0); | 
 |       if (!cpi->common.allow_high_precision_mv) | 
 |         lower_mv_precision(&this_mv[1].as_mv, 0); | 
 | #if CONFIG_REF_MV | 
 |       av1_set_mvcost(x, mbmi->ref_frame[0], 0, mbmi->ref_mv_idx); | 
 | #endif | 
 |       thismvcost += av1_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv, | 
 |                                     mvjcost, mvcost, MV_COST_WEIGHT_SUB); | 
 | #if CONFIG_REF_MV | 
 |       av1_set_mvcost(x, mbmi->ref_frame[1], 1, mbmi->ref_mv_idx); | 
 | #endif | 
 |       thismvcost += av1_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv, | 
 |                                     mvjcost, mvcost, MV_COST_WEIGHT_SUB); | 
 |       break; | 
 |     case NEW_NEARMV: | 
 |     case NEW_NEARESTMV: | 
 |       this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int; | 
 |       if (!cpi->common.allow_high_precision_mv) | 
 |         lower_mv_precision(&this_mv[0].as_mv, 0); | 
 | #if CONFIG_REF_MV | 
 |       av1_set_mvcost(x, mbmi->ref_frame[0], 0, mbmi->ref_mv_idx); | 
 | #endif | 
 |       thismvcost += av1_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv, | 
 |                                     mvjcost, mvcost, MV_COST_WEIGHT_SUB); | 
 |       this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int; | 
 |       break; | 
 |     case NEAR_NEWMV: | 
 |     case NEAREST_NEWMV: | 
 |       this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int; | 
 |       this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int; | 
 |       if (!cpi->common.allow_high_precision_mv) | 
 |         lower_mv_precision(&this_mv[1].as_mv, 0); | 
 | #if CONFIG_REF_MV | 
 |       av1_set_mvcost(x, mbmi->ref_frame[1], 1, mbmi->ref_mv_idx); | 
 | #endif | 
 |       thismvcost += av1_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv, | 
 |                                     mvjcost, mvcost, MV_COST_WEIGHT_SUB); | 
 |       break; | 
 |     case NEAREST_NEARMV: | 
 |     case NEAR_NEARESTMV: | 
 |     case NEAREST_NEARESTMV: | 
 |     case NEAR_NEARMV: | 
 |       this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int; | 
 |       this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int; | 
 |       break; | 
 |     case ZERO_ZEROMV: | 
 | #if CONFIG_GLOBAL_MOTION | 
 |       this_mv[0].as_int = | 
 |           gm_get_motion_vector(&cpi->common.global_motion[mbmi->ref_frame[0]], | 
 |                                cpi->common.allow_high_precision_mv, | 
 |                                mbmi->sb_type, mi_col, mi_row, i) | 
 |               .as_int; | 
 |       this_mv[1].as_int = | 
 |           gm_get_motion_vector(&cpi->common.global_motion[mbmi->ref_frame[1]], | 
 |                                cpi->common.allow_high_precision_mv, | 
 |                                mbmi->sb_type, mi_col, mi_row, i) | 
 |               .as_int; | 
 | #else | 
 |       this_mv[0].as_int = 0; | 
 |       this_mv[1].as_int = 0; | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |       break; | 
 | #endif  // CONFIG_EXT_INTER | 
 |     default: break; | 
 |   } | 
 |  | 
 |   mic->bmi[i].as_mv[0].as_int = this_mv[0].as_int; | 
 |   if (is_compound) mic->bmi[i].as_mv[1].as_int = this_mv[1].as_int; | 
 |  | 
 |   mic->bmi[i].as_mode = mode; | 
 |  | 
 | #if CONFIG_REF_MV | 
 |   if (mode == NEWMV) { | 
 |     mic->bmi[i].pred_mv[0].as_int = | 
 |         mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_int; | 
 |     if (is_compound) | 
 |       mic->bmi[i].pred_mv[1].as_int = | 
 |           mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_int; | 
 |   } else { | 
 |     mic->bmi[i].pred_mv[0].as_int = this_mv[0].as_int; | 
 |     if (is_compound) mic->bmi[i].pred_mv[1].as_int = this_mv[1].as_int; | 
 |   } | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 |   for (idy = 0; idy < num_4x4_blocks_high; ++idy) | 
 |     for (idx = 0; idx < num_4x4_blocks_wide; ++idx) | 
 |       memmove(&mic->bmi[i + idy * 2 + idx], &mic->bmi[i], sizeof(mic->bmi[i])); | 
 |  | 
 | #if CONFIG_REF_MV | 
 | #if CONFIG_EXT_INTER | 
 |   if (is_compound) | 
 |     mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]]; | 
 |   else | 
 | #endif  // CONFIG_EXT_INTER | 
 |     mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, | 
 |                                          mbmi->ref_frame, mbmi->sb_type, i); | 
 | #else  // CONFIG_REF_MV | 
 |   mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]]; | 
 | #endif  // CONFIG_REF_MV | 
 |   return cost_mv_ref(cpi, mode, mode_ctx) + thismvcost; | 
 | } | 
 |  | 
 | static int64_t encode_inter_mb_segment_sub8x8( | 
 |     const AV1_COMP *const cpi, MACROBLOCK *x, int64_t best_yrd, int i, | 
 |     int *labelyrate, int64_t *distortion, int64_t *sse, ENTROPY_CONTEXT *ta, | 
 |     ENTROPY_CONTEXT *tl, int ir, int ic, int mi_row, int mi_col) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   struct macroblockd_plane *const pd = &xd->plane[0]; | 
 |   struct macroblock_plane *const p = &x->plane[0]; | 
 |   MODE_INFO *const mi = xd->mi[0]; | 
 |   const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd); | 
 |   const int txb_width = max_block_wide(xd, plane_bsize, 0); | 
 |   const int txb_height = max_block_high(xd, plane_bsize, 0); | 
 |   const int width = block_size_wide[plane_bsize]; | 
 |   const int height = block_size_high[plane_bsize]; | 
 |   int idx, idy; | 
 |   const uint8_t *const src = | 
 |       &p->src.buf[av1_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; | 
 |   uint8_t *const dst = | 
 |       &pd->dst.buf[av1_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)]; | 
 |   int64_t thisdistortion = 0, thissse = 0; | 
 |   int thisrate = 0; | 
 |   TX_SIZE tx_size = mi->mbmi.tx_size; | 
 |   TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, i, tx_size); | 
 |   const int num_4x4_w = tx_size_wide_unit[tx_size]; | 
 |   const int num_4x4_h = tx_size_high_unit[tx_size]; | 
 | #if !CONFIG_PVQ | 
 |   const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 1); | 
 | #else | 
 |   (void)cpi; | 
 |   (void)ta; | 
 |   (void)tl; | 
 |   (void)tx_type; | 
 | #endif  // !CONFIG_PVQ | 
 |  | 
 | #if CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |   assert(IMPLIES(xd->lossless[mi->mbmi.segment_id], tx_size == TX_4X4)); | 
 |   assert(IMPLIES(!xd->lossless[mi->mbmi.segment_id], | 
 |                  tx_size == max_txsize_rect_lookup[mi->mbmi.sb_type])); | 
 | #else | 
 |   assert(tx_size == TX_4X4); | 
 | #endif  // CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |  | 
 |   assert(tx_type == DCT_DCT); | 
 |  | 
 |   av1_build_inter_predictor_sub8x8(xd, 0, i, ir, ic, mi_row, mi_col); | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |     aom_highbd_subtract_block( | 
 |         height, width, av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), | 
 |         8, src, p->src.stride, dst, pd->dst.stride, xd->bd); | 
 |   } else { | 
 |     aom_subtract_block(height, width, | 
 |                        av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), | 
 |                        8, src, p->src.stride, dst, pd->dst.stride); | 
 |   } | 
 | #else | 
 |   aom_subtract_block(height, width, | 
 |                      av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), | 
 |                      8, src, p->src.stride, dst, pd->dst.stride); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 |   for (idy = 0; idy < txb_height; idy += num_4x4_h) { | 
 |     for (idx = 0; idx < txb_width; idx += num_4x4_w) { | 
 |       int64_t dist, ssz, rd, rd1, rd2; | 
 |       int coeff_ctx; | 
 |       const int k = i + (idy * 2 + idx); | 
 |       const int block = av1_raster_order_to_block_index(tx_size, k); | 
 |       assert(IMPLIES(tx_size == TX_4X8 || tx_size == TX_8X4, | 
 |                      idx == 0 && idy == 0)); | 
 |       coeff_ctx = combine_entropy_contexts(*(ta + (k & 1)), *(tl + (k >> 1))); | 
 |       av1_xform_quant(cm, x, 0, block, idy + (i >> 1), idx + (i & 0x01), | 
 |                       BLOCK_8X8, tx_size, coeff_ctx, AV1_XFORM_QUANT_FP); | 
 |       if (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0) | 
 |         av1_optimize_b(cm, x, 0, block, tx_size, coeff_ctx); | 
 |       av1_dist_block(cpi, x, 0, BLOCK_8X8, block, idy + (i >> 1), | 
 |                      idx + (i & 0x1), tx_size, &dist, &ssz, | 
 |                      OUTPUT_HAS_PREDICTED_PIXELS); | 
 |       thisdistortion += dist; | 
 |       thissse += ssz; | 
 | #if !CONFIG_PVQ | 
 |       thisrate += | 
 |           av1_cost_coeffs(cpi, x, 0, block, tx_size, scan_order, (ta + (k & 1)), | 
 |                           (tl + (k >> 1)), cpi->sf.use_fast_coef_costing); | 
 |       *(ta + (k & 1)) = !(p->eobs[block] == 0); | 
 |       *(tl + (k >> 1)) = !(p->eobs[block] == 0); | 
 | #else | 
 |       thisrate += x->rate; | 
 | #endif  // !CONFIG_PVQ | 
 | #if CONFIG_EXT_TX | 
 |       if (tx_size == TX_8X4) { | 
 |         *(ta + (k & 1) + 1) = *(ta + (k & 1)); | 
 |       } | 
 |       if (tx_size == TX_4X8) { | 
 |         *(tl + (k >> 1) + 1) = *(tl + (k >> 1)); | 
 |       } | 
 | #endif  // CONFIG_EXT_TX | 
 |       rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion); | 
 |       rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse); | 
 |       rd = AOMMIN(rd1, rd2); | 
 |       if (rd >= best_yrd) return INT64_MAX; | 
 |     } | 
 |   } | 
 |  | 
 |   *distortion = thisdistortion; | 
 |   *labelyrate = thisrate; | 
 |   *sse = thissse; | 
 |  | 
 |   return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion); | 
 | } | 
 |  | 
 | typedef struct { | 
 |   int eobs; | 
 |   int brate; | 
 |   int byrate; | 
 |   int64_t bdist; | 
 |   int64_t bsse; | 
 |   int64_t brdcost; | 
 |   int_mv mvs[2]; | 
 | #if CONFIG_REF_MV | 
 |   int_mv pred_mv[2]; | 
 | #endif  // CONFIG_REF_MV | 
 | #if CONFIG_EXT_INTER | 
 |   int_mv ref_mv[2]; | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 | #if CONFIG_CB4X4 | 
 |   ENTROPY_CONTEXT ta[4]; | 
 |   ENTROPY_CONTEXT tl[4]; | 
 | #else | 
 |   ENTROPY_CONTEXT ta[2]; | 
 |   ENTROPY_CONTEXT tl[2]; | 
 | #endif  // CONFIG_CB4X4 | 
 | } SEG_RDSTAT; | 
 |  | 
 | typedef struct { | 
 |   int_mv *ref_mv[2]; | 
 |   int_mv mvp; | 
 |  | 
 |   int64_t segment_rd; | 
 |   int r; | 
 |   int64_t d; | 
 |   int64_t sse; | 
 |   int segment_yrate; | 
 |   PREDICTION_MODE modes[4]; | 
 | #if CONFIG_EXT_INTER | 
 |   SEG_RDSTAT rdstat[4][INTER_MODES + INTER_COMPOUND_MODES]; | 
 | #else | 
 |   SEG_RDSTAT rdstat[4][INTER_MODES]; | 
 | #endif  // CONFIG_EXT_INTER | 
 |   int mvthresh; | 
 | } BEST_SEG_INFO; | 
 |  | 
 | static INLINE int mv_check_bounds(const MvLimits *mv_limits, const MV *mv) { | 
 |   return (mv->row >> 3) < mv_limits->row_min || | 
 |          (mv->row >> 3) > mv_limits->row_max || | 
 |          (mv->col >> 3) < mv_limits->col_min || | 
 |          (mv->col >> 3) > mv_limits->col_max; | 
 | } | 
 |  | 
 | static INLINE void mi_buf_shift(MACROBLOCK *x, int i) { | 
 |   MB_MODE_INFO *const mbmi = &x->e_mbd.mi[0]->mbmi; | 
 |   struct macroblock_plane *const p = &x->plane[0]; | 
 |   struct macroblockd_plane *const pd = &x->e_mbd.plane[0]; | 
 |  | 
 |   p->src.buf = | 
 |       &p->src.buf[av1_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; | 
 |   assert(((intptr_t)pd->pre[0].buf & 0x7) == 0); | 
 |   pd->pre[0].buf = | 
 |       &pd->pre[0].buf[av1_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)]; | 
 |   if (has_second_ref(mbmi)) | 
 |     pd->pre[1].buf = | 
 |         &pd->pre[1] | 
 |              .buf[av1_raster_block_offset(BLOCK_8X8, i, pd->pre[1].stride)]; | 
 | } | 
 |  | 
 | static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src, | 
 |                                   struct buf_2d orig_pre[2]) { | 
 |   MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi; | 
 |   x->plane[0].src = orig_src; | 
 |   x->e_mbd.plane[0].pre[0] = orig_pre[0]; | 
 |   if (has_second_ref(mbmi)) x->e_mbd.plane[0].pre[1] = orig_pre[1]; | 
 | } | 
 |  | 
 | // Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion. | 
 | // TODO(aconverse): Find out if this is still productive then clean up or remove | 
 | static int check_best_zero_mv( | 
 |     const AV1_COMP *const cpi, const int16_t mode_context[TOTAL_REFS_PER_FRAME], | 
 | #if CONFIG_REF_MV && CONFIG_EXT_INTER | 
 |     const int16_t compound_mode_context[TOTAL_REFS_PER_FRAME], | 
 | #endif  // CONFIG_REF_MV && CONFIG_EXT_INTER | 
 |     int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME], int this_mode, | 
 |     const MV_REFERENCE_FRAME ref_frames[2], const BLOCK_SIZE bsize, int block, | 
 |     int mi_row, int mi_col) { | 
 |   int_mv zeromv[2]; | 
 |   int comp_pred_mode = ref_frames[1] > INTRA_FRAME; | 
 |   int cur_frm; | 
 |   (void)mi_row; | 
 |   (void)mi_col; | 
 |   for (cur_frm = 0; cur_frm < 1 + comp_pred_mode; cur_frm++) { | 
 | #if CONFIG_GLOBAL_MOTION | 
 |     if (this_mode == ZEROMV | 
 | #if CONFIG_EXT_INTER | 
 |         || this_mode == ZERO_ZEROMV | 
 | #endif  // CONFIG_EXT_INTER | 
 |         ) | 
 |       zeromv[cur_frm].as_int = | 
 |           gm_get_motion_vector(&cpi->common.global_motion[ref_frames[cur_frm]], | 
 |                                cpi->common.allow_high_precision_mv, bsize, | 
 |                                mi_col, mi_row, block) | 
 |               .as_int; | 
 |     else | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |       zeromv[cur_frm].as_int = 0; | 
 |   } | 
 | #if !CONFIG_EXT_INTER | 
 |   assert(ref_frames[1] != INTRA_FRAME);  // Just sanity check | 
 | #endif                                   // !CONFIG_EXT_INTER | 
 |   if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) && | 
 |       frame_mv[this_mode][ref_frames[0]].as_int == zeromv[0].as_int && | 
 |       (ref_frames[1] <= INTRA_FRAME || | 
 |        frame_mv[this_mode][ref_frames[1]].as_int == zeromv[1].as_int)) { | 
 | #if CONFIG_REF_MV | 
 |     int16_t rfc = | 
 |         av1_mode_context_analyzer(mode_context, ref_frames, bsize, block); | 
 | #else | 
 |     int16_t rfc = mode_context[ref_frames[0]]; | 
 | #endif  // CONFIG_REF_MV | 
 |     int c1 = cost_mv_ref(cpi, NEARMV, rfc); | 
 |     int c2 = cost_mv_ref(cpi, NEARESTMV, rfc); | 
 |     int c3 = cost_mv_ref(cpi, ZEROMV, rfc); | 
 |  | 
 | #if !CONFIG_REF_MV | 
 |     (void)bsize; | 
 |     (void)block; | 
 | #endif  // !CONFIG_REF_MV | 
 |  | 
 |     if (this_mode == NEARMV) { | 
 |       if (c1 > c3) return 0; | 
 |     } else if (this_mode == NEARESTMV) { | 
 |       if (c2 > c3) return 0; | 
 |     } else { | 
 |       assert(this_mode == ZEROMV); | 
 |       if (ref_frames[1] <= INTRA_FRAME) { | 
 |         if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) || | 
 |             (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0)) | 
 |           return 0; | 
 |       } else { | 
 |         if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 && | 
 |              frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) || | 
 |             (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 && | 
 |              frame_mv[NEARMV][ref_frames[1]].as_int == 0)) | 
 |           return 0; | 
 |       } | 
 |     } | 
 |   } | 
 | #if CONFIG_EXT_INTER | 
 |   else if ((this_mode == NEAREST_NEARESTMV || this_mode == NEAREST_NEARMV || | 
 |             this_mode == NEAR_NEARESTMV || this_mode == NEAR_NEARMV || | 
 |             this_mode == ZERO_ZEROMV) && | 
 |            frame_mv[this_mode][ref_frames[0]].as_int == zeromv[0].as_int && | 
 |            frame_mv[this_mode][ref_frames[1]].as_int == zeromv[1].as_int) { | 
 | #if CONFIG_REF_MV | 
 |     int16_t rfc = compound_mode_context[ref_frames[0]]; | 
 | #else | 
 |     int16_t rfc = mode_context[ref_frames[0]]; | 
 | #endif  // CONFIG_REF_MV | 
 |     int c1 = cost_mv_ref(cpi, NEAREST_NEARMV, rfc); | 
 |     int c2 = cost_mv_ref(cpi, NEAREST_NEARESTMV, rfc); | 
 |     int c3 = cost_mv_ref(cpi, ZERO_ZEROMV, rfc); | 
 |     int c4 = cost_mv_ref(cpi, NEAR_NEARESTMV, rfc); | 
 |     int c5 = cost_mv_ref(cpi, NEAR_NEARMV, rfc); | 
 |  | 
 |     if (this_mode == NEAREST_NEARMV) { | 
 |       if (c1 > c3) return 0; | 
 |     } else if (this_mode == NEAREST_NEARESTMV) { | 
 |       if (c2 > c3) return 0; | 
 |     } else if (this_mode == NEAR_NEARESTMV) { | 
 |       if (c4 > c3) return 0; | 
 |     } else if (this_mode == NEAR_NEARMV) { | 
 |       if (c5 > c3) return 0; | 
 |     } else { | 
 |       assert(this_mode == ZERO_ZEROMV); | 
 |       if ((c3 >= c2 && frame_mv[NEAREST_NEARESTMV][ref_frames[0]].as_int == 0 && | 
 |            frame_mv[NEAREST_NEARESTMV][ref_frames[1]].as_int == 0) || | 
 |           (c3 >= c1 && frame_mv[NEAREST_NEARMV][ref_frames[0]].as_int == 0 && | 
 |            frame_mv[NEAREST_NEARMV][ref_frames[1]].as_int == 0) || | 
 |           (c3 >= c5 && frame_mv[NEAR_NEARMV][ref_frames[0]].as_int == 0 && | 
 |            frame_mv[NEAR_NEARMV][ref_frames[1]].as_int == 0) || | 
 |           (c3 >= c4 && frame_mv[NEAR_NEARESTMV][ref_frames[0]].as_int == 0 && | 
 |            frame_mv[NEAR_NEARESTMV][ref_frames[1]].as_int == 0)) | 
 |         return 0; | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_EXT_INTER | 
 |   return 1; | 
 | } | 
 |  | 
 | static void joint_motion_search(const AV1_COMP *cpi, MACROBLOCK *x, | 
 |                                 BLOCK_SIZE bsize, int_mv *frame_mv, int mi_row, | 
 |                                 int mi_col, | 
 | #if CONFIG_EXT_INTER | 
 |                                 int_mv *ref_mv_sub8x8[2], | 
 | #endif  // CONFIG_EXT_INTER | 
 |                                 int *rate_mv, const int block) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   const int pw = block_size_wide[bsize]; | 
 |   const int ph = block_size_high[bsize]; | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   // This function should only ever be called for compound modes | 
 |   assert(has_second_ref(mbmi)); | 
 |   const int refs[2] = { mbmi->ref_frame[0], mbmi->ref_frame[1] }; | 
 |   int_mv ref_mv[2]; | 
 |   int ite, ref; | 
 | #if CONFIG_DUAL_FILTER | 
 |   InterpFilter interp_filter[4] = { | 
 |     mbmi->interp_filter[0], mbmi->interp_filter[1], mbmi->interp_filter[2], | 
 |     mbmi->interp_filter[3], | 
 |   }; | 
 | #else | 
 |   const InterpFilter interp_filter = mbmi->interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |   struct scale_factors sf; | 
 |   struct macroblockd_plane *const pd = &xd->plane[0]; | 
 | #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION | 
 |   // ic and ir are the 4x4 coordiantes of the sub8x8 at index "block" | 
 |   const int ic = block & 1; | 
 |   const int ir = (block - ic) >> 1; | 
 |   const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic; | 
 |   const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir; | 
 | #if CONFIG_GLOBAL_MOTION | 
 |   int is_global[2]; | 
 |   for (ref = 0; ref < 2; ++ref) { | 
 |     WarpedMotionParams *const wm = | 
 |         &xd->global_motion[xd->mi[0]->mbmi.ref_frame[ref]]; | 
 |     is_global[ref] = is_global_mv_block(xd->mi[0], block, wm->wmtype); | 
 |   } | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 | #endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION | 
 |  | 
 |   // Do joint motion search in compound mode to get more accurate mv. | 
 |   struct buf_2d backup_yv12[2][MAX_MB_PLANE]; | 
 |   int last_besterr[2] = { INT_MAX, INT_MAX }; | 
 |   const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = { | 
 |     av1_get_scaled_ref_frame(cpi, refs[0]), | 
 |     av1_get_scaled_ref_frame(cpi, refs[1]) | 
 |   }; | 
 |  | 
 | // Prediction buffer from second frame. | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]); | 
 |   uint8_t *second_pred; | 
 | #else | 
 |   DECLARE_ALIGNED(16, uint8_t, second_pred[MAX_SB_SQUARE]); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 | #if CONFIG_EXT_INTER && CONFIG_CB4X4 | 
 |   (void)ref_mv_sub8x8; | 
 | #endif  // CONFIG_EXT_INTER && CONFIG_CB4X4 | 
 |  | 
 |   for (ref = 0; ref < 2; ++ref) { | 
 | #if CONFIG_EXT_INTER && !CONFIG_CB4X4 | 
 |     if (bsize < BLOCK_8X8 && ref_mv_sub8x8 != NULL) | 
 |       ref_mv[ref].as_int = ref_mv_sub8x8[ref]->as_int; | 
 |     else | 
 | #endif  // CONFIG_EXT_INTER && !CONFIG_CB4X4 | 
 |       ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0]; | 
 |  | 
 |     if (scaled_ref_frame[ref]) { | 
 |       int i; | 
 |       // Swap out the reference frame for a version that's been scaled to | 
 |       // match the resolution of the current frame, allowing the existing | 
 |       // motion search code to be used without additional modifications. | 
 |       for (i = 0; i < MAX_MB_PLANE; i++) | 
 |         backup_yv12[ref][i] = xd->plane[i].pre[ref]; | 
 |       av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, | 
 |                            NULL); | 
 |     } | 
 |   } | 
 |  | 
 | // Since we have scaled the reference frames to match the size of the current | 
 | // frame we must use a unit scaling factor during mode selection. | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   av1_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width, | 
 |                                     cm->height, cm->use_highbitdepth); | 
 | #else | 
 |   av1_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width, | 
 |                                     cm->height); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 |   // Allow joint search multiple times iteratively for each reference frame | 
 |   // and break out of the search loop if it couldn't find a better mv. | 
 |   for (ite = 0; ite < 4; ite++) { | 
 |     struct buf_2d ref_yv12[2]; | 
 |     int bestsme = INT_MAX; | 
 |     int sadpb = x->sadperbit16; | 
 |     MV *const best_mv = &x->best_mv.as_mv; | 
 |     int search_range = 3; | 
 |  | 
 |     MvLimits tmp_mv_limits = x->mv_limits; | 
 |     int id = ite % 2;  // Even iterations search in the first reference frame, | 
 |                        // odd iterations search in the second. The predictor | 
 |                        // found for the 'other' reference frame is factored in. | 
 |     const int plane = 0; | 
 |     ConvolveParams conv_params = get_conv_params(0, plane); | 
 | #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION | 
 |     WarpTypesAllowed warp_types; | 
 | #if CONFIG_GLOBAL_MOTION | 
 |     warp_types.global_warp_allowed = is_global[!id]; | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 | #if CONFIG_WARPED_MOTION | 
 |     warp_types.local_warp_allowed = mbmi->motion_mode == WARPED_CAUSAL; | 
 | #endif  // CONFIG_WARPED_MOTION | 
 | #endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION | 
 |  | 
 |     // Initialized here because of compiler problem in Visual Studio. | 
 |     ref_yv12[0] = xd->plane[plane].pre[0]; | 
 |     ref_yv12[1] = xd->plane[plane].pre[1]; | 
 |  | 
 | #if CONFIG_DUAL_FILTER | 
 |     // reload the filter types | 
 |     interp_filter[0] = | 
 |         (id == 0) ? mbmi->interp_filter[2] : mbmi->interp_filter[0]; | 
 |     interp_filter[1] = | 
 |         (id == 0) ? mbmi->interp_filter[3] : mbmi->interp_filter[1]; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |  | 
 | // Get the prediction block from the 'other' reference frame. | 
 | #if CONFIG_HIGHBITDEPTH | 
 |     if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |       second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16); | 
 |       av1_highbd_build_inter_predictor( | 
 |           ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw, | 
 |           &frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, interp_filter, | 
 | #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION | 
 |           &warp_types, p_col, p_row, | 
 | #endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION | 
 |           plane, MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd); | 
 |     } else { | 
 |       second_pred = (uint8_t *)second_pred_alloc_16; | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |       av1_build_inter_predictor( | 
 |           ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw, | 
 |           &frame_mv[refs[!id]].as_mv, &sf, pw, ph, &conv_params, interp_filter, | 
 | #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION | 
 |           &warp_types, p_col, p_row, plane, !id, | 
 | #endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION | 
 |           MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd); | 
 | #if CONFIG_HIGHBITDEPTH | 
 |     } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 |     // Do compound motion search on the current reference frame. | 
 |     if (id) xd->plane[plane].pre[0] = ref_yv12[id]; | 
 |     av1_set_mv_search_range(&x->mv_limits, &ref_mv[id].as_mv); | 
 |  | 
 |     // Use the mv result from the single mode as mv predictor. | 
 |     *best_mv = frame_mv[refs[id]].as_mv; | 
 |  | 
 |     best_mv->col >>= 3; | 
 |     best_mv->row >>= 3; | 
 |  | 
 | #if CONFIG_REF_MV | 
 |     av1_set_mvcost(x, refs[id], id, mbmi->ref_mv_idx); | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 |     // Small-range full-pixel motion search. | 
 |     bestsme = | 
 |         av1_refining_search_8p_c(x, sadpb, search_range, &cpi->fn_ptr[bsize], | 
 |                                  &ref_mv[id].as_mv, second_pred); | 
 |     if (bestsme < INT_MAX) | 
 |       bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv[id].as_mv, | 
 |                                       second_pred, &cpi->fn_ptr[bsize], 1); | 
 |  | 
 |     x->mv_limits = tmp_mv_limits; | 
 |  | 
 |     if (bestsme < INT_MAX) { | 
 |       int dis; /* TODO: use dis in distortion calculation later. */ | 
 |       unsigned int sse; | 
 |       if (cpi->sf.use_upsampled_references) { | 
 |         // Use up-sampled reference frames. | 
 |         struct buf_2d backup_pred = pd->pre[0]; | 
 |         const YV12_BUFFER_CONFIG *upsampled_ref = | 
 |             get_upsampled_ref(cpi, refs[id]); | 
 |  | 
 |         // Set pred for Y plane | 
 |         setup_pred_plane(&pd->pre[0], upsampled_ref->y_buffer, | 
 |                          upsampled_ref->y_crop_width, | 
 |                          upsampled_ref->y_crop_height, upsampled_ref->y_stride, | 
 |                          (mi_row << 3), (mi_col << 3), NULL, pd->subsampling_x, | 
 |                          pd->subsampling_y); | 
 |  | 
 | // If bsize < BLOCK_8X8, adjust pred pointer for this block | 
 | #if !CONFIG_CB4X4 | 
 |         if (bsize < BLOCK_8X8) | 
 |           pd->pre[0].buf = | 
 |               &pd->pre[0].buf[(av1_raster_block_offset(BLOCK_8X8, block, | 
 |                                                        pd->pre[0].stride)) | 
 |                               << 3]; | 
 | #endif  // !CONFIG_CB4X4 | 
 |  | 
 |         bestsme = cpi->find_fractional_mv_step( | 
 |             x, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv, | 
 |             x->errorperbit, &cpi->fn_ptr[bsize], 0, | 
 |             cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost, | 
 |             &dis, &sse, second_pred, pw, ph, 1); | 
 |  | 
 |         // Restore the reference frames. | 
 |         pd->pre[0] = backup_pred; | 
 |       } else { | 
 |         (void)block; | 
 |         bestsme = cpi->find_fractional_mv_step( | 
 |             x, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv, | 
 |             x->errorperbit, &cpi->fn_ptr[bsize], 0, | 
 |             cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost, | 
 |             &dis, &sse, second_pred, pw, ph, 0); | 
 |       } | 
 |     } | 
 |  | 
 |     // Restore the pointer to the first (possibly scaled) prediction buffer. | 
 |     if (id) xd->plane[plane].pre[0] = ref_yv12[0]; | 
 |  | 
 |     if (bestsme < last_besterr[id]) { | 
 |       frame_mv[refs[id]].as_mv = *best_mv; | 
 |       last_besterr[id] = bestsme; | 
 |     } else { | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   *rate_mv = 0; | 
 |  | 
 |   for (ref = 0; ref < 2; ++ref) { | 
 |     if (scaled_ref_frame[ref]) { | 
 |       // Restore the prediction frame pointers to their unscaled versions. | 
 |       int i; | 
 |       for (i = 0; i < MAX_MB_PLANE; i++) | 
 |         xd->plane[i].pre[ref] = backup_yv12[ref][i]; | 
 |     } | 
 | #if CONFIG_REF_MV | 
 |     av1_set_mvcost(x, refs[ref], ref, mbmi->ref_mv_idx); | 
 | #endif  // CONFIG_REF_MV | 
 | #if CONFIG_EXT_INTER && !CONFIG_CB4X4 | 
 |     if (bsize >= BLOCK_8X8) | 
 | #endif  // CONFIG_EXT_INTER && !CONFIG_CB4X4 | 
 |       *rate_mv += av1_mv_bit_cost(&frame_mv[refs[ref]].as_mv, | 
 |                                   &x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv, | 
 |                                   x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); | 
 | #if CONFIG_EXT_INTER && !CONFIG_CB4X4 | 
 |     else | 
 |       *rate_mv += av1_mv_bit_cost(&frame_mv[refs[ref]].as_mv, | 
 |                                   &ref_mv_sub8x8[ref]->as_mv, x->nmvjointcost, | 
 |                                   x->mvcost, MV_COST_WEIGHT); | 
 | #endif  // CONFIG_EXT_INTER && !CONFIG_CB4X4 | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_REF_MV && !CONFIG_EXT_INTER | 
 | static void update_mv_search_and_seg_mvs( | 
 |     int *const run_mv_search, int_mv *const seg_mvs, int has_second_rf, | 
 |     const MV_REFERENCE_FRAME *const ref_frame, | 
 |     const SEG_RDSTAT *const ref_rdstat, int_mv *const bsi_ref_mv[2]) { | 
 |   if (has_second_rf) { | 
 |     if (seg_mvs[ref_frame[0]].as_int == ref_rdstat->mvs[0].as_int && | 
 |         ref_rdstat->mvs[0].as_int != INVALID_MV) | 
 |       if (bsi_ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int) | 
 |         --*run_mv_search; | 
 |  | 
 |     if (seg_mvs[ref_frame[1]].as_int == ref_rdstat->mvs[1].as_int && | 
 |         ref_rdstat->mvs[1].as_int != INVALID_MV) | 
 |       if (bsi_ref_mv[1]->as_int == ref_rdstat->pred_mv[1].as_int) | 
 |         --*run_mv_search; | 
 |   } else { | 
 |     if (bsi_ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int && | 
 |         ref_rdstat->mvs[0].as_int != INVALID_MV) { | 
 |       *run_mv_search = 0; | 
 |       seg_mvs[ref_frame[0]].as_int = ref_rdstat->mvs[0].as_int; | 
 |     } | 
 |   } | 
 | } | 
 | #endif  // CONFIG_REF_MV && !CONFIG_EXT_INTER | 
 |  | 
 | static int64_t rd_pick_inter_best_sub8x8_mode( | 
 |     const AV1_COMP *const cpi, MACROBLOCK *x, int_mv *best_ref_mv, | 
 |     int_mv *second_best_ref_mv, int64_t best_rd, int *returntotrate, | 
 |     int *returnyrate, int64_t *returndistortion, int *skippable, int64_t *psse, | 
 |     int mvthresh, int_mv seg_mvs[4][TOTAL_REFS_PER_FRAME], | 
 | #if CONFIG_EXT_INTER | 
 |     int_mv compound_seg_newmvs[4][2], | 
 | #endif  // CONFIG_EXT_INTER | 
 |     BEST_SEG_INFO *bsi_buf, int filter_idx, int mi_row, int mi_col) { | 
 |   BEST_SEG_INFO *bsi = bsi_buf + filter_idx; | 
 | #if CONFIG_REF_MV | 
 |   int_mv tmp_ref_mv[2]; | 
 | #endif  // CONFIG_REF_MV | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   MODE_INFO *mi = xd->mi[0]; | 
 |   MB_MODE_INFO *mbmi = &mi->mbmi; | 
 |   int mode_idx; | 
 |   int k, br = 0, idx, idy; | 
 |   int64_t bd = 0, block_sse = 0; | 
 |   PREDICTION_MODE this_mode; | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   struct macroblock_plane *const p = &x->plane[0]; | 
 |   struct macroblockd_plane *const pd = &xd->plane[0]; | 
 |   const int label_count = 4; | 
 |   int64_t this_segment_rd = 0; | 
 |   int label_mv_thresh; | 
 |   int segmentyrate = 0; | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; | 
 |   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; | 
 | #if CONFIG_CB4X4 | 
 |   ENTROPY_CONTEXT t_above[4], t_left[4]; | 
 | #else | 
 |   ENTROPY_CONTEXT t_above[2], t_left[2]; | 
 | #endif  // CONFIG_CB4X4 | 
 |   int subpelmv = 1, have_ref = 0; | 
 |   const int has_second_rf = has_second_ref(mbmi); | 
 |   const int inter_mode_mask = cpi->sf.inter_mode_mask[bsize]; | 
 |   MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; | 
 | #if CONFIG_PVQ | 
 |   od_rollback_buffer pre_buf; | 
 |  | 
 |   od_encode_checkpoint(&x->daala_enc, &pre_buf); | 
 | #endif  // CONFIG_PVQ | 
 | #if CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |   mbmi->tx_size = | 
 |       xd->lossless[mbmi->segment_id] ? TX_4X4 : max_txsize_rect_lookup[bsize]; | 
 | #else | 
 |   mbmi->tx_size = TX_4X4; | 
 | #endif  // CONFIG_EXT_TX && CONFIG_RECT_TX | 
 |  | 
 |   av1_zero(*bsi); | 
 |  | 
 |   bsi->segment_rd = best_rd; | 
 |   bsi->ref_mv[0] = best_ref_mv; | 
 |   bsi->ref_mv[1] = second_best_ref_mv; | 
 |   bsi->mvp.as_int = best_ref_mv->as_int; | 
 |   bsi->mvthresh = mvthresh; | 
 |  | 
 |   for (idx = 0; idx < 4; ++idx) bsi->modes[idx] = ZEROMV; | 
 |  | 
 | #if CONFIG_REF_MV | 
 |   for (idx = 0; idx < 4; ++idx) { | 
 |     for (k = NEARESTMV; k <= NEWMV; ++k) { | 
 |       bsi->rdstat[idx][INTER_OFFSET(k)].pred_mv[0].as_int = INVALID_MV; | 
 |       bsi->rdstat[idx][INTER_OFFSET(k)].pred_mv[1].as_int = INVALID_MV; | 
 |  | 
 |       bsi->rdstat[idx][INTER_OFFSET(k)].mvs[0].as_int = INVALID_MV; | 
 |       bsi->rdstat[idx][INTER_OFFSET(k)].mvs[1].as_int = INVALID_MV; | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 |   memcpy(t_above, pd->above_context, sizeof(t_above)); | 
 |   memcpy(t_left, pd->left_context, sizeof(t_left)); | 
 |  | 
 |   // 64 makes this threshold really big effectively | 
 |   // making it so that we very rarely check mvs on | 
 |   // segments.   setting this to 1 would make mv thresh | 
 |   // roughly equal to what it is for macroblocks | 
 |   label_mv_thresh = 1 * bsi->mvthresh / label_count; | 
 |  | 
 |   // Segmentation method overheads | 
 |   for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { | 
 |     for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { | 
 |       // TODO(jingning,rbultje): rewrite the rate-distortion optimization | 
 |       // loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop | 
 |       int_mv mode_mv[MB_MODE_COUNT][2]; | 
 |       int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; | 
 |       PREDICTION_MODE mode_selected = ZEROMV; | 
 |       int64_t new_best_rd = INT64_MAX; | 
 |       const int index = idy * 2 + idx; | 
 |       int ref; | 
 | #if CONFIG_REF_MV | 
 |       CANDIDATE_MV ref_mv_stack[2][MAX_REF_MV_STACK_SIZE]; | 
 |       uint8_t ref_mv_count[2]; | 
 | #endif  // CONFIG_REF_MV | 
 | #if CONFIG_EXT_INTER | 
 |       int_mv ref_mvs_sub8x8[2][2]; | 
 | #endif  // CONFIG_EXT_INTER | 
 | #if CONFIG_PVQ | 
 |       od_rollback_buffer idx_buf, post_buf; | 
 |       od_encode_checkpoint(&x->daala_enc, &idx_buf); | 
 |       od_encode_checkpoint(&x->daala_enc, &post_buf); | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 |       for (ref = 0; ref < 1 + has_second_rf; ++ref) { | 
 |         const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; | 
 | #if CONFIG_EXT_INTER | 
 |         int_mv mv_ref_list[MAX_MV_REF_CANDIDATES]; | 
 |         av1_update_mv_context(cm, xd, mi, frame, mv_ref_list, index, mi_row, | 
 |                               mi_col, NULL); | 
 | #endif  // CONFIG_EXT_INTER | 
 | #if CONFIG_GLOBAL_MOTION | 
 |         frame_mv[ZEROMV][frame].as_int = | 
 |             gm_get_motion_vector(&cm->global_motion[frame], | 
 |                                  cm->allow_high_precision_mv, mbmi->sb_type, | 
 |                                  mi_col, mi_row, index) | 
 |                 .as_int; | 
 | #else   // CONFIG_GLOBAL_MOTION | 
 |         frame_mv[ZEROMV][frame].as_int = 0; | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |         av1_append_sub8x8_mvs_for_idx(cm, xd, index, ref, mi_row, mi_col, | 
 | #if CONFIG_REF_MV | 
 |                                       ref_mv_stack[ref], &ref_mv_count[ref], | 
 | #endif  // CONFIG_REF_MV | 
 | #if CONFIG_EXT_INTER | 
 |                                       mv_ref_list, | 
 | #endif  // CONFIG_EXT_INTER | 
 |                                       &frame_mv[NEARESTMV][frame], | 
 |                                       &frame_mv[NEARMV][frame]); | 
 |  | 
 | #if CONFIG_REF_MV | 
 |         tmp_ref_mv[ref] = frame_mv[NEARESTMV][mbmi->ref_frame[ref]]; | 
 |         lower_mv_precision(&tmp_ref_mv[ref].as_mv, cm->allow_high_precision_mv); | 
 |         bsi->ref_mv[ref] = &tmp_ref_mv[ref]; | 
 |         mbmi_ext->ref_mvs[frame][0] = tmp_ref_mv[ref]; | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |         mv_ref_list[0].as_int = frame_mv[NEARESTMV][frame].as_int; | 
 |         mv_ref_list[1].as_int = frame_mv[NEARMV][frame].as_int; | 
 |         av1_find_best_ref_mvs(cm->allow_high_precision_mv, mv_ref_list, | 
 |                               &ref_mvs_sub8x8[0][ref], &ref_mvs_sub8x8[1][ref]); | 
 |  | 
 |         if (has_second_rf) { | 
 | #if CONFIG_GLOBAL_MOTION | 
 |           frame_mv[ZERO_ZEROMV][frame].as_int = | 
 |               gm_get_motion_vector(&cm->global_motion[frame], | 
 |                                    cm->allow_high_precision_mv, mbmi->sb_type, | 
 |                                    mi_col, mi_row, index) | 
 |                   .as_int; | 
 | #else | 
 |           frame_mv[ZERO_ZEROMV][frame].as_int = 0; | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |           frame_mv[NEAREST_NEARESTMV][frame].as_int = | 
 |               frame_mv[NEARESTMV][frame].as_int; | 
 |  | 
 |           if (ref == 0) { | 
 |             frame_mv[NEAREST_NEARMV][frame].as_int = | 
 |                 frame_mv[NEARESTMV][frame].as_int; | 
 |             frame_mv[NEAR_NEARESTMV][frame].as_int = | 
 |                 frame_mv[NEARMV][frame].as_int; | 
 |             frame_mv[NEAREST_NEWMV][frame].as_int = | 
 |                 frame_mv[NEARESTMV][frame].as_int; | 
 |             frame_mv[NEAR_NEWMV][frame].as_int = frame_mv[NEARMV][frame].as_int; | 
 |             frame_mv[NEAR_NEARMV][frame].as_int = | 
 |                 frame_mv[NEARMV][frame].as_int; | 
 |           } else if (ref == 1) { | 
 |             frame_mv[NEAREST_NEARMV][frame].as_int = | 
 |                 frame_mv[NEARMV][frame].as_int; | 
 |             frame_mv[NEAR_NEARESTMV][frame].as_int = | 
 |                 frame_mv[NEARESTMV][frame].as_int; | 
 |             frame_mv[NEW_NEARESTMV][frame].as_int = | 
 |                 frame_mv[NEARESTMV][frame].as_int; | 
 |             frame_mv[NEW_NEARMV][frame].as_int = frame_mv[NEARMV][frame].as_int; | 
 |             frame_mv[NEAR_NEARMV][frame].as_int = | 
 |                 frame_mv[NEARMV][frame].as_int; | 
 |           } | 
 |         } | 
 | #endif  // CONFIG_EXT_INTER | 
 |       } | 
 |  | 
 | // search for the best motion vector on this segment | 
 | #if CONFIG_EXT_INTER | 
 |       for (this_mode = (has_second_rf ? NEAREST_NEARESTMV : NEARESTMV); | 
 |            this_mode <= (has_second_rf ? NEW_NEWMV : NEWMV); ++this_mode) | 
 | #else | 
 |       for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) | 
 | #endif  // CONFIG_EXT_INTER | 
 |       { | 
 |         const struct buf_2d orig_src = x->plane[0].src; | 
 |         struct buf_2d orig_pre[2]; | 
 |         // This flag controls if the motion estimation will kick off. When it | 
 |         // is set to a non-zero value, the encoder will force motion estimation. | 
 |         int run_mv_search = 0; | 
 |  | 
 |         mode_idx = INTER_OFFSET(this_mode); | 
 | #if CONFIG_EXT_INTER | 
 |         for (ref = 0; ref < 1 + has_second_rf; ++ref) | 
 |           bsi->ref_mv[ref]->as_int = ref_mvs_sub8x8[0][ref].as_int; | 
 | #endif  // CONFIG_EXT_INTER | 
 |         bsi->rdstat[index][mode_idx].brdcost = INT64_MAX; | 
 |         if (!(inter_mode_mask & (1 << this_mode))) continue; | 
 |  | 
 | #if CONFIG_REF_MV | 
 |         run_mv_search = 2; | 
 | #if !CONFIG_EXT_INTER | 
 |         if (filter_idx > 0 && this_mode == NEWMV) { | 
 |           const BEST_SEG_INFO *ref_bsi = bsi_buf; | 
 |           const SEG_RDSTAT *ref_rdstat = &ref_bsi->rdstat[index][mode_idx]; | 
 |  | 
 |           update_mv_search_and_seg_mvs(&run_mv_search, seg_mvs[index], | 
 |                                        has_second_rf, mbmi->ref_frame, | 
 |                                        ref_rdstat, bsi->ref_mv); | 
 |  | 
 |           if (run_mv_search != 0 && filter_idx > 1) { | 
 |             ref_bsi = bsi_buf + 1; | 
 |             ref_rdstat = &ref_bsi->rdstat[index][mode_idx]; | 
 |             run_mv_search = 2; | 
 |             update_mv_search_and_seg_mvs(&run_mv_search, seg_mvs[index], | 
 |                                          has_second_rf, mbmi->ref_frame, | 
 |                                          ref_rdstat, bsi->ref_mv); | 
 |           } | 
 |         } | 
 | #endif  // !CONFIG_EXT_INTER | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 | #if CONFIG_GLOBAL_MOTION | 
 |         if (cm->global_motion[mbmi->ref_frame[0]].wmtype == IDENTITY && | 
 |             (!has_second_rf || | 
 |              cm->global_motion[mbmi->ref_frame[1]].wmtype == IDENTITY)) | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |  | 
 |           if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, | 
 | #if CONFIG_REF_MV && CONFIG_EXT_INTER | 
 |                                   mbmi_ext->compound_mode_context, | 
 | #endif  // CONFIG_REF_MV && CONFIG_EXT_INTER | 
 |                                   frame_mv, this_mode, mbmi->ref_frame, bsize, | 
 |                                   index, mi_row, mi_col)) | 
 |             continue; | 
 |  | 
 |         memcpy(orig_pre, pd->pre, sizeof(orig_pre)); | 
 |         memcpy(bsi->rdstat[index][mode_idx].ta, t_above, | 
 |                sizeof(bsi->rdstat[index][mode_idx].ta)); | 
 |         memcpy(bsi->rdstat[index][mode_idx].tl, t_left, | 
 |                sizeof(bsi->rdstat[index][mode_idx].tl)); | 
 | #if CONFIG_PVQ | 
 |         od_encode_rollback(&x->daala_enc, &idx_buf); | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 |         // motion search for newmv (single predictor case only) | 
 |         if (!has_second_rf && | 
 | #if CONFIG_EXT_INTER | 
 |             have_newmv_in_inter_mode(this_mode) && | 
 |             (seg_mvs[index][mbmi->ref_frame[0]].as_int == INVALID_MV) | 
 | #else | 
 |             this_mode == NEWMV && | 
 |             (seg_mvs[index][mbmi->ref_frame[0]].as_int == INVALID_MV || | 
 |              run_mv_search) | 
 | #endif  // CONFIG_EXT_INTER | 
 |                 ) { | 
 |           int step_param = 0; | 
 |           int bestsme = INT_MAX; | 
 |           int sadpb = x->sadperbit4; | 
 |           MV mvp_full; | 
 |           int max_mv; | 
 |           int cost_list[5]; | 
 |           MvLimits tmp_mv_limits = x->mv_limits; | 
 |  | 
 |           /* Is the best so far sufficiently good that we cant justify doing | 
 |            * and new motion search. */ | 
 |           if (new_best_rd < label_mv_thresh) break; | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |           bsi->mvp.as_int = bsi->ref_mv[0]->as_int; | 
 | #else | 
 | // use previous block's result as next block's MV predictor. | 
 | #if !CONFIG_REF_MV | 
 |           if (index > 0) { | 
 |             bsi->mvp.as_int = mi->bmi[index - 1].as_mv[0].as_int; | 
 |             if (index == 2) | 
 |               bsi->mvp.as_int = mi->bmi[index - 2].as_mv[0].as_int; | 
 |           } | 
 | #endif  // !CONFIG_REF_MV | 
 | #endif  // CONFIG_EXT_INTER | 
 |           max_mv = (index == 0) ? (int)x->max_mv_context[mbmi->ref_frame[0]] | 
 |                                 : AOMMAX(abs(bsi->mvp.as_mv.row), | 
 |                                          abs(bsi->mvp.as_mv.col)) >> | 
 |                                       3; | 
 |  | 
 |           if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { | 
 |             // Take wtd average of the step_params based on the last frame's | 
 |             // max mv magnitude and the best ref mvs of the current block for | 
 |             // the given reference. | 
 |             step_param = | 
 |                 (av1_init_search_range(max_mv) + cpi->mv_step_param) / 2; | 
 |           } else { | 
 |             step_param = cpi->mv_step_param; | 
 |           } | 
 |  | 
 | #if CONFIG_REF_MV | 
 |           mvp_full.row = bsi->ref_mv[0]->as_mv.row >> 3; | 
 |           mvp_full.col = bsi->ref_mv[0]->as_mv.col >> 3; | 
 | #else | 
 |           mvp_full.row = bsi->mvp.as_mv.row >> 3; | 
 |           mvp_full.col = bsi->mvp.as_mv.col >> 3; | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 |           if (cpi->sf.adaptive_motion_search) { | 
 |             mvp_full.row = x->pred_mv[mbmi->ref_frame[0]].row >> 3; | 
 |             mvp_full.col = x->pred_mv[mbmi->ref_frame[0]].col >> 3; | 
 |             step_param = AOMMAX(step_param, 8); | 
 |           } | 
 |  | 
 |           // adjust src pointer for this block | 
 |           mi_buf_shift(x, index); | 
 |  | 
 |           av1_set_mv_search_range(&x->mv_limits, &bsi->ref_mv[0]->as_mv); | 
 |  | 
 |           x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV; | 
 |  | 
 | #if CONFIG_REF_MV | 
 |           av1_set_mvcost(x, mbmi->ref_frame[0], 0, mbmi->ref_mv_idx); | 
 | #endif  // CONFIG_REF_MV | 
 |           bestsme = av1_full_pixel_search( | 
 |               cpi, x, bsize, &mvp_full, step_param, sadpb, | 
 |               cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL, | 
 |               &bsi->ref_mv[0]->as_mv, INT_MAX, 1); | 
 |  | 
 |           x->mv_limits = tmp_mv_limits; | 
 |  | 
 |           if (bestsme < INT_MAX) { | 
 |             int distortion; | 
 |             if (cpi->sf.use_upsampled_references) { | 
 |               int best_mv_var; | 
 |               const int try_second = | 
 |                   x->second_best_mv.as_int != INVALID_MV && | 
 |                   x->second_best_mv.as_int != x->best_mv.as_int; | 
 |               const int pw = block_size_wide[bsize]; | 
 |               const int ph = block_size_high[bsize]; | 
 |               // Use up-sampled reference frames. | 
 |               struct buf_2d backup_pred = pd->pre[0]; | 
 |               const YV12_BUFFER_CONFIG *upsampled_ref = | 
 |                   get_upsampled_ref(cpi, mbmi->ref_frame[0]); | 
 |  | 
 |               // Set pred for Y plane | 
 |               setup_pred_plane( | 
 |                   &pd->pre[0], upsampled_ref->y_buffer, | 
 |                   upsampled_ref->y_crop_width, upsampled_ref->y_crop_height, | 
 |                   upsampled_ref->y_stride, (mi_row << 3), (mi_col << 3), NULL, | 
 |                   pd->subsampling_x, pd->subsampling_y); | 
 |  | 
 |               // adjust pred pointer for this block | 
 |               pd->pre[0].buf = | 
 |                   &pd->pre[0].buf[(av1_raster_block_offset(BLOCK_8X8, index, | 
 |                                                            pd->pre[0].stride)) | 
 |                                   << 3]; | 
 |  | 
 |               best_mv_var = cpi->find_fractional_mv_step( | 
 |                   x, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv, | 
 |                   x->errorperbit, &cpi->fn_ptr[bsize], | 
 |                   cpi->sf.mv.subpel_force_stop, | 
 |                   cpi->sf.mv.subpel_iters_per_step, | 
 |                   cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, | 
 |                   &distortion, &x->pred_sse[mbmi->ref_frame[0]], NULL, pw, ph, | 
 |                   1); | 
 |  | 
 |               if (try_second) { | 
 |                 int this_var; | 
 |                 MV best_mv = x->best_mv.as_mv; | 
 |                 const MV ref_mv = bsi->ref_mv[0]->as_mv; | 
 |                 const int minc = | 
 |                     AOMMAX(x->mv_limits.col_min * 8, ref_mv.col - MV_MAX); | 
 |                 const int maxc = | 
 |                     AOMMIN(x->mv_limits.col_max * 8, ref_mv.col + MV_MAX); | 
 |                 const int minr = | 
 |                     AOMMAX(x->mv_limits.row_min * 8, ref_mv.row - MV_MAX); | 
 |                 const int maxr = | 
 |                     AOMMIN(x->mv_limits.row_max * 8, ref_mv.row + MV_MAX); | 
 |  | 
 |                 x->best_mv = x->second_best_mv; | 
 |                 if (x->best_mv.as_mv.row * 8 <= maxr && | 
 |                     x->best_mv.as_mv.row * 8 >= minr && | 
 |                     x->best_mv.as_mv.col * 8 <= maxc && | 
 |                     x->best_mv.as_mv.col * 8 >= minc) { | 
 |                   this_var = cpi->find_fractional_mv_step( | 
 |                       x, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv, | 
 |                       x->errorperbit, &cpi->fn_ptr[bsize], | 
 |                       cpi->sf.mv.subpel_force_stop, | 
 |                       cpi->sf.mv.subpel_iters_per_step, | 
 |                       cond_cost_list(cpi, cost_list), x->nmvjointcost, | 
 |                       x->mvcost, &distortion, &x->pred_sse[mbmi->ref_frame[0]], | 
 |                       NULL, pw, ph, 1); | 
 |                   if (this_var < best_mv_var) best_mv = x->best_mv.as_mv; | 
 |                   x->best_mv.as_mv = best_mv; | 
 |                 } | 
 |               } | 
 |  | 
 |               // Restore the reference frames. | 
 |               pd->pre[0] = backup_pred; | 
 |             } else { | 
 |               cpi->find_fractional_mv_step( | 
 |                   x, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv, | 
 |                   x->errorperbit, &cpi->fn_ptr[bsize], | 
 |                   cpi->sf.mv.subpel_force_stop, | 
 |                   cpi->sf.mv.subpel_iters_per_step, | 
 |                   cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, | 
 |                   &distortion, &x->pred_sse[mbmi->ref_frame[0]], NULL, 0, 0, 0); | 
 |             } | 
 |  | 
 | // save motion search result for use in compound prediction | 
 | #if CONFIG_EXT_INTER | 
 |             seg_mvs[index][mbmi->ref_frame[0]].as_mv = x->best_mv.as_mv; | 
 | #else | 
 |             seg_mvs[index][mbmi->ref_frame[0]].as_mv = x->best_mv.as_mv; | 
 | #endif  // CONFIG_EXT_INTER | 
 |           } | 
 |  | 
 |           if (cpi->sf.adaptive_motion_search) | 
 |             x->pred_mv[mbmi->ref_frame[0]] = x->best_mv.as_mv; | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |           mode_mv[this_mode][0] = x->best_mv; | 
 | #else | 
 |           mode_mv[NEWMV][0] = x->best_mv; | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |           // restore src pointers | 
 |           mi_buf_restore(x, orig_src, orig_pre); | 
 |         } | 
 |  | 
 |         if (has_second_rf) { | 
 | #if CONFIG_EXT_INTER | 
 |           if (seg_mvs[index][mbmi->ref_frame[1]].as_int == INVALID_MV || | 
 |               seg_mvs[index][mbmi->ref_frame[0]].as_int == INVALID_MV) | 
 | #else | 
 |           if (seg_mvs[index][mbmi->ref_frame[1]].as_int == INVALID_MV || | 
 |               seg_mvs[index][mbmi->ref_frame[0]].as_int == INVALID_MV) | 
 | #endif  // CONFIG_EXT_INTER | 
 |             continue; | 
 |         } | 
 |  | 
 | #if CONFIG_DUAL_FILTER | 
 |         (void)run_mv_search; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |  | 
 |         if (has_second_rf && | 
 | #if CONFIG_EXT_INTER | 
 |             this_mode == NEW_NEWMV && | 
 | #else | 
 |             this_mode == NEWMV && | 
 | #endif  // CONFIG_EXT_INTER | 
 | #if CONFIG_DUAL_FILTER | 
 |             (mbmi->interp_filter[0] == EIGHTTAP_REGULAR || run_mv_search)) | 
 | #else | 
 |             (mbmi->interp_filter == EIGHTTAP_REGULAR || run_mv_search)) | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |         { | 
 |           // adjust src pointers | 
 |           mi_buf_shift(x, index); | 
 |           if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { | 
 |             int rate_mv; | 
 |             frame_mv[this_mode][mbmi->ref_frame[0]].as_int = | 
 |                 seg_mvs[index][mbmi->ref_frame[0]].as_int; | 
 |             frame_mv[this_mode][mbmi->ref_frame[1]].as_int = | 
 |                 seg_mvs[index][mbmi->ref_frame[1]].as_int; | 
 |             joint_motion_search(cpi, x, bsize, frame_mv[this_mode], mi_row, | 
 |                                 mi_col, | 
 | #if CONFIG_EXT_INTER | 
 |                                 bsi->ref_mv, | 
 | #endif  // CONFIG_EXT_INTER | 
 |                                 &rate_mv, index); | 
 | #if CONFIG_EXT_INTER | 
 |             compound_seg_newmvs[index][0].as_int = | 
 |                 frame_mv[this_mode][mbmi->ref_frame[0]].as_int; | 
 |             compound_seg_newmvs[index][1].as_int = | 
 |                 frame_mv[this_mode][mbmi->ref_frame[1]].as_int; | 
 | #else | 
 |             seg_mvs[index][mbmi->ref_frame[0]].as_int = | 
 |                 frame_mv[this_mode][mbmi->ref_frame[0]].as_int; | 
 |             seg_mvs[index][mbmi->ref_frame[1]].as_int = | 
 |                 frame_mv[this_mode][mbmi->ref_frame[1]].as_int; | 
 | #endif  // CONFIG_EXT_INTER | 
 |           } | 
 |           // restore src pointers | 
 |           mi_buf_restore(x, orig_src, orig_pre); | 
 |         } | 
 |  | 
 |         bsi->rdstat[index][mode_idx].brate = set_and_cost_bmi_mvs( | 
 |             cpi, x, xd, index, this_mode, mode_mv[this_mode], frame_mv, | 
 |             seg_mvs[index], | 
 | #if CONFIG_EXT_INTER | 
 |             compound_seg_newmvs[index], | 
 | #endif  // CONFIG_EXT_INTER | 
 |             bsi->ref_mv, x->nmvjointcost, x->mvcost, mi_row, mi_col); | 
 |  | 
 |         for (ref = 0; ref < 1 + has_second_rf; ++ref) { | 
 |           bsi->rdstat[index][mode_idx].mvs[ref].as_int = | 
 |               mode_mv[this_mode][ref].as_int; | 
 |           if (num_4x4_blocks_wide > 1) | 
 |             bsi->rdstat[index + 1][mode_idx].mvs[ref].as_int = | 
 |                 mode_mv[this_mode][ref].as_int; | 
 |           if (num_4x4_blocks_high > 1) | 
 |             bsi->rdstat[index + 2][mode_idx].mvs[ref].as_int = | 
 |                 mode_mv[this_mode][ref].as_int; | 
 | #if CONFIG_REF_MV | 
 |           bsi->rdstat[index][mode_idx].pred_mv[ref].as_int = | 
 |               mi->bmi[index].pred_mv[ref].as_int; | 
 |           if (num_4x4_blocks_wide > 1) | 
 |             bsi->rdstat[index + 1][mode_idx].pred_mv[ref].as_int = | 
 |                 mi->bmi[index].pred_mv[ref].as_int; | 
 |           if (num_4x4_blocks_high > 1) | 
 |             bsi->rdstat[index + 2][mode_idx].pred_mv[ref].as_int = | 
 |                 mi->bmi[index].pred_mv[ref].as_int; | 
 | #endif  // CONFIG_REF_MV | 
 | #if CONFIG_EXT_INTER | 
 |           bsi->rdstat[index][mode_idx].ref_mv[ref].as_int = | 
 |               bsi->ref_mv[ref]->as_int; | 
 |           if (num_4x4_blocks_wide > 1) | 
 |             bsi->rdstat[index + 1][mode_idx].ref_mv[ref].as_int = | 
 |                 bsi->ref_mv[ref]->as_int; | 
 |           if (num_4x4_blocks_high > 1) | 
 |             bsi->rdstat[index + 2][mode_idx].ref_mv[ref].as_int = | 
 |                 bsi->ref_mv[ref]->as_int; | 
 | #endif  // CONFIG_EXT_INTER | 
 |         } | 
 |  | 
 |         // Trap vectors that reach beyond the UMV borders | 
 |         if (mv_check_bounds(&x->mv_limits, &mode_mv[this_mode][0].as_mv) || | 
 |             (has_second_rf && | 
 |              mv_check_bounds(&x->mv_limits, &mode_mv[this_mode][1].as_mv))) | 
 |           continue; | 
 |  | 
 |         if (filter_idx > 0) { | 
 |           BEST_SEG_INFO *ref_bsi = bsi_buf; | 
 |           subpelmv = 0; | 
 |           have_ref = 1; | 
 |  | 
 |           for (ref = 0; ref < 1 + has_second_rf; ++ref) { | 
 |             subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv); | 
 | #if CONFIG_EXT_INTER | 
 |             if (have_newmv_in_inter_mode(this_mode)) | 
 |               have_ref &= | 
 |                   ((mode_mv[this_mode][ref].as_int == | 
 |                     ref_bsi->rdstat[index][mode_idx].mvs[ref].as_int) && | 
 |                    (bsi->ref_mv[ref]->as_int == | 
 |                     ref_bsi->rdstat[index][mode_idx].ref_mv[ref].as_int)); | 
 |             else | 
 | #endif  // CONFIG_EXT_INTER | 
 |               have_ref &= mode_mv[this_mode][ref].as_int == | 
 |                           ref_bsi->rdstat[index][mode_idx].mvs[ref].as_int; | 
 |           } | 
 |  | 
 |           have_ref &= ref_bsi->rdstat[index][mode_idx].brate > 0; | 
 |  | 
 |           if (filter_idx > 1 && !subpelmv && !have_ref) { | 
 |             ref_bsi = bsi_buf + 1; | 
 |             have_ref = 1; | 
 |             for (ref = 0; ref < 1 + has_second_rf; ++ref) | 
 | #if CONFIG_EXT_INTER | 
 |               if (have_newmv_in_inter_mode(this_mode)) | 
 |                 have_ref &= | 
 |                     ((mode_mv[this_mode][ref].as_int == | 
 |                       ref_bsi->rdstat[index][mode_idx].mvs[ref].as_int) && | 
 |                      (bsi->ref_mv[ref]->as_int == | 
 |                       ref_bsi->rdstat[index][mode_idx].ref_mv[ref].as_int)); | 
 |               else | 
 | #endif  // CONFIG_EXT_INTER | 
 |                 have_ref &= mode_mv[this_mode][ref].as_int == | 
 |                             ref_bsi->rdstat[index][mode_idx].mvs[ref].as_int; | 
 |  | 
 |             have_ref &= ref_bsi->rdstat[index][mode_idx].brate > 0; | 
 |           } | 
 |  | 
 |           if (!subpelmv && have_ref && | 
 |               ref_bsi->rdstat[index][mode_idx].brdcost < INT64_MAX) { | 
 | #if CONFIG_REF_MV | 
 |             bsi->rdstat[index][mode_idx].byrate = | 
 |                 ref_bsi->rdstat[index][mode_idx].byrate; | 
 |             bsi->rdstat[index][mode_idx].bdist = | 
 |                 ref_bsi->rdstat[index][mode_idx].bdist; | 
 |             bsi->rdstat[index][mode_idx].bsse = | 
 |                 ref_bsi->rdstat[index][mode_idx].bsse; | 
 |             bsi->rdstat[index][mode_idx].brate += | 
 |                 ref_bsi->rdstat[index][mode_idx].byrate; | 
 |             bsi->rdstat[index][mode_idx].eobs = | 
 |                 ref_bsi->rdstat[index][mode_idx].eobs; | 
 |  | 
 |             bsi->rdstat[index][mode_idx].brdcost = | 
 |                 RDCOST(x->rdmult, x->rddiv, bsi->rdstat[index][mode_idx].brate, | 
 |                        bsi->rdstat[index][mode_idx].bdist); | 
 |  | 
 |             memcpy(bsi->rdstat[index][mode_idx].ta, | 
 |                    ref_bsi->rdstat[index][mode_idx].ta, | 
 |                    sizeof(bsi->rdstat[index][mode_idx].ta)); | 
 |             memcpy(bsi->rdstat[index][mode_idx].tl, | 
 |                    ref_bsi->rdstat[index][mode_idx].tl, | 
 |                    sizeof(bsi->rdstat[index][mode_idx].tl)); | 
 | #else | 
 |             memcpy(&bsi->rdstat[index][mode_idx], | 
 |                    &ref_bsi->rdstat[index][mode_idx], sizeof(SEG_RDSTAT)); | 
 | #endif  // CONFIG_REF_MV | 
 |             if (num_4x4_blocks_wide > 1) | 
 |               bsi->rdstat[index + 1][mode_idx].eobs = | 
 |                   ref_bsi->rdstat[index + 1][mode_idx].eobs; | 
 |             if (num_4x4_blocks_high > 1) | 
 |               bsi->rdstat[index + 2][mode_idx].eobs = | 
 |                   ref_bsi->rdstat[index + 2][mode_idx].eobs; | 
 |  | 
 |             if (bsi->rdstat[index][mode_idx].brdcost < new_best_rd) { | 
 | #if CONFIG_REF_MV | 
 |               // If the NEWMV mode is using the same motion vector as the | 
 |               // NEARESTMV mode, skip the rest rate-distortion calculations | 
 |               // and use the inferred motion vector modes. | 
 |               if (this_mode == NEWMV) { | 
 |                 if (has_second_rf) { | 
 |                   if (bsi->rdstat[index][mode_idx].mvs[0].as_int == | 
 |                           bsi->ref_mv[0]->as_int && | 
 |                       bsi->rdstat[index][mode_idx].mvs[1].as_int == | 
 |                           bsi->ref_mv[1]->as_int) | 
 |                     continue; | 
 |                 } else { | 
 |                   if (bsi->rdstat[index][mode_idx].mvs[0].as_int == | 
 |                       bsi->ref_mv[0]->as_int) | 
 |                     continue; | 
 |                 } | 
 |               } | 
 | #endif  // CONFIG_REF_MV | 
 |               mode_selected = this_mode; | 
 |               new_best_rd = bsi->rdstat[index][mode_idx].brdcost; | 
 | #if CONFIG_PVQ | 
 |               od_encode_checkpoint(&x->daala_enc, &post_buf); | 
 | #endif  // CONFIG_PVQ | 
 |             } | 
 |             continue; | 
 |           } | 
 |         } | 
 |  | 
 |         bsi->rdstat[index][mode_idx].brdcost = encode_inter_mb_segment_sub8x8( | 
 |             cpi, x, bsi->segment_rd - this_segment_rd, index, | 
 |             &bsi->rdstat[index][mode_idx].byrate, | 
 |             &bsi->rdstat[index][mode_idx].bdist, | 
 |             &bsi->rdstat[index][mode_idx].bsse, bsi->rdstat[index][mode_idx].ta, | 
 |             bsi->rdstat[index][mode_idx].tl, idy, idx, mi_row, mi_col); | 
 |  | 
 |         if (bsi->rdstat[index][mode_idx].brdcost < INT64_MAX) { | 
 |           bsi->rdstat[index][mode_idx].brdcost += RDCOST( | 
 |               x->rdmult, x->rddiv, bsi->rdstat[index][mode_idx].brate, 0); | 
 |           bsi->rdstat[index][mode_idx].brate += | 
 |               bsi->rdstat[index][mode_idx].byrate; | 
 |           bsi->rdstat[index][mode_idx].eobs = p->eobs[index]; | 
 |           if (num_4x4_blocks_wide > 1) | 
 |             bsi->rdstat[index + 1][mode_idx].eobs = p->eobs[index + 1]; | 
 |           if (num_4x4_blocks_high > 1) | 
 |             bsi->rdstat[index + 2][mode_idx].eobs = p->eobs[index + 2]; | 
 |         } | 
 |  | 
 |         if (bsi->rdstat[index][mode_idx].brdcost < new_best_rd) { | 
 | #if CONFIG_REF_MV | 
 |           // If the NEWMV mode is using the same motion vector as the | 
 |           // NEARESTMV mode, skip the rest rate-distortion calculations | 
 |           // and use the inferred motion vector modes. | 
 |           if (this_mode == NEWMV) { | 
 |             if (has_second_rf) { | 
 |               if (bsi->rdstat[index][mode_idx].mvs[0].as_int == | 
 |                       bsi->ref_mv[0]->as_int && | 
 |                   bsi->rdstat[index][mode_idx].mvs[1].as_int == | 
 |                       bsi->ref_mv[1]->as_int) | 
 |                 continue; | 
 |             } else { | 
 |               if (bsi->rdstat[index][mode_idx].mvs[0].as_int == | 
 |                   bsi->ref_mv[0]->as_int) | 
 |                 continue; | 
 |             } | 
 |           } | 
 | #endif  // CONFIG_REF_MV | 
 |           mode_selected = this_mode; | 
 |           new_best_rd = bsi->rdstat[index][mode_idx].brdcost; | 
 |  | 
 | #if CONFIG_PVQ | 
 |           od_encode_checkpoint(&x->daala_enc, &post_buf); | 
 | #endif  // CONFIG_PVQ | 
 |         } | 
 |       } /*for each 4x4 mode*/ | 
 |  | 
 |       if (new_best_rd == INT64_MAX) { | 
 |         int iy, midx; | 
 |         for (iy = index + 1; iy < 4; ++iy) | 
 | #if CONFIG_EXT_INTER | 
 |           for (midx = 0; midx < INTER_MODES + INTER_COMPOUND_MODES; ++midx) | 
 | #else | 
 |           for (midx = 0; midx < INTER_MODES; ++midx) | 
 | #endif  // CONFIG_EXT_INTER | 
 |             bsi->rdstat[iy][midx].brdcost = INT64_MAX; | 
 |         bsi->segment_rd = INT64_MAX; | 
 | #if CONFIG_PVQ | 
 |         od_encode_rollback(&x->daala_enc, &pre_buf); | 
 | #endif  // CONFIG_PVQ | 
 |         return INT64_MAX; | 
 |       } | 
 |  | 
 |       mode_idx = INTER_OFFSET(mode_selected); | 
 |       memcpy(t_above, bsi->rdstat[index][mode_idx].ta, sizeof(t_above)); | 
 |       memcpy(t_left, bsi->rdstat[index][mode_idx].tl, sizeof(t_left)); | 
 | #if CONFIG_PVQ | 
 |       od_encode_rollback(&x->daala_enc, &post_buf); | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |       bsi->ref_mv[0]->as_int = bsi->rdstat[index][mode_idx].ref_mv[0].as_int; | 
 |       if (has_second_rf) | 
 |         bsi->ref_mv[1]->as_int = bsi->rdstat[index][mode_idx].ref_mv[1].as_int; | 
 | #endif  // CONFIG_EXT_INTER | 
 |       set_and_cost_bmi_mvs(cpi, x, xd, index, mode_selected, | 
 |                            mode_mv[mode_selected], frame_mv, seg_mvs[index], | 
 | #if CONFIG_EXT_INTER | 
 |                            compound_seg_newmvs[index], | 
 | #endif  // CONFIG_EXT_INTER | 
 |                            bsi->ref_mv, x->nmvjointcost, x->mvcost, mi_row, | 
 |                            mi_col); | 
 |  | 
 |       br += bsi->rdstat[index][mode_idx].brate; | 
 |       bd += bsi->rdstat[index][mode_idx].bdist; | 
 |       block_sse += bsi->rdstat[index][mode_idx].bsse; | 
 |       segmentyrate += bsi->rdstat[index][mode_idx].byrate; | 
 |       this_segment_rd += bsi->rdstat[index][mode_idx].brdcost; | 
 |  | 
 |       if (this_segment_rd > bsi->segment_rd) { | 
 |         int iy, midx; | 
 |         for (iy = index + 1; iy < 4; ++iy) | 
 | #if CONFIG_EXT_INTER | 
 |           for (midx = 0; midx < INTER_MODES + INTER_COMPOUND_MODES; ++midx) | 
 | #else | 
 |           for (midx = 0; midx < INTER_MODES; ++midx) | 
 | #endif  // CONFIG_EXT_INTER | 
 |             bsi->rdstat[iy][midx].brdcost = INT64_MAX; | 
 |         bsi->segment_rd = INT64_MAX; | 
 | #if CONFIG_PVQ | 
 |         od_encode_rollback(&x->daala_enc, &pre_buf); | 
 | #endif  // CONFIG_PVQ | 
 |         return INT64_MAX; | 
 |       } | 
 |     } | 
 |   } /* for each label */ | 
 | #if CONFIG_PVQ | 
 |   od_encode_rollback(&x->daala_enc, &pre_buf); | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 |   bsi->r = br; | 
 |   bsi->d = bd; | 
 |   bsi->segment_yrate = segmentyrate; | 
 |   bsi->segment_rd = this_segment_rd; | 
 |   bsi->sse = block_sse; | 
 |  | 
 |   // update the coding decisions | 
 |   for (k = 0; k < 4; ++k) bsi->modes[k] = mi->bmi[k].as_mode; | 
 |  | 
 | #if CONFIG_DAALA_DIST | 
 |   // Compute prediction (i.e. skip) and decoded distortion by daala-distortion. | 
 |   { | 
 |     const int src_stride = p->src.stride; | 
 |     const int dst_stride = pd->dst.stride; | 
 |     uint8_t *src = p->src.buf; | 
 |     uint8_t *dst = pd->dst.buf; | 
 |     const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd); | 
 |     const int use_activity_masking = 0; | 
 |     const int qm = OD_HVS_QM; | 
 |     const int bsw = block_size_wide[plane_bsize]; | 
 |     const int bsh = block_size_high[plane_bsize]; | 
 |     int64_t rd1, rd2; | 
 |     int64_t daala_sse, daala_dist; | 
 |     TX_SIZE tx_size = mbmi->tx_size; | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |     uint8_t *recon_8x8; | 
 |     DECLARE_ALIGNED(16, uint16_t, recon16[8 * 8]); | 
 |  | 
 |     if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) | 
 |       recon_8x8 = CONVERT_TO_BYTEPTR(recon16); | 
 |     else | 
 |       recon_8x8 = (uint8_t *)recon16; | 
 | #else | 
 |     DECLARE_ALIGNED(16, uint8_t, recon_8x8[8 * 8]); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 | #if CONFIG_PVQ | 
 |     use_activity_masking = x->daala_enc.use_activity_masking; | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 |     // For each of sub8x8 prediction block in a 8x8 block | 
 |     for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { | 
 |       for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { | 
 |         int i = idy * 2 + idx; | 
 |         const uint8_t *const src_sub8x8 = | 
 |             src + av1_raster_block_offset(BLOCK_8X8, i, p->src.stride); | 
 |         uint8_t *const dst_sub8x8 = | 
 |             dst + av1_raster_block_offset(BLOCK_8X8, i, pd->dst.stride); | 
 |         uint8_t *recon_sub8x8 = recon_8x8 + (idy * 8 + idx) * 4; | 
 |         const int txb_width = max_block_wide(xd, plane_bsize, 0); | 
 |         const int txb_height = max_block_high(xd, plane_bsize, 0); | 
 |         int idx_, idy_; | 
 |  | 
 |         av1_build_inter_predictor_sub8x8(xd, 0, i, idy, idx, mi_row, mi_col); | 
 | #if CONFIG_HIGHBITDEPTH | 
 |         if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |           aom_highbd_subtract_block( | 
 |               height, width, | 
 |               av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), 8, | 
 |               src_sub8x8, p->src.stride, dst_sub8x8, pd->dst.stride, xd->bd); | 
 |         } else { | 
 |           aom_subtract_block( | 
 |               height, width, | 
 |               av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), 8, | 
 |               src_sub8x8, p->src.stride, dst_sub8x8, pd->dst.stride); | 
 |         } | 
 | #else | 
 |         aom_subtract_block( | 
 |             bsh, bsw, av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), | 
 |             8, src_sub8x8, p->src.stride, dst_sub8x8, pd->dst.stride); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |         if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |           aom_highbd_convolve_copy(dst_sub8x8, dst_stride, recon_sub8x8, 8, | 
 |                                    NULL, 0, NULL, 0, bsw, bsh, xd->bd); | 
 |         } else { | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |           aom_convolve_copy(dst_sub8x8, dst_stride, recon_sub8x8, 8, NULL, 0, | 
 |                             NULL, 0, bsw, bsh); | 
 | #if CONFIG_HIGHBITDEPTH | 
 |         } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 |         // To get decoded pixels, do 4x4 xform and quant for each 4x4 block | 
 |         // in a sub8x8 prediction block. In case remaining parts of | 
 |         // sub8x8 inter mode rdo assume pd->dst stores predicted pixels, | 
 |         // use local buffer to store decoded pixels. | 
 |         for (idy_ = 0; idy_ < txb_height; idy_++) { | 
 |           for (idx_ = 0; idx_ < txb_width; idx_++) { | 
 |             int coeff_ctx = 0; | 
 |             const tran_low_t *dqcoeff; | 
 |             uint16_t eob; | 
 |             const PLANE_TYPE plane_type = PLANE_TYPE_Y; | 
 |             uint8_t *recon_4x4 = recon_sub8x8 + (idy_ * 8 + idx_) * 4; | 
 |             const int block_raster_idx = (idy + idy_) * 2 + (idx + idx_); | 
 |             const int block = | 
 |                 av1_raster_order_to_block_index(tx_size, block_raster_idx); | 
 |             TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); | 
 |  | 
 |             dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); | 
 |             av1_xform_quant(cm, x, 0, block, idy + idy_, idx + idx_, BLOCK_8X8, | 
 |                             tx_size, coeff_ctx, AV1_XFORM_QUANT_FP); | 
 |             if (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0) | 
 |               av1_optimize_b(cm, x, 0, block, tx_size, coeff_ctx); | 
 |  | 
 |             eob = p->eobs[block]; | 
 |             av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, | 
 |                                         recon_4x4, 8, eob); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     // Compute daala-distortion for a 8x8 block | 
 |     daala_sse = av1_daala_dist(src, src_stride, pd->dst.buf, dst_stride, 8, 8, | 
 |                                qm, use_activity_masking, x->qindex) | 
 |                 << 4; | 
 |  | 
 |     daala_dist = av1_daala_dist(src, src_stride, recon_8x8, 8, 8, 8, qm, | 
 |                                 use_activity_masking, x->qindex) | 
 |                  << 4; | 
 |  | 
 |     bsi->sse = daala_sse; | 
 |     bsi->d = daala_dist; | 
 |  | 
 |     rd1 = RDCOST(x->rdmult, x->rddiv, bsi->r, bsi->d); | 
 |     rd2 = RDCOST(x->rdmult, x->rddiv, 0, bsi->sse); | 
 |     bsi->segment_rd = AOMMIN(rd1, rd2); | 
 |   } | 
 | #endif  // CONFIG_DAALA_DIST | 
 |  | 
 |   if (bsi->segment_rd > best_rd) return INT64_MAX; | 
 |   /* set it to the best */ | 
 |   for (idx = 0; idx < 4; idx++) { | 
 |     mode_idx = INTER_OFFSET(bsi->modes[idx]); | 
 |     mi->bmi[idx].as_mv[0].as_int = bsi->rdstat[idx][mode_idx].mvs[0].as_int; | 
 |     if (has_second_ref(mbmi)) | 
 |       mi->bmi[idx].as_mv[1].as_int = bsi->rdstat[idx][mode_idx].mvs[1].as_int; | 
 | #if CONFIG_REF_MV | 
 |     mi->bmi[idx].pred_mv[0] = bsi->rdstat[idx][mode_idx].pred_mv[0]; | 
 |     if (has_second_ref(mbmi)) | 
 |       mi->bmi[idx].pred_mv[1] = bsi->rdstat[idx][mode_idx].pred_mv[1]; | 
 | #endif  // CONFIG_REF_MV | 
 | #if CONFIG_EXT_INTER | 
 |     mi->bmi[idx].ref_mv[0].as_int = bsi->rdstat[idx][mode_idx].ref_mv[0].as_int; | 
 |     if (has_second_rf) | 
 |       mi->bmi[idx].ref_mv[1].as_int = | 
 |           bsi->rdstat[idx][mode_idx].ref_mv[1].as_int; | 
 | #endif  // CONFIG_EXT_INTER | 
 |     x->plane[0].eobs[idx] = bsi->rdstat[idx][mode_idx].eobs; | 
 |     mi->bmi[idx].as_mode = bsi->modes[idx]; | 
 |   } | 
 |  | 
 |   /* | 
 |    * used to set mbmi->mv.as_int | 
 |    */ | 
 |   *returntotrate = bsi->r; | 
 |   *returndistortion = bsi->d; | 
 |   *returnyrate = bsi->segment_yrate; | 
 |   *skippable = av1_is_skippable_in_plane(x, BLOCK_8X8, 0); | 
 |   *psse = bsi->sse; | 
 |   mbmi->mode = bsi->modes[3]; | 
 |  | 
 |   return bsi->segment_rd; | 
 | } | 
 |  | 
 | static void estimate_ref_frame_costs(const AV1_COMMON *cm, | 
 |                                      const MACROBLOCKD *xd, int segment_id, | 
 |                                      unsigned int *ref_costs_single, | 
 |                                      unsigned int *ref_costs_comp, | 
 |                                      aom_prob *comp_mode_p) { | 
 |   int seg_ref_active = | 
 |       segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); | 
 |   if (seg_ref_active) { | 
 |     memset(ref_costs_single, 0, | 
 |            TOTAL_REFS_PER_FRAME * sizeof(*ref_costs_single)); | 
 |     memset(ref_costs_comp, 0, TOTAL_REFS_PER_FRAME * sizeof(*ref_costs_comp)); | 
 |     *comp_mode_p = 128; | 
 |   } else { | 
 |     aom_prob intra_inter_p = av1_get_intra_inter_prob(cm, xd); | 
 |     aom_prob comp_inter_p = 128; | 
 |  | 
 |     if (cm->reference_mode == REFERENCE_MODE_SELECT) { | 
 |       comp_inter_p = av1_get_reference_mode_prob(cm, xd); | 
 |       *comp_mode_p = comp_inter_p; | 
 |     } else { | 
 |       *comp_mode_p = 128; | 
 |     } | 
 |  | 
 |     ref_costs_single[INTRA_FRAME] = av1_cost_bit(intra_inter_p, 0); | 
 |  | 
 |     if (cm->reference_mode != COMPOUND_REFERENCE) { | 
 |       aom_prob ref_single_p1 = av1_get_pred_prob_single_ref_p1(cm, xd); | 
 |       aom_prob ref_single_p2 = av1_get_pred_prob_single_ref_p2(cm, xd); | 
 | #if CONFIG_EXT_REFS | 
 |       aom_prob ref_single_p3 = av1_get_pred_prob_single_ref_p3(cm, xd); | 
 |       aom_prob ref_single_p4 = av1_get_pred_prob_single_ref_p4(cm, xd); | 
 |       aom_prob ref_single_p5 = av1_get_pred_prob_single_ref_p5(cm, xd); | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |       unsigned int base_cost = av1_cost_bit(intra_inter_p, 1); | 
 |  | 
 |       ref_costs_single[LAST_FRAME] = | 
 | #if CONFIG_EXT_REFS | 
 |           ref_costs_single[LAST2_FRAME] = ref_costs_single[LAST3_FRAME] = | 
 |               ref_costs_single[BWDREF_FRAME] = | 
 | #endif  // CONFIG_EXT_REFS | 
 |                   ref_costs_single[GOLDEN_FRAME] = | 
 |                       ref_costs_single[ALTREF_FRAME] = base_cost; | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |       ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p1, 0); | 
 |       ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p1, 0); | 
 |       ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p1, 0); | 
 |       ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p1, 0); | 
 |       ref_costs_single[BWDREF_FRAME] += av1_cost_bit(ref_single_p1, 1); | 
 |       ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p1, 1); | 
 |  | 
 |       ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p3, 0); | 
 |       ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p3, 0); | 
 |       ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p3, 1); | 
 |       ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p3, 1); | 
 |  | 
 |       ref_costs_single[BWDREF_FRAME] += av1_cost_bit(ref_single_p2, 0); | 
 |       ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p2, 1); | 
 |  | 
 |       ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p4, 0); | 
 |       ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p4, 1); | 
 |  | 
 |       ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p5, 0); | 
 |       ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p5, 1); | 
 | #else | 
 |       ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p1, 0); | 
 |       ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p1, 1); | 
 |       ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p1, 1); | 
 |  | 
 |       ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p2, 0); | 
 |       ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p2, 1); | 
 | #endif  // CONFIG_EXT_REFS | 
 |     } else { | 
 |       ref_costs_single[LAST_FRAME] = 512; | 
 | #if CONFIG_EXT_REFS | 
 |       ref_costs_single[LAST2_FRAME] = 512; | 
 |       ref_costs_single[LAST3_FRAME] = 512; | 
 |       ref_costs_single[BWDREF_FRAME] = 512; | 
 | #endif  // CONFIG_EXT_REFS | 
 |       ref_costs_single[GOLDEN_FRAME] = 512; | 
 |       ref_costs_single[ALTREF_FRAME] = 512; | 
 |     } | 
 |  | 
 |     if (cm->reference_mode != SINGLE_REFERENCE) { | 
 |       aom_prob ref_comp_p = av1_get_pred_prob_comp_ref_p(cm, xd); | 
 | #if CONFIG_EXT_REFS | 
 |       aom_prob ref_comp_p1 = av1_get_pred_prob_comp_ref_p1(cm, xd); | 
 |       aom_prob ref_comp_p2 = av1_get_pred_prob_comp_ref_p2(cm, xd); | 
 |       aom_prob bwdref_comp_p = av1_get_pred_prob_comp_bwdref_p(cm, xd); | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |       unsigned int base_cost = av1_cost_bit(intra_inter_p, 1); | 
 |  | 
 |       ref_costs_comp[LAST_FRAME] = | 
 | #if CONFIG_EXT_REFS | 
 |           ref_costs_comp[LAST2_FRAME] = ref_costs_comp[LAST3_FRAME] = | 
 | #endif  // CONFIG_EXT_REFS | 
 |               ref_costs_comp[GOLDEN_FRAME] = base_cost; | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |       ref_costs_comp[BWDREF_FRAME] = ref_costs_comp[ALTREF_FRAME] = 0; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |       ref_costs_comp[LAST_FRAME] += av1_cost_bit(ref_comp_p, 0); | 
 |       ref_costs_comp[LAST2_FRAME] += av1_cost_bit(ref_comp_p, 0); | 
 |       ref_costs_comp[LAST3_FRAME] += av1_cost_bit(ref_comp_p, 1); | 
 |       ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(ref_comp_p, 1); | 
 |  | 
 |       ref_costs_comp[LAST_FRAME] += av1_cost_bit(ref_comp_p1, 1); | 
 |       ref_costs_comp[LAST2_FRAME] += av1_cost_bit(ref_comp_p1, 0); | 
 |  | 
 |       ref_costs_comp[LAST3_FRAME] += av1_cost_bit(ref_comp_p2, 0); | 
 |       ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(ref_comp_p2, 1); | 
 |  | 
 |       // NOTE(zoeliu): BWDREF and ALTREF each add an extra cost by coding 1 | 
 |       //               more bit. | 
 |       ref_costs_comp[BWDREF_FRAME] += av1_cost_bit(bwdref_comp_p, 0); | 
 |       ref_costs_comp[ALTREF_FRAME] += av1_cost_bit(bwdref_comp_p, 1); | 
 | #else | 
 |       ref_costs_comp[LAST_FRAME] += av1_cost_bit(ref_comp_p, 0); | 
 |       ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(ref_comp_p, 1); | 
 | #endif  // CONFIG_EXT_REFS | 
 |     } else { | 
 |       ref_costs_comp[LAST_FRAME] = 512; | 
 | #if CONFIG_EXT_REFS | 
 |       ref_costs_comp[LAST2_FRAME] = 512; | 
 |       ref_costs_comp[LAST3_FRAME] = 512; | 
 |       ref_costs_comp[BWDREF_FRAME] = 512; | 
 |       ref_costs_comp[ALTREF_FRAME] = 512; | 
 | #endif  // CONFIG_EXT_REFS | 
 |       ref_costs_comp[GOLDEN_FRAME] = 512; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, | 
 |                                  int mode_index, | 
 |                                  int64_t comp_pred_diff[REFERENCE_MODES], | 
 |                                  int skippable) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |  | 
 |   // Take a snapshot of the coding context so it can be | 
 |   // restored if we decide to encode this way | 
 |   ctx->skip = x->skip; | 
 |   ctx->skippable = skippable; | 
 |   ctx->best_mode_index = mode_index; | 
 |   ctx->mic = *xd->mi[0]; | 
 |   ctx->mbmi_ext = *x->mbmi_ext; | 
 |   ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE]; | 
 |   ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE]; | 
 |   ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT]; | 
 | } | 
 |  | 
 | static void setup_buffer_inter( | 
 |     const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, | 
 |     BLOCK_SIZE block_size, int mi_row, int mi_col, | 
 |     int_mv frame_nearest_mv[TOTAL_REFS_PER_FRAME], | 
 |     int_mv frame_near_mv[TOTAL_REFS_PER_FRAME], | 
 |     struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME][MAX_MB_PLANE]) { | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MODE_INFO *const mi = xd->mi[0]; | 
 |   int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; | 
 |   const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; | 
 |   MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; | 
 |  | 
 |   assert(yv12 != NULL); | 
 |  | 
 |   // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this | 
 |   // use the UV scaling factors. | 
 |   av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf); | 
 |  | 
 |   // Gets an initial list of candidate vectors from neighbours and orders them | 
 |   av1_find_mv_refs( | 
 |       cm, xd, mi, ref_frame, | 
 | #if CONFIG_REF_MV | 
 |       &mbmi_ext->ref_mv_count[ref_frame], mbmi_ext->ref_mv_stack[ref_frame], | 
 | #if CONFIG_EXT_INTER | 
 |       mbmi_ext->compound_mode_context, | 
 | #endif  // CONFIG_EXT_INTER | 
 | #endif  // CONFIG_REF_MV | 
 |       candidates, mi_row, mi_col, NULL, NULL, mbmi_ext->mode_context); | 
 |  | 
 |   // Candidate refinement carried out at encoder and decoder | 
 |   av1_find_best_ref_mvs(cm->allow_high_precision_mv, candidates, | 
 |                         &frame_nearest_mv[ref_frame], | 
 |                         &frame_near_mv[ref_frame]); | 
 |  | 
 | // Further refinement that is encode side only to test the top few candidates | 
 | // in full and choose the best as the centre point for subsequent searches. | 
 | // The current implementation doesn't support scaling. | 
 | #if CONFIG_CB4X4 | 
 |   av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, | 
 |               block_size); | 
 | #else | 
 |   if (!av1_is_scaled(sf) && block_size >= BLOCK_8X8) | 
 |     av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, | 
 |                 block_size); | 
 | #endif  // CONFIG_CB4X4 | 
 | } | 
 |  | 
 | static void single_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                  BLOCK_SIZE bsize, int mi_row, int mi_col, | 
 | #if CONFIG_EXT_INTER | 
 |                                  int ref_idx, | 
 | #endif  // CONFIG_EXT_INTER | 
 |                                  int *rate_mv) { | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; | 
 |   int bestsme = INT_MAX; | 
 |   int step_param; | 
 |   int sadpb = x->sadperbit16; | 
 |   MV mvp_full; | 
 | #if CONFIG_EXT_INTER | 
 |   int ref = mbmi->ref_frame[ref_idx]; | 
 | #else | 
 |   int ref = mbmi->ref_frame[0]; | 
 |   int ref_idx = 0; | 
 | #endif  // CONFIG_EXT_INTER | 
 |   MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; | 
 |  | 
 |   MvLimits tmp_mv_limits = x->mv_limits; | 
 |   int cost_list[5]; | 
 |  | 
 |   const YV12_BUFFER_CONFIG *scaled_ref_frame = | 
 |       av1_get_scaled_ref_frame(cpi, ref); | 
 |  | 
 |   MV pred_mv[3]; | 
 |   pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv; | 
 |   pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv; | 
 |   pred_mv[2] = x->pred_mv[ref]; | 
 |  | 
 |   if (scaled_ref_frame) { | 
 |     int i; | 
 |     // Swap out the reference frame for a version that's been scaled to | 
 |     // match the resolution of the current frame, allowing the existing | 
 |     // motion search code to be used without additional modifications. | 
 |     for (i = 0; i < MAX_MB_PLANE; i++) | 
 |       backup_yv12[i] = xd->plane[i].pre[ref_idx]; | 
 |  | 
 |     av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL); | 
 |   } | 
 |  | 
 |   av1_set_mv_search_range(&x->mv_limits, &ref_mv); | 
 |  | 
 | #if CONFIG_REF_MV | 
 |   av1_set_mvcost(x, ref, ref_idx, mbmi->ref_mv_idx); | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 |   // Work out the size of the first step in the mv step search. | 
 |   // 0 here is maximum length first step. 1 is AOMMAX >> 1 etc. | 
 |   if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { | 
 |     // Take wtd average of the step_params based on the last frame's | 
 |     // max mv magnitude and that based on the best ref mvs of the current | 
 |     // block for the given reference. | 
 |     step_param = | 
 |         (av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) / | 
 |         2; | 
 |   } else { | 
 |     step_param = cpi->mv_step_param; | 
 |   } | 
 |  | 
 |   if (cpi->sf.adaptive_motion_search && bsize < cm->sb_size) { | 
 |     int boffset = | 
 |         2 * (b_width_log2_lookup[cm->sb_size] - | 
 |              AOMMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize])); | 
 |     step_param = AOMMAX(step_param, boffset); | 
 |   } | 
 |  | 
 |   if (cpi->sf.adaptive_motion_search) { | 
 |     int bwl = b_width_log2_lookup[bsize]; | 
 |     int bhl = b_height_log2_lookup[bsize]; | 
 |     int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4); | 
 |  | 
 |     if (tlevel < 5) step_param += 2; | 
 |  | 
 |     // prev_mv_sad is not setup for dynamically scaled frames. | 
 |     if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) { | 
 |       int i; | 
 |       for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) { | 
 |         if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) { | 
 |           x->pred_mv[ref].row = 0; | 
 |           x->pred_mv[ref].col = 0; | 
 |           x->best_mv.as_int = INVALID_MV; | 
 |  | 
 |           if (scaled_ref_frame) { | 
 |             int j; | 
 |             for (j = 0; j < MAX_MB_PLANE; ++j) | 
 |               xd->plane[j].pre[ref_idx] = backup_yv12[j]; | 
 |           } | 
 |           return; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   av1_set_mv_search_range(&x->mv_limits, &ref_mv); | 
 |  | 
 | #if CONFIG_MOTION_VAR | 
 |   if (mbmi->motion_mode != SIMPLE_TRANSLATION) | 
 |     mvp_full = mbmi->mv[0].as_mv; | 
 |   else | 
 | #endif  // CONFIG_MOTION_VAR | 
 |     mvp_full = pred_mv[x->mv_best_ref_index[ref]]; | 
 |  | 
 |   mvp_full.col >>= 3; | 
 |   mvp_full.row >>= 3; | 
 |  | 
 |   x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV; | 
 |  | 
 | #if CONFIG_MOTION_VAR | 
 |   switch (mbmi->motion_mode) { | 
 |     case SIMPLE_TRANSLATION: | 
 | #endif  // CONFIG_MOTION_VAR | 
 |       bestsme = av1_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, | 
 |                                       sadpb, cond_cost_list(cpi, cost_list), | 
 |                                       &ref_mv, INT_MAX, 1); | 
 | #if CONFIG_MOTION_VAR | 
 |       break; | 
 |     case OBMC_CAUSAL: | 
 |       bestsme = av1_obmc_full_pixel_diamond( | 
 |           cpi, x, &mvp_full, step_param, sadpb, | 
 |           MAX_MVSEARCH_STEPS - 1 - step_param, 1, &cpi->fn_ptr[bsize], &ref_mv, | 
 |           &(x->best_mv.as_mv), 0); | 
 |       break; | 
 |     default: assert("Invalid motion mode!\n"); | 
 |   } | 
 | #endif  // CONFIG_MOTION_VAR | 
 |  | 
 |   x->mv_limits = tmp_mv_limits; | 
 |  | 
 |   if (bestsme < INT_MAX) { | 
 |     int dis; /* TODO: use dis in distortion calculation later. */ | 
 | #if CONFIG_MOTION_VAR | 
 |     switch (mbmi->motion_mode) { | 
 |       case SIMPLE_TRANSLATION: | 
 | #endif  // CONFIG_MOTION_VAR | 
 |         if (cpi->sf.use_upsampled_references) { | 
 |           int best_mv_var; | 
 |           const int try_second = x->second_best_mv.as_int != INVALID_MV && | 
 |                                  x->second_best_mv.as_int != x->best_mv.as_int; | 
 |           const int pw = block_size_wide[bsize]; | 
 |           const int ph = block_size_high[bsize]; | 
 |           // Use up-sampled reference frames. | 
 |           struct macroblockd_plane *const pd = &xd->plane[0]; | 
 |           struct buf_2d backup_pred = pd->pre[ref_idx]; | 
 |           const YV12_BUFFER_CONFIG *upsampled_ref = get_upsampled_ref(cpi, ref); | 
 |  | 
 |           // Set pred for Y plane | 
 |           setup_pred_plane( | 
 |               &pd->pre[ref_idx], upsampled_ref->y_buffer, | 
 |               upsampled_ref->y_crop_width, upsampled_ref->y_crop_height, | 
 |               upsampled_ref->y_stride, (mi_row << 3), (mi_col << 3), NULL, | 
 |               pd->subsampling_x, pd->subsampling_y); | 
 |  | 
 |           best_mv_var = cpi->find_fractional_mv_step( | 
 |               x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, | 
 |               &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, | 
 |               cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), | 
 |               x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, pw, ph, | 
 |               1); | 
 |  | 
 |           if (try_second) { | 
 |             const int minc = | 
 |                 AOMMAX(x->mv_limits.col_min * 8, ref_mv.col - MV_MAX); | 
 |             const int maxc = | 
 |                 AOMMIN(x->mv_limits.col_max * 8, ref_mv.col + MV_MAX); | 
 |             const int minr = | 
 |                 AOMMAX(x->mv_limits.row_min * 8, ref_mv.row - MV_MAX); | 
 |             const int maxr = | 
 |                 AOMMIN(x->mv_limits.row_max * 8, ref_mv.row + MV_MAX); | 
 |             int this_var; | 
 |             MV best_mv = x->best_mv.as_mv; | 
 |  | 
 |             x->best_mv = x->second_best_mv; | 
 |             if (x->best_mv.as_mv.row * 8 <= maxr && | 
 |                 x->best_mv.as_mv.row * 8 >= minr && | 
 |                 x->best_mv.as_mv.col * 8 <= maxc && | 
 |                 x->best_mv.as_mv.col * 8 >= minc) { | 
 |               this_var = cpi->find_fractional_mv_step( | 
 |                   x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, | 
 |                   &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, | 
 |                   cpi->sf.mv.subpel_iters_per_step, | 
 |                   cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, | 
 |                   &dis, &x->pred_sse[ref], NULL, pw, ph, 1); | 
 |               if (this_var < best_mv_var) best_mv = x->best_mv.as_mv; | 
 |               x->best_mv.as_mv = best_mv; | 
 |             } | 
 |           } | 
 |  | 
 |           // Restore the reference frames. | 
 |           pd->pre[ref_idx] = backup_pred; | 
 |         } else { | 
 |           cpi->find_fractional_mv_step( | 
 |               x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, | 
 |               &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, | 
 |               cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), | 
 |               x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, 0, 0, | 
 |               0); | 
 |         } | 
 | #if CONFIG_MOTION_VAR | 
 |         break; | 
 |       case OBMC_CAUSAL: | 
 |         av1_find_best_obmc_sub_pixel_tree_up( | 
 |             cpi, x, mi_row, mi_col, &x->best_mv.as_mv, &ref_mv, | 
 |             cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], | 
 |             cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, | 
 |             x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], 0, | 
 |             cpi->sf.use_upsampled_references); | 
 |         break; | 
 |       default: assert("Invalid motion mode!\n"); | 
 |     } | 
 | #endif  // CONFIG_MOTION_VAR | 
 |   } | 
 |   *rate_mv = av1_mv_bit_cost(&x->best_mv.as_mv, &ref_mv, x->nmvjointcost, | 
 |                              x->mvcost, MV_COST_WEIGHT); | 
 |  | 
 | #if CONFIG_MOTION_VAR | 
 |   if (cpi->sf.adaptive_motion_search && mbmi->motion_mode == SIMPLE_TRANSLATION) | 
 | #else | 
 |   if (cpi->sf.adaptive_motion_search) | 
 | #endif  // CONFIG_MOTION_VAR | 
 |     x->pred_mv[ref] = x->best_mv.as_mv; | 
 |  | 
 |   if (scaled_ref_frame) { | 
 |     int i; | 
 |     for (i = 0; i < MAX_MB_PLANE; i++) | 
 |       xd->plane[i].pre[ref_idx] = backup_yv12[i]; | 
 |   } | 
 | } | 
 |  | 
 | static INLINE void restore_dst_buf(MACROBLOCKD *xd, BUFFER_SET dst) { | 
 |   int i; | 
 |   for (i = 0; i < MAX_MB_PLANE; i++) { | 
 |     xd->plane[i].dst.buf = dst.plane[i]; | 
 |     xd->plane[i].dst.stride = dst.stride[i]; | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 | #if CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE | 
 | static void do_masked_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                     const uint8_t *mask, int mask_stride, | 
 |                                     BLOCK_SIZE bsize, int mi_row, int mi_col, | 
 |                                     int_mv *tmp_mv, int *rate_mv, int ref_idx) { | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; | 
 |   int bestsme = INT_MAX; | 
 |   int step_param; | 
 |   int sadpb = x->sadperbit16; | 
 |   MV mvp_full; | 
 |   int ref = mbmi->ref_frame[ref_idx]; | 
 |   MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; | 
 |  | 
 |   MvLimits tmp_mv_limits = x->mv_limits; | 
 |  | 
 |   const YV12_BUFFER_CONFIG *scaled_ref_frame = | 
 |       av1_get_scaled_ref_frame(cpi, ref); | 
 |   int i; | 
 |  | 
 |   MV pred_mv[3]; | 
 |   pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv; | 
 |   pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv; | 
 |   pred_mv[2] = x->pred_mv[ref]; | 
 |  | 
 | #if CONFIG_REF_MV | 
 |   av1_set_mvcost(x, ref, ref_idx, mbmi->ref_mv_idx); | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 |   if (scaled_ref_frame) { | 
 |     // Swap out the reference frame for a version that's been scaled to | 
 |     // match the resolution of the current frame, allowing the existing | 
 |     // motion search code to be used without additional modifications. | 
 |     for (i = 0; i < MAX_MB_PLANE; i++) | 
 |       backup_yv12[i] = xd->plane[i].pre[ref_idx]; | 
 |  | 
 |     av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL); | 
 |   } | 
 |  | 
 |   av1_set_mv_search_range(&x->mv_limits, &ref_mv); | 
 |  | 
 |   // Work out the size of the first step in the mv step search. | 
 |   // 0 here is maximum length first step. 1 is MAX >> 1 etc. | 
 |   if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { | 
 |     // Take wtd average of the step_params based on the last frame's | 
 |     // max mv magnitude and that based on the best ref mvs of the current | 
 |     // block for the given reference. | 
 |     step_param = | 
 |         (av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) / | 
 |         2; | 
 |   } else { | 
 |     step_param = cpi->mv_step_param; | 
 |   } | 
 |  | 
 |   // TODO(debargha): is show_frame needed here? | 
 |   if (cpi->sf.adaptive_motion_search && bsize < cm->sb_size && cm->show_frame) { | 
 |     int boffset = | 
 |         2 * (b_width_log2_lookup[cm->sb_size] - | 
 |              AOMMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize])); | 
 |     step_param = AOMMAX(step_param, boffset); | 
 |   } | 
 |  | 
 |   if (cpi->sf.adaptive_motion_search) { | 
 |     int bwl = b_width_log2_lookup[bsize]; | 
 |     int bhl = b_height_log2_lookup[bsize]; | 
 |     int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4); | 
 |  | 
 |     if (tlevel < 5) step_param += 2; | 
 |  | 
 |     // prev_mv_sad is not setup for dynamically scaled frames. | 
 |     if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) { | 
 |       for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) { | 
 |         if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) { | 
 |           x->pred_mv[ref].row = 0; | 
 |           x->pred_mv[ref].col = 0; | 
 |           tmp_mv->as_int = INVALID_MV; | 
 |  | 
 |           if (scaled_ref_frame) { | 
 |             int j; | 
 |             for (j = 0; j < MAX_MB_PLANE; ++j) | 
 |               xd->plane[j].pre[ref_idx] = backup_yv12[j]; | 
 |           } | 
 |           return; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   mvp_full = pred_mv[x->mv_best_ref_index[ref]]; | 
 |  | 
 |   mvp_full.col >>= 3; | 
 |   mvp_full.row >>= 3; | 
 |  | 
 |   bestsme = av1_masked_full_pixel_diamond( | 
 |       cpi, x, mask, mask_stride, &mvp_full, step_param, sadpb, | 
 |       MAX_MVSEARCH_STEPS - 1 - step_param, 1, &cpi->fn_ptr[bsize], &ref_mv, | 
 |       &tmp_mv->as_mv, ref_idx); | 
 |  | 
 |   x->mv_limits = tmp_mv_limits; | 
 |  | 
 |   if (bestsme < INT_MAX) { | 
 |     int dis; /* TODO: use dis in distortion calculation later. */ | 
 |     av1_find_best_masked_sub_pixel_tree_up( | 
 |         cpi, x, mask, mask_stride, mi_row, mi_col, &tmp_mv->as_mv, &ref_mv, | 
 |         cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], | 
 |         cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, | 
 |         x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], ref_idx, | 
 |         cpi->sf.use_upsampled_references); | 
 |   } | 
 |   *rate_mv = av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost, | 
 |                              x->mvcost, MV_COST_WEIGHT); | 
 |  | 
 |   if (cpi->sf.adaptive_motion_search && cm->show_frame) | 
 |     x->pred_mv[ref] = tmp_mv->as_mv; | 
 |  | 
 |   if (scaled_ref_frame) { | 
 |     for (i = 0; i < MAX_MB_PLANE; i++) | 
 |       xd->plane[i].pre[ref_idx] = backup_yv12[i]; | 
 |   } | 
 | } | 
 |  | 
 | static void do_masked_motion_search_indexed( | 
 |     const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |     const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE bsize, | 
 |     int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv, int which) { | 
 |   // NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   BLOCK_SIZE sb_type = mbmi->sb_type; | 
 |   const uint8_t *mask; | 
 |   const int mask_stride = block_size_wide[bsize]; | 
 |  | 
 |   mask = av1_get_compound_type_mask(comp_data, sb_type); | 
 |  | 
 |   if (which == 0 || which == 2) | 
 |     do_masked_motion_search(cpi, x, mask, mask_stride, bsize, mi_row, mi_col, | 
 |                             &tmp_mv[0], &rate_mv[0], 0); | 
 |  | 
 |   if (which == 1 || which == 2) { | 
 | // get the negative mask | 
 | #if CONFIG_COMPOUND_SEGMENT | 
 |     uint8_t inv_mask_buf[2 * MAX_SB_SQUARE]; | 
 |     const int h = block_size_high[bsize]; | 
 |     mask = av1_get_compound_type_mask_inverse( | 
 |         comp_data, inv_mask_buf, h, mask_stride, mask_stride, sb_type); | 
 | #else | 
 |     mask = av1_get_compound_type_mask_inverse(comp_data, sb_type); | 
 | #endif  // CONFIG_COMPOUND_SEGMENT | 
 |     do_masked_motion_search(cpi, x, mask, mask_stride, bsize, mi_row, mi_col, | 
 |                             &tmp_mv[1], &rate_mv[1], 1); | 
 |   } | 
 | } | 
 | #endif  // CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 | // In some situations we want to discount tha pparent cost of a new motion | 
 | // vector. Where there is a subtle motion field and especially where there is | 
 | // low spatial complexity then it can be hard to cover the cost of a new motion | 
 | // vector in a single block, even if that motion vector reduces distortion. | 
 | // However, once established that vector may be usable through the nearest and | 
 | // near mv modes to reduce distortion in subsequent blocks and also improve | 
 | // visual quality. | 
 | static int discount_newmv_test(const AV1_COMP *const cpi, int this_mode, | 
 |                                int_mv this_mv, | 
 |                                int_mv (*mode_mv)[TOTAL_REFS_PER_FRAME], | 
 |                                int ref_frame) { | 
 |   return (!cpi->rc.is_src_frame_alt_ref && (this_mode == NEWMV) && | 
 |           (this_mv.as_int != 0) && | 
 |           ((mode_mv[NEARESTMV][ref_frame].as_int == 0) || | 
 |            (mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) && | 
 |           ((mode_mv[NEARMV][ref_frame].as_int == 0) || | 
 |            (mode_mv[NEARMV][ref_frame].as_int == INVALID_MV))); | 
 | } | 
 |  | 
 | #define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) | 
 | #define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) | 
 |  | 
 | // TODO(jingning): this mv clamping function should be block size dependent. | 
 | static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) { | 
 |   clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN, | 
 |            xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN, | 
 |            xd->mb_to_top_edge - LEFT_TOP_MARGIN, | 
 |            xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN); | 
 | } | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 | #if CONFIG_WEDGE | 
 | static int estimate_wedge_sign(const AV1_COMP *cpi, const MACROBLOCK *x, | 
 |                                const BLOCK_SIZE bsize, const uint8_t *pred0, | 
 |                                int stride0, const uint8_t *pred1, int stride1) { | 
 |   const struct macroblock_plane *const p = &x->plane[0]; | 
 |   const uint8_t *src = p->src.buf; | 
 |   int src_stride = p->src.stride; | 
 |   const int f_index = bsize - BLOCK_8X8; | 
 |   const int bw = block_size_wide[bsize]; | 
 |   const int bh = block_size_high[bsize]; | 
 |   uint32_t esq[2][4], var; | 
 |   int64_t tl, br; | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |     pred0 = CONVERT_TO_BYTEPTR(pred0); | 
 |     pred1 = CONVERT_TO_BYTEPTR(pred1); | 
 |   } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 |   var = cpi->fn_ptr[f_index].vf(src, src_stride, pred0, stride0, &esq[0][0]); | 
 |   var = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred0 + bw / 2, | 
 |                                 stride0, &esq[0][1]); | 
 |   var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride, | 
 |                                 pred0 + bh / 2 * stride0, stride0, &esq[0][2]); | 
 |   var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride, | 
 |                                 pred0 + bh / 2 * stride0 + bw / 2, stride0, | 
 |                                 &esq[0][3]); | 
 |   var = cpi->fn_ptr[f_index].vf(src, src_stride, pred1, stride1, &esq[1][0]); | 
 |   var = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred1 + bw / 2, | 
 |                                 stride1, &esq[1][1]); | 
 |   var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride, | 
 |                                 pred1 + bh / 2 * stride1, stride0, &esq[1][2]); | 
 |   var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride, | 
 |                                 pred1 + bh / 2 * stride1 + bw / 2, stride0, | 
 |                                 &esq[1][3]); | 
 |   (void)var; | 
 |  | 
 |   tl = (int64_t)(esq[0][0] + esq[0][1] + esq[0][2]) - | 
 |        (int64_t)(esq[1][0] + esq[1][1] + esq[1][2]); | 
 |   br = (int64_t)(esq[1][3] + esq[1][1] + esq[1][2]) - | 
 |        (int64_t)(esq[0][3] + esq[0][1] + esq[0][2]); | 
 |   return (tl + br > 0); | 
 | } | 
 | #endif  // CONFIG_WEDGE | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 | #if !CONFIG_DUAL_FILTER | 
 | static InterpFilter predict_interp_filter( | 
 |     const AV1_COMP *cpi, const MACROBLOCK *x, const BLOCK_SIZE bsize, | 
 |     const int mi_row, const int mi_col, | 
 |     InterpFilter (*single_filter)[TOTAL_REFS_PER_FRAME]) { | 
 |   InterpFilter best_filter = SWITCHABLE; | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   const MACROBLOCKD *xd = &x->e_mbd; | 
 |   int bsl = mi_width_log2_lookup[bsize]; | 
 |   int pred_filter_search = | 
 |       cpi->sf.cb_pred_filter_search | 
 |           ? (((mi_row + mi_col) >> bsl) + | 
 |              get_chessboard_index(cm->current_video_frame)) & | 
 |                 0x1 | 
 |           : 0; | 
 |   MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   const int is_comp_pred = has_second_ref(mbmi); | 
 |   const int this_mode = mbmi->mode; | 
 |   int refs[2] = { mbmi->ref_frame[0], | 
 |                   (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; | 
 |   if (pred_filter_search) { | 
 |     InterpFilter af = SWITCHABLE, lf = SWITCHABLE; | 
 |     if (xd->up_available) af = xd->mi[-xd->mi_stride]->mbmi.interp_filter; | 
 |     if (xd->left_available) lf = xd->mi[-1]->mbmi.interp_filter; | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |     if ((this_mode != NEWMV && this_mode != NEW_NEWMV) || (af == lf)) | 
 | #else | 
 |     if ((this_mode != NEWMV) || (af == lf)) | 
 | #endif  // CONFIG_EXT_INTER | 
 |       best_filter = af; | 
 |   } | 
 |   if (is_comp_pred) { | 
 |     if (cpi->sf.adaptive_mode_search) { | 
 | #if CONFIG_EXT_INTER | 
 |       switch (this_mode) { | 
 |         case NEAREST_NEARESTMV: | 
 |           if (single_filter[NEARESTMV][refs[0]] == | 
 |               single_filter[NEARESTMV][refs[1]]) | 
 |             best_filter = single_filter[NEARESTMV][refs[0]]; | 
 |           break; | 
 |         case NEAREST_NEARMV: | 
 |           if (single_filter[NEARESTMV][refs[0]] == | 
 |               single_filter[NEARMV][refs[1]]) | 
 |             best_filter = single_filter[NEARESTMV][refs[0]]; | 
 |           break; | 
 |         case NEAR_NEARESTMV: | 
 |           if (single_filter[NEARMV][refs[0]] == | 
 |               single_filter[NEARESTMV][refs[1]]) | 
 |             best_filter = single_filter[NEARMV][refs[0]]; | 
 |           break; | 
 |         case NEAR_NEARMV: | 
 |           if (single_filter[NEARMV][refs[0]] == single_filter[NEARMV][refs[1]]) | 
 |             best_filter = single_filter[NEARMV][refs[0]]; | 
 |           break; | 
 |         case ZERO_ZEROMV: | 
 |           if (single_filter[ZEROMV][refs[0]] == single_filter[ZEROMV][refs[1]]) | 
 |             best_filter = single_filter[ZEROMV][refs[0]]; | 
 |           break; | 
 |         case NEW_NEWMV: | 
 |           if (single_filter[NEWMV][refs[0]] == single_filter[NEWMV][refs[1]]) | 
 |             best_filter = single_filter[NEWMV][refs[0]]; | 
 |           break; | 
 |         case NEAREST_NEWMV: | 
 |           if (single_filter[NEARESTMV][refs[0]] == | 
 |               single_filter[NEWMV][refs[1]]) | 
 |             best_filter = single_filter[NEARESTMV][refs[0]]; | 
 |           break; | 
 |         case NEAR_NEWMV: | 
 |           if (single_filter[NEARMV][refs[0]] == single_filter[NEWMV][refs[1]]) | 
 |             best_filter = single_filter[NEARMV][refs[0]]; | 
 |           break; | 
 |         case NEW_NEARESTMV: | 
 |           if (single_filter[NEWMV][refs[0]] == | 
 |               single_filter[NEARESTMV][refs[1]]) | 
 |             best_filter = single_filter[NEWMV][refs[0]]; | 
 |           break; | 
 |         case NEW_NEARMV: | 
 |           if (single_filter[NEWMV][refs[0]] == single_filter[NEARMV][refs[1]]) | 
 |             best_filter = single_filter[NEWMV][refs[0]]; | 
 |           break; | 
 |         default: | 
 |           if (single_filter[this_mode][refs[0]] == | 
 |               single_filter[this_mode][refs[1]]) | 
 |             best_filter = single_filter[this_mode][refs[0]]; | 
 |           break; | 
 |       } | 
 | #else | 
 |       if (single_filter[this_mode][refs[0]] == | 
 |           single_filter[this_mode][refs[1]]) | 
 |         best_filter = single_filter[this_mode][refs[0]]; | 
 | #endif  // CONFIG_EXT_INTER | 
 |     } | 
 |   } | 
 |   if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) { | 
 |     best_filter = EIGHTTAP_REGULAR; | 
 |   } | 
 |   return best_filter; | 
 | } | 
 | #endif  // !CONFIG_DUAL_FILTER | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 | // Choose the best wedge index and sign | 
 | #if CONFIG_WEDGE | 
 | static int64_t pick_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x, | 
 |                           const BLOCK_SIZE bsize, const uint8_t *const p0, | 
 |                           const uint8_t *const p1, int *const best_wedge_sign, | 
 |                           int *const best_wedge_index) { | 
 |   const MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const struct buf_2d *const src = &x->plane[0].src; | 
 |   const int bw = block_size_wide[bsize]; | 
 |   const int bh = block_size_high[bsize]; | 
 |   const int N = bw * bh; | 
 |   int rate; | 
 |   int64_t dist; | 
 |   int64_t rd, best_rd = INT64_MAX; | 
 |   int wedge_index; | 
 |   int wedge_sign; | 
 |   int wedge_types = (1 << get_wedge_bits_lookup(bsize)); | 
 |   const uint8_t *mask; | 
 |   uint64_t sse; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; | 
 |   const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; | 
 | #else | 
 |   const int bd_round = 0; | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 |   DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); | 
 |   DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); | 
 |   DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]); | 
 |   DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]); | 
 |  | 
 |   int64_t sign_limit; | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (hbd) { | 
 |     aom_highbd_subtract_block(bh, bw, r0, bw, src->buf, src->stride, | 
 |                               CONVERT_TO_BYTEPTR(p0), bw, xd->bd); | 
 |     aom_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride, | 
 |                               CONVERT_TO_BYTEPTR(p1), bw, xd->bd); | 
 |     aom_highbd_subtract_block(bh, bw, d10, bw, CONVERT_TO_BYTEPTR(p1), bw, | 
 |                               CONVERT_TO_BYTEPTR(p0), bw, xd->bd); | 
 |   } else  // NOLINT | 
 | #endif    // CONFIG_HIGHBITDEPTH | 
 |   { | 
 |     aom_subtract_block(bh, bw, r0, bw, src->buf, src->stride, p0, bw); | 
 |     aom_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw); | 
 |     aom_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw); | 
 |   } | 
 |  | 
 |   sign_limit = ((int64_t)aom_sum_squares_i16(r0, N) - | 
 |                 (int64_t)aom_sum_squares_i16(r1, N)) * | 
 |                (1 << WEDGE_WEIGHT_BITS) / 2; | 
 |  | 
 |   if (N < 64) | 
 |     av1_wedge_compute_delta_squares_c(ds, r0, r1, N); | 
 |   else | 
 |     av1_wedge_compute_delta_squares(ds, r0, r1, N); | 
 |  | 
 |   for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { | 
 |     mask = av1_get_contiguous_soft_mask(wedge_index, 0, bsize); | 
 |  | 
 |     // TODO(jingning): Make sse2 functions support N = 16 case | 
 |     if (N < 64) | 
 |       wedge_sign = av1_wedge_sign_from_residuals_c(ds, mask, N, sign_limit); | 
 |     else | 
 |       wedge_sign = av1_wedge_sign_from_residuals(ds, mask, N, sign_limit); | 
 |  | 
 |     mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); | 
 |     if (N < 64) | 
 |       sse = av1_wedge_sse_from_residuals_c(r1, d10, mask, N); | 
 |     else | 
 |       sse = av1_wedge_sse_from_residuals(r1, d10, mask, N); | 
 |     sse = ROUND_POWER_OF_TWO(sse, bd_round); | 
 |  | 
 |     model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist); | 
 |     rd = RDCOST(x->rdmult, x->rddiv, rate, dist); | 
 |  | 
 |     if (rd < best_rd) { | 
 |       *best_wedge_index = wedge_index; | 
 |       *best_wedge_sign = wedge_sign; | 
 |       best_rd = rd; | 
 |     } | 
 |   } | 
 |  | 
 |   return best_rd; | 
 | } | 
 |  | 
 | // Choose the best wedge index the specified sign | 
 | static int64_t pick_wedge_fixed_sign( | 
 |     const AV1_COMP *const cpi, const MACROBLOCK *const x, | 
 |     const BLOCK_SIZE bsize, const uint8_t *const p0, const uint8_t *const p1, | 
 |     const int wedge_sign, int *const best_wedge_index) { | 
 |   const MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const struct buf_2d *const src = &x->plane[0].src; | 
 |   const int bw = block_size_wide[bsize]; | 
 |   const int bh = block_size_high[bsize]; | 
 |   const int N = bw * bh; | 
 |   int rate; | 
 |   int64_t dist; | 
 |   int64_t rd, best_rd = INT64_MAX; | 
 |   int wedge_index; | 
 |   int wedge_types = (1 << get_wedge_bits_lookup(bsize)); | 
 |   const uint8_t *mask; | 
 |   uint64_t sse; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; | 
 |   const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; | 
 | #else | 
 |   const int bd_round = 0; | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 |   DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); | 
 |   DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]); | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (hbd) { | 
 |     aom_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride, | 
 |                               CONVERT_TO_BYTEPTR(p1), bw, xd->bd); | 
 |     aom_highbd_subtract_block(bh, bw, d10, bw, CONVERT_TO_BYTEPTR(p1), bw, | 
 |                               CONVERT_TO_BYTEPTR(p0), bw, xd->bd); | 
 |   } else  // NOLINT | 
 | #endif    // CONFIG_HIGHBITDEPTH | 
 |   { | 
 |     aom_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw); | 
 |     aom_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw); | 
 |   } | 
 |  | 
 |   for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { | 
 |     mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); | 
 |     if (N < 64) | 
 |       sse = av1_wedge_sse_from_residuals_c(r1, d10, mask, N); | 
 |     else | 
 |       sse = av1_wedge_sse_from_residuals(r1, d10, mask, N); | 
 |     sse = ROUND_POWER_OF_TWO(sse, bd_round); | 
 |  | 
 |     model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist); | 
 |     rd = RDCOST(x->rdmult, x->rddiv, rate, dist); | 
 |  | 
 |     if (rd < best_rd) { | 
 |       *best_wedge_index = wedge_index; | 
 |       best_rd = rd; | 
 |     } | 
 |   } | 
 |  | 
 |   return best_rd; | 
 | } | 
 |  | 
 | static int64_t pick_interinter_wedge(const AV1_COMP *const cpi, | 
 |                                      const MACROBLOCK *const x, | 
 |                                      const BLOCK_SIZE bsize, | 
 |                                      const uint8_t *const p0, | 
 |                                      const uint8_t *const p1) { | 
 |   const MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   const int bw = block_size_wide[bsize]; | 
 |  | 
 |   int64_t rd; | 
 |   int wedge_index = -1; | 
 |   int wedge_sign = 0; | 
 |  | 
 |   assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); | 
 |  | 
 |   if (cpi->sf.fast_wedge_sign_estimate) { | 
 |     wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw); | 
 |     rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, wedge_sign, &wedge_index); | 
 |   } else { | 
 |     rd = pick_wedge(cpi, x, bsize, p0, p1, &wedge_sign, &wedge_index); | 
 |   } | 
 |  | 
 |   mbmi->interinter_compound_data.wedge_sign = wedge_sign; | 
 |   mbmi->interinter_compound_data.wedge_index = wedge_index; | 
 |   return rd; | 
 | } | 
 | #endif  // CONFIG_WEDGE | 
 |  | 
 | #if CONFIG_COMPOUND_SEGMENT | 
 | static int64_t pick_interinter_seg(const AV1_COMP *const cpi, | 
 |                                    const MACROBLOCK *const x, | 
 |                                    const BLOCK_SIZE bsize, | 
 |                                    const uint8_t *const p0, | 
 |                                    const uint8_t *const p1) { | 
 |   const MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   const struct buf_2d *const src = &x->plane[0].src; | 
 |   const int bw = block_size_wide[bsize]; | 
 |   const int bh = block_size_high[bsize]; | 
 |   const int N = bw * bh; | 
 |   int rate; | 
 |   uint64_t sse; | 
 |   int64_t dist; | 
 |   int64_t rd0; | 
 |   SEG_MASK_TYPE cur_mask_type; | 
 |   int64_t best_rd = INT64_MAX; | 
 |   SEG_MASK_TYPE best_mask_type = 0; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; | 
 |   const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; | 
 | #else | 
 |   const int bd_round = 0; | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |   INTERINTER_COMPOUND_DATA *comp_data = &mbmi->interinter_compound_data; | 
 |   DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); | 
 |   DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); | 
 |   DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]); | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (hbd) { | 
 |     aom_highbd_subtract_block(bh, bw, r0, bw, src->buf, src->stride, | 
 |                               CONVERT_TO_BYTEPTR(p0), bw, xd->bd); | 
 |     aom_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride, | 
 |                               CONVERT_TO_BYTEPTR(p1), bw, xd->bd); | 
 |     aom_highbd_subtract_block(bh, bw, d10, bw, CONVERT_TO_BYTEPTR(p1), bw, | 
 |                               CONVERT_TO_BYTEPTR(p0), bw, xd->bd); | 
 |   } else  // NOLINT | 
 | #endif    // CONFIG_HIGHBITDEPTH | 
 |   { | 
 |     aom_subtract_block(bh, bw, r0, bw, src->buf, src->stride, p0, bw); | 
 |     aom_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw); | 
 |     aom_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw); | 
 |   } | 
 |  | 
 |   // try each mask type and its inverse | 
 |   for (cur_mask_type = 0; cur_mask_type < SEG_MASK_TYPES; cur_mask_type++) { | 
 | // build mask and inverse | 
 | #if CONFIG_HIGHBITDEPTH | 
 |     if (hbd) | 
 |       build_compound_seg_mask_highbd( | 
 |           comp_data->seg_mask, cur_mask_type, CONVERT_TO_BYTEPTR(p0), bw, | 
 |           CONVERT_TO_BYTEPTR(p1), bw, bsize, bh, bw, xd->bd); | 
 |     else | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |       build_compound_seg_mask(comp_data->seg_mask, cur_mask_type, p0, bw, p1, | 
 |                               bw, bsize, bh, bw); | 
 |  | 
 |     // compute rd for mask | 
 |     sse = av1_wedge_sse_from_residuals(r1, d10, comp_data->seg_mask, N); | 
 |     sse = ROUND_POWER_OF_TWO(sse, bd_round); | 
 |  | 
 |     model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist); | 
 |     rd0 = RDCOST(x->rdmult, x->rddiv, rate, dist); | 
 |  | 
 |     if (rd0 < best_rd) { | 
 |       best_mask_type = cur_mask_type; | 
 |       best_rd = rd0; | 
 |     } | 
 |   } | 
 |  | 
 |   // make final mask | 
 |   comp_data->mask_type = best_mask_type; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (hbd) | 
 |     build_compound_seg_mask_highbd( | 
 |         comp_data->seg_mask, comp_data->mask_type, CONVERT_TO_BYTEPTR(p0), bw, | 
 |         CONVERT_TO_BYTEPTR(p1), bw, bsize, bh, bw, xd->bd); | 
 |   else | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |     build_compound_seg_mask(comp_data->seg_mask, comp_data->mask_type, p0, bw, | 
 |                             p1, bw, bsize, bh, bw); | 
 |  | 
 |   return best_rd; | 
 | } | 
 | #endif  // CONFIG_COMPOUND_SEGMENT | 
 |  | 
 | #if CONFIG_WEDGE && CONFIG_INTERINTRA | 
 | static int64_t pick_interintra_wedge(const AV1_COMP *const cpi, | 
 |                                      const MACROBLOCK *const x, | 
 |                                      const BLOCK_SIZE bsize, | 
 |                                      const uint8_t *const p0, | 
 |                                      const uint8_t *const p1) { | 
 |   const MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |  | 
 |   int64_t rd; | 
 |   int wedge_index = -1; | 
 |  | 
 |   assert(is_interintra_wedge_used(bsize)); | 
 |  | 
 |   rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, 0, &wedge_index); | 
 |  | 
 |   mbmi->interintra_wedge_sign = 0; | 
 |   mbmi->interintra_wedge_index = wedge_index; | 
 |   return rd; | 
 | } | 
 | #endif  // CONFIG_WEDGE && CONFIG_INTERINTRA | 
 |  | 
 | #if CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE | 
 | static int64_t pick_interinter_mask(const AV1_COMP *const cpi, | 
 |                                     const MACROBLOCK *const x, | 
 |                                     const BLOCK_SIZE bsize, | 
 |                                     const uint8_t *const p0, | 
 |                                     const uint8_t *const p1) { | 
 |   const COMPOUND_TYPE compound_type = | 
 |       x->e_mbd.mi[0]->mbmi.interinter_compound_data.type; | 
 |   switch (compound_type) { | 
 | #if CONFIG_WEDGE | 
 |     case COMPOUND_WEDGE: return pick_interinter_wedge(cpi, x, bsize, p0, p1); | 
 | #endif  // CONFIG_WEDGE | 
 | #if CONFIG_COMPOUND_SEGMENT | 
 |     case COMPOUND_SEG: return pick_interinter_seg(cpi, x, bsize, p0, p1); | 
 | #endif  // CONFIG_COMPOUND_SEGMENT | 
 |     default: assert(0); return 0; | 
 |   } | 
 | } | 
 |  | 
 | static int interinter_compound_motion_search(const AV1_COMP *const cpi, | 
 |                                              MACROBLOCK *x, | 
 |                                              const BLOCK_SIZE bsize, | 
 |                                              const int this_mode, int mi_row, | 
 |                                              int mi_col) { | 
 |   const MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   int_mv tmp_mv[2]; | 
 |   int rate_mvs[2], tmp_rate_mv = 0; | 
 |   if (this_mode == NEW_NEWMV) { | 
 |     do_masked_motion_search_indexed(cpi, x, &mbmi->interinter_compound_data, | 
 |                                     bsize, mi_row, mi_col, tmp_mv, rate_mvs, 2); | 
 |     tmp_rate_mv = rate_mvs[0] + rate_mvs[1]; | 
 |     mbmi->mv[0].as_int = tmp_mv[0].as_int; | 
 |     mbmi->mv[1].as_int = tmp_mv[1].as_int; | 
 |   } else if (this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV) { | 
 |     do_masked_motion_search_indexed(cpi, x, &mbmi->interinter_compound_data, | 
 |                                     bsize, mi_row, mi_col, tmp_mv, rate_mvs, 0); | 
 |     tmp_rate_mv = rate_mvs[0]; | 
 |     mbmi->mv[0].as_int = tmp_mv[0].as_int; | 
 |   } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { | 
 |     do_masked_motion_search_indexed(cpi, x, &mbmi->interinter_compound_data, | 
 |                                     bsize, mi_row, mi_col, tmp_mv, rate_mvs, 1); | 
 |     tmp_rate_mv = rate_mvs[1]; | 
 |     mbmi->mv[1].as_int = tmp_mv[1].as_int; | 
 |   } | 
 |   return tmp_rate_mv; | 
 | } | 
 |  | 
 | static int64_t build_and_cost_compound_type( | 
 |     const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv, | 
 |     const BLOCK_SIZE bsize, const int this_mode, int rs2, int rate_mv, | 
 |     BUFFER_SET *ctx, int *out_rate_mv, uint8_t **preds0, uint8_t **preds1, | 
 |     int *strides, int mi_row, int mi_col) { | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   int rate_sum; | 
 |   int64_t dist_sum; | 
 |   int64_t best_rd_cur = INT64_MAX; | 
 |   int64_t rd = INT64_MAX; | 
 |   int tmp_skip_txfm_sb; | 
 |   int64_t tmp_skip_sse_sb; | 
 |   const COMPOUND_TYPE compound_type = mbmi->interinter_compound_data.type; | 
 |  | 
 |   best_rd_cur = pick_interinter_mask(cpi, x, bsize, *preds0, *preds1); | 
 |   best_rd_cur += RDCOST(x->rdmult, x->rddiv, rs2 + rate_mv, 0); | 
 |  | 
 |   if (have_newmv_in_inter_mode(this_mode) && | 
 |       use_masked_motion_search(compound_type)) { | 
 |     *out_rate_mv = interinter_compound_motion_search(cpi, x, bsize, this_mode, | 
 |                                                      mi_row, mi_col); | 
 |     av1_build_inter_predictors_sby(xd, mi_row, mi_col, ctx, bsize); | 
 |     model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum, | 
 |                     &tmp_skip_txfm_sb, &tmp_skip_sse_sb); | 
 |     rd = RDCOST(x->rdmult, x->rddiv, rs2 + *out_rate_mv + rate_sum, dist_sum); | 
 |     if (rd >= best_rd_cur) { | 
 |       mbmi->mv[0].as_int = cur_mv[0].as_int; | 
 |       mbmi->mv[1].as_int = cur_mv[1].as_int; | 
 |       *out_rate_mv = rate_mv; | 
 |       av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, | 
 | #if CONFIG_SUPERTX | 
 |                                                0, 0, | 
 | #endif  // CONFIG_SUPERTX | 
 |                                                preds0, strides, preds1, | 
 |                                                strides); | 
 |     } | 
 |     av1_subtract_plane(x, bsize, 0); | 
 |     rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, | 
 |                              &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); | 
 |     if (rd != INT64_MAX) | 
 |       rd = RDCOST(x->rdmult, x->rddiv, rs2 + *out_rate_mv + rate_sum, dist_sum); | 
 |     best_rd_cur = rd; | 
 |  | 
 |   } else { | 
 |     av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, | 
 | #if CONFIG_SUPERTX | 
 |                                              0, 0, | 
 | #endif  // CONFIG_SUPERTX | 
 |                                              preds0, strides, preds1, strides); | 
 |     av1_subtract_plane(x, bsize, 0); | 
 |     rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, | 
 |                              &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); | 
 |     if (rd != INT64_MAX) | 
 |       rd = RDCOST(x->rdmult, x->rddiv, rs2 + rate_mv + rate_sum, dist_sum); | 
 |     best_rd_cur = rd; | 
 |   } | 
 |   return best_rd_cur; | 
 | } | 
 | #endif  // CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 | typedef struct { | 
 | #if CONFIG_MOTION_VAR | 
 |   // Inter prediction buffers and respective strides | 
 |   uint8_t *above_pred_buf[MAX_MB_PLANE]; | 
 |   int above_pred_stride[MAX_MB_PLANE]; | 
 |   uint8_t *left_pred_buf[MAX_MB_PLANE]; | 
 |   int left_pred_stride[MAX_MB_PLANE]; | 
 | #endif  // CONFIG_MOTION_VAR | 
 |   int_mv *single_newmv; | 
 | #if CONFIG_EXT_INTER | 
 |   // Pointer to array of motion vectors to use for each ref and their rates | 
 |   // Should point to first of 2 arrays in 2D array | 
 |   int *single_newmv_rate; | 
 |   // Pointers costs of compound inter-intra and inter-inter predictions | 
 |   int *compmode_interintra_cost; | 
 |   int *compmode_interinter_cost; | 
 |   // Pointer to array of predicted rate-distortion | 
 |   // Should point to first of 2 arrays in 2D array | 
 |   int64_t (*modelled_rd)[TOTAL_REFS_PER_FRAME]; | 
 | #endif  // CONFIG_EXT_INTER | 
 |   InterpFilter single_filter[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; | 
 | } HandleInterModeArgs; | 
 |  | 
 | static int64_t handle_newmv(const AV1_COMP *const cpi, MACROBLOCK *const x, | 
 |                             const BLOCK_SIZE bsize, | 
 |                             int_mv (*const mode_mv)[TOTAL_REFS_PER_FRAME], | 
 |                             const int mi_row, const int mi_col, | 
 |                             int *const rate_mv, int_mv *const single_newmv, | 
 |                             HandleInterModeArgs *const args) { | 
 |   const MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; | 
 |   const int is_comp_pred = has_second_ref(mbmi); | 
 |   const PREDICTION_MODE this_mode = mbmi->mode; | 
 | #if CONFIG_EXT_INTER | 
 |   const int is_comp_interintra_pred = (mbmi->ref_frame[1] == INTRA_FRAME); | 
 | #endif  // CONFIG_EXT_INTER | 
 |   int_mv *const frame_mv = mode_mv[this_mode]; | 
 |   const int refs[2] = { mbmi->ref_frame[0], | 
 |                         mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] }; | 
 |   int i; | 
 |  | 
 |   (void)args; | 
 |  | 
 |   if (is_comp_pred) { | 
 | #if CONFIG_EXT_INTER | 
 |     for (i = 0; i < 2; ++i) { | 
 |       single_newmv[refs[i]].as_int = args->single_newmv[refs[i]].as_int; | 
 |     } | 
 |  | 
 |     if (this_mode == NEW_NEWMV) { | 
 |       frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; | 
 |       frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; | 
 |  | 
 |       if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { | 
 |         joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col, NULL, | 
 |                             rate_mv, 0); | 
 |       } else { | 
 |         *rate_mv = 0; | 
 |         for (i = 0; i < 2; ++i) { | 
 | #if CONFIG_REF_MV | 
 |           av1_set_mvcost(x, refs[i], i, mbmi->ref_mv_idx); | 
 | #endif  // CONFIG_REF_MV | 
 |           *rate_mv += av1_mv_bit_cost( | 
 |               &frame_mv[refs[i]].as_mv, &mbmi_ext->ref_mvs[refs[i]][0].as_mv, | 
 |               x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); | 
 |         } | 
 |       } | 
 |     } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { | 
 |       frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; | 
 | #if CONFIG_REF_MV | 
 |       av1_set_mvcost(x, refs[1], 1, mbmi->ref_mv_idx); | 
 | #endif  // CONFIG_REF_MV | 
 |       *rate_mv = av1_mv_bit_cost(&frame_mv[refs[1]].as_mv, | 
 |                                  &mbmi_ext->ref_mvs[refs[1]][0].as_mv, | 
 |                                  x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); | 
 |     } else { | 
 |       assert(this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV); | 
 |       frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; | 
 | #if CONFIG_REF_MV | 
 |       av1_set_mvcost(x, refs[0], 0, mbmi->ref_mv_idx); | 
 | #endif  // CONFIG_REF_MV | 
 |       *rate_mv = av1_mv_bit_cost(&frame_mv[refs[0]].as_mv, | 
 |                                  &mbmi_ext->ref_mvs[refs[0]][0].as_mv, | 
 |                                  x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); | 
 |     } | 
 | #else | 
 |     // Initialize mv using single prediction mode result. | 
 |     frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; | 
 |     frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; | 
 |  | 
 |     if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { | 
 |       joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col, rate_mv, 0); | 
 |     } else { | 
 |       *rate_mv = 0; | 
 |       for (i = 0; i < 2; ++i) { | 
 | #if CONFIG_REF_MV | 
 |         av1_set_mvcost(x, refs[i], i, mbmi->ref_mv_idx); | 
 | #endif  // CONFIG_REF_MV | 
 |         *rate_mv += av1_mv_bit_cost(&frame_mv[refs[i]].as_mv, | 
 |                                     &mbmi_ext->ref_mvs[refs[i]][0].as_mv, | 
 |                                     x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); | 
 |       } | 
 |     } | 
 | #endif  // CONFIG_EXT_INTER | 
 |   } else { | 
 | #if CONFIG_EXT_INTER | 
 |     if (is_comp_interintra_pred) { | 
 |       x->best_mv = args->single_newmv[refs[0]]; | 
 |       *rate_mv = args->single_newmv_rate[refs[0]]; | 
 |     } else { | 
 |       single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, rate_mv); | 
 |       args->single_newmv[refs[0]] = x->best_mv; | 
 |       args->single_newmv_rate[refs[0]] = *rate_mv; | 
 |     } | 
 | #else | 
 |     single_motion_search(cpi, x, bsize, mi_row, mi_col, rate_mv); | 
 |     single_newmv[refs[0]] = x->best_mv; | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |     if (x->best_mv.as_int == INVALID_MV) return INT64_MAX; | 
 |  | 
 |     frame_mv[refs[0]] = x->best_mv; | 
 |     xd->mi[0]->bmi[0].as_mv[0] = x->best_mv; | 
 |  | 
 |     // Estimate the rate implications of a new mv but discount this | 
 |     // under certain circumstances where we want to help initiate a weak | 
 |     // motion field, where the distortion gain for a single block may not | 
 |     // be enough to overcome the cost of a new mv. | 
 |     if (discount_newmv_test(cpi, this_mode, x->best_mv, mode_mv, refs[0])) { | 
 |       *rate_mv = AOMMAX(*rate_mv / NEW_MV_DISCOUNT_FACTOR, 1); | 
 |     } | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | int64_t interpolation_filter_search( | 
 |     MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize, | 
 |     int mi_row, int mi_col, const BUFFER_SET *const tmp_dst, | 
 |     BUFFER_SET *const orig_dst, | 
 |     InterpFilter (*const single_filter)[TOTAL_REFS_PER_FRAME], | 
 |     int64_t *const rd, int *const switchable_rate, int *const skip_txfm_sb, | 
 |     int64_t *const skip_sse_sb) { | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   int i; | 
 |   int tmp_rate; | 
 |   int64_t tmp_dist; | 
 |  | 
 |   (void)single_filter; | 
 |  | 
 |   InterpFilter assign_filter = SWITCHABLE; | 
 |  | 
 |   if (cm->interp_filter == SWITCHABLE) { | 
 | #if !CONFIG_DUAL_FILTER | 
 |     assign_filter = | 
 |         predict_interp_filter(cpi, x, bsize, mi_row, mi_col, single_filter); | 
 | #endif  // !CONFIG_DUAL_FILTER | 
 |   } else { | 
 |     assign_filter = cm->interp_filter; | 
 |   } | 
 |  | 
 | #if CONFIG_DUAL_FILTER | 
 |   mbmi->interp_filter[0] = | 
 |       assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter; | 
 |   mbmi->interp_filter[1] = | 
 |       assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter; | 
 |   mbmi->interp_filter[2] = | 
 |       assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter; | 
 |   mbmi->interp_filter[3] = | 
 |       assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter; | 
 | #else | 
 |   mbmi->interp_filter = | 
 |       assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |   *switchable_rate = av1_get_switchable_rate(cpi, xd); | 
 |   av1_build_inter_predictors_sb(xd, mi_row, mi_col, orig_dst, bsize); | 
 |   model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate, &tmp_dist, | 
 |                   skip_txfm_sb, skip_sse_sb); | 
 |   *rd = RDCOST(x->rdmult, x->rddiv, *switchable_rate + tmp_rate, tmp_dist); | 
 |  | 
 |   if (assign_filter == SWITCHABLE) { | 
 |     // do interp_filter search | 
 |     if (av1_is_interp_needed(xd)) { | 
 | #if CONFIG_DUAL_FILTER | 
 |       const int filter_set_size = DUAL_FILTER_SET_SIZE; | 
 | #else | 
 |       const int filter_set_size = SWITCHABLE_FILTERS; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |       int best_in_temp = 0; | 
 | #if CONFIG_DUAL_FILTER | 
 |       InterpFilter best_filter[4]; | 
 |       av1_copy(best_filter, mbmi->interp_filter); | 
 | #else | 
 |       InterpFilter best_filter = mbmi->interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |       restore_dst_buf(xd, *tmp_dst); | 
 |       // EIGHTTAP_REGULAR mode is calculated beforehand | 
 |       for (i = 1; i < filter_set_size; ++i) { | 
 |         int tmp_skip_sb = 0; | 
 |         int64_t tmp_skip_sse = INT64_MAX; | 
 |         int tmp_rs; | 
 |         int64_t tmp_rd; | 
 | #if CONFIG_DUAL_FILTER | 
 |         mbmi->interp_filter[0] = filter_sets[i][0]; | 
 |         mbmi->interp_filter[1] = filter_sets[i][1]; | 
 |         mbmi->interp_filter[2] = filter_sets[i][0]; | 
 |         mbmi->interp_filter[3] = filter_sets[i][1]; | 
 | #else | 
 |         mbmi->interp_filter = (InterpFilter)i; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |         tmp_rs = av1_get_switchable_rate(cpi, xd); | 
 |         av1_build_inter_predictors_sb(xd, mi_row, mi_col, orig_dst, bsize); | 
 |         model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate, | 
 |                         &tmp_dist, &tmp_skip_sb, &tmp_skip_sse); | 
 |         tmp_rd = RDCOST(x->rdmult, x->rddiv, tmp_rs + tmp_rate, tmp_dist); | 
 |  | 
 |         if (tmp_rd < *rd) { | 
 |           *rd = tmp_rd; | 
 |           *switchable_rate = av1_get_switchable_rate(cpi, xd); | 
 | #if CONFIG_DUAL_FILTER | 
 |           av1_copy(best_filter, mbmi->interp_filter); | 
 | #else | 
 |           best_filter = mbmi->interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |           *skip_txfm_sb = tmp_skip_sb; | 
 |           *skip_sse_sb = tmp_skip_sse; | 
 |           best_in_temp = !best_in_temp; | 
 |           if (best_in_temp) { | 
 |             restore_dst_buf(xd, *orig_dst); | 
 |           } else { | 
 |             restore_dst_buf(xd, *tmp_dst); | 
 |           } | 
 |         } | 
 |       } | 
 |       if (best_in_temp) { | 
 |         restore_dst_buf(xd, *tmp_dst); | 
 |       } else { | 
 |         restore_dst_buf(xd, *orig_dst); | 
 |       } | 
 | #if CONFIG_DUAL_FILTER | 
 |       av1_copy(mbmi->interp_filter, best_filter); | 
 | #else | 
 |       mbmi->interp_filter = best_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |     } else { | 
 | #if CONFIG_DUAL_FILTER | 
 |       for (i = 0; i < 4; ++i) | 
 |         assert(mbmi->interp_filter[i] == EIGHTTAP_REGULAR); | 
 | #else | 
 |       assert(mbmi->interp_filter == EIGHTTAP_REGULAR); | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |     } | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | // TODO(afergs): Refactor the MBMI references in here - there's four | 
 | // TODO(afergs): Refactor optional args - add them to a struct or remove | 
 | static int64_t motion_mode_rd( | 
 |     const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, | 
 |     RD_STATS *rd_stats, RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, | 
 |     int *disable_skip, int_mv (*mode_mv)[TOTAL_REFS_PER_FRAME], int mi_row, | 
 |     int mi_col, HandleInterModeArgs *const args, const int64_t ref_best_rd, | 
 |     const int *refs, int rate_mv, | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 | #if CONFIG_EXT_INTER | 
 |     int rate2_bmc_nocoeff, MB_MODE_INFO *best_bmc_mbmi, | 
 | #if CONFIG_MOTION_VAR | 
 |     int rate_mv_bmc, | 
 | #endif  // CONFIG_MOTION_VAR | 
 | #endif  // CONFIG_EXT_INTER | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |     int rs, int *skip_txfm_sb, int64_t *skip_sse_sb, BUFFER_SET *orig_dst) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   MODE_INFO *mi = xd->mi[0]; | 
 |   MB_MODE_INFO *mbmi = &mi->mbmi; | 
 |   const int is_comp_pred = has_second_ref(mbmi); | 
 |   const PREDICTION_MODE this_mode = mbmi->mode; | 
 |  | 
 |   (void)mode_mv; | 
 |   (void)mi_row; | 
 |   (void)mi_col; | 
 |   (void)args; | 
 |   (void)refs; | 
 |   (void)rate_mv; | 
 |   (void)is_comp_pred; | 
 |   (void)this_mode; | 
 |  | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |   MOTION_MODE motion_mode, last_motion_mode_allowed; | 
 |   int rate2_nocoeff = 0, best_xskip, best_disable_skip = 0; | 
 |   RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv; | 
 |   MB_MODE_INFO base_mbmi, best_mbmi; | 
 | #if CONFIG_VAR_TX | 
 |   uint8_t best_blk_skip[MAX_MB_PLANE][MAX_MIB_SIZE * MAX_MIB_SIZE * 4]; | 
 | #endif  // CONFIG_VAR_TX | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |  | 
 | #if CONFIG_WARPED_MOTION | 
 |   int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; | 
 | #endif  // CONFIG_WARPED_MOTION | 
 |  | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |   av1_invalid_rd_stats(&best_rd_stats); | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |  | 
 |   if (cm->interp_filter == SWITCHABLE) rd_stats->rate += rs; | 
 | #if CONFIG_WARPED_MOTION | 
 |   aom_clear_system_state(); | 
 |   mbmi->num_proj_ref[0] = findSamples(cm, xd, mi_row, mi_col, pts, pts_inref); | 
 | #if CONFIG_EXT_INTER | 
 |   best_bmc_mbmi->num_proj_ref[0] = mbmi->num_proj_ref[0]; | 
 | #endif  // CONFIG_EXT_INTER | 
 | #endif  // CONFIG_WARPED_MOTION | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |   rate2_nocoeff = rd_stats->rate; | 
 |   last_motion_mode_allowed = motion_mode_allowed( | 
 | #if CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION | 
 |       0, xd->global_motion, | 
 | #endif  // CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION | 
 |       mi); | 
 |   base_mbmi = *mbmi; | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |  | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |   int64_t best_rd = INT64_MAX; | 
 |   for (motion_mode = SIMPLE_TRANSLATION; | 
 |        motion_mode <= last_motion_mode_allowed; motion_mode++) { | 
 |     int64_t tmp_rd = INT64_MAX; | 
 |     int tmp_rate; | 
 |     int64_t tmp_dist; | 
 | #if CONFIG_EXT_INTER | 
 |     int tmp_rate2 = | 
 |         motion_mode != SIMPLE_TRANSLATION ? rate2_bmc_nocoeff : rate2_nocoeff; | 
 | #else | 
 |     int tmp_rate2 = rate2_nocoeff; | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |     *mbmi = base_mbmi; | 
 |     mbmi->motion_mode = motion_mode; | 
 | #if CONFIG_MOTION_VAR | 
 |     if (mbmi->motion_mode == OBMC_CAUSAL) { | 
 | #if CONFIG_EXT_INTER | 
 |       *mbmi = *best_bmc_mbmi; | 
 |       mbmi->motion_mode = OBMC_CAUSAL; | 
 | #endif  // CONFIG_EXT_INTER | 
 |       if (!is_comp_pred && have_newmv_in_inter_mode(this_mode)) { | 
 |         int tmp_rate_mv = 0; | 
 |  | 
 |         single_motion_search(cpi, x, bsize, mi_row, mi_col, | 
 | #if CONFIG_EXT_INTER | 
 |                              0, | 
 | #endif  // CONFIG_EXT_INTER | 
 |                              &tmp_rate_mv); | 
 |         mbmi->mv[0].as_int = x->best_mv.as_int; | 
 |         if (discount_newmv_test(cpi, this_mode, mbmi->mv[0], mode_mv, | 
 |                                 refs[0])) { | 
 |           tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); | 
 |         } | 
 | #if CONFIG_EXT_INTER | 
 |         tmp_rate2 = rate2_bmc_nocoeff - rate_mv_bmc + tmp_rate_mv; | 
 | #else | 
 |         tmp_rate2 = rate2_nocoeff - rate_mv + tmp_rate_mv; | 
 | #endif  // CONFIG_EXT_INTER | 
 | #if CONFIG_DUAL_FILTER | 
 |         if (!has_subpel_mv_component(xd->mi[0], xd, 0)) | 
 |           mbmi->interp_filter[0] = EIGHTTAP_REGULAR; | 
 |         if (!has_subpel_mv_component(xd->mi[0], xd, 1)) | 
 |           mbmi->interp_filter[1] = EIGHTTAP_REGULAR; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |         av1_build_inter_predictors_sb(xd, mi_row, mi_col, orig_dst, bsize); | 
 | #if CONFIG_EXT_INTER | 
 |       } else { | 
 |         av1_build_inter_predictors_sb(xd, mi_row, mi_col, orig_dst, bsize); | 
 | #endif  // CONFIG_EXT_INTER | 
 |       } | 
 |       av1_build_obmc_inter_prediction( | 
 |           cm, xd, mi_row, mi_col, args->above_pred_buf, args->above_pred_stride, | 
 |           args->left_pred_buf, args->left_pred_stride); | 
 |       model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate, | 
 |                       &tmp_dist, skip_txfm_sb, skip_sse_sb); | 
 |     } | 
 | #endif  // CONFIG_MOTION_VAR | 
 |  | 
 | #if CONFIG_WARPED_MOTION | 
 |     if (mbmi->motion_mode == WARPED_CAUSAL) { | 
 | #if CONFIG_EXT_INTER | 
 |       *mbmi = *best_bmc_mbmi; | 
 |       mbmi->motion_mode = WARPED_CAUSAL; | 
 | #endif  // CONFIG_EXT_INTER | 
 |       mbmi->wm_params[0].wmtype = DEFAULT_WMTYPE; | 
 | #if CONFIG_DUAL_FILTER | 
 |       for (int dir = 0; dir < 4; ++dir) | 
 |         mbmi->interp_filter[dir] = cm->interp_filter == SWITCHABLE | 
 |                                        ? EIGHTTAP_REGULAR | 
 |                                        : cm->interp_filter; | 
 | #else | 
 |       mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR | 
 |                                                             : cm->interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |  | 
 |       if (find_projection(mbmi->num_proj_ref[0], pts, pts_inref, bsize, | 
 |                           mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col, | 
 |                           &mbmi->wm_params[0], mi_row, mi_col) == 0) { | 
 |         av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, bsize); | 
 |         model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate, | 
 |                         &tmp_dist, skip_txfm_sb, skip_sse_sb); | 
 |       } else { | 
 |         continue; | 
 |       } | 
 |     } | 
 | #endif  // CONFIG_WARPED_MOTION | 
 |     x->skip = 0; | 
 |  | 
 |     rd_stats->dist = 0; | 
 |     rd_stats->sse = 0; | 
 |     rd_stats->skip = 1; | 
 |     rd_stats->rate = tmp_rate2; | 
 |     if (last_motion_mode_allowed > SIMPLE_TRANSLATION) { | 
 | #if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR | 
 |       if (last_motion_mode_allowed == WARPED_CAUSAL) | 
 | #endif  // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR | 
 |         rd_stats->rate += cpi->motion_mode_cost[bsize][mbmi->motion_mode]; | 
 | #if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR | 
 |       else | 
 |         rd_stats->rate += cpi->motion_mode_cost1[bsize][mbmi->motion_mode]; | 
 | #endif  // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR | 
 |     } | 
 | #if CONFIG_WARPED_MOTION | 
 |     if (mbmi->motion_mode == WARPED_CAUSAL) { | 
 |       rd_stats->rate -= rs; | 
 |     } | 
 | #endif  // CONFIG_WARPED_MOTION | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |     if (!*skip_txfm_sb) { | 
 |       int64_t rdcosty = INT64_MAX; | 
 |       int is_cost_valid_uv = 0; | 
 |  | 
 |       // cost and distortion | 
 |       av1_subtract_plane(x, bsize, 0); | 
 | #if CONFIG_VAR_TX | 
 |       if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) { | 
 |         select_tx_type_yrd(cpi, x, rd_stats_y, bsize, ref_best_rd); | 
 |       } else { | 
 |         int idx, idy; | 
 |         super_block_yrd(cpi, x, rd_stats_y, bsize, ref_best_rd); | 
 |         for (idy = 0; idy < xd->n8_h; ++idy) | 
 |           for (idx = 0; idx < xd->n8_w; ++idx) | 
 |             mbmi->inter_tx_size[idy][idx] = mbmi->tx_size; | 
 |         memset(x->blk_skip[0], rd_stats_y->skip, | 
 |                sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4); | 
 |       } | 
 | #else | 
 |     /* clang-format off */ | 
 |       super_block_yrd(cpi, x, rd_stats_y, bsize, ref_best_rd); | 
 | /* clang-format on */ | 
 | #endif  // CONFIG_VAR_TX | 
 |  | 
 |       if (rd_stats_y->rate == INT_MAX) { | 
 |         av1_invalid_rd_stats(rd_stats); | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |         if (mbmi->motion_mode != SIMPLE_TRANSLATION) { | 
 |           continue; | 
 |         } else { | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |           restore_dst_buf(xd, *orig_dst); | 
 |           return INT64_MAX; | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |         } | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |       } | 
 |  | 
 |       av1_merge_rd_stats(rd_stats, rd_stats_y); | 
 |  | 
 |       rdcosty = RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist); | 
 |       rdcosty = AOMMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, rd_stats->sse)); | 
 | /* clang-format off */ | 
 | #if CONFIG_VAR_TX | 
 |       is_cost_valid_uv = | 
 |           inter_block_uvrd(cpi, x, rd_stats_uv, bsize, ref_best_rd - rdcosty); | 
 | #else | 
 |       is_cost_valid_uv = | 
 |           super_block_uvrd(cpi, x, rd_stats_uv, bsize, ref_best_rd - rdcosty); | 
 | #endif  // CONFIG_VAR_TX | 
 |       if (!is_cost_valid_uv) { | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |         continue; | 
 | #else | 
 |         restore_dst_buf(xd, *orig_dst); | 
 |         return INT64_MAX; | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |       } | 
 |       /* clang-format on */ | 
 |       av1_merge_rd_stats(rd_stats, rd_stats_uv); | 
 | #if CONFIG_RD_DEBUG | 
 |       // record transform block coefficient cost | 
 |       // TODO(angiebird): So far rd_debug tool only detects discrepancy of | 
 |       // coefficient cost. Therefore, it is fine to copy rd_stats into mbmi | 
 |       // here because we already collect the coefficient cost. Move this part to | 
 |       // other place when we need to compare non-coefficient cost. | 
 |       mbmi->rd_stats = *rd_stats; | 
 | #endif  // CONFIG_RD_DEBUG | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |       if (rd_stats->skip) { | 
 |         rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate; | 
 |         rd_stats_y->rate = 0; | 
 |         rd_stats_uv->rate = 0; | 
 |         rd_stats->rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); | 
 |         mbmi->skip = 0; | 
 |         // here mbmi->skip temporarily plays a role as what this_skip2 does | 
 |       } else if (!xd->lossless[mbmi->segment_id] && | 
 |                  (RDCOST(x->rdmult, x->rddiv, | 
 |                          rd_stats_y->rate + rd_stats_uv->rate + | 
 |                              av1_cost_bit(av1_get_skip_prob(cm, xd), 0), | 
 |                          rd_stats->dist) >= | 
 |                   RDCOST(x->rdmult, x->rddiv, | 
 |                          av1_cost_bit(av1_get_skip_prob(cm, xd), 1), | 
 |                          rd_stats->sse))) { | 
 |         rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate; | 
 |         rd_stats->rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); | 
 |         rd_stats->dist = rd_stats->sse; | 
 |         rd_stats_y->rate = 0; | 
 |         rd_stats_uv->rate = 0; | 
 |         mbmi->skip = 1; | 
 |       } else { | 
 |         rd_stats->rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); | 
 |         mbmi->skip = 0; | 
 |       } | 
 |       *disable_skip = 0; | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |     } else { | 
 |       x->skip = 1; | 
 |       *disable_skip = 1; | 
 |       mbmi->tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, 1); | 
 |  | 
 | // The cost of skip bit needs to be added. | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |       mbmi->skip = 0; | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |       rd_stats->rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); | 
 |  | 
 |       rd_stats->dist = *skip_sse_sb; | 
 |       rd_stats->sse = *skip_sse_sb; | 
 |       rd_stats_y->rate = 0; | 
 |       rd_stats_uv->rate = 0; | 
 |       rd_stats->skip = 1; | 
 |     } | 
 |  | 
 | #if CONFIG_GLOBAL_MOTION | 
 |     if (this_mode == ZEROMV | 
 | #if CONFIG_EXT_INTER | 
 |         || this_mode == ZERO_ZEROMV | 
 | #endif  // CONFIG_EXT_INTER | 
 |         ) { | 
 |       if (is_nontrans_global_motion(xd)) { | 
 |         rd_stats->rate -= rs; | 
 | #if CONFIG_DUAL_FILTER | 
 |         mbmi->interp_filter[0] = cm->interp_filter == SWITCHABLE | 
 |                                      ? EIGHTTAP_REGULAR | 
 |                                      : cm->interp_filter; | 
 |         mbmi->interp_filter[1] = cm->interp_filter == SWITCHABLE | 
 |                                      ? EIGHTTAP_REGULAR | 
 |                                      : cm->interp_filter; | 
 | #else | 
 |         mbmi->interp_filter = cm->interp_filter == SWITCHABLE | 
 |                                   ? EIGHTTAP_REGULAR | 
 |                                   : cm->interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |       } | 
 |     } | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |  | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |     tmp_rd = RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist); | 
 |     if (mbmi->motion_mode == SIMPLE_TRANSLATION || (tmp_rd < best_rd)) { | 
 |       best_mbmi = *mbmi; | 
 |       best_rd = tmp_rd; | 
 |       best_rd_stats = *rd_stats; | 
 |       best_rd_stats_y = *rd_stats_y; | 
 |       best_rd_stats_uv = *rd_stats_uv; | 
 | #if CONFIG_VAR_TX | 
 |       for (int i = 0; i < MAX_MB_PLANE; ++i) | 
 |         memcpy(best_blk_skip[i], x->blk_skip[i], | 
 |                sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4); | 
 | #endif  // CONFIG_VAR_TX | 
 |       best_xskip = x->skip; | 
 |       best_disable_skip = *disable_skip; | 
 |     } | 
 |   } | 
 |  | 
 |   if (best_rd == INT64_MAX) { | 
 |     av1_invalid_rd_stats(rd_stats); | 
 |     restore_dst_buf(xd, *orig_dst); | 
 |     return INT64_MAX; | 
 |   } | 
 |   *mbmi = best_mbmi; | 
 |   *rd_stats = best_rd_stats; | 
 |   *rd_stats_y = best_rd_stats_y; | 
 |   *rd_stats_uv = best_rd_stats_uv; | 
 | #if CONFIG_VAR_TX | 
 |   for (int i = 0; i < MAX_MB_PLANE; ++i) | 
 |     memcpy(x->blk_skip[i], best_blk_skip[i], | 
 |            sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4); | 
 | #endif  // CONFIG_VAR_TX | 
 |   x->skip = best_xskip; | 
 |   *disable_skip = best_disable_skip; | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |  | 
 |   restore_dst_buf(xd, *orig_dst); | 
 |   return 0; | 
 | } | 
 |  | 
 | static int64_t handle_inter_mode( | 
 |     const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, | 
 |     RD_STATS *rd_stats, RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, | 
 |     int *disable_skip, int_mv (*mode_mv)[TOTAL_REFS_PER_FRAME], int mi_row, | 
 |     int mi_col, HandleInterModeArgs *args, const int64_t ref_best_rd) { | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   (void)cm; | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   MODE_INFO *mi = xd->mi[0]; | 
 |   MB_MODE_INFO *mbmi = &mi->mbmi; | 
 |   MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; | 
 |   const int is_comp_pred = has_second_ref(mbmi); | 
 |   const int this_mode = mbmi->mode; | 
 |   int_mv *frame_mv = mode_mv[this_mode]; | 
 |   int i; | 
 |   int refs[2] = { mbmi->ref_frame[0], | 
 |                   (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; | 
 |   int_mv cur_mv[2]; | 
 |   int rate_mv = 0; | 
 | #if CONFIG_EXT_INTER | 
 |   int pred_exists = 1; | 
 |   const int bw = block_size_wide[bsize]; | 
 |   int_mv single_newmv[TOTAL_REFS_PER_FRAME]; | 
 | #if CONFIG_INTERINTRA | 
 |   const unsigned int *const interintra_mode_cost = | 
 |       cpi->interintra_mode_cost[size_group_lookup[bsize]]; | 
 | #endif  // CONFIG_INTERINTRA | 
 |   const int is_comp_interintra_pred = (mbmi->ref_frame[1] == INTRA_FRAME); | 
 | #if CONFIG_REF_MV | 
 |   uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); | 
 | #endif  // CONFIG_REF_MV | 
 | #else | 
 |   int_mv *const single_newmv = args->single_newmv; | 
 | #endif  // CONFIG_EXT_INTER | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); | 
 | #else | 
 |   DECLARE_ALIGNED(16, uint8_t, tmp_buf_[MAX_MB_PLANE * MAX_SB_SQUARE]); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |   uint8_t *tmp_buf; | 
 |  | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 | #if CONFIG_EXT_INTER | 
 |   int rate2_bmc_nocoeff; | 
 |   MB_MODE_INFO best_bmc_mbmi; | 
 | #if CONFIG_MOTION_VAR | 
 |   int rate_mv_bmc; | 
 | #endif  // CONFIG_MOTION_VAR | 
 | #endif  // CONFIG_EXT_INTER | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |   int64_t rd = INT64_MAX; | 
 |   BUFFER_SET orig_dst, tmp_dst; | 
 |   int rs = 0; | 
 |  | 
 |   int skip_txfm_sb = 0; | 
 |   int64_t skip_sse_sb = INT64_MAX; | 
 |   int16_t mode_ctx; | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |   *args->compmode_interintra_cost = 0; | 
 |   mbmi->use_wedge_interintra = 0; | 
 |   *args->compmode_interinter_cost = 0; | 
 |   mbmi->interinter_compound_data.type = COMPOUND_AVERAGE; | 
 |  | 
 |   // is_comp_interintra_pred implies !is_comp_pred | 
 |   assert(!is_comp_interintra_pred || (!is_comp_pred)); | 
 |   // is_comp_interintra_pred implies is_interintra_allowed(mbmi->sb_type) | 
 |   assert(!is_comp_interintra_pred || is_interintra_allowed(mbmi)); | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 | #if CONFIG_REF_MV | 
 | #if CONFIG_EXT_INTER | 
 |   if (is_comp_pred) | 
 |     mode_ctx = mbmi_ext->compound_mode_context[refs[0]]; | 
 |   else | 
 | #endif  // CONFIG_EXT_INTER | 
 |     mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, | 
 |                                          mbmi->ref_frame, bsize, -1); | 
 | #else   // CONFIG_REF_MV | 
 |   mode_ctx = mbmi_ext->mode_context[refs[0]]; | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) | 
 |     tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf_); | 
 |   else | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |     tmp_buf = tmp_buf_; | 
 |   // Make sure that we didn't leave the plane destination buffers set | 
 |   // to tmp_buf at the end of the last iteration | 
 |   assert(xd->plane[0].dst.buf != tmp_buf); | 
 |  | 
 | #if CONFIG_WARPED_MOTION | 
 |   mbmi->num_proj_ref[0] = 0; | 
 |   mbmi->num_proj_ref[1] = 0; | 
 | #endif  // CONFIG_WARPED_MOTION | 
 |  | 
 |   if (is_comp_pred) { | 
 |     if (frame_mv[refs[0]].as_int == INVALID_MV || | 
 |         frame_mv[refs[1]].as_int == INVALID_MV) | 
 |       return INT64_MAX; | 
 |   } | 
 |  | 
 |   mbmi->motion_mode = SIMPLE_TRANSLATION; | 
 |   if (have_newmv_in_inter_mode(this_mode)) { | 
 |     const int64_t ret_val = handle_newmv(cpi, x, bsize, mode_mv, mi_row, mi_col, | 
 |                                          &rate_mv, single_newmv, args); | 
 |     if (ret_val != 0) | 
 |       return ret_val; | 
 |     else | 
 |       rd_stats->rate += rate_mv; | 
 |   } | 
 |   for (i = 0; i < is_comp_pred + 1; ++i) { | 
 |     cur_mv[i] = frame_mv[refs[i]]; | 
 |     // Clip "next_nearest" so that it does not extend to far out of image | 
 |     if (this_mode != NEWMV) clamp_mv2(&cur_mv[i].as_mv, xd); | 
 |     if (mv_check_bounds(&x->mv_limits, &cur_mv[i].as_mv)) return INT64_MAX; | 
 |     mbmi->mv[i].as_int = cur_mv[i].as_int; | 
 |   } | 
 |  | 
 | #if CONFIG_REF_MV | 
 | #if CONFIG_EXT_INTER | 
 |   if (this_mode == NEAREST_NEARESTMV) | 
 | #else | 
 |   if (this_mode == NEARESTMV && is_comp_pred) | 
 | #endif  // CONFIG_EXT_INTER | 
 |   { | 
 | #if !CONFIG_EXT_INTER | 
 |     uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); | 
 | #endif  // !CONFIG_EXT_INTER | 
 |     if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) { | 
 |       cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv; | 
 |       cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv; | 
 |  | 
 |       for (i = 0; i < 2; ++i) { | 
 |         clamp_mv2(&cur_mv[i].as_mv, xd); | 
 |         if (mv_check_bounds(&x->mv_limits, &cur_mv[i].as_mv)) return INT64_MAX; | 
 |         mbmi->mv[i].as_int = cur_mv[i].as_int; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |   if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) { | 
 |     if (this_mode == NEAREST_NEWMV || this_mode == NEAREST_NEARMV) { | 
 |       cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv; | 
 |  | 
 |       lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv); | 
 |       clamp_mv2(&cur_mv[0].as_mv, xd); | 
 |       if (mv_check_bounds(&x->mv_limits, &cur_mv[0].as_mv)) return INT64_MAX; | 
 |       mbmi->mv[0].as_int = cur_mv[0].as_int; | 
 |     } | 
 |  | 
 |     if (this_mode == NEW_NEARESTMV || this_mode == NEAR_NEARESTMV) { | 
 |       cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv; | 
 |  | 
 |       lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv); | 
 |       clamp_mv2(&cur_mv[1].as_mv, xd); | 
 |       if (mv_check_bounds(&x->mv_limits, &cur_mv[1].as_mv)) return INT64_MAX; | 
 |       mbmi->mv[1].as_int = cur_mv[1].as_int; | 
 |     } | 
 |   } | 
 |  | 
 |   if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) { | 
 |     int ref_mv_idx = mbmi->ref_mv_idx + 1; | 
 |     if (this_mode == NEAR_NEWMV || this_mode == NEAR_NEARESTMV || | 
 |         this_mode == NEAR_NEARMV) { | 
 |       cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; | 
 |  | 
 |       lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv); | 
 |       clamp_mv2(&cur_mv[0].as_mv, xd); | 
 |       if (mv_check_bounds(&x->mv_limits, &cur_mv[0].as_mv)) return INT64_MAX; | 
 |       mbmi->mv[0].as_int = cur_mv[0].as_int; | 
 |     } | 
 |  | 
 |     if (this_mode == NEW_NEARMV || this_mode == NEAREST_NEARMV || | 
 |         this_mode == NEAR_NEARMV) { | 
 |       cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv; | 
 |  | 
 |       lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv); | 
 |       clamp_mv2(&cur_mv[1].as_mv, xd); | 
 |       if (mv_check_bounds(&x->mv_limits, &cur_mv[1].as_mv)) return INT64_MAX; | 
 |       mbmi->mv[1].as_int = cur_mv[1].as_int; | 
 |     } | 
 |   } | 
 | #else | 
 |   if (this_mode == NEARMV && is_comp_pred) { | 
 |     uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); | 
 |     if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) { | 
 |       int ref_mv_idx = mbmi->ref_mv_idx + 1; | 
 |       cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; | 
 |       cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv; | 
 |  | 
 |       for (i = 0; i < 2; ++i) { | 
 |         clamp_mv2(&cur_mv[i].as_mv, xd); | 
 |         if (mv_check_bounds(&x->mv_limits, &cur_mv[i].as_mv)) return INT64_MAX; | 
 |         mbmi->mv[i].as_int = cur_mv[i].as_int; | 
 |       } | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_EXT_INTER | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 |   // do first prediction into the destination buffer. Do the next | 
 |   // prediction into a temporary buffer. Then keep track of which one | 
 |   // of these currently holds the best predictor, and use the other | 
 |   // one for future predictions. In the end, copy from tmp_buf to | 
 |   // dst if necessary. | 
 |   for (i = 0; i < MAX_MB_PLANE; i++) { | 
 |     tmp_dst.plane[i] = tmp_buf + i * MAX_SB_SQUARE; | 
 |     tmp_dst.stride[i] = MAX_SB_SIZE; | 
 |   } | 
 |   for (i = 0; i < MAX_MB_PLANE; i++) { | 
 |     orig_dst.plane[i] = xd->plane[i].dst.buf; | 
 |     orig_dst.stride[i] = xd->plane[i].dst.stride; | 
 |   } | 
 |  | 
 |   // We don't include the cost of the second reference here, because there | 
 |   // are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other | 
 |   // words if you present them in that order, the second one is always known | 
 |   // if the first is known. | 
 |   // | 
 |   // Under some circumstances we discount the cost of new mv mode to encourage | 
 |   // initiation of a motion field. | 
 |   if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]], mode_mv, | 
 |                           refs[0])) { | 
 | #if CONFIG_EXT_INTER | 
 |     rd_stats->rate += | 
 |         AOMMIN(cost_mv_ref(cpi, this_mode, mode_ctx), | 
 |                cost_mv_ref(cpi, is_comp_pred ? NEAREST_NEARESTMV : NEARESTMV, | 
 |                            mode_ctx)); | 
 | #else | 
 |     rd_stats->rate += AOMMIN(cost_mv_ref(cpi, this_mode, mode_ctx), | 
 |                              cost_mv_ref(cpi, NEARESTMV, mode_ctx)); | 
 | #endif  // CONFIG_REF_MV && CONFIG_EXT_INTER | 
 |   } else { | 
 |     rd_stats->rate += cost_mv_ref(cpi, this_mode, mode_ctx); | 
 |   } | 
 |  | 
 |   if (RDCOST(x->rdmult, x->rddiv, rd_stats->rate, 0) > ref_best_rd && | 
 | #if CONFIG_EXT_INTER | 
 |       mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV | 
 | #else | 
 |       mbmi->mode != NEARESTMV | 
 | #endif  // CONFIG_EXT_INTER | 
 |       ) | 
 |     return INT64_MAX; | 
 |  | 
 |   int64_t ret_val = interpolation_filter_search( | 
 |       x, cpi, bsize, mi_row, mi_col, &tmp_dst, &orig_dst, args->single_filter, | 
 |       &rd, &rs, &skip_txfm_sb, &skip_sse_sb); | 
 |   if (ret_val != 0) return ret_val; | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |   best_bmc_mbmi = *mbmi; | 
 |   rate2_bmc_nocoeff = rd_stats->rate; | 
 |   if (cm->interp_filter == SWITCHABLE) rate2_bmc_nocoeff += rs; | 
 | #if CONFIG_MOTION_VAR | 
 |   rate_mv_bmc = rate_mv; | 
 | #endif  // CONFIG_MOTION_VAR | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |  | 
 |   if (is_comp_pred) { | 
 |     int rate_sum, rs2; | 
 |     int64_t dist_sum; | 
 |     int64_t best_rd_compound = INT64_MAX, best_rd_cur = INT64_MAX; | 
 |     INTERINTER_COMPOUND_DATA best_compound_data; | 
 |     int_mv best_mv[2]; | 
 |     int best_tmp_rate_mv = rate_mv; | 
 |     int tmp_skip_txfm_sb; | 
 |     int64_t tmp_skip_sse_sb; | 
 |     int compound_type_cost[COMPOUND_TYPES]; | 
 |     uint8_t pred0[2 * MAX_SB_SQUARE]; | 
 |     uint8_t pred1[2 * MAX_SB_SQUARE]; | 
 |     uint8_t *preds0[1] = { pred0 }; | 
 |     uint8_t *preds1[1] = { pred1 }; | 
 |     int strides[1] = { bw }; | 
 |     int tmp_rate_mv; | 
 |     int masked_compound_used = is_any_masked_compound_used(bsize); | 
 |     COMPOUND_TYPE cur_type; | 
 |  | 
 |     best_mv[0].as_int = cur_mv[0].as_int; | 
 |     best_mv[1].as_int = cur_mv[1].as_int; | 
 |     memset(&best_compound_data, 0, sizeof(INTERINTER_COMPOUND_DATA)); | 
 |     av1_cost_tokens(compound_type_cost, cm->fc->compound_type_prob[bsize], | 
 |                     av1_compound_type_tree); | 
 |  | 
 |     if (masked_compound_used) { | 
 |       // get inter predictors to use for masked compound modes | 
 |       av1_build_inter_predictors_for_planes_single_buf( | 
 |           xd, bsize, 0, 0, mi_row, mi_col, 0, preds0, strides); | 
 |       av1_build_inter_predictors_for_planes_single_buf( | 
 |           xd, bsize, 0, 0, mi_row, mi_col, 1, preds1, strides); | 
 |     } | 
 |  | 
 |     for (cur_type = COMPOUND_AVERAGE; cur_type < COMPOUND_TYPES; cur_type++) { | 
 |       if (!is_interinter_compound_used(cur_type, bsize)) break; | 
 |       tmp_rate_mv = rate_mv; | 
 |       best_rd_cur = INT64_MAX; | 
 |       mbmi->interinter_compound_data.type = cur_type; | 
 |       rs2 = av1_cost_literal(get_interinter_compound_type_bits( | 
 |                 bsize, mbmi->interinter_compound_data.type)) + | 
 |             (masked_compound_used | 
 |                  ? compound_type_cost[mbmi->interinter_compound_data.type] | 
 |                  : 0); | 
 |  | 
 |       switch (cur_type) { | 
 |         case COMPOUND_AVERAGE: | 
 |           av1_build_inter_predictors_sby(xd, mi_row, mi_col, &orig_dst, bsize); | 
 |           av1_subtract_plane(x, bsize, 0); | 
 |           rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, | 
 |                                    &tmp_skip_txfm_sb, &tmp_skip_sse_sb, | 
 |                                    INT64_MAX); | 
 |           if (rd != INT64_MAX) | 
 |             best_rd_cur = | 
 |                 RDCOST(x->rdmult, x->rddiv, rs2 + rate_mv + rate_sum, dist_sum); | 
 |           best_rd_compound = best_rd_cur; | 
 |           break; | 
 | #if CONFIG_WEDGE | 
 |         case COMPOUND_WEDGE: | 
 |           if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh && | 
 |               best_rd_compound / 3 < ref_best_rd) { | 
 |             best_rd_cur = build_and_cost_compound_type( | 
 |                 cpi, x, cur_mv, bsize, this_mode, rs2, rate_mv, &orig_dst, | 
 |                 &tmp_rate_mv, preds0, preds1, strides, mi_row, mi_col); | 
 |           } | 
 |           break; | 
 | #endif  // CONFIG_WEDGE | 
 | #if CONFIG_COMPOUND_SEGMENT | 
 |         case COMPOUND_SEG: | 
 |           if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh && | 
 |               best_rd_compound / 3 < ref_best_rd) { | 
 |             best_rd_cur = build_and_cost_compound_type( | 
 |                 cpi, x, cur_mv, bsize, this_mode, rs2, rate_mv, &orig_dst, | 
 |                 &tmp_rate_mv, preds0, preds1, strides, mi_row, mi_col); | 
 |           } | 
 |           break; | 
 | #endif  // CONFIG_COMPOUND_SEGMENT | 
 |         default: assert(0); return 0; | 
 |       } | 
 |  | 
 |       if (best_rd_cur < best_rd_compound) { | 
 |         best_rd_compound = best_rd_cur; | 
 |         memcpy(&best_compound_data, &mbmi->interinter_compound_data, | 
 |                sizeof(best_compound_data)); | 
 |         if (have_newmv_in_inter_mode(this_mode)) { | 
 |           if (use_masked_motion_search(cur_type)) { | 
 |             best_tmp_rate_mv = tmp_rate_mv; | 
 |             best_mv[0].as_int = mbmi->mv[0].as_int; | 
 |             best_mv[1].as_int = mbmi->mv[1].as_int; | 
 |           } else { | 
 |             best_mv[0].as_int = cur_mv[0].as_int; | 
 |             best_mv[1].as_int = cur_mv[1].as_int; | 
 |           } | 
 |         } | 
 |       } | 
 |       // reset to original mvs for next iteration | 
 |       mbmi->mv[0].as_int = cur_mv[0].as_int; | 
 |       mbmi->mv[1].as_int = cur_mv[1].as_int; | 
 |     } | 
 |     memcpy(&mbmi->interinter_compound_data, &best_compound_data, | 
 |            sizeof(INTERINTER_COMPOUND_DATA)); | 
 |     if (have_newmv_in_inter_mode(this_mode)) { | 
 |       mbmi->mv[0].as_int = best_mv[0].as_int; | 
 |       mbmi->mv[1].as_int = best_mv[1].as_int; | 
 |       xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int; | 
 |       xd->mi[0]->bmi[0].as_mv[1].as_int = mbmi->mv[1].as_int; | 
 |       if (use_masked_motion_search(mbmi->interinter_compound_data.type)) { | 
 |         rd_stats->rate += best_tmp_rate_mv - rate_mv; | 
 |         rate_mv = best_tmp_rate_mv; | 
 |       } | 
 |     } | 
 |  | 
 |     if (ref_best_rd < INT64_MAX && best_rd_compound / 3 > ref_best_rd) { | 
 |       restore_dst_buf(xd, orig_dst); | 
 |       return INT64_MAX; | 
 |     } | 
 |  | 
 |     pred_exists = 0; | 
 |  | 
 |     *args->compmode_interinter_cost = | 
 |         av1_cost_literal(get_interinter_compound_type_bits( | 
 |             bsize, mbmi->interinter_compound_data.type)) + | 
 |         (masked_compound_used | 
 |              ? compound_type_cost[mbmi->interinter_compound_data.type] | 
 |              : 0); | 
 |   } | 
 |  | 
 | #if CONFIG_INTERINTRA | 
 |   if (is_comp_interintra_pred) { | 
 |     INTERINTRA_MODE best_interintra_mode = II_DC_PRED; | 
 |     int64_t best_interintra_rd = INT64_MAX; | 
 |     int rmode, rate_sum; | 
 |     int64_t dist_sum; | 
 |     int j; | 
 |     int tmp_rate_mv = 0; | 
 |     int tmp_skip_txfm_sb; | 
 |     int64_t tmp_skip_sse_sb; | 
 |     DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_SB_SQUARE]); | 
 |     uint8_t *intrapred; | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |     if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) | 
 |       intrapred = CONVERT_TO_BYTEPTR(intrapred_); | 
 |     else | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |       intrapred = intrapred_; | 
 |  | 
 |     mbmi->ref_frame[1] = NONE_FRAME; | 
 |     for (j = 0; j < MAX_MB_PLANE; j++) { | 
 |       xd->plane[j].dst.buf = tmp_buf + j * MAX_SB_SQUARE; | 
 |       xd->plane[j].dst.stride = bw; | 
 |     } | 
 |     av1_build_inter_predictors_sby(xd, mi_row, mi_col, &orig_dst, bsize); | 
 |     restore_dst_buf(xd, orig_dst); | 
 |     mbmi->ref_frame[1] = INTRA_FRAME; | 
 |     mbmi->use_wedge_interintra = 0; | 
 |  | 
 |     for (j = 0; j < INTERINTRA_MODES; ++j) { | 
 |       mbmi->interintra_mode = (INTERINTRA_MODE)j; | 
 |       rmode = interintra_mode_cost[mbmi->interintra_mode]; | 
 |       av1_build_intra_predictors_for_interintra(xd, bsize, 0, &orig_dst, | 
 |                                                 intrapred, bw); | 
 |       av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); | 
 |       model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum, | 
 |                       &tmp_skip_txfm_sb, &tmp_skip_sse_sb); | 
 |       rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_mv + rate_sum, dist_sum); | 
 |       if (rd < best_interintra_rd) { | 
 |         best_interintra_rd = rd; | 
 |         best_interintra_mode = mbmi->interintra_mode; | 
 |       } | 
 |     } | 
 |     mbmi->interintra_mode = best_interintra_mode; | 
 |     rmode = interintra_mode_cost[mbmi->interintra_mode]; | 
 |     av1_build_intra_predictors_for_interintra(xd, bsize, 0, &orig_dst, | 
 |                                               intrapred, bw); | 
 |     av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); | 
 |     av1_subtract_plane(x, bsize, 0); | 
 |     rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, | 
 |                              &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); | 
 |     if (rd != INT64_MAX) | 
 |       rd = RDCOST(x->rdmult, x->rddiv, rate_mv + rmode + rate_sum, dist_sum); | 
 |     best_interintra_rd = rd; | 
 |  | 
 |     if (ref_best_rd < INT64_MAX && best_interintra_rd > 2 * ref_best_rd) { | 
 |       // Don't need to call restore_dst_buf here | 
 |       return INT64_MAX; | 
 |     } | 
 | #if CONFIG_WEDGE | 
 |     if (is_interintra_wedge_used(bsize)) { | 
 |       int64_t best_interintra_rd_nowedge = INT64_MAX; | 
 |       int64_t best_interintra_rd_wedge = INT64_MAX; | 
 |       int_mv tmp_mv; | 
 |       int rwedge = av1_cost_bit(cm->fc->wedge_interintra_prob[bsize], 0); | 
 |       if (rd != INT64_MAX) | 
 |         rd = RDCOST(x->rdmult, x->rddiv, rmode + rate_mv + rwedge + rate_sum, | 
 |                     dist_sum); | 
 |       best_interintra_rd_nowedge = rd; | 
 |  | 
 |       // Disable wedge search if source variance is small | 
 |       if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh) { | 
 |         mbmi->use_wedge_interintra = 1; | 
 |  | 
 |         rwedge = av1_cost_literal(get_interintra_wedge_bits(bsize)) + | 
 |                  av1_cost_bit(cm->fc->wedge_interintra_prob[bsize], 1); | 
 |  | 
 |         best_interintra_rd_wedge = | 
 |             pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_); | 
 |  | 
 |         best_interintra_rd_wedge += | 
 |             RDCOST(x->rdmult, x->rddiv, rmode + rate_mv + rwedge, 0); | 
 |         // Refine motion vector. | 
 |         if (have_newmv_in_inter_mode(this_mode)) { | 
 |           // get negative of mask | 
 |           const uint8_t *mask = av1_get_contiguous_soft_mask( | 
 |               mbmi->interintra_wedge_index, 1, bsize); | 
 |           do_masked_motion_search(cpi, x, mask, bw, bsize, mi_row, mi_col, | 
 |                                   &tmp_mv, &tmp_rate_mv, 0); | 
 |           mbmi->mv[0].as_int = tmp_mv.as_int; | 
 |           av1_build_inter_predictors_sby(xd, mi_row, mi_col, &orig_dst, bsize); | 
 |           model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum, | 
 |                           &tmp_skip_txfm_sb, &tmp_skip_sse_sb); | 
 |           rd = RDCOST(x->rdmult, x->rddiv, | 
 |                       rmode + tmp_rate_mv + rwedge + rate_sum, dist_sum); | 
 |           if (rd < best_interintra_rd_wedge) { | 
 |             best_interintra_rd_wedge = rd; | 
 |           } else { | 
 |             tmp_mv.as_int = cur_mv[0].as_int; | 
 |             tmp_rate_mv = rate_mv; | 
 |           } | 
 |         } else { | 
 |           tmp_mv.as_int = cur_mv[0].as_int; | 
 |           tmp_rate_mv = rate_mv; | 
 |           av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); | 
 |         } | 
 |         // Evaluate closer to true rd | 
 |         av1_subtract_plane(x, bsize, 0); | 
 |         rd = | 
 |             estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, | 
 |                                 &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); | 
 |         if (rd != INT64_MAX) | 
 |           rd = RDCOST(x->rdmult, x->rddiv, | 
 |                       rmode + tmp_rate_mv + rwedge + rate_sum, dist_sum); | 
 |         best_interintra_rd_wedge = rd; | 
 |         if (best_interintra_rd_wedge < best_interintra_rd_nowedge) { | 
 |           mbmi->use_wedge_interintra = 1; | 
 |           best_interintra_rd = best_interintra_rd_wedge; | 
 |           mbmi->mv[0].as_int = tmp_mv.as_int; | 
 |           rd_stats->rate += tmp_rate_mv - rate_mv; | 
 |           rate_mv = tmp_rate_mv; | 
 |         } else { | 
 |           mbmi->use_wedge_interintra = 0; | 
 |           best_interintra_rd = best_interintra_rd_nowedge; | 
 |           mbmi->mv[0].as_int = cur_mv[0].as_int; | 
 |         } | 
 |       } else { | 
 |         mbmi->use_wedge_interintra = 0; | 
 |         best_interintra_rd = best_interintra_rd_nowedge; | 
 |       } | 
 |     } | 
 | #endif  // CONFIG_WEDGE | 
 |  | 
 |     pred_exists = 0; | 
 |     *args->compmode_interintra_cost = | 
 |         av1_cost_bit(cm->fc->interintra_prob[size_group_lookup[bsize]], 1); | 
 |     *args->compmode_interintra_cost += | 
 |         interintra_mode_cost[mbmi->interintra_mode]; | 
 |     if (is_interintra_wedge_used(bsize)) { | 
 |       *args->compmode_interintra_cost += av1_cost_bit( | 
 |           cm->fc->wedge_interintra_prob[bsize], mbmi->use_wedge_interintra); | 
 |       if (mbmi->use_wedge_interintra) { | 
 |         *args->compmode_interintra_cost += | 
 |             av1_cost_literal(get_interintra_wedge_bits(bsize)); | 
 |       } | 
 |     } | 
 |   } else if (is_interintra_allowed(mbmi)) { | 
 |     *args->compmode_interintra_cost = | 
 |         av1_cost_bit(cm->fc->interintra_prob[size_group_lookup[bsize]], 0); | 
 |   } | 
 | #endif  // CONFIG_INTERINTRA | 
 |  | 
 |   if (pred_exists == 0) { | 
 |     int tmp_rate; | 
 |     int64_t tmp_dist; | 
 |     av1_build_inter_predictors_sb(xd, mi_row, mi_col, &orig_dst, bsize); | 
 |     model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate, | 
 |                     &tmp_dist, &skip_txfm_sb, &skip_sse_sb); | 
 |     rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist); | 
 |   } | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |   if (!is_comp_pred) | 
 | #if CONFIG_DUAL_FILTER | 
 |     args->single_filter[this_mode][refs[0]] = mbmi->interp_filter[0]; | 
 | #else | 
 |     args->single_filter[this_mode][refs[0]] = mbmi->interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |   if (args->modelled_rd != NULL) { | 
 |     if (is_comp_pred) { | 
 |       const int mode0 = compound_ref0_mode(this_mode); | 
 |       const int mode1 = compound_ref1_mode(this_mode); | 
 |       const int64_t mrd = AOMMIN(args->modelled_rd[mode0][refs[0]], | 
 |                                  args->modelled_rd[mode1][refs[1]]); | 
 |       if (rd / 4 * 3 > mrd && ref_best_rd < INT64_MAX) { | 
 |         restore_dst_buf(xd, orig_dst); | 
 |         return INT64_MAX; | 
 |       } | 
 |     } else if (!is_comp_interintra_pred) { | 
 |       args->modelled_rd[this_mode][refs[0]] = rd; | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |   if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { | 
 |     // if current pred_error modeled rd is substantially more than the best | 
 |     // so far, do not bother doing full rd | 
 |     if (rd / 2 > ref_best_rd) { | 
 |       restore_dst_buf(xd, orig_dst); | 
 |       return INT64_MAX; | 
 |     } | 
 |   } | 
 |  | 
 |   ret_val = motion_mode_rd(cpi, x, bsize, rd_stats, rd_stats_y, rd_stats_uv, | 
 |                            disable_skip, mode_mv, mi_row, mi_col, args, | 
 |                            ref_best_rd, refs, rate_mv, | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 | #if CONFIG_EXT_INTER | 
 |                            rate2_bmc_nocoeff, &best_bmc_mbmi, | 
 | #if CONFIG_MOTION_VAR | 
 |                            rate_mv_bmc, | 
 | #endif  // CONFIG_MOTION_VAR | 
 | #endif  // CONFIG_EXT_INTER | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |                            rs, &skip_txfm_sb, &skip_sse_sb, &orig_dst); | 
 |   if (ret_val != 0) return ret_val; | 
 |  | 
 |   return 0;  // The rate-distortion cost will be re-calculated by caller. | 
 | } | 
 |  | 
 | #if CONFIG_INTRABC | 
 | static int64_t rd_pick_intrabc_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x, | 
 |                                        RD_STATS *rd_cost, BLOCK_SIZE bsize, | 
 |                                        int64_t best_rd) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   if (bsize < BLOCK_8X8 || !cm->allow_screen_content_tools) return INT64_MAX; | 
 |  | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const TileInfo *tile = &xd->tile; | 
 |   MODE_INFO *const mi = xd->mi[0]; | 
 |   const int mi_row = -xd->mb_to_top_edge / (8 * MI_SIZE); | 
 |   const int mi_col = -xd->mb_to_left_edge / (8 * MI_SIZE); | 
 |   const int w = block_size_wide[bsize]; | 
 |   const int h = block_size_high[bsize]; | 
 |   const int sb_row = mi_row / MAX_MIB_SIZE; | 
 |  | 
 |   int_mv dv_ref; | 
 |   av1_find_ref_dv(&dv_ref, mi_row, mi_col); | 
 |  | 
 |   const MvLimits tmp_mv_limits = x->mv_limits; | 
 |  | 
 |   // TODO(aconverse@google.com): Handle same row DV. | 
 |   x->mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE; | 
 |   x->mv_limits.col_max = (tile->mi_col_end - mi_col) * MI_SIZE - w; | 
 |   x->mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE; | 
 |   x->mv_limits.row_max = (sb_row * MAX_MIB_SIZE - mi_row) * MI_SIZE - h; | 
 |   assert(x->mv_limits.col_min >= tmp_mv_limits.col_min); | 
 |   assert(x->mv_limits.col_max <= tmp_mv_limits.col_max); | 
 |   assert(x->mv_limits.row_min >= tmp_mv_limits.row_min); | 
 |   assert(x->mv_limits.row_max <= tmp_mv_limits.row_max); | 
 |   av1_set_mv_search_range(&x->mv_limits, &dv_ref.as_mv); | 
 |  | 
 |   if (x->mv_limits.col_max < x->mv_limits.col_min || | 
 |       x->mv_limits.row_max < x->mv_limits.row_min) { | 
 |     x->mv_limits = tmp_mv_limits; | 
 |     return INT64_MAX; | 
 |   } | 
 |  | 
 |   struct buf_2d yv12_mb[MAX_MB_PLANE]; | 
 |   av1_setup_pred_block(xd, yv12_mb, xd->cur_buf, mi_row, mi_col, NULL, NULL); | 
 |   for (int i = 0; i < MAX_MB_PLANE; ++i) { | 
 |     xd->plane[i].pre[0] = yv12_mb[i]; | 
 |   } | 
 |  | 
 |   int step_param = cpi->mv_step_param; | 
 |   MV mvp_full = dv_ref.as_mv; | 
 |   mvp_full.col >>= 3; | 
 |   mvp_full.row >>= 3; | 
 |   int sadpb = x->sadperbit16; | 
 |   int cost_list[5]; | 
 |   int bestsme = av1_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, | 
 |                                       sadpb, cond_cost_list(cpi, cost_list), | 
 |                                       &dv_ref.as_mv, INT_MAX, 1); | 
 |  | 
 |   x->mv_limits = tmp_mv_limits; | 
 |   if (bestsme == INT_MAX) return INT64_MAX; | 
 |   mvp_full = x->best_mv.as_mv; | 
 |   MV dv = {.row = mvp_full.row * 8, .col = mvp_full.col * 8 }; | 
 |   if (mv_check_bounds(&x->mv_limits, &dv)) return INT64_MAX; | 
 |   if (!is_dv_valid(dv, tile, mi_row, mi_col, bsize)) return INT64_MAX; | 
 |   MB_MODE_INFO *mbmi = &mi->mbmi; | 
 |   MB_MODE_INFO best_mbmi = *mbmi; | 
 |   RD_STATS best_rdcost = *rd_cost; | 
 |   int best_skip = x->skip; | 
 | #if CONFIG_PALETTE | 
 |   memset(&mbmi->palette_mode_info, 0, sizeof(mbmi->palette_mode_info)); | 
 | #endif | 
 |   mbmi->use_intrabc = 1; | 
 |   mbmi->mode = DC_PRED; | 
 |   mbmi->uv_mode = DC_PRED; | 
 |   mbmi->mv[0].as_mv = dv; | 
 | #if CONFIG_DUAL_FILTER | 
 |   for (int idx = 0; idx < 4; ++idx) mbmi->interp_filter[idx] = BILINEAR; | 
 | #else | 
 |   mbmi->interp_filter = BILINEAR; | 
 | #endif | 
 |   mbmi->skip = 0; | 
 |   x->skip = 0; | 
 |   av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, bsize); | 
 |  | 
 |   int rate_mv = av1_mv_bit_cost(&dv, &dv_ref.as_mv, x->nmvjointcost, x->mvcost, | 
 |                                 MV_COST_WEIGHT); | 
 |   const PREDICTION_MODE A = av1_above_block_mode(mi, xd->above_mi, 0); | 
 |   const PREDICTION_MODE L = av1_left_block_mode(mi, xd->left_mi, 0); | 
 |   const int rate_mode = | 
 |       cpi->y_mode_costs[A][L][DC_PRED] + av1_cost_bit(INTRABC_PROB, 1); | 
 |  | 
 |   RD_STATS rd_stats, rd_stats_uv; | 
 |   av1_subtract_plane(x, bsize, 0); | 
 |   super_block_yrd(cpi, x, &rd_stats, bsize, INT64_MAX); | 
 |   super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); | 
 |   av1_merge_rd_stats(&rd_stats, &rd_stats_uv); | 
 | #if CONFIG_RD_DEBUG | 
 |   mbmi->rd_stats = rd_stats; | 
 | #endif | 
 |  | 
 |   const aom_prob skip_prob = av1_get_skip_prob(cm, xd); | 
 |  | 
 |   RD_STATS rdc_noskip; | 
 |   av1_init_rd_stats(&rdc_noskip); | 
 |   rdc_noskip.rate = | 
 |       rate_mode + rate_mv + rd_stats.rate + av1_cost_bit(skip_prob, 0); | 
 |   rdc_noskip.dist = rd_stats.dist; | 
 |   rdc_noskip.rdcost = | 
 |       RDCOST(x->rdmult, x->rddiv, rdc_noskip.rate, rdc_noskip.dist); | 
 |   if (rdc_noskip.rdcost < best_rd) { | 
 |     best_rd = rdc_noskip.rdcost; | 
 |     best_mbmi = *mbmi; | 
 |     best_skip = x->skip; | 
 |     best_rdcost = rdc_noskip; | 
 |   } | 
 |  | 
 |   x->skip = 1; | 
 |   mbmi->skip = 1; | 
 |   RD_STATS rdc_skip; | 
 |   av1_init_rd_stats(&rdc_skip); | 
 |   rdc_skip.rate = rate_mode + rate_mv + av1_cost_bit(skip_prob, 1); | 
 |   rdc_skip.dist = rd_stats.sse; | 
 |   rdc_skip.rdcost = RDCOST(x->rdmult, x->rddiv, rdc_skip.rate, rdc_skip.dist); | 
 |   if (rdc_skip.rdcost < best_rd) { | 
 |     best_rd = rdc_skip.rdcost; | 
 |     best_mbmi = *mbmi; | 
 |     best_skip = x->skip; | 
 |     best_rdcost = rdc_skip; | 
 |   } | 
 |   *mbmi = best_mbmi; | 
 |   *rd_cost = best_rdcost; | 
 |   x->skip = best_skip; | 
 |   return best_rd; | 
 | } | 
 | #endif  // CONFIG_INTRABC | 
 |  | 
 | void av1_rd_pick_intra_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x, | 
 |                                RD_STATS *rd_cost, BLOCK_SIZE bsize, | 
 |                                PICK_MODE_CONTEXT *ctx, int64_t best_rd) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   struct macroblockd_plane *const pd = xd->plane; | 
 |   int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0; | 
 |   int y_skip = 0, uv_skip = 0; | 
 |   int64_t dist_y = 0, dist_uv = 0; | 
 |   TX_SIZE max_uv_tx_size; | 
 |   const int unify_bsize = CONFIG_CB4X4; | 
 |  | 
 |   ctx->skip = 0; | 
 |   xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME; | 
 |   xd->mi[0]->mbmi.ref_frame[1] = NONE_FRAME; | 
 | #if CONFIG_INTRABC | 
 |   xd->mi[0]->mbmi.use_intrabc = 0; | 
 | #endif  // CONFIG_INTRABC | 
 |  | 
 |   if (bsize >= BLOCK_8X8 || unify_bsize) { | 
 |     if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y, | 
 |                                &y_skip, bsize, best_rd) >= best_rd) { | 
 |       rd_cost->rate = INT_MAX; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly, | 
 |                                      &dist_y, &y_skip, best_rd) >= best_rd) { | 
 |       rd_cost->rate = INT_MAX; | 
 |       return; | 
 |     } | 
 |   } | 
 |   max_uv_tx_size = uv_txsize_lookup[bsize][xd->mi[0]->mbmi.tx_size] | 
 |                                    [pd[1].subsampling_x][pd[1].subsampling_y]; | 
 |  | 
 | #if CONFIG_CB4X4 | 
 | #if !CONFIG_CHROMA_2X2 | 
 |   max_uv_tx_size = AOMMAX(max_uv_tx_size, TX_4X4); | 
 | #endif  // !CONFIG_CHROMA_2X2 | 
 |   if (!x->skip_chroma_rd) | 
 |     rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv, | 
 |                             &uv_skip, bsize, max_uv_tx_size); | 
 | #else | 
 |   rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv, | 
 |                           &uv_skip, AOMMAX(BLOCK_8X8, bsize), max_uv_tx_size); | 
 | #endif  // CONFIG_CB4X4 | 
 |  | 
 |   if (y_skip && uv_skip) { | 
 |     rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly + | 
 |                     av1_cost_bit(av1_get_skip_prob(cm, xd), 1); | 
 |     rd_cost->dist = dist_y + dist_uv; | 
 |   } else { | 
 |     rd_cost->rate = | 
 |         rate_y + rate_uv + av1_cost_bit(av1_get_skip_prob(cm, xd), 0); | 
 |     rd_cost->dist = dist_y + dist_uv; | 
 |   } | 
 |  | 
 | #if CONFIG_INTRABC | 
 |   if (rd_pick_intrabc_mode_sb(cpi, x, rd_cost, bsize, best_rd) < best_rd) { | 
 |     ctx->skip = x->skip;  // FIXME where is the proper place to set this?! | 
 |   } | 
 | #endif | 
 |  | 
 |   ctx->mic = *xd->mi[0]; | 
 |   ctx->mbmi_ext = *x->mbmi_ext; | 
 |   rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist); | 
 | } | 
 |  | 
 | // Do we have an internal image edge (e.g. formatting bars). | 
 | int av1_internal_image_edge(const AV1_COMP *cpi) { | 
 |   return (cpi->oxcf.pass == 2) && | 
 |          ((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) || | 
 |           (cpi->twopass.this_frame_stats.inactive_zone_cols > 0)); | 
 | } | 
 |  | 
 | // Checks to see if a super block is on a horizontal image edge. | 
 | // In most cases this is the "real" edge unless there are formatting | 
 | // bars embedded in the stream. | 
 | int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) { | 
 |   int top_edge = 0; | 
 |   int bottom_edge = cpi->common.mi_rows; | 
 |   int is_active_h_edge = 0; | 
 |  | 
 |   // For two pass account for any formatting bars detected. | 
 |   if (cpi->oxcf.pass == 2) { | 
 |     const TWO_PASS *const twopass = &cpi->twopass; | 
 |  | 
 |     // The inactive region is specified in MBs not mi units. | 
 |     // The image edge is in the following MB row. | 
 |     top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2); | 
 |  | 
 |     bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2); | 
 |     bottom_edge = AOMMAX(top_edge, bottom_edge); | 
 |   } | 
 |  | 
 |   if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || | 
 |       ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { | 
 |     is_active_h_edge = 1; | 
 |   } | 
 |   return is_active_h_edge; | 
 | } | 
 |  | 
 | // Checks to see if a super block is on a vertical image edge. | 
 | // In most cases this is the "real" edge unless there are formatting | 
 | // bars embedded in the stream. | 
 | int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) { | 
 |   int left_edge = 0; | 
 |   int right_edge = cpi->common.mi_cols; | 
 |   int is_active_v_edge = 0; | 
 |  | 
 |   // For two pass account for any formatting bars detected. | 
 |   if (cpi->oxcf.pass == 2) { | 
 |     const TWO_PASS *const twopass = &cpi->twopass; | 
 |  | 
 |     // The inactive region is specified in MBs not mi units. | 
 |     // The image edge is in the following MB row. | 
 |     left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2); | 
 |  | 
 |     right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2); | 
 |     right_edge = AOMMAX(left_edge, right_edge); | 
 |   } | 
 |  | 
 |   if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || | 
 |       ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { | 
 |     is_active_v_edge = 1; | 
 |   } | 
 |   return is_active_v_edge; | 
 | } | 
 |  | 
 | // Checks to see if a super block is at the edge of the active image. | 
 | // In most cases this is the "real" edge unless there are formatting | 
 | // bars embedded in the stream. | 
 | int av1_active_edge_sb(const AV1_COMP *cpi, int mi_row, int mi_col) { | 
 |   return av1_active_h_edge(cpi, mi_row, cpi->common.mib_size) || | 
 |          av1_active_v_edge(cpi, mi_col, cpi->common.mib_size); | 
 | } | 
 |  | 
 | #if CONFIG_PALETTE | 
 | static void restore_uv_color_map(const AV1_COMP *const cpi, MACROBLOCK *x) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |   int src_stride = x->plane[1].src.stride; | 
 |   const uint8_t *const src_u = x->plane[1].src.buf; | 
 |   const uint8_t *const src_v = x->plane[2].src.buf; | 
 |   float *const data = x->palette_buffer->kmeans_data_buf; | 
 |   float centroids[2 * PALETTE_MAX_SIZE]; | 
 |   uint8_t *const color_map = xd->plane[1].color_index_map; | 
 |   int r, c; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   const uint16_t *const src_u16 = CONVERT_TO_SHORTPTR(src_u); | 
 |   const uint16_t *const src_v16 = CONVERT_TO_SHORTPTR(src_v); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |   int plane_block_width, plane_block_height, rows, cols; | 
 |   av1_get_block_dimensions(bsize, 1, xd, &plane_block_width, | 
 |                            &plane_block_height, &rows, &cols); | 
 |   (void)cpi; | 
 |  | 
 |   for (r = 0; r < rows; ++r) { | 
 |     for (c = 0; c < cols; ++c) { | 
 | #if CONFIG_HIGHBITDEPTH | 
 |       if (cpi->common.use_highbitdepth) { | 
 |         data[(r * cols + c) * 2] = src_u16[r * src_stride + c]; | 
 |         data[(r * cols + c) * 2 + 1] = src_v16[r * src_stride + c]; | 
 |       } else { | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |         data[(r * cols + c) * 2] = src_u[r * src_stride + c]; | 
 |         data[(r * cols + c) * 2 + 1] = src_v[r * src_stride + c]; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |       } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |     } | 
 |   } | 
 |  | 
 |   for (r = 1; r < 3; ++r) { | 
 |     for (c = 0; c < pmi->palette_size[1]; ++c) { | 
 |       centroids[c * 2 + r - 1] = pmi->palette_colors[r * PALETTE_MAX_SIZE + c]; | 
 |     } | 
 |   } | 
 |  | 
 |   av1_calc_indices(data, centroids, color_map, rows * cols, | 
 |                    pmi->palette_size[1], 2); | 
 |   extend_palette_color_map(color_map, cols, rows, plane_block_width, | 
 |                            plane_block_height); | 
 | } | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 | #if CONFIG_FILTER_INTRA | 
 | static void pick_filter_intra_interframe( | 
 |     const AV1_COMP *cpi, MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, | 
 |     BLOCK_SIZE bsize, int mi_row, int mi_col, int *rate_uv_intra, | 
 |     int *rate_uv_tokenonly, int64_t *dist_uv, int *skip_uv, | 
 |     PREDICTION_MODE *mode_uv, FILTER_INTRA_MODE_INFO *filter_intra_mode_info_uv, | 
 | #if CONFIG_EXT_INTRA | 
 |     int8_t *uv_angle_delta, | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_PALETTE | 
 |     PALETTE_MODE_INFO *pmi_uv, int palette_ctx, | 
 | #endif  // CONFIG_PALETTE | 
 |     int skip_mask, unsigned int *ref_costs_single, int64_t *best_rd, | 
 |     int64_t *best_intra_rd, PREDICTION_MODE *best_intra_mode, | 
 |     int *best_mode_index, int *best_skip2, int *best_mode_skippable, | 
 | #if CONFIG_SUPERTX | 
 |     int *returnrate_nocoef, | 
 | #endif  // CONFIG_SUPERTX | 
 |     int64_t *best_pred_rd, MB_MODE_INFO *best_mbmode, RD_STATS *rd_cost) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 | #if CONFIG_PALETTE | 
 |   PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
 | #endif  // CONFIG_PALETTE | 
 |   int rate2 = 0, rate_y = INT_MAX, skippable = 0, rate_uv, rate_dummy, i; | 
 |   int dc_mode_index; | 
 |   const int *const intra_mode_cost = cpi->mbmode_cost[size_group_lookup[bsize]]; | 
 |   int64_t distortion2 = 0, distortion_y = 0, this_rd = *best_rd; | 
 |   int64_t distortion_uv, model_rd = INT64_MAX; | 
 |   TX_SIZE uv_tx; | 
 |  | 
 |   for (i = 0; i < MAX_MODES; ++i) | 
 |     if (av1_mode_order[i].mode == DC_PRED && | 
 |         av1_mode_order[i].ref_frame[0] == INTRA_FRAME) | 
 |       break; | 
 |   dc_mode_index = i; | 
 |   assert(i < MAX_MODES); | 
 |  | 
 |   // TODO(huisu): use skip_mask for further speedup. | 
 |   (void)skip_mask; | 
 |   mbmi->mode = DC_PRED; | 
 |   mbmi->uv_mode = DC_PRED; | 
 |   mbmi->ref_frame[0] = INTRA_FRAME; | 
 |   mbmi->ref_frame[1] = NONE_FRAME; | 
 |   if (!rd_pick_filter_intra_sby(cpi, x, &rate_dummy, &rate_y, &distortion_y, | 
 |                                 &skippable, bsize, intra_mode_cost[mbmi->mode], | 
 |                                 &this_rd, &model_rd, 0)) { | 
 |     return; | 
 |   } | 
 |   if (rate_y == INT_MAX) return; | 
 |  | 
 |   uv_tx = uv_txsize_lookup[bsize][mbmi->tx_size][xd->plane[1].subsampling_x] | 
 |                           [xd->plane[1].subsampling_y]; | 
 |   if (rate_uv_intra[uv_tx] == INT_MAX) { | 
 |     choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx], | 
 |                          &rate_uv_tokenonly[uv_tx], &dist_uv[uv_tx], | 
 |                          &skip_uv[uv_tx], &mode_uv[uv_tx]); | 
 | #if CONFIG_PALETTE | 
 |     if (cm->allow_screen_content_tools) pmi_uv[uv_tx] = *pmi; | 
 | #endif  // CONFIG_PALETTE | 
 |     filter_intra_mode_info_uv[uv_tx] = mbmi->filter_intra_mode_info; | 
 | #if CONFIG_EXT_INTRA | 
 |     uv_angle_delta[uv_tx] = mbmi->angle_delta[1]; | 
 | #endif  // CONFIG_EXT_INTRA | 
 |   } | 
 |  | 
 |   rate_uv = rate_uv_tokenonly[uv_tx]; | 
 |   distortion_uv = dist_uv[uv_tx]; | 
 |   skippable = skippable && skip_uv[uv_tx]; | 
 |   mbmi->uv_mode = mode_uv[uv_tx]; | 
 | #if CONFIG_PALETTE | 
 |   if (cm->allow_screen_content_tools) { | 
 |     pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1]; | 
 |     memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, | 
 |            pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, | 
 |            2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); | 
 |   } | 
 | #endif  // CONFIG_PALETTE | 
 | #if CONFIG_EXT_INTRA | 
 |   mbmi->angle_delta[1] = uv_angle_delta[uv_tx]; | 
 | #endif  // CONFIG_EXT_INTRA | 
 |   mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = | 
 |       filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1]; | 
 |   if (filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1]) { | 
 |     mbmi->filter_intra_mode_info.filter_intra_mode[1] = | 
 |         filter_intra_mode_info_uv[uv_tx].filter_intra_mode[1]; | 
 |   } | 
 |  | 
 |   rate2 = rate_y + intra_mode_cost[mbmi->mode] + rate_uv + | 
 |           cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode]; | 
 | #if CONFIG_PALETTE | 
 |   if (cpi->common.allow_screen_content_tools && mbmi->mode == DC_PRED && | 
 |       bsize >= BLOCK_8X8) | 
 |     rate2 += av1_cost_bit( | 
 |         av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx], 0); | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 |   if (!xd->lossless[mbmi->segment_id]) { | 
 |     // super_block_yrd above includes the cost of the tx_size in the | 
 |     // tokenonly rate, but for intra blocks, tx_size is always coded | 
 |     // (prediction granularity), so we account for it in the full rate, | 
 |     // not the tokenonly rate. | 
 |     rate_y -= tx_size_cost(cpi, x, bsize, mbmi->tx_size); | 
 |   } | 
 |  | 
 |   rate2 += av1_cost_bit(cm->fc->filter_intra_probs[0], | 
 |                         mbmi->filter_intra_mode_info.use_filter_intra_mode[0]); | 
 |   rate2 += write_uniform_cost( | 
 |       FILTER_INTRA_MODES, mbmi->filter_intra_mode_info.filter_intra_mode[0]); | 
 | #if CONFIG_EXT_INTRA | 
 |   if (av1_is_directional_mode(mbmi->uv_mode, bsize)) { | 
 |     rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTA + 1, | 
 |                                 MAX_ANGLE_DELTA + mbmi->angle_delta[1]); | 
 |   } | 
 | #endif  // CONFIG_EXT_INTRA | 
 |   if (mbmi->mode == DC_PRED) { | 
 |     rate2 += | 
 |         av1_cost_bit(cpi->common.fc->filter_intra_probs[1], | 
 |                      mbmi->filter_intra_mode_info.use_filter_intra_mode[1]); | 
 |     if (mbmi->filter_intra_mode_info.use_filter_intra_mode[1]) | 
 |       rate2 += | 
 |           write_uniform_cost(FILTER_INTRA_MODES, | 
 |                              mbmi->filter_intra_mode_info.filter_intra_mode[1]); | 
 |   } | 
 |   distortion2 = distortion_y + distortion_uv; | 
 |   av1_encode_intra_block_plane((AV1_COMMON *)cm, x, bsize, 0, 0, mi_row, | 
 |                                mi_col); | 
 |  | 
 |   rate2 += ref_costs_single[INTRA_FRAME]; | 
 |  | 
 |   if (skippable) { | 
 |     rate2 -= (rate_y + rate_uv); | 
 |     rate_y = 0; | 
 |     rate_uv = 0; | 
 |     rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); | 
 |   } else { | 
 |     rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); | 
 |   } | 
 |   this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); | 
 |  | 
 |   if (this_rd < *best_intra_rd) { | 
 |     *best_intra_rd = this_rd; | 
 |     *best_intra_mode = mbmi->mode; | 
 |   } | 
 |   for (i = 0; i < REFERENCE_MODES; ++i) | 
 |     best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd); | 
 |  | 
 |   if (this_rd < *best_rd) { | 
 |     *best_mode_index = dc_mode_index; | 
 |     mbmi->mv[0].as_int = 0; | 
 |     rd_cost->rate = rate2; | 
 | #if CONFIG_SUPERTX | 
 |     if (x->skip) | 
 |       *returnrate_nocoef = rate2; | 
 |     else | 
 |       *returnrate_nocoef = rate2 - rate_y - rate_uv; | 
 |     *returnrate_nocoef -= av1_cost_bit(av1_get_skip_prob(cm, xd), skippable); | 
 |     *returnrate_nocoef -= av1_cost_bit(av1_get_intra_inter_prob(cm, xd), | 
 |                                        mbmi->ref_frame[0] != INTRA_FRAME); | 
 | #endif  // CONFIG_SUPERTX | 
 |     rd_cost->dist = distortion2; | 
 |     rd_cost->rdcost = this_rd; | 
 |     *best_rd = this_rd; | 
 |     *best_mbmode = *mbmi; | 
 |     *best_skip2 = 0; | 
 |     *best_mode_skippable = skippable; | 
 |   } | 
 | } | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 | #if CONFIG_MOTION_VAR | 
 | static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, | 
 |                                       const MACROBLOCKD *xd, int mi_row, | 
 |                                       int mi_col, const uint8_t *above, | 
 |                                       int above_stride, const uint8_t *left, | 
 |                                       int left_stride); | 
 | #endif  // CONFIG_MOTION_VAR | 
 |  | 
 | void av1_rd_pick_inter_mode_sb(const AV1_COMP *cpi, TileDataEnc *tile_data, | 
 |                                MACROBLOCK *x, int mi_row, int mi_col, | 
 |                                RD_STATS *rd_cost, | 
 | #if CONFIG_SUPERTX | 
 |                                int *returnrate_nocoef, | 
 | #endif  // CONFIG_SUPERTX | 
 |                                BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, | 
 |                                int64_t best_rd_so_far) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   const RD_OPT *const rd_opt = &cpi->rd; | 
 |   const SPEED_FEATURES *const sf = &cpi->sf; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 | #if CONFIG_PALETTE | 
 |   const int try_palette = | 
 |       cpi->common.allow_screen_content_tools && bsize >= BLOCK_8X8; | 
 |   PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
 | #endif  // CONFIG_PALETTE | 
 |   MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; | 
 |   const struct segmentation *const seg = &cm->seg; | 
 |   PREDICTION_MODE this_mode; | 
 |   MV_REFERENCE_FRAME ref_frame, second_ref_frame; | 
 |   unsigned char segment_id = mbmi->segment_id; | 
 |   int comp_pred, i, k; | 
 |   int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; | 
 |   struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME][MAX_MB_PLANE]; | 
 |   int_mv single_newmv[TOTAL_REFS_PER_FRAME] = { { 0 } }; | 
 | #if CONFIG_EXT_INTER | 
 |   int single_newmv_rate[TOTAL_REFS_PER_FRAME] = { 0 }; | 
 |   int64_t modelled_rd[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; | 
 | #endif  // CONFIG_EXT_INTER | 
 |   static const int flag_list[TOTAL_REFS_PER_FRAME] = { | 
 |     0, | 
 |     AOM_LAST_FLAG, | 
 | #if CONFIG_EXT_REFS | 
 |     AOM_LAST2_FLAG, | 
 |     AOM_LAST3_FLAG, | 
 | #endif  // CONFIG_EXT_REFS | 
 |     AOM_GOLD_FLAG, | 
 | #if CONFIG_EXT_REFS | 
 |     AOM_BWD_FLAG, | 
 | #endif  // CONFIG_EXT_REFS | 
 |     AOM_ALT_FLAG | 
 |   }; | 
 |   int64_t best_rd = best_rd_so_far; | 
 |   int best_rate_y = INT_MAX, best_rate_uv = INT_MAX; | 
 |   int64_t best_pred_diff[REFERENCE_MODES]; | 
 |   int64_t best_pred_rd[REFERENCE_MODES]; | 
 |   MB_MODE_INFO best_mbmode; | 
 | #if CONFIG_REF_MV | 
 |   int rate_skip0 = av1_cost_bit(av1_get_skip_prob(cm, xd), 0); | 
 |   int rate_skip1 = av1_cost_bit(av1_get_skip_prob(cm, xd), 1); | 
 | #endif  // CONFIG_REF_MV | 
 |   int best_mode_skippable = 0; | 
 |   int midx, best_mode_index = -1; | 
 |   unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME]; | 
 |   unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME]; | 
 |   aom_prob comp_mode_p; | 
 |   int64_t best_intra_rd = INT64_MAX; | 
 |   unsigned int best_pred_sse = UINT_MAX; | 
 |   PREDICTION_MODE best_intra_mode = DC_PRED; | 
 |   int rate_uv_intra[TX_SIZES_ALL], rate_uv_tokenonly[TX_SIZES_ALL]; | 
 |   int64_t dist_uvs[TX_SIZES_ALL]; | 
 |   int skip_uvs[TX_SIZES_ALL]; | 
 |   PREDICTION_MODE mode_uv[TX_SIZES_ALL]; | 
 | #if CONFIG_PALETTE | 
 |   PALETTE_MODE_INFO pmi_uv[TX_SIZES_ALL]; | 
 | #endif  // CONFIG_PALETTE | 
 | #if CONFIG_EXT_INTRA | 
 |   int8_t uv_angle_delta[TX_SIZES_ALL]; | 
 |   int is_directional_mode, angle_stats_ready = 0; | 
 |   uint8_t directional_mode_skip_mask[INTRA_MODES]; | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_FILTER_INTRA | 
 |   int8_t dc_skipped = 1; | 
 |   FILTER_INTRA_MODE_INFO filter_intra_mode_info_uv[TX_SIZES_ALL]; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |   const int intra_cost_penalty = av1_get_intra_cost_penalty( | 
 |       cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth); | 
 |   const int *const intra_mode_cost = cpi->mbmode_cost[size_group_lookup[bsize]]; | 
 |   int best_skip2 = 0; | 
 |   uint8_t ref_frame_skip_mask[2] = { 0 }; | 
 | #if CONFIG_EXT_INTER | 
 |   uint32_t mode_skip_mask[TOTAL_REFS_PER_FRAME] = { 0 }; | 
 |   MV_REFERENCE_FRAME best_single_inter_ref = LAST_FRAME; | 
 |   int64_t best_single_inter_rd = INT64_MAX; | 
 | #else | 
 |   uint16_t mode_skip_mask[TOTAL_REFS_PER_FRAME] = { 0 }; | 
 | #endif  // CONFIG_EXT_INTER | 
 |   int mode_skip_start = sf->mode_skip_start + 1; | 
 |   const int *const rd_threshes = rd_opt->threshes[segment_id][bsize]; | 
 |   const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize]; | 
 |   int64_t mode_threshold[MAX_MODES]; | 
 |   int *mode_map = tile_data->mode_map[bsize]; | 
 |   const int mode_search_skip_flags = sf->mode_search_skip_flags; | 
 | #if CONFIG_PVQ | 
 |   od_rollback_buffer pre_buf; | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 |   HandleInterModeArgs args = { | 
 | #if CONFIG_MOTION_VAR | 
 |     { NULL }, | 
 |     { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }, | 
 |     { NULL }, | 
 |     { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }, | 
 | #endif  // CONFIG_MOTION_VAR | 
 | #if CONFIG_EXT_INTER | 
 |     NULL, | 
 |     NULL, | 
 |     NULL, | 
 |     NULL, | 
 |     NULL, | 
 | #else   // CONFIG_EXT_INTER | 
 |     NULL, | 
 | #endif  // CONFIG_EXT_INTER | 
 |     { { 0 } }, | 
 |   }; | 
 |  | 
 | #if CONFIG_PALETTE || CONFIG_EXT_INTRA | 
 |   const int rows = block_size_high[bsize]; | 
 |   const int cols = block_size_wide[bsize]; | 
 | #endif  // CONFIG_PALETTE || CONFIG_EXT_INTRA | 
 | #if CONFIG_PALETTE | 
 |   int palette_ctx = 0; | 
 |   const MODE_INFO *above_mi = xd->above_mi; | 
 |   const MODE_INFO *left_mi = xd->left_mi; | 
 | #endif  // CONFIG_PALETTE | 
 | #if CONFIG_MOTION_VAR | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); | 
 |   DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); | 
 | #else | 
 |   DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]); | 
 |   DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]); | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |   DECLARE_ALIGNED(16, int32_t, weighted_src_buf[MAX_SB_SQUARE]); | 
 |   DECLARE_ALIGNED(16, int32_t, mask2d_buf[MAX_SB_SQUARE]); | 
 |   int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; | 
 |   int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; | 
 |   int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; | 
 |   int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |     int len = sizeof(uint16_t); | 
 |     args.above_pred_buf[0] = CONVERT_TO_BYTEPTR(tmp_buf1); | 
 |     args.above_pred_buf[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len); | 
 |     args.above_pred_buf[2] = | 
 |         CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_SB_SQUARE * len); | 
 |     args.left_pred_buf[0] = CONVERT_TO_BYTEPTR(tmp_buf2); | 
 |     args.left_pred_buf[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len); | 
 |     args.left_pred_buf[2] = | 
 |         CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_SB_SQUARE * len); | 
 |   } else { | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |     args.above_pred_buf[0] = tmp_buf1; | 
 |     args.above_pred_buf[1] = tmp_buf1 + MAX_SB_SQUARE; | 
 |     args.above_pred_buf[2] = tmp_buf1 + 2 * MAX_SB_SQUARE; | 
 |     args.left_pred_buf[0] = tmp_buf2; | 
 |     args.left_pred_buf[1] = tmp_buf2 + MAX_SB_SQUARE; | 
 |     args.left_pred_buf[2] = tmp_buf2 + 2 * MAX_SB_SQUARE; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 | #endif  // CONFIG_MOTION_VAR | 
 |  | 
 |   av1_zero(best_mbmode); | 
 |  | 
 | #if CONFIG_PALETTE | 
 |   av1_zero(pmi_uv); | 
 |   if (try_palette) { | 
 |     if (above_mi) | 
 |       palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0); | 
 |     if (left_mi) | 
 |       palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0); | 
 |   } | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 | #if CONFIG_EXT_INTRA | 
 |   memset(directional_mode_skip_mask, 0, | 
 |          sizeof(directional_mode_skip_mask[0]) * INTRA_MODES); | 
 | #endif  // CONFIG_EXT_INTRA | 
 |  | 
 |   estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, | 
 |                            &comp_mode_p); | 
 |  | 
 |   for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX; | 
 |   for (i = 0; i < TX_SIZES_ALL; i++) rate_uv_intra[i] = INT_MAX; | 
 |   for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) x->pred_sse[i] = INT_MAX; | 
 |   for (i = 0; i < MB_MODE_COUNT; ++i) { | 
 |     for (k = 0; k < TOTAL_REFS_PER_FRAME; ++k) { | 
 |       args.single_filter[i][k] = SWITCHABLE; | 
 |     } | 
 |   } | 
 |  | 
 |   rd_cost->rate = INT_MAX; | 
 | #if CONFIG_SUPERTX | 
 |   *returnrate_nocoef = INT_MAX; | 
 | #endif  // CONFIG_SUPERTX | 
 |  | 
 |   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { | 
 |     x->pred_mv_sad[ref_frame] = INT_MAX; | 
 |     x->mbmi_ext->mode_context[ref_frame] = 0; | 
 | #if CONFIG_REF_MV && CONFIG_EXT_INTER | 
 |     x->mbmi_ext->compound_mode_context[ref_frame] = 0; | 
 | #endif  // CONFIG_REF_MV && CONFIG_EXT_INTER | 
 |     if (cpi->ref_frame_flags & flag_list[ref_frame]) { | 
 |       assert(get_ref_frame_buffer(cpi, ref_frame) != NULL); | 
 |       setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, | 
 |                          frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb); | 
 |     } | 
 |     frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; | 
 | #if CONFIG_GLOBAL_MOTION | 
 |     frame_mv[ZEROMV][ref_frame].as_int = | 
 |         gm_get_motion_vector(&cm->global_motion[ref_frame], | 
 |                              cm->allow_high_precision_mv, bsize, mi_col, mi_row, | 
 |                              0) | 
 |             .as_int; | 
 | #else   // CONFIG_GLOBAL_MOTION | 
 |     frame_mv[ZEROMV][ref_frame].as_int = 0; | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 | #if CONFIG_EXT_INTER | 
 |     frame_mv[NEW_NEWMV][ref_frame].as_int = INVALID_MV; | 
 | #if CONFIG_GLOBAL_MOTION | 
 |     frame_mv[ZERO_ZEROMV][ref_frame].as_int = | 
 |         gm_get_motion_vector(&cm->global_motion[ref_frame], | 
 |                              cm->allow_high_precision_mv, bsize, mi_col, mi_row, | 
 |                              0) | 
 |             .as_int; | 
 | #else   // CONFIG_GLOBAL_MOTION | 
 |     frame_mv[ZERO_ZEROMV][ref_frame].as_int = 0; | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 | #endif  // CONFIG_EXT_INTER | 
 |   } | 
 |  | 
 | #if CONFIG_REF_MV | 
 |   for (; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) { | 
 |     MODE_INFO *const mi = xd->mi[0]; | 
 |     int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; | 
 |     x->mbmi_ext->mode_context[ref_frame] = 0; | 
 |     av1_find_mv_refs(cm, xd, mi, ref_frame, &mbmi_ext->ref_mv_count[ref_frame], | 
 |                      mbmi_ext->ref_mv_stack[ref_frame], | 
 | #if CONFIG_EXT_INTER | 
 |                      mbmi_ext->compound_mode_context, | 
 | #endif  // CONFIG_EXT_INTER | 
 |                      candidates, mi_row, mi_col, NULL, NULL, | 
 |                      mbmi_ext->mode_context); | 
 |     if (mbmi_ext->ref_mv_count[ref_frame] < 2) { | 
 |       MV_REFERENCE_FRAME rf[2]; | 
 |       av1_set_ref_frame(rf, ref_frame); | 
 |       if (mbmi_ext->ref_mvs[rf[0]][0].as_int != | 
 |               frame_mv[ZEROMV][rf[0]].as_int || | 
 |           mbmi_ext->ref_mvs[rf[0]][1].as_int != | 
 |               frame_mv[ZEROMV][rf[0]].as_int || | 
 |           mbmi_ext->ref_mvs[rf[1]][0].as_int != | 
 |               frame_mv[ZEROMV][rf[1]].as_int || | 
 |           mbmi_ext->ref_mvs[rf[1]][1].as_int != frame_mv[ZEROMV][rf[1]].as_int) | 
 |         mbmi_ext->mode_context[ref_frame] &= ~(1 << ALL_ZERO_FLAG_OFFSET); | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 | #if CONFIG_MOTION_VAR | 
 |   av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col); | 
 |   if (check_num_overlappable_neighbors(mbmi) && | 
 |       is_motion_variation_allowed_bsize(bsize)) { | 
 |     av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, | 
 |                                         args.above_pred_buf, dst_width1, | 
 |                                         dst_height1, args.above_pred_stride); | 
 |     av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, | 
 |                                        args.left_pred_buf, dst_width2, | 
 |                                        dst_height2, args.left_pred_stride); | 
 |     av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); | 
 |     x->mask_buf = mask2d_buf; | 
 |     x->wsrc_buf = weighted_src_buf; | 
 |     calc_target_weighted_pred(cm, x, xd, mi_row, mi_col, args.above_pred_buf[0], | 
 |                               args.above_pred_stride[0], args.left_pred_buf[0], | 
 |                               args.left_pred_stride[0]); | 
 |   } | 
 | #endif  // CONFIG_MOTION_VAR | 
 |  | 
 |   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { | 
 |     if (!(cpi->ref_frame_flags & flag_list[ref_frame])) { | 
 | // Skip checking missing references in both single and compound reference | 
 | // modes. Note that a mode will be skipped iff both reference frames | 
 | // are masked out. | 
 | #if CONFIG_EXT_REFS | 
 |       if (ref_frame == BWDREF_FRAME || ref_frame == ALTREF_FRAME) { | 
 |         ref_frame_skip_mask[0] |= (1 << ref_frame); | 
 |         ref_frame_skip_mask[1] |= ((1 << ref_frame) | 0x01); | 
 |       } else { | 
 | #endif  // CONFIG_EXT_REFS | 
 |         ref_frame_skip_mask[0] |= (1 << ref_frame); | 
 |         ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; | 
 | #if CONFIG_EXT_REFS | 
 |       } | 
 | #endif  // CONFIG_EXT_REFS | 
 |     } else { | 
 |       for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { | 
 |         // Skip fixed mv modes for poor references | 
 |         if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) { | 
 |           mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |     // If the segment reference frame feature is enabled.... | 
 |     // then do nothing if the current ref frame is not allowed.. | 
 |     if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && | 
 |         get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { | 
 |       ref_frame_skip_mask[0] |= (1 << ref_frame); | 
 |       ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; | 
 |     } | 
 |   } | 
 |  | 
 |   // Disable this drop out case if the ref frame | 
 |   // segment level feature is enabled for this segment. This is to | 
 |   // prevent the possibility that we end up unable to pick any mode. | 
 |   if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { | 
 |     // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, | 
 |     // unless ARNR filtering is enabled in which case we want | 
 |     // an unfiltered alternative. We allow near/nearest as well | 
 |     // because they may result in zero-zero MVs but be cheaper. | 
 |     if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { | 
 |       int_mv zeromv; | 
 |       ref_frame_skip_mask[0] = (1 << LAST_FRAME) | | 
 | #if CONFIG_EXT_REFS | 
 |                                (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | | 
 |                                (1 << BWDREF_FRAME) | | 
 | #endif  // CONFIG_EXT_REFS | 
 |                                (1 << GOLDEN_FRAME); | 
 |       ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; | 
 |       // TODO(zoeliu): To further explore whether following needs to be done for | 
 |       //               BWDREF_FRAME as well. | 
 |       mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO; | 
 | #if CONFIG_GLOBAL_MOTION | 
 |       zeromv.as_int = gm_get_motion_vector(&cm->global_motion[ALTREF_FRAME], | 
 |                                            cm->allow_high_precision_mv, bsize, | 
 |                                            mi_col, mi_row, 0) | 
 |                           .as_int; | 
 | #else | 
 |       zeromv.as_int = 0; | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |       if (frame_mv[NEARMV][ALTREF_FRAME].as_int != zeromv.as_int) | 
 |         mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV); | 
 |       if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int) | 
 |         mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV); | 
 | #if CONFIG_EXT_INTER | 
 |       if (frame_mv[NEAREST_NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int) | 
 |         mode_skip_mask[ALTREF_FRAME] |= (1 << NEAREST_NEARESTMV); | 
 |       if (frame_mv[NEAREST_NEARMV][ALTREF_FRAME].as_int != zeromv.as_int) | 
 |         mode_skip_mask[ALTREF_FRAME] |= (1 << NEAREST_NEARMV); | 
 |       if (frame_mv[NEAR_NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int) | 
 |         mode_skip_mask[ALTREF_FRAME] |= (1 << NEAR_NEARESTMV); | 
 |       if (frame_mv[NEAR_NEARMV][ALTREF_FRAME].as_int != zeromv.as_int) | 
 |         mode_skip_mask[ALTREF_FRAME] |= (1 << NEAR_NEARMV); | 
 | #endif  // CONFIG_EXT_INTER | 
 |     } | 
 |   } | 
 |  | 
 |   if (cpi->rc.is_src_frame_alt_ref) { | 
 |     if (sf->alt_ref_search_fp) { | 
 |       assert(cpi->ref_frame_flags & flag_list[ALTREF_FRAME]); | 
 |       mode_skip_mask[ALTREF_FRAME] = 0; | 
 |       ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME); | 
 |       ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; | 
 |     } | 
 |   } | 
 |  | 
 |   if (sf->alt_ref_search_fp) | 
 |     if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX) | 
 |       if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1)) | 
 |         mode_skip_mask[ALTREF_FRAME] |= INTER_ALL; | 
 |  | 
 |   if (sf->adaptive_mode_search) { | 
 |     if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref && | 
 |         cpi->rc.frames_since_golden >= 3) | 
 |       if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1)) | 
 |         mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL; | 
 |   } | 
 |  | 
 |   if (bsize > sf->max_intra_bsize) { | 
 |     ref_frame_skip_mask[0] |= (1 << INTRA_FRAME); | 
 |     ref_frame_skip_mask[1] |= (1 << INTRA_FRAME); | 
 |   } | 
 |  | 
 |   mode_skip_mask[INTRA_FRAME] |= | 
 |       ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]); | 
 |  | 
 |   for (i = 0; i <= LAST_NEW_MV_INDEX; ++i) mode_threshold[i] = 0; | 
 |   for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i) | 
 |     mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5; | 
 |  | 
 |   midx = sf->schedule_mode_search ? mode_skip_start : 0; | 
 |   while (midx > 4) { | 
 |     uint8_t end_pos = 0; | 
 |     for (i = 5; i < midx; ++i) { | 
 |       if (mode_threshold[mode_map[i - 1]] > mode_threshold[mode_map[i]]) { | 
 |         uint8_t tmp = mode_map[i]; | 
 |         mode_map[i] = mode_map[i - 1]; | 
 |         mode_map[i - 1] = tmp; | 
 |         end_pos = i; | 
 |       } | 
 |     } | 
 |     midx = end_pos; | 
 |   } | 
 |  | 
 |   if (cpi->sf.tx_type_search.fast_intra_tx_type_search) | 
 |     x->use_default_intra_tx_type = 1; | 
 |   else | 
 |     x->use_default_intra_tx_type = 0; | 
 |  | 
 |   if (cpi->sf.tx_type_search.fast_inter_tx_type_search) | 
 |     x->use_default_inter_tx_type = 1; | 
 |   else | 
 |     x->use_default_inter_tx_type = 0; | 
 | #if CONFIG_PVQ | 
 |   od_encode_checkpoint(&x->daala_enc, &pre_buf); | 
 | #endif  // CONFIG_PVQ | 
 | #if CONFIG_EXT_INTER | 
 |   for (i = 0; i < MB_MODE_COUNT; ++i) | 
 |     for (ref_frame = 0; ref_frame < TOTAL_REFS_PER_FRAME; ++ref_frame) | 
 |       modelled_rd[i][ref_frame] = INT64_MAX; | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |   for (midx = 0; midx < MAX_MODES; ++midx) { | 
 |     int mode_index; | 
 |     int mode_excluded = 0; | 
 |     int64_t this_rd = INT64_MAX; | 
 |     int disable_skip = 0; | 
 |     int compmode_cost = 0; | 
 | #if CONFIG_EXT_INTER | 
 |     int compmode_interintra_cost = 0; | 
 |     int compmode_interinter_cost = 0; | 
 | #endif  // CONFIG_EXT_INTER | 
 |     int rate2 = 0, rate_y = 0, rate_uv = 0; | 
 |     int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; | 
 |     int skippable = 0; | 
 |     int this_skip2 = 0; | 
 |     int64_t total_sse = INT64_MAX; | 
 | #if CONFIG_REF_MV | 
 |     uint8_t ref_frame_type; | 
 | #endif  // CONFIG_REF_MV | 
 | #if CONFIG_PVQ | 
 |     od_encode_rollback(&x->daala_enc, &pre_buf); | 
 | #endif  // CONFIG_PVQ | 
 |     mode_index = mode_map[midx]; | 
 |     this_mode = av1_mode_order[mode_index].mode; | 
 |     ref_frame = av1_mode_order[mode_index].ref_frame[0]; | 
 |     second_ref_frame = av1_mode_order[mode_index].ref_frame[1]; | 
 | #if CONFIG_REF_MV | 
 |     mbmi->ref_mv_idx = 0; | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |     if (ref_frame > INTRA_FRAME && second_ref_frame == INTRA_FRAME) { | 
 |       // Mode must by compatible | 
 |       if (!is_interintra_allowed_mode(this_mode)) continue; | 
 |       if (!is_interintra_allowed_bsize(bsize)) continue; | 
 |     } | 
 |  | 
 |     if (is_inter_compound_mode(this_mode)) { | 
 |       frame_mv[this_mode][ref_frame].as_int = | 
 |           frame_mv[compound_ref0_mode(this_mode)][ref_frame].as_int; | 
 |       frame_mv[this_mode][second_ref_frame].as_int = | 
 |           frame_mv[compound_ref1_mode(this_mode)][second_ref_frame].as_int; | 
 |     } | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |     // Look at the reference frame of the best mode so far and set the | 
 |     // skip mask to look at a subset of the remaining modes. | 
 |     if (midx == mode_skip_start && best_mode_index >= 0) { | 
 |       switch (best_mbmode.ref_frame[0]) { | 
 |         case INTRA_FRAME: break; | 
 |         case LAST_FRAME: | 
 |           ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK; | 
 |           ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; | 
 |           break; | 
 | #if CONFIG_EXT_REFS | 
 |         case LAST2_FRAME: | 
 |           ref_frame_skip_mask[0] |= LAST2_FRAME_MODE_MASK; | 
 |           ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; | 
 |           break; | 
 |         case LAST3_FRAME: | 
 |           ref_frame_skip_mask[0] |= LAST3_FRAME_MODE_MASK; | 
 |           ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; | 
 |           break; | 
 | #endif  // CONFIG_EXT_REFS | 
 |         case GOLDEN_FRAME: | 
 |           ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK; | 
 |           ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; | 
 |           break; | 
 | #if CONFIG_EXT_REFS | 
 |         case BWDREF_FRAME: | 
 |           ref_frame_skip_mask[0] |= BWDREF_FRAME_MODE_MASK; | 
 |           ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; | 
 |           break; | 
 | #endif  // CONFIG_EXT_REFS | 
 |         case ALTREF_FRAME: ref_frame_skip_mask[0] |= ALTREF_FRAME_MODE_MASK; | 
 | #if CONFIG_EXT_REFS | 
 |           ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; | 
 | #endif  // CONFIG_EXT_REFS | 
 |           break; | 
 |         case NONE_FRAME: | 
 |         case TOTAL_REFS_PER_FRAME: | 
 |           assert(0 && "Invalid Reference frame"); | 
 |           break; | 
 |       } | 
 |     } | 
 |  | 
 |     if ((ref_frame_skip_mask[0] & (1 << ref_frame)) && | 
 |         (ref_frame_skip_mask[1] & (1 << AOMMAX(0, second_ref_frame)))) | 
 |       continue; | 
 |  | 
 |     if (mode_skip_mask[ref_frame] & (1 << this_mode)) continue; | 
 |  | 
 |     // Test best rd so far against threshold for trying this mode. | 
 |     if (best_mode_skippable && sf->schedule_mode_search) | 
 |       mode_threshold[mode_index] <<= 1; | 
 |  | 
 |     if (best_rd < mode_threshold[mode_index]) continue; | 
 |  | 
 |     // This is only used in motion vector unit test. | 
 |     if (cpi->oxcf.motion_vector_unit_test && ref_frame == INTRA_FRAME) continue; | 
 |  | 
 | #if CONFIG_LOWDELAY_COMPOUND  // Changes LL bitstream | 
 | #if CONFIG_EXT_REFS | 
 |     if (cpi->oxcf.pass == 0) { | 
 |       // Complexity-compression trade-offs | 
 |       // if (ref_frame == ALTREF_FRAME) continue; | 
 |       // if (ref_frame == BWDREF_FRAME) continue; | 
 |       if (second_ref_frame == ALTREF_FRAME) continue; | 
 |       // if (second_ref_frame == BWDREF_FRAME) continue; | 
 |     } | 
 | #endif | 
 | #endif | 
 |     comp_pred = second_ref_frame > INTRA_FRAME; | 
 |     if (comp_pred) { | 
 |       if (!cpi->allow_comp_inter_inter) continue; | 
 |  | 
 |       // Skip compound inter modes if ARF is not available. | 
 |       if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; | 
 |  | 
 |       // Do not allow compound prediction if the segment level reference frame | 
 |       // feature is in use as in this case there can only be one reference. | 
 |       if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue; | 
 |  | 
 |       if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && | 
 |           best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME) | 
 |         continue; | 
 |  | 
 |       mode_excluded = cm->reference_mode == SINGLE_REFERENCE; | 
 |     } else { | 
 |       if (ref_frame != INTRA_FRAME) | 
 |         mode_excluded = cm->reference_mode == COMPOUND_REFERENCE; | 
 |     } | 
 |  | 
 |     if (ref_frame == INTRA_FRAME) { | 
 |       if (sf->adaptive_mode_search) | 
 |         if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse) | 
 |           continue; | 
 |  | 
 |       if (this_mode != DC_PRED) { | 
 |         // Disable intra modes other than DC_PRED for blocks with low variance | 
 |         // Threshold for intra skipping based on source variance | 
 |         // TODO(debargha): Specialize the threshold for super block sizes | 
 |         const unsigned int skip_intra_var_thresh = 64; | 
 |         if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) && | 
 |             x->source_variance < skip_intra_var_thresh) | 
 |           continue; | 
 |         // Only search the oblique modes if the best so far is | 
 |         // one of the neighboring directional modes | 
 |         if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && | 
 |             (this_mode >= D45_PRED && this_mode <= TM_PRED)) { | 
 |           if (best_mode_index >= 0 && best_mbmode.ref_frame[0] > INTRA_FRAME) | 
 |             continue; | 
 |         } | 
 |         if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { | 
 |           if (conditional_skipintra(this_mode, best_intra_mode)) continue; | 
 |         } | 
 |       } | 
 | #if CONFIG_GLOBAL_MOTION | 
 |     } else if (cm->global_motion[ref_frame].wmtype == IDENTITY && | 
 |                (!comp_pred || | 
 |                 cm->global_motion[second_ref_frame].wmtype == IDENTITY)) { | 
 | #else   // CONFIG_GLOBAL_MOTION | 
 |     } else { | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |       const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, second_ref_frame }; | 
 |       if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, | 
 | #if CONFIG_REF_MV && CONFIG_EXT_INTER | 
 |                               mbmi_ext->compound_mode_context, | 
 | #endif  // CONFIG_REF_MV && CONFIG_EXT_INTER | 
 |                               frame_mv, this_mode, ref_frames, bsize, -1, | 
 |                               mi_row, mi_col)) | 
 |         continue; | 
 |     } | 
 |  | 
 |     mbmi->mode = this_mode; | 
 |     mbmi->uv_mode = DC_PRED; | 
 |     mbmi->ref_frame[0] = ref_frame; | 
 |     mbmi->ref_frame[1] = second_ref_frame; | 
 | #if CONFIG_PALETTE | 
 |     pmi->palette_size[0] = 0; | 
 |     pmi->palette_size[1] = 0; | 
 | #endif  // CONFIG_PALETTE | 
 | #if CONFIG_FILTER_INTRA | 
 |     mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0; | 
 |     mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |         // Evaluate all sub-pel filters irrespective of whether we can use | 
 |         // them for this frame. | 
 | #if CONFIG_DUAL_FILTER | 
 |     for (i = 0; i < 4; ++i) { | 
 |       mbmi->interp_filter[i] = cm->interp_filter == SWITCHABLE | 
 |                                    ? EIGHTTAP_REGULAR | 
 |                                    : cm->interp_filter; | 
 |     } | 
 | #else | 
 |     mbmi->interp_filter = | 
 |         cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR : cm->interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |     mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0; | 
 |     mbmi->motion_mode = SIMPLE_TRANSLATION; | 
 |  | 
 |     x->skip = 0; | 
 |     set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); | 
 |  | 
 |     // Select prediction reference frames. | 
 |     for (i = 0; i < MAX_MB_PLANE; i++) { | 
 |       xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; | 
 |       if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; | 
 |     } | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |     mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1); | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |     if (ref_frame == INTRA_FRAME) { | 
 |       RD_STATS rd_stats_y; | 
 |       TX_SIZE uv_tx; | 
 |       struct macroblockd_plane *const pd = &xd->plane[1]; | 
 | #if CONFIG_EXT_INTRA | 
 |       is_directional_mode = av1_is_directional_mode(mbmi->mode, bsize); | 
 |       if (is_directional_mode) { | 
 |         int rate_dummy; | 
 |         int64_t model_rd = INT64_MAX; | 
 |         if (!angle_stats_ready) { | 
 |           const int src_stride = x->plane[0].src.stride; | 
 |           const uint8_t *src = x->plane[0].src.buf; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |           if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) | 
 |             highbd_angle_estimation(src, src_stride, rows, cols, | 
 |                                     directional_mode_skip_mask); | 
 |           else | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |             angle_estimation(src, src_stride, rows, cols, | 
 |                              directional_mode_skip_mask); | 
 |           angle_stats_ready = 1; | 
 |         } | 
 |         if (directional_mode_skip_mask[mbmi->mode]) continue; | 
 |         rd_stats_y.rate = INT_MAX; | 
 |         rd_pick_intra_angle_sby(cpi, x, &rate_dummy, &rd_stats_y, bsize, | 
 |                                 intra_mode_cost[mbmi->mode], best_rd, | 
 |                                 &model_rd); | 
 |       } else { | 
 |         mbmi->angle_delta[0] = 0; | 
 |         super_block_yrd(cpi, x, &rd_stats_y, bsize, best_rd); | 
 |       } | 
 | #else | 
 |       super_block_yrd(cpi, x, &rd_stats_y, bsize, best_rd); | 
 | #endif  // CONFIG_EXT_INTRA | 
 |       rate_y = rd_stats_y.rate; | 
 |       distortion_y = rd_stats_y.dist; | 
 |       skippable = rd_stats_y.skip; | 
 |  | 
 |       if (rate_y == INT_MAX) continue; | 
 |  | 
 | #if CONFIG_FILTER_INTRA | 
 |       if (mbmi->mode == DC_PRED) dc_skipped = 0; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 |       uv_tx = uv_txsize_lookup[bsize][mbmi->tx_size][pd->subsampling_x] | 
 |                               [pd->subsampling_y]; | 
 |       if (rate_uv_intra[uv_tx] == INT_MAX) { | 
 |         choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx], | 
 |                              &rate_uv_tokenonly[uv_tx], &dist_uvs[uv_tx], | 
 |                              &skip_uvs[uv_tx], &mode_uv[uv_tx]); | 
 | #if CONFIG_PALETTE | 
 |         if (try_palette) pmi_uv[uv_tx] = *pmi; | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 | #if CONFIG_EXT_INTRA | 
 |         uv_angle_delta[uv_tx] = mbmi->angle_delta[1]; | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_FILTER_INTRA | 
 |         filter_intra_mode_info_uv[uv_tx] = mbmi->filter_intra_mode_info; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |       } | 
 |  | 
 |       rate_uv = rate_uv_tokenonly[uv_tx]; | 
 |       distortion_uv = dist_uvs[uv_tx]; | 
 |       skippable = skippable && skip_uvs[uv_tx]; | 
 |       mbmi->uv_mode = mode_uv[uv_tx]; | 
 | #if CONFIG_PALETTE | 
 |       if (try_palette) { | 
 |         pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1]; | 
 |         memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, | 
 |                pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, | 
 |                2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); | 
 |       } | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 | #if CONFIG_EXT_INTRA | 
 |       mbmi->angle_delta[1] = uv_angle_delta[uv_tx]; | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_FILTER_INTRA | 
 |       mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = | 
 |           filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1]; | 
 |       if (filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1]) { | 
 |         mbmi->filter_intra_mode_info.filter_intra_mode[1] = | 
 |             filter_intra_mode_info_uv[uv_tx].filter_intra_mode[1]; | 
 |       } | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 | #if CONFIG_CB4X4 | 
 |       rate2 = rate_y + intra_mode_cost[mbmi->mode]; | 
 |       if (!x->skip_chroma_rd) | 
 |         rate2 += rate_uv + cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode]; | 
 | #else | 
 |       rate2 = rate_y + intra_mode_cost[mbmi->mode] + rate_uv + | 
 |               cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode]; | 
 | #endif  // CONFIG_CB4X4 | 
 |  | 
 | #if CONFIG_PALETTE | 
 |       if (try_palette && mbmi->mode == DC_PRED) { | 
 |         rate2 += av1_cost_bit( | 
 |             av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx], 0); | 
 |       } | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 |       if (!xd->lossless[mbmi->segment_id] && bsize >= BLOCK_8X8) { | 
 |         // super_block_yrd above includes the cost of the tx_size in the | 
 |         // tokenonly rate, but for intra blocks, tx_size is always coded | 
 |         // (prediction granularity), so we account for it in the full rate, | 
 |         // not the tokenonly rate. | 
 |         rate_y -= tx_size_cost(cpi, x, bsize, mbmi->tx_size); | 
 |       } | 
 | #if CONFIG_EXT_INTRA | 
 |       if (is_directional_mode) { | 
 | #if CONFIG_INTRA_INTERP | 
 |         const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd); | 
 |         const int p_angle = | 
 |             mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; | 
 |         if (av1_is_intra_filter_switchable(p_angle)) | 
 |           rate2 += cpi->intra_filter_cost[intra_filter_ctx][mbmi->intra_filter]; | 
 | #endif  // CONFIG_INTRA_INTERP | 
 |         rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTA + 1, | 
 |                                     MAX_ANGLE_DELTA + mbmi->angle_delta[0]); | 
 |       } | 
 |       if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED) { | 
 |         rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTA + 1, | 
 |                                     MAX_ANGLE_DELTA + mbmi->angle_delta[1]); | 
 |       } | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_FILTER_INTRA | 
 |       if (mbmi->mode == DC_PRED) { | 
 |         rate2 += | 
 |             av1_cost_bit(cm->fc->filter_intra_probs[0], | 
 |                          mbmi->filter_intra_mode_info.use_filter_intra_mode[0]); | 
 |         if (mbmi->filter_intra_mode_info.use_filter_intra_mode[0]) { | 
 |           rate2 += write_uniform_cost( | 
 |               FILTER_INTRA_MODES, | 
 |               mbmi->filter_intra_mode_info.filter_intra_mode[0]); | 
 |         } | 
 |       } | 
 |       if (mbmi->uv_mode == DC_PRED) { | 
 |         rate2 += | 
 |             av1_cost_bit(cpi->common.fc->filter_intra_probs[1], | 
 |                          mbmi->filter_intra_mode_info.use_filter_intra_mode[1]); | 
 |         if (mbmi->filter_intra_mode_info.use_filter_intra_mode[1]) | 
 |           rate2 += write_uniform_cost( | 
 |               FILTER_INTRA_MODES, | 
 |               mbmi->filter_intra_mode_info.filter_intra_mode[1]); | 
 |       } | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |       if (this_mode != DC_PRED && this_mode != TM_PRED) | 
 |         rate2 += intra_cost_penalty; | 
 |       distortion2 = distortion_y + distortion_uv; | 
 |     } else { | 
 | #if CONFIG_REF_MV | 
 |       int_mv backup_ref_mv[2]; | 
 |  | 
 | #if !SUB8X8_COMP_REF | 
 |       if (bsize < BLOCK_8X8 && mbmi->ref_frame[1] > INTRA_FRAME) continue; | 
 | #endif  // !SUB8X8_COMP_REF | 
 |  | 
 |       backup_ref_mv[0] = mbmi_ext->ref_mvs[ref_frame][0]; | 
 |       if (comp_pred) backup_ref_mv[1] = mbmi_ext->ref_mvs[second_ref_frame][0]; | 
 | #endif  // CONFIG_REF_MV | 
 | #if CONFIG_EXT_INTER | 
 |       if (second_ref_frame == INTRA_FRAME) { | 
 |         if (best_single_inter_ref != ref_frame) continue; | 
 |         mbmi->interintra_mode = intra_to_interintra_mode[best_intra_mode]; | 
 | // TODO(debargha|geza.lore): | 
 | // Should we use ext_intra modes for interintra? | 
 | #if CONFIG_EXT_INTRA | 
 |         mbmi->angle_delta[0] = 0; | 
 |         mbmi->angle_delta[1] = 0; | 
 | #if CONFIG_INTRA_INTERP | 
 |         mbmi->intra_filter = INTRA_FILTER_LINEAR; | 
 | #endif  // CONFIG_INTRA_INTERP | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_FILTER_INTRA | 
 |         mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0; | 
 |         mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |       } | 
 | #endif  // CONFIG_EXT_INTER | 
 | #if CONFIG_REF_MV | 
 |       mbmi->ref_mv_idx = 0; | 
 |       ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |       if (comp_pred) { | 
 |         if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) { | 
 |           int ref_mv_idx = 0; | 
 |           // Special case: NEAR_NEWMV and NEW_NEARMV modes use | 
 |           // 1 + mbmi->ref_mv_idx (like NEARMV) instead of | 
 |           // mbmi->ref_mv_idx (like NEWMV) | 
 |           if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) | 
 |             ref_mv_idx = 1; | 
 |  | 
 |           if (compound_ref0_mode(mbmi->mode) == NEWMV) { | 
 |             int_mv this_mv = | 
 |                 mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; | 
 |             clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2, | 
 |                          xd->n8_h << MI_SIZE_LOG2, xd); | 
 |             mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0] = this_mv; | 
 |           } | 
 |           if (compound_ref1_mode(mbmi->mode) == NEWMV) { | 
 |             int_mv this_mv = | 
 |                 mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv; | 
 |             clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2, | 
 |                          xd->n8_h << MI_SIZE_LOG2, xd); | 
 |             mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0] = this_mv; | 
 |           } | 
 |         } | 
 |       } else { | 
 | #endif  // CONFIG_EXT_INTER | 
 |         if (this_mode == NEWMV && mbmi_ext->ref_mv_count[ref_frame_type] > 1) { | 
 |           int ref; | 
 |           for (ref = 0; ref < 1 + comp_pred; ++ref) { | 
 |             int_mv this_mv = | 
 |                 (ref == 0) ? mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv | 
 |                            : mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv; | 
 |             clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2, | 
 |                          xd->n8_h << MI_SIZE_LOG2, xd); | 
 |             mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0] = this_mv; | 
 |           } | 
 |         } | 
 | #if CONFIG_EXT_INTER | 
 |       } | 
 | #endif  // CONFIG_EXT_INTER | 
 | #endif  // CONFIG_REF_MV | 
 |       { | 
 |         RD_STATS rd_stats, rd_stats_y, rd_stats_uv; | 
 |         av1_init_rd_stats(&rd_stats); | 
 |         rd_stats.rate = rate2; | 
 |  | 
 |         // Point to variables that are maintained between loop iterations | 
 |         args.single_newmv = single_newmv; | 
 | #if CONFIG_EXT_INTER | 
 |         args.single_newmv_rate = single_newmv_rate; | 
 |         args.compmode_interintra_cost = &compmode_interintra_cost; | 
 |         args.compmode_interinter_cost = &compmode_interinter_cost; | 
 |         args.modelled_rd = modelled_rd; | 
 | #endif  // CONFIG_EXT_INTER | 
 |         this_rd = handle_inter_mode(cpi, x, bsize, &rd_stats, &rd_stats_y, | 
 |                                     &rd_stats_uv, &disable_skip, frame_mv, | 
 |                                     mi_row, mi_col, &args, best_rd); | 
 | // Prevent pointers from escaping local scope | 
 | #if CONFIG_EXT_INTER | 
 |         args.compmode_interintra_cost = NULL; | 
 |         args.compmode_interinter_cost = NULL; | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |         rate2 = rd_stats.rate; | 
 |         skippable = rd_stats.skip; | 
 |         distortion2 = rd_stats.dist; | 
 |         total_sse = rd_stats.sse; | 
 |         rate_y = rd_stats_y.rate; | 
 |         rate_uv = rd_stats_uv.rate; | 
 |       } | 
 |  | 
 | #if CONFIG_REF_MV | 
 | // TODO(jingning): This needs some refactoring to improve code quality | 
 | // and reduce redundant steps. | 
 | #if CONFIG_EXT_INTER | 
 |       if ((have_nearmv_in_inter_mode(mbmi->mode) && | 
 |            mbmi_ext->ref_mv_count[ref_frame_type] > 2) || | 
 |           ((mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) && | 
 |            mbmi_ext->ref_mv_count[ref_frame_type] > 1)) { | 
 | #else | 
 |       if ((mbmi->mode == NEARMV && | 
 |            mbmi_ext->ref_mv_count[ref_frame_type] > 2) || | 
 |           (mbmi->mode == NEWMV && mbmi_ext->ref_mv_count[ref_frame_type] > 1)) { | 
 | #endif | 
 |         int_mv backup_mv = frame_mv[NEARMV][ref_frame]; | 
 |         MB_MODE_INFO backup_mbmi = *mbmi; | 
 |         int backup_skip = x->skip; | 
 |         int64_t tmp_ref_rd = this_rd; | 
 |         int ref_idx; | 
 |  | 
 | // TODO(jingning): This should be deprecated shortly. | 
 | #if CONFIG_EXT_INTER | 
 |         int idx_offset = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0; | 
 | #else | 
 |         int idx_offset = (mbmi->mode == NEARMV) ? 1 : 0; | 
 | #endif  // CONFIG_EXT_INTER | 
 |         int ref_set = | 
 |             AOMMIN(2, mbmi_ext->ref_mv_count[ref_frame_type] - 1 - idx_offset); | 
 |  | 
 |         uint8_t drl_ctx = | 
 |             av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx_offset); | 
 |         // Dummy | 
 |         int_mv backup_fmv[2]; | 
 |         backup_fmv[0] = frame_mv[NEWMV][ref_frame]; | 
 |         if (comp_pred) backup_fmv[1] = frame_mv[NEWMV][second_ref_frame]; | 
 |  | 
 |         rate2 += (rate2 < INT_MAX ? cpi->drl_mode_cost0[drl_ctx][0] : 0); | 
 |  | 
 |         if (this_rd < INT64_MAX) { | 
 |           if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) < | 
 |               RDCOST(x->rdmult, x->rddiv, 0, total_sse)) | 
 |             tmp_ref_rd = | 
 |                 RDCOST(x->rdmult, x->rddiv, | 
 |                        rate2 + av1_cost_bit(av1_get_skip_prob(cm, xd), 0), | 
 |                        distortion2); | 
 |           else | 
 |             tmp_ref_rd = | 
 |                 RDCOST(x->rdmult, x->rddiv, | 
 |                        rate2 + av1_cost_bit(av1_get_skip_prob(cm, xd), 1) - | 
 |                            rate_y - rate_uv, | 
 |                        total_sse); | 
 |         } | 
 | #if CONFIG_VAR_TX | 
 |         for (i = 0; i < MAX_MB_PLANE; ++i) | 
 |           memcpy(x->blk_skip_drl[i], x->blk_skip[i], | 
 |                  sizeof(uint8_t) * ctx->num_4x4_blk); | 
 | #endif  // CONFIG_VAR_TX | 
 |  | 
 |         for (ref_idx = 0; ref_idx < ref_set; ++ref_idx) { | 
 |           int64_t tmp_alt_rd = INT64_MAX; | 
 |           int dummy_disable_skip = 0; | 
 |           int ref; | 
 |           int_mv cur_mv; | 
 |           RD_STATS tmp_rd_stats, tmp_rd_stats_y, tmp_rd_stats_uv; | 
 | #if CONFIG_EXT_INTER | 
 |           int tmp_compmode_interintra_cost = 0; | 
 |           int tmp_compmode_interinter_cost = 0; | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |           av1_invalid_rd_stats(&tmp_rd_stats); | 
 |           x->skip = 0; | 
 |  | 
 |           mbmi->ref_mv_idx = 1 + ref_idx; | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |           if (comp_pred) { | 
 |             int ref_mv_idx = mbmi->ref_mv_idx; | 
 |             // Special case: NEAR_NEWMV and NEW_NEARMV modes use | 
 |             // 1 + mbmi->ref_mv_idx (like NEARMV) instead of | 
 |             // mbmi->ref_mv_idx (like NEWMV) | 
 |             if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) | 
 |               ref_mv_idx = 1 + mbmi->ref_mv_idx; | 
 |  | 
 |             if (compound_ref0_mode(mbmi->mode) == NEWMV) { | 
 |               int_mv this_mv = | 
 |                   mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; | 
 |               clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2, | 
 |                            xd->n8_h << MI_SIZE_LOG2, xd); | 
 |               mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0] = this_mv; | 
 |             } else if (compound_ref0_mode(mbmi->mode) == NEARESTMV) { | 
 |               int_mv this_mv = | 
 |                   mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv; | 
 |               clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2, | 
 |                            xd->n8_h << MI_SIZE_LOG2, xd); | 
 |               mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0] = this_mv; | 
 |             } | 
 |  | 
 |             if (compound_ref1_mode(mbmi->mode) == NEWMV) { | 
 |               int_mv this_mv = | 
 |                   mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv; | 
 |               clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2, | 
 |                            xd->n8_h << MI_SIZE_LOG2, xd); | 
 |               mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0] = this_mv; | 
 |             } else if (compound_ref1_mode(mbmi->mode) == NEARESTMV) { | 
 |               int_mv this_mv = | 
 |                   mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv; | 
 |               clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2, | 
 |                            xd->n8_h << MI_SIZE_LOG2, xd); | 
 |               mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0] = this_mv; | 
 |             } | 
 |           } else { | 
 | #endif  // CONFIG_EXT_INTER | 
 |             for (ref = 0; ref < 1 + comp_pred; ++ref) { | 
 |               int_mv this_mv = | 
 |                   (ref == 0) | 
 |                       ? mbmi_ext->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx] | 
 |                             .this_mv | 
 |                       : mbmi_ext->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx] | 
 |                             .comp_mv; | 
 |               clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2, | 
 |                            xd->n8_h << MI_SIZE_LOG2, xd); | 
 |               mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0] = this_mv; | 
 |             } | 
 | #if CONFIG_EXT_INTER | 
 |           } | 
 | #endif | 
 |  | 
 |           cur_mv = | 
 |               mbmi_ext->ref_mv_stack[ref_frame][mbmi->ref_mv_idx + idx_offset] | 
 |                   .this_mv; | 
 |           clamp_mv2(&cur_mv.as_mv, xd); | 
 |  | 
 |           if (!mv_check_bounds(&x->mv_limits, &cur_mv.as_mv)) { | 
 |             int_mv dummy_single_newmv[TOTAL_REFS_PER_FRAME] = { { 0 } }; | 
 | #if CONFIG_EXT_INTER | 
 |             int dummy_single_newmv_rate[TOTAL_REFS_PER_FRAME] = { 0 }; | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |             frame_mv[NEARMV][ref_frame] = cur_mv; | 
 |             av1_init_rd_stats(&tmp_rd_stats); | 
 |  | 
 |             // Point to variables that are not maintained between iterations | 
 |             args.single_newmv = dummy_single_newmv; | 
 | #if CONFIG_EXT_INTER | 
 |             args.single_newmv_rate = dummy_single_newmv_rate; | 
 |             args.compmode_interintra_cost = &tmp_compmode_interintra_cost; | 
 |             args.compmode_interinter_cost = &tmp_compmode_interinter_cost; | 
 |             args.modelled_rd = NULL; | 
 | #endif  // CONFIG_EXT_INTER | 
 |             tmp_alt_rd = handle_inter_mode( | 
 |                 cpi, x, bsize, &tmp_rd_stats, &tmp_rd_stats_y, &tmp_rd_stats_uv, | 
 |                 &dummy_disable_skip, frame_mv, mi_row, mi_col, &args, best_rd); | 
 |             // Prevent pointers from escaping local scope | 
 |             args.single_newmv = NULL; | 
 | #if CONFIG_EXT_INTER | 
 |             args.single_newmv_rate = NULL; | 
 |             args.compmode_interintra_cost = NULL; | 
 |             args.compmode_interinter_cost = NULL; | 
 | #endif  // CONFIG_EXT_INTER | 
 |           } | 
 |  | 
 |           for (i = 0; i < mbmi->ref_mv_idx; ++i) { | 
 |             uint8_t drl1_ctx = 0; | 
 |             drl1_ctx = av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], | 
 |                                    i + idx_offset); | 
 |             tmp_rd_stats.rate += | 
 |                 (tmp_rd_stats.rate < INT_MAX ? cpi->drl_mode_cost0[drl1_ctx][1] | 
 |                                              : 0); | 
 |           } | 
 |  | 
 |           if (mbmi_ext->ref_mv_count[ref_frame_type] > | 
 |                   mbmi->ref_mv_idx + idx_offset + 1 && | 
 |               ref_idx < ref_set - 1) { | 
 |             uint8_t drl1_ctx = | 
 |                 av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], | 
 |                             mbmi->ref_mv_idx + idx_offset); | 
 |             tmp_rd_stats.rate += | 
 |                 (tmp_rd_stats.rate < INT_MAX ? cpi->drl_mode_cost0[drl1_ctx][0] | 
 |                                              : 0); | 
 |           } | 
 |  | 
 |           if (tmp_alt_rd < INT64_MAX) { | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |             tmp_alt_rd = RDCOST(x->rdmult, x->rddiv, tmp_rd_stats.rate, | 
 |                                 tmp_rd_stats.dist); | 
 | #else | 
 |             if (RDCOST(x->rdmult, x->rddiv, | 
 |                        tmp_rd_stats_y.rate + tmp_rd_stats_uv.rate, | 
 |                        tmp_rd_stats.dist) < | 
 |                 RDCOST(x->rdmult, x->rddiv, 0, tmp_rd_stats.sse)) | 
 |               tmp_alt_rd = | 
 |                   RDCOST(x->rdmult, x->rddiv, | 
 |                          tmp_rd_stats.rate + | 
 |                              av1_cost_bit(av1_get_skip_prob(cm, xd), 0), | 
 |                          tmp_rd_stats.dist); | 
 |             else | 
 |               tmp_alt_rd = | 
 |                   RDCOST(x->rdmult, x->rddiv, | 
 |                          tmp_rd_stats.rate + | 
 |                              av1_cost_bit(av1_get_skip_prob(cm, xd), 1) - | 
 |                              tmp_rd_stats_y.rate - tmp_rd_stats_uv.rate, | 
 |                          tmp_rd_stats.sse); | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |           } | 
 |  | 
 |           if (tmp_ref_rd > tmp_alt_rd) { | 
 |             rate2 = tmp_rd_stats.rate; | 
 |             disable_skip = dummy_disable_skip; | 
 |             distortion2 = tmp_rd_stats.dist; | 
 |             skippable = tmp_rd_stats.skip; | 
 |             rate_y = tmp_rd_stats_y.rate; | 
 |             rate_uv = tmp_rd_stats_uv.rate; | 
 |             total_sse = tmp_rd_stats.sse; | 
 |             this_rd = tmp_alt_rd; | 
 |             tmp_ref_rd = tmp_alt_rd; | 
 |             backup_mbmi = *mbmi; | 
 |             backup_skip = x->skip; | 
 | #if CONFIG_VAR_TX | 
 |             for (i = 0; i < MAX_MB_PLANE; ++i) | 
 |               memcpy(x->blk_skip_drl[i], x->blk_skip[i], | 
 |                      sizeof(uint8_t) * ctx->num_4x4_blk); | 
 | #endif  // CONFIG_VAR_TX | 
 | #if CONFIG_EXT_INTER | 
 |             compmode_interintra_cost = tmp_compmode_interintra_cost; | 
 |             compmode_interinter_cost = tmp_compmode_interinter_cost; | 
 | #endif  // CONFIG_EXT_INTER | 
 |           } else { | 
 |             *mbmi = backup_mbmi; | 
 |             x->skip = backup_skip; | 
 |           } | 
 |         } | 
 |  | 
 |         frame_mv[NEARMV][ref_frame] = backup_mv; | 
 |         frame_mv[NEWMV][ref_frame] = backup_fmv[0]; | 
 |         if (comp_pred) frame_mv[NEWMV][second_ref_frame] = backup_fmv[1]; | 
 | #if CONFIG_VAR_TX | 
 |         for (i = 0; i < MAX_MB_PLANE; ++i) | 
 |           memcpy(x->blk_skip[i], x->blk_skip_drl[i], | 
 |                  sizeof(uint8_t) * ctx->num_4x4_blk); | 
 | #endif  // CONFIG_VAR_TX | 
 |       } | 
 |       mbmi_ext->ref_mvs[ref_frame][0] = backup_ref_mv[0]; | 
 |       if (comp_pred) mbmi_ext->ref_mvs[second_ref_frame][0] = backup_ref_mv[1]; | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 |       if (this_rd == INT64_MAX) continue; | 
 |  | 
 | #if SUB8X8_COMP_REF | 
 |       compmode_cost = av1_cost_bit(comp_mode_p, comp_pred); | 
 | #else | 
 |       if (mbmi->sb_type >= BLOCK_8X8) | 
 |         compmode_cost = av1_cost_bit(comp_mode_p, comp_pred); | 
 | #endif  // SUB8X8_COMP_REF | 
 |  | 
 |       if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost; | 
 |     } | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |     rate2 += compmode_interintra_cost; | 
 |     if (cm->reference_mode != SINGLE_REFERENCE && comp_pred) | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |       if (mbmi->motion_mode == SIMPLE_TRANSLATION) | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |         rate2 += compmode_interinter_cost; | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |     // Estimate the reference frame signaling cost and add it | 
 |     // to the rolling cost variable. | 
 |     if (comp_pred) { | 
 |       rate2 += ref_costs_comp[ref_frame]; | 
 | #if CONFIG_EXT_REFS | 
 |       rate2 += ref_costs_comp[second_ref_frame]; | 
 | #endif  // CONFIG_EXT_REFS | 
 |     } else { | 
 |       rate2 += ref_costs_single[ref_frame]; | 
 |     } | 
 |  | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |     if (ref_frame == INTRA_FRAME) { | 
 | #else | 
 |     if (!disable_skip) { | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |       if (skippable) { | 
 |         // Back out the coefficient coding costs | 
 |         rate2 -= (rate_y + rate_uv); | 
 |         rate_y = 0; | 
 |         rate_uv = 0; | 
 |         // Cost the skip mb case | 
 |         rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); | 
 |       } else if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) { | 
 | #if CONFIG_REF_MV | 
 |         if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + rate_skip0, | 
 |                    distortion2) < | 
 |             RDCOST(x->rdmult, x->rddiv, rate_skip1, total_sse)) { | 
 | #else | 
 |         if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) < | 
 |             RDCOST(x->rdmult, x->rddiv, 0, total_sse)) { | 
 | #endif  // CONFIG_REF_MV | 
 |           // Add in the cost of the no skip flag. | 
 |           rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); | 
 |         } else { | 
 |           // FIXME(rbultje) make this work for splitmv also | 
 |           rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); | 
 |           distortion2 = total_sse; | 
 |           assert(total_sse >= 0); | 
 |           rate2 -= (rate_y + rate_uv); | 
 |           this_skip2 = 1; | 
 |           rate_y = 0; | 
 |           rate_uv = 0; | 
 |         } | 
 |       } else { | 
 |         // Add in the cost of the no skip flag. | 
 |         rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); | 
 |       } | 
 |  | 
 |       // Calculate the final RD estimate for this mode. | 
 |       this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |     } else { | 
 |       this_skip2 = mbmi->skip; | 
 |       this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); | 
 |       if (this_skip2) { | 
 |         rate_y = 0; | 
 |         rate_uv = 0; | 
 |       } | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |     } | 
 |  | 
 |     if (ref_frame == INTRA_FRAME) { | 
 |       // Keep record of best intra rd | 
 |       if (this_rd < best_intra_rd) { | 
 |         best_intra_rd = this_rd; | 
 |         best_intra_mode = mbmi->mode; | 
 |       } | 
 | #if CONFIG_EXT_INTER | 
 |     } else if (second_ref_frame == NONE_FRAME) { | 
 |       if (this_rd < best_single_inter_rd) { | 
 |         best_single_inter_rd = this_rd; | 
 |         best_single_inter_ref = mbmi->ref_frame[0]; | 
 |       } | 
 | #endif  // CONFIG_EXT_INTER | 
 |     } | 
 |  | 
 |     if (!disable_skip && ref_frame == INTRA_FRAME) { | 
 |       for (i = 0; i < REFERENCE_MODES; ++i) | 
 |         best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd); | 
 |     } | 
 |  | 
 |     // Did this mode help.. i.e. is it the new best mode | 
 |     if (this_rd < best_rd || x->skip) { | 
 |       if (!mode_excluded) { | 
 |         // Note index of best mode so far | 
 |         best_mode_index = mode_index; | 
 |  | 
 |         if (ref_frame == INTRA_FRAME) { | 
 |           /* required for left and above block mv */ | 
 |           mbmi->mv[0].as_int = 0; | 
 |         } else { | 
 |           best_pred_sse = x->pred_sse[ref_frame]; | 
 |         } | 
 |  | 
 |         rd_cost->rate = rate2; | 
 | #if CONFIG_SUPERTX | 
 |         if (x->skip) | 
 |           *returnrate_nocoef = rate2; | 
 |         else | 
 |           *returnrate_nocoef = rate2 - rate_y - rate_uv; | 
 |         *returnrate_nocoef -= av1_cost_bit( | 
 |             av1_get_skip_prob(cm, xd), disable_skip || skippable || this_skip2); | 
 |         *returnrate_nocoef -= av1_cost_bit(av1_get_intra_inter_prob(cm, xd), | 
 |                                            mbmi->ref_frame[0] != INTRA_FRAME); | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 | #if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION | 
 |         MODE_INFO *const mi = xd->mi[0]; | 
 |         const MOTION_MODE motion_allowed = motion_mode_allowed( | 
 | #if CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION | 
 |             0, xd->global_motion, | 
 | #endif  // CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION | 
 |             mi); | 
 |         if (motion_allowed == WARPED_CAUSAL) | 
 |           *returnrate_nocoef -= cpi->motion_mode_cost[bsize][mbmi->motion_mode]; | 
 |         else if (motion_allowed == OBMC_CAUSAL) | 
 |           *returnrate_nocoef -= | 
 |               cpi->motion_mode_cost1[bsize][mbmi->motion_mode]; | 
 | #else | 
 |         *returnrate_nocoef -= cpi->motion_mode_cost[bsize][mbmi->motion_mode]; | 
 | #endif  // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 | #endif  // CONFIG_SUPERTX | 
 |         rd_cost->dist = distortion2; | 
 |         rd_cost->rdcost = this_rd; | 
 |         best_rd = this_rd; | 
 |         best_mbmode = *mbmi; | 
 |         best_skip2 = this_skip2; | 
 |         best_mode_skippable = skippable; | 
 |         best_rate_y = rate_y + av1_cost_bit(av1_get_skip_prob(cm, xd), | 
 |                                             this_skip2 || skippable); | 
 |         best_rate_uv = rate_uv; | 
 |  | 
 | #if CONFIG_VAR_TX | 
 |         for (i = 0; i < MAX_MB_PLANE; ++i) | 
 |           memcpy(ctx->blk_skip[i], x->blk_skip[i], | 
 |                  sizeof(uint8_t) * ctx->num_4x4_blk); | 
 | #endif  // CONFIG_VAR_TX | 
 |       } | 
 |     } | 
 |  | 
 |     /* keep record of best compound/single-only prediction */ | 
 |     if (!disable_skip && ref_frame != INTRA_FRAME) { | 
 |       int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; | 
 |  | 
 |       if (cm->reference_mode == REFERENCE_MODE_SELECT) { | 
 |         single_rate = rate2 - compmode_cost; | 
 |         hybrid_rate = rate2; | 
 |       } else { | 
 |         single_rate = rate2; | 
 |         hybrid_rate = rate2 + compmode_cost; | 
 |       } | 
 |  | 
 |       single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); | 
 |       hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); | 
 |  | 
 |       if (!comp_pred) { | 
 |         if (single_rd < best_pred_rd[SINGLE_REFERENCE]) | 
 |           best_pred_rd[SINGLE_REFERENCE] = single_rd; | 
 |       } else { | 
 |         if (single_rd < best_pred_rd[COMPOUND_REFERENCE]) | 
 |           best_pred_rd[COMPOUND_REFERENCE] = single_rd; | 
 |       } | 
 |       if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT]) | 
 |         best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; | 
 |     } | 
 |  | 
 |     if (x->skip && !comp_pred) break; | 
 |   } | 
 |  | 
 |   if (xd->lossless[mbmi->segment_id] == 0 && best_mode_index >= 0 && | 
 |       ((sf->tx_type_search.fast_inter_tx_type_search == 1 && | 
 |         is_inter_mode(best_mbmode.mode)) || | 
 |        (sf->tx_type_search.fast_intra_tx_type_search == 1 && | 
 |         !is_inter_mode(best_mbmode.mode)))) { | 
 |     int skip_blk = 0; | 
 |     RD_STATS rd_stats_y, rd_stats_uv; | 
 |  | 
 |     x->use_default_inter_tx_type = 0; | 
 |     x->use_default_intra_tx_type = 0; | 
 |  | 
 |     *mbmi = best_mbmode; | 
 |  | 
 |     set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); | 
 |  | 
 |     // Select prediction reference frames. | 
 |     for (i = 0; i < MAX_MB_PLANE; i++) { | 
 |       xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; | 
 |       if (has_second_ref(mbmi)) | 
 |         xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; | 
 |     } | 
 |  | 
 |     if (is_inter_mode(mbmi->mode)) { | 
 |       av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, bsize); | 
 | #if CONFIG_MOTION_VAR | 
 |       if (mbmi->motion_mode == OBMC_CAUSAL) { | 
 |         av1_build_obmc_inter_prediction( | 
 |             cm, xd, mi_row, mi_col, args.above_pred_buf, args.above_pred_stride, | 
 |             args.left_pred_buf, args.left_pred_stride); | 
 |       } | 
 | #endif  // CONFIG_MOTION_VAR | 
 |       av1_subtract_plane(x, bsize, 0); | 
 | #if CONFIG_VAR_TX | 
 |       if (cm->tx_mode == TX_MODE_SELECT || xd->lossless[mbmi->segment_id]) { | 
 |         select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); | 
 |       } else { | 
 |         int idx, idy; | 
 |         super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); | 
 |         for (idy = 0; idy < xd->n8_h; ++idy) | 
 |           for (idx = 0; idx < xd->n8_w; ++idx) | 
 |             mbmi->inter_tx_size[idy][idx] = mbmi->tx_size; | 
 |         memset(x->blk_skip[0], rd_stats_y.skip, | 
 |                sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4); | 
 |       } | 
 |  | 
 |       inter_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); | 
 | #else | 
 |       super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); | 
 |       super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); | 
 | #endif  // CONFIG_VAR_TX | 
 |     } else { | 
 |       super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); | 
 |       super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); | 
 |     } | 
 |  | 
 |     if (RDCOST(x->rdmult, x->rddiv, rd_stats_y.rate + rd_stats_uv.rate, | 
 |                (rd_stats_y.dist + rd_stats_uv.dist)) > | 
 |         RDCOST(x->rdmult, x->rddiv, 0, (rd_stats_y.sse + rd_stats_uv.sse))) { | 
 |       skip_blk = 1; | 
 |       rd_stats_y.rate = av1_cost_bit(av1_get_skip_prob(cm, xd), 1); | 
 |       rd_stats_uv.rate = 0; | 
 |       rd_stats_y.dist = rd_stats_y.sse; | 
 |       rd_stats_uv.dist = rd_stats_uv.sse; | 
 |     } else { | 
 |       skip_blk = 0; | 
 |       rd_stats_y.rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); | 
 |     } | 
 |  | 
 |     if (RDCOST(x->rdmult, x->rddiv, best_rate_y + best_rate_uv, rd_cost->dist) > | 
 |         RDCOST(x->rdmult, x->rddiv, rd_stats_y.rate + rd_stats_uv.rate, | 
 |                (rd_stats_y.dist + rd_stats_uv.dist))) { | 
 | #if CONFIG_VAR_TX | 
 |       int idx, idy; | 
 | #endif  // CONFIG_VAR_TX | 
 |       best_mbmode.tx_type = mbmi->tx_type; | 
 |       best_mbmode.tx_size = mbmi->tx_size; | 
 | #if CONFIG_VAR_TX | 
 |       for (idy = 0; idy < xd->n8_h; ++idy) | 
 |         for (idx = 0; idx < xd->n8_w; ++idx) | 
 |           best_mbmode.inter_tx_size[idy][idx] = mbmi->inter_tx_size[idy][idx]; | 
 |  | 
 |       for (i = 0; i < MAX_MB_PLANE; ++i) | 
 |         memcpy(ctx->blk_skip[i], x->blk_skip[i], | 
 |                sizeof(uint8_t) * ctx->num_4x4_blk); | 
 |  | 
 |       best_mbmode.min_tx_size = mbmi->min_tx_size; | 
 | #endif  // CONFIG_VAR_TX | 
 |       rd_cost->rate += | 
 |           (rd_stats_y.rate + rd_stats_uv.rate - best_rate_y - best_rate_uv); | 
 |       rd_cost->dist = rd_stats_y.dist + rd_stats_uv.dist; | 
 |       rd_cost->rdcost = | 
 |           RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist); | 
 |       best_skip2 = skip_blk; | 
 |     } | 
 |   } | 
 |  | 
 | #if CONFIG_PALETTE | 
 |   // Only try palette mode when the best mode so far is an intra mode. | 
 |   if (try_palette && !is_inter_mode(best_mbmode.mode)) { | 
 |     int rate2 = 0; | 
 | #if CONFIG_SUPERTX | 
 |     int best_rate_nocoef; | 
 | #endif  // CONFIG_SUPERTX | 
 |     int64_t distortion2 = 0, best_rd_palette = best_rd, this_rd, | 
 |             best_model_rd_palette = INT64_MAX; | 
 |     int skippable = 0, rate_overhead_palette = 0; | 
 |     RD_STATS rd_stats_y; | 
 |     TX_SIZE uv_tx; | 
 |     uint8_t *const best_palette_color_map = | 
 |         x->palette_buffer->best_palette_color_map; | 
 |     uint8_t *const color_map = xd->plane[0].color_index_map; | 
 |     MB_MODE_INFO best_mbmi_palette = best_mbmode; | 
 |  | 
 |     mbmi->mode = DC_PRED; | 
 |     mbmi->uv_mode = DC_PRED; | 
 |     mbmi->ref_frame[0] = INTRA_FRAME; | 
 |     mbmi->ref_frame[1] = NONE_FRAME; | 
 |     rate_overhead_palette = rd_pick_palette_intra_sby( | 
 |         cpi, x, bsize, palette_ctx, intra_mode_cost[DC_PRED], | 
 |         &best_mbmi_palette, best_palette_color_map, &best_rd_palette, | 
 |         &best_model_rd_palette, NULL, NULL, NULL, NULL); | 
 |     if (pmi->palette_size[0] == 0) goto PALETTE_EXIT; | 
 |     memcpy(color_map, best_palette_color_map, | 
 |            rows * cols * sizeof(best_palette_color_map[0])); | 
 |     super_block_yrd(cpi, x, &rd_stats_y, bsize, best_rd); | 
 |     if (rd_stats_y.rate == INT_MAX) goto PALETTE_EXIT; | 
 |     uv_tx = uv_txsize_lookup[bsize][mbmi->tx_size][xd->plane[1].subsampling_x] | 
 |                             [xd->plane[1].subsampling_y]; | 
 |     if (rate_uv_intra[uv_tx] == INT_MAX) { | 
 |       choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx], | 
 |                            &rate_uv_tokenonly[uv_tx], &dist_uvs[uv_tx], | 
 |                            &skip_uvs[uv_tx], &mode_uv[uv_tx]); | 
 |       pmi_uv[uv_tx] = *pmi; | 
 | #if CONFIG_EXT_INTRA | 
 |       uv_angle_delta[uv_tx] = mbmi->angle_delta[1]; | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_FILTER_INTRA | 
 |       filter_intra_mode_info_uv[uv_tx] = mbmi->filter_intra_mode_info; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |     } | 
 |     mbmi->uv_mode = mode_uv[uv_tx]; | 
 |     pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1]; | 
 |     if (pmi->palette_size[1] > 0) { | 
 |       memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, | 
 |              pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, | 
 |              2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); | 
 |     } | 
 | #if CONFIG_EXT_INTRA | 
 |     mbmi->angle_delta[1] = uv_angle_delta[uv_tx]; | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_FILTER_INTRA | 
 |     mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = | 
 |         filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1]; | 
 |     if (filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1]) { | 
 |       mbmi->filter_intra_mode_info.filter_intra_mode[1] = | 
 |           filter_intra_mode_info_uv[uv_tx].filter_intra_mode[1]; | 
 |     } | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |     skippable = rd_stats_y.skip && skip_uvs[uv_tx]; | 
 |     distortion2 = rd_stats_y.dist + dist_uvs[uv_tx]; | 
 |     rate2 = rd_stats_y.rate + rate_overhead_palette + rate_uv_intra[uv_tx]; | 
 |     rate2 += ref_costs_single[INTRA_FRAME]; | 
 |  | 
 |     if (skippable) { | 
 |       rate2 -= (rd_stats_y.rate + rate_uv_tokenonly[uv_tx]); | 
 | #if CONFIG_SUPERTX | 
 |       best_rate_nocoef = rate2; | 
 | #endif  // CONFIG_SUPERTX | 
 |       rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); | 
 |     } else { | 
 | #if CONFIG_SUPERTX | 
 |       best_rate_nocoef = rate2 - (rd_stats_y.rate + rate_uv_tokenonly[uv_tx]); | 
 | #endif  // CONFIG_SUPERTX | 
 |       rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); | 
 |     } | 
 |     this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); | 
 |     if (this_rd < best_rd) { | 
 |       best_mode_index = 3; | 
 |       mbmi->mv[0].as_int = 0; | 
 |       rd_cost->rate = rate2; | 
 | #if CONFIG_SUPERTX | 
 |       *returnrate_nocoef = best_rate_nocoef; | 
 | #endif  // CONFIG_SUPERTX | 
 |       rd_cost->dist = distortion2; | 
 |       rd_cost->rdcost = this_rd; | 
 |       best_rd = this_rd; | 
 |       best_mbmode = *mbmi; | 
 |       best_skip2 = 0; | 
 |       best_mode_skippable = skippable; | 
 |     } | 
 |   } | 
 | PALETTE_EXIT: | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 | #if CONFIG_FILTER_INTRA | 
 |   // TODO(huisu): filter-intra is turned off in lossless mode for now to | 
 |   // avoid a unit test failure | 
 |   if (!xd->lossless[mbmi->segment_id] && | 
 | #if CONFIG_PALETTE | 
 |       pmi->palette_size[0] == 0 && | 
 | #endif  // CONFIG_PALETTE | 
 |       !dc_skipped && best_mode_index >= 0 && | 
 |       best_intra_rd < (best_rd + (best_rd >> 3))) { | 
 |     pick_filter_intra_interframe( | 
 |         cpi, x, ctx, bsize, mi_row, mi_col, rate_uv_intra, rate_uv_tokenonly, | 
 |         dist_uvs, skip_uvs, mode_uv, filter_intra_mode_info_uv, | 
 | #if CONFIG_EXT_INTRA | 
 |         uv_angle_delta, | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_PALETTE | 
 |         pmi_uv, palette_ctx, | 
 | #endif  // CONFIG_PALETTE | 
 |         0, ref_costs_single, &best_rd, &best_intra_rd, &best_intra_mode, | 
 |         &best_mode_index, &best_skip2, &best_mode_skippable, | 
 | #if CONFIG_SUPERTX | 
 |         returnrate_nocoef, | 
 | #endif  // CONFIG_SUPERTX | 
 |         best_pred_rd, &best_mbmode, rd_cost); | 
 |   } | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 |   // The inter modes' rate costs are not calculated precisely in some cases. | 
 |   // Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and | 
 |   // ZEROMV. Here, checks are added for those cases, and the mode decisions | 
 |   // are corrected. | 
 |   if (best_mbmode.mode == NEWMV | 
 | #if CONFIG_EXT_INTER | 
 |       || best_mbmode.mode == NEW_NEWMV | 
 | #endif  // CONFIG_EXT_INTER | 
 |       ) { | 
 |     const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0], | 
 |                                          best_mbmode.ref_frame[1] }; | 
 |     int comp_pred_mode = refs[1] > INTRA_FRAME; | 
 |     int_mv zeromv[2]; | 
 | #if CONFIG_REF_MV | 
 |     const uint8_t rf_type = av1_ref_frame_type(best_mbmode.ref_frame); | 
 | #endif  // CONFIG_REF_MV | 
 | #if CONFIG_GLOBAL_MOTION | 
 |     zeromv[0].as_int = gm_get_motion_vector(&cm->global_motion[refs[0]], | 
 |                                             cm->allow_high_precision_mv, bsize, | 
 |                                             mi_col, mi_row, 0) | 
 |                            .as_int; | 
 |     zeromv[1].as_int = comp_pred_mode | 
 |                            ? gm_get_motion_vector(&cm->global_motion[refs[1]], | 
 |                                                   cm->allow_high_precision_mv, | 
 |                                                   bsize, mi_col, mi_row, 0) | 
 |                                  .as_int | 
 |                            : 0; | 
 | #else | 
 |     zeromv[0].as_int = 0; | 
 |     zeromv[1].as_int = 0; | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 | #if CONFIG_REF_MV | 
 |     if (!comp_pred_mode) { | 
 |       int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2) | 
 |                         ? AOMMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2) | 
 |                         : INT_MAX; | 
 |  | 
 |       for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) { | 
 |         int_mv cur_mv = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv; | 
 |         if (cur_mv.as_int == best_mbmode.mv[0].as_int) { | 
 |           best_mbmode.mode = NEARMV; | 
 |           best_mbmode.ref_mv_idx = i; | 
 |         } | 
 |       } | 
 |  | 
 |       if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int) | 
 |         best_mbmode.mode = NEARESTMV; | 
 |       else if (best_mbmode.mv[0].as_int == zeromv[0].as_int) | 
 |         best_mbmode.mode = ZEROMV; | 
 |     } else { | 
 |       int_mv nearestmv[2]; | 
 |       int_mv nearmv[2]; | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |       if (mbmi_ext->ref_mv_count[rf_type] > 1) { | 
 |         nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][1].this_mv; | 
 |         nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][1].comp_mv; | 
 |       } else { | 
 |         nearmv[0] = frame_mv[NEARMV][refs[0]]; | 
 |         nearmv[1] = frame_mv[NEARMV][refs[1]]; | 
 |       } | 
 | #else | 
 |       int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2) | 
 |                         ? AOMMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2) | 
 |                         : INT_MAX; | 
 |  | 
 |       for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) { | 
 |         nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv; | 
 |         nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][i + 1].comp_mv; | 
 |  | 
 |         if (nearmv[0].as_int == best_mbmode.mv[0].as_int && | 
 |             nearmv[1].as_int == best_mbmode.mv[1].as_int) { | 
 |           best_mbmode.mode = NEARMV; | 
 |           best_mbmode.ref_mv_idx = i; | 
 |         } | 
 |       } | 
 | #endif  // CONFIG_EXT_INTER | 
 |       if (mbmi_ext->ref_mv_count[rf_type] >= 1) { | 
 |         nearestmv[0] = mbmi_ext->ref_mv_stack[rf_type][0].this_mv; | 
 |         nearestmv[1] = mbmi_ext->ref_mv_stack[rf_type][0].comp_mv; | 
 |       } else { | 
 |         nearestmv[0] = frame_mv[NEARESTMV][refs[0]]; | 
 |         nearestmv[1] = frame_mv[NEARESTMV][refs[1]]; | 
 |       } | 
 |  | 
 |       if (nearestmv[0].as_int == best_mbmode.mv[0].as_int && | 
 |           nearestmv[1].as_int == best_mbmode.mv[1].as_int) { | 
 | #if CONFIG_EXT_INTER | 
 |         best_mbmode.mode = NEAREST_NEARESTMV; | 
 |       } else { | 
 |         int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2) | 
 |                           ? AOMMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2) | 
 |                           : INT_MAX; | 
 |  | 
 |         for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) { | 
 |           nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv; | 
 |           nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][i + 1].comp_mv; | 
 |  | 
 |           // Try switching to the NEAR_NEAREST type modes first | 
 |           if (nearestmv[0].as_int == best_mbmode.mv[0].as_int && | 
 |               nearmv[1].as_int == best_mbmode.mv[1].as_int) { | 
 |             best_mbmode.mode = NEAREST_NEARMV; | 
 |             best_mbmode.ref_mv_idx = i; | 
 |           } else if (nearmv[0].as_int == best_mbmode.mv[0].as_int && | 
 |                      nearestmv[1].as_int == best_mbmode.mv[1].as_int) { | 
 |             best_mbmode.mode = NEAR_NEARESTMV; | 
 |             best_mbmode.ref_mv_idx = i; | 
 |           } else if (nearmv[0].as_int == best_mbmode.mv[0].as_int && | 
 |                      nearmv[1].as_int == best_mbmode.mv[1].as_int) { | 
 |             best_mbmode.mode = NEAR_NEARMV; | 
 |             best_mbmode.ref_mv_idx = i; | 
 |           } | 
 |         } | 
 |  | 
 |         if (best_mbmode.mode == NEW_NEWMV && | 
 |             best_mbmode.mv[0].as_int == zeromv[0].as_int && | 
 |             best_mbmode.mv[1].as_int == zeromv[1].as_int) | 
 |           best_mbmode.mode = ZERO_ZEROMV; | 
 |       } | 
 | #else | 
 |         best_mbmode.mode = NEARESTMV; | 
 |       } else if (best_mbmode.mv[0].as_int == zeromv[0].as_int && | 
 |                  best_mbmode.mv[1].as_int == zeromv[1].as_int) { | 
 |         best_mbmode.mode = ZEROMV; | 
 |       } | 
 | #endif  // CONFIG_EXT_INTER | 
 |     } | 
 | #else | 
 | #if CONFIG_EXT_INTER | 
 |     if (!comp_pred_mode) { | 
 | #endif  // CONFIG_EXT_INTER | 
 |       if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int && | 
 |           ((comp_pred_mode && | 
 |             frame_mv[NEARESTMV][refs[1]].as_int == best_mbmode.mv[1].as_int) || | 
 |            !comp_pred_mode)) | 
 |         best_mbmode.mode = NEARESTMV; | 
 |       else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int && | 
 |                ((comp_pred_mode && | 
 |                  frame_mv[NEARMV][refs[1]].as_int == | 
 |                      best_mbmode.mv[1].as_int) || | 
 |                 !comp_pred_mode)) | 
 |         best_mbmode.mode = NEARMV; | 
 |       else if (best_mbmode.mv[0].as_int == zeromv[0].as_int && | 
 |                ((comp_pred_mode && | 
 |                  best_mbmode.mv[1].as_int == zeromv[1].as_int) || | 
 |                 !comp_pred_mode)) | 
 |         best_mbmode.mode = ZEROMV; | 
 | #if CONFIG_EXT_INTER | 
 |     } else { | 
 | #if CONFIG_GLOBAL_MOTION | 
 |       zeromv[0].as_int = gm_get_motion_vector(&cm->global_motion[refs[0]], | 
 |                                               cm->allow_high_precision_mv, | 
 |                                               bsize, mi_col, mi_row, 0) | 
 |                              .as_int; | 
 |       zeromv[1].as_int = comp_pred_mode | 
 |                              ? gm_get_motion_vector(&cm->global_motion[refs[1]], | 
 |                                                     cm->allow_high_precision_mv, | 
 |                                                     bsize, mi_col, mi_row, 0) | 
 |                                    .as_int | 
 |                              : 0; | 
 | #else | 
 |       zeromv[0].as_int = 0; | 
 |       zeromv[1].as_int = 0; | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |       if (frame_mv[NEAREST_NEARESTMV][refs[0]].as_int == | 
 |               best_mbmode.mv[0].as_int && | 
 |           frame_mv[NEAREST_NEARESTMV][refs[1]].as_int == | 
 |               best_mbmode.mv[1].as_int) | 
 |         best_mbmode.mode = NEAREST_NEARESTMV; | 
 |       else if (frame_mv[NEAREST_NEARMV][refs[0]].as_int == | 
 |                    best_mbmode.mv[0].as_int && | 
 |                frame_mv[NEAREST_NEARMV][refs[1]].as_int == | 
 |                    best_mbmode.mv[1].as_int) | 
 |         best_mbmode.mode = NEAREST_NEARMV; | 
 |       else if (frame_mv[NEAR_NEARESTMV][refs[0]].as_int == | 
 |                    best_mbmode.mv[0].as_int && | 
 |                frame_mv[NEAR_NEARESTMV][refs[1]].as_int == | 
 |                    best_mbmode.mv[1].as_int) | 
 |         best_mbmode.mode = NEAR_NEARESTMV; | 
 |       else if (frame_mv[NEAR_NEARMV][refs[0]].as_int == | 
 |                    best_mbmode.mv[0].as_int && | 
 |                frame_mv[NEAR_NEARMV][refs[1]].as_int == | 
 |                    best_mbmode.mv[1].as_int) | 
 |         best_mbmode.mode = NEAR_NEARMV; | 
 |       else if (best_mbmode.mv[0].as_int == zeromv[0].as_int && | 
 |                best_mbmode.mv[1].as_int == zeromv[1].as_int) | 
 |         best_mbmode.mode = ZERO_ZEROMV; | 
 |     } | 
 | #endif  // CONFIG_EXT_INTER | 
 | #endif  // CONFIG_REF_MV | 
 |   } | 
 |  | 
 | #if CONFIG_REF_MV | 
 |   // Make sure that the ref_mv_idx is only nonzero when we're | 
 |   // using a mode which can support ref_mv_idx | 
 |   if (best_mbmode.ref_mv_idx != 0 && | 
 | #if CONFIG_EXT_INTER | 
 |       !(best_mbmode.mode == NEWMV || best_mbmode.mode == NEW_NEWMV || | 
 |         have_nearmv_in_inter_mode(best_mbmode.mode))) { | 
 | #else | 
 |       !(best_mbmode.mode == NEARMV || best_mbmode.mode == NEWMV)) { | 
 | #endif | 
 |     best_mbmode.ref_mv_idx = 0; | 
 |   } | 
 |  | 
 |   { | 
 |     int8_t ref_frame_type = av1_ref_frame_type(best_mbmode.ref_frame); | 
 |     int16_t mode_ctx = mbmi_ext->mode_context[ref_frame_type]; | 
 |     if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) { | 
 |       int_mv zeromv[2]; | 
 | #if CONFIG_GLOBAL_MOTION | 
 |       const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0], | 
 |                                            best_mbmode.ref_frame[1] }; | 
 |       zeromv[0].as_int = gm_get_motion_vector(&cm->global_motion[refs[0]], | 
 |                                               cm->allow_high_precision_mv, | 
 |                                               bsize, mi_col, mi_row, 0) | 
 |                              .as_int; | 
 |       zeromv[1].as_int = gm_get_motion_vector(&cm->global_motion[refs[1]], | 
 |                                               cm->allow_high_precision_mv, | 
 |                                               bsize, mi_col, mi_row, 0) | 
 |                              .as_int; | 
 |       lower_mv_precision(&zeromv[0].as_mv, cm->allow_high_precision_mv); | 
 |       lower_mv_precision(&zeromv[1].as_mv, cm->allow_high_precision_mv); | 
 | #else | 
 |       zeromv[0].as_int = zeromv[1].as_int = 0; | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |       if (best_mbmode.ref_frame[0] > INTRA_FRAME && | 
 |           best_mbmode.mv[0].as_int == zeromv[0].as_int && | 
 | #if CONFIG_EXT_INTER | 
 |           (best_mbmode.ref_frame[1] <= INTRA_FRAME) | 
 | #else | 
 |           (best_mbmode.ref_frame[1] == NONE_FRAME || | 
 |            best_mbmode.mv[1].as_int == zeromv[1].as_int) | 
 | #endif  // CONFIG_EXT_INTER | 
 |               ) { | 
 |         best_mbmode.mode = ZEROMV; | 
 |       } | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 |   if (best_mode_index < 0 || best_rd >= best_rd_so_far) { | 
 |     rd_cost->rate = INT_MAX; | 
 |     rd_cost->rdcost = INT64_MAX; | 
 |     return; | 
 |   } | 
 |  | 
 | #if CONFIG_DUAL_FILTER | 
 |   assert((cm->interp_filter == SWITCHABLE) || | 
 |          (cm->interp_filter == best_mbmode.interp_filter[0]) || | 
 |          !is_inter_block(&best_mbmode)); | 
 |   assert((cm->interp_filter == SWITCHABLE) || | 
 |          (cm->interp_filter == best_mbmode.interp_filter[1]) || | 
 |          !is_inter_block(&best_mbmode)); | 
 |   if (best_mbmode.ref_frame[1] > INTRA_FRAME) { | 
 |     assert((cm->interp_filter == SWITCHABLE) || | 
 |            (cm->interp_filter == best_mbmode.interp_filter[2]) || | 
 |            !is_inter_block(&best_mbmode)); | 
 |     assert((cm->interp_filter == SWITCHABLE) || | 
 |            (cm->interp_filter == best_mbmode.interp_filter[3]) || | 
 |            !is_inter_block(&best_mbmode)); | 
 |   } | 
 | #else | 
 |   assert((cm->interp_filter == SWITCHABLE) || | 
 |          (cm->interp_filter == best_mbmode.interp_filter) || | 
 |          !is_inter_block(&best_mbmode)); | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |  | 
 |   if (!cpi->rc.is_src_frame_alt_ref) | 
 |     av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, | 
 |                               sf->adaptive_rd_thresh, bsize, best_mode_index); | 
 |  | 
 |   // macroblock modes | 
 |   *mbmi = best_mbmode; | 
 |   x->skip |= best_skip2; | 
 |  | 
 | // Note: this section is needed since the mode may have been forced to | 
 | // ZEROMV by the all-zero mode handling of ref-mv. | 
 | #if CONFIG_GLOBAL_MOTION | 
 |   if (mbmi->mode == ZEROMV | 
 | #if CONFIG_EXT_INTER | 
 |       || mbmi->mode == ZERO_ZEROMV | 
 | #endif  // CONFIG_EXT_INTER | 
 |       ) { | 
 | #if CONFIG_WARPED_MOTION || CONFIG_MOTION_VAR | 
 |     // Correct the motion mode for ZEROMV | 
 |     const MOTION_MODE last_motion_mode_allowed = motion_mode_allowed( | 
 | #if SEPARATE_GLOBAL_MOTION | 
 |         0, xd->global_motion, | 
 | #endif  // SEPARATE_GLOBAL_MOTION | 
 |         xd->mi[0]); | 
 |     if (mbmi->motion_mode > last_motion_mode_allowed) | 
 |       mbmi->motion_mode = last_motion_mode_allowed; | 
 | #endif  // CONFIG_WARPED_MOTION || CONFIG_MOTION_VAR | 
 |  | 
 |     // Correct the interpolation filter for ZEROMV | 
 |     if (is_nontrans_global_motion(xd)) { | 
 | #if CONFIG_DUAL_FILTER | 
 |       mbmi->interp_filter[0] = cm->interp_filter == SWITCHABLE | 
 |                                    ? EIGHTTAP_REGULAR | 
 |                                    : cm->interp_filter; | 
 |       mbmi->interp_filter[1] = cm->interp_filter == SWITCHABLE | 
 |                                    ? EIGHTTAP_REGULAR | 
 |                                    : cm->interp_filter; | 
 | #else | 
 |       mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR | 
 |                                                             : cm->interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |  | 
 | #if CONFIG_REF_MV | 
 |   for (i = 0; i < 1 + has_second_ref(mbmi); ++i) { | 
 |     if (mbmi->mode != NEWMV) | 
 |       mbmi->pred_mv[i].as_int = mbmi->mv[i].as_int; | 
 |     else | 
 |       mbmi->pred_mv[i].as_int = mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0].as_int; | 
 |   } | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 |   for (i = 0; i < REFERENCE_MODES; ++i) { | 
 |     if (best_pred_rd[i] == INT64_MAX) | 
 |       best_pred_diff[i] = INT_MIN; | 
 |     else | 
 |       best_pred_diff[i] = best_rd - best_pred_rd[i]; | 
 |   } | 
 |  | 
 |   x->skip |= best_mode_skippable; | 
 |  | 
 |   assert(best_mode_index >= 0); | 
 |  | 
 |   store_coding_context(x, ctx, best_mode_index, best_pred_diff, | 
 |                        best_mode_skippable); | 
 |  | 
 | #if CONFIG_PALETTE | 
 |   if (cm->allow_screen_content_tools && pmi->palette_size[1] > 0) { | 
 |     restore_uv_color_map(cpi, x); | 
 |   } | 
 | #endif  // CONFIG_PALETTE | 
 | } | 
 |  | 
 | void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi, | 
 |                                         TileDataEnc *tile_data, MACROBLOCK *x, | 
 |                                         int mi_row, int mi_col, | 
 |                                         RD_STATS *rd_cost, BLOCK_SIZE bsize, | 
 |                                         PICK_MODE_CONTEXT *ctx, | 
 |                                         int64_t best_rd_so_far) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   unsigned char segment_id = mbmi->segment_id; | 
 |   const int comp_pred = 0; | 
 |   int i; | 
 |   int64_t best_pred_diff[REFERENCE_MODES]; | 
 |   unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME]; | 
 |   unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME]; | 
 |   aom_prob comp_mode_p; | 
 |   InterpFilter best_filter = SWITCHABLE; | 
 |   int64_t this_rd = INT64_MAX; | 
 |   int rate2 = 0; | 
 |   const int64_t distortion2 = 0; | 
 |   (void)mi_row; | 
 |   (void)mi_col; | 
 |  | 
 |   estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, | 
 |                            &comp_mode_p); | 
 |  | 
 |   for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) x->pred_sse[i] = INT_MAX; | 
 |   for (i = LAST_FRAME; i < TOTAL_REFS_PER_FRAME; ++i) | 
 |     x->pred_mv_sad[i] = INT_MAX; | 
 |  | 
 |   rd_cost->rate = INT_MAX; | 
 |  | 
 |   assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)); | 
 |  | 
 | #if CONFIG_PALETTE | 
 |   mbmi->palette_mode_info.palette_size[0] = 0; | 
 |   mbmi->palette_mode_info.palette_size[1] = 0; | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 | #if CONFIG_FILTER_INTRA | 
 |   mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0; | 
 |   mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |   mbmi->mode = ZEROMV; | 
 |   mbmi->motion_mode = SIMPLE_TRANSLATION; | 
 |   mbmi->uv_mode = DC_PRED; | 
 |   mbmi->ref_frame[0] = LAST_FRAME; | 
 |   mbmi->ref_frame[1] = NONE_FRAME; | 
 | #if CONFIG_GLOBAL_MOTION | 
 |   mbmi->mv[0].as_int = | 
 |       gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]], | 
 |                            cm->allow_high_precision_mv, bsize, mi_col, mi_row, | 
 |                            0) | 
 |           .as_int; | 
 | #else   // CONFIG_GLOBAL_MOTION | 
 |   mbmi->mv[0].as_int = 0; | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |   mbmi->tx_size = max_txsize_lookup[bsize]; | 
 |   x->skip = 1; | 
 |  | 
 | #if CONFIG_REF_MV | 
 |   mbmi->ref_mv_idx = 0; | 
 |   mbmi->pred_mv[0].as_int = 0; | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 |   mbmi->motion_mode = SIMPLE_TRANSLATION; | 
 | #if CONFIG_MOTION_VAR | 
 |   av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col); | 
 | #endif | 
 | #if CONFIG_WARPED_MOTION | 
 |   if (is_motion_variation_allowed_bsize(bsize) && !has_second_ref(mbmi)) { | 
 |     int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; | 
 |     mbmi->num_proj_ref[0] = findSamples(cm, xd, mi_row, mi_col, pts, pts_inref); | 
 |   } | 
 | #endif | 
 |  | 
 |   if (cm->interp_filter != BILINEAR) { | 
 |     best_filter = EIGHTTAP_REGULAR; | 
 |     if (cm->interp_filter == SWITCHABLE && | 
 |         x->source_variance >= cpi->sf.disable_filter_search_var_thresh) { | 
 |       int rs; | 
 |       int best_rs = INT_MAX; | 
 |       for (i = 0; i < SWITCHABLE_FILTERS; ++i) { | 
 | #if CONFIG_DUAL_FILTER | 
 |         int k; | 
 |         for (k = 0; k < 4; ++k) mbmi->interp_filter[k] = i; | 
 | #else | 
 |         mbmi->interp_filter = i; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |         rs = av1_get_switchable_rate(cpi, xd); | 
 |         if (rs < best_rs) { | 
 |           best_rs = rs; | 
 | #if CONFIG_DUAL_FILTER | 
 |           best_filter = mbmi->interp_filter[0]; | 
 | #else | 
 |           best_filter = mbmi->interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   // Set the appropriate filter | 
 |   if (cm->interp_filter == SWITCHABLE) { | 
 | #if CONFIG_DUAL_FILTER | 
 |     for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = best_filter; | 
 | #else | 
 |     mbmi->interp_filter = best_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |     rate2 += av1_get_switchable_rate(cpi, xd); | 
 |   } else { | 
 | #if CONFIG_DUAL_FILTER | 
 |     for (i = 0; i < 4; ++i) mbmi->interp_filter[0] = cm->interp_filter; | 
 | #else | 
 |     mbmi->interp_filter = cm->interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |   } | 
 |  | 
 |   if (cm->reference_mode == REFERENCE_MODE_SELECT) | 
 |     rate2 += av1_cost_bit(comp_mode_p, comp_pred); | 
 |  | 
 |   // Estimate the reference frame signaling cost and add it | 
 |   // to the rolling cost variable. | 
 |   rate2 += ref_costs_single[LAST_FRAME]; | 
 |   this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); | 
 |  | 
 |   rd_cost->rate = rate2; | 
 |   rd_cost->dist = distortion2; | 
 |   rd_cost->rdcost = this_rd; | 
 |  | 
 |   if (this_rd >= best_rd_so_far) { | 
 |     rd_cost->rate = INT_MAX; | 
 |     rd_cost->rdcost = INT64_MAX; | 
 |     return; | 
 |   } | 
 |  | 
 | #if CONFIG_DUAL_FILTER | 
 |   assert((cm->interp_filter == SWITCHABLE) || | 
 |          (cm->interp_filter == mbmi->interp_filter[0])); | 
 | #else | 
 |   assert((cm->interp_filter == SWITCHABLE) || | 
 |          (cm->interp_filter == mbmi->interp_filter)); | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |  | 
 |   av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, | 
 |                             cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV); | 
 |  | 
 |   av1_zero(best_pred_diff); | 
 |  | 
 |   store_coding_context(x, ctx, THR_ZEROMV, best_pred_diff, 0); | 
 | } | 
 |  | 
 | void av1_rd_pick_inter_mode_sub8x8(const struct AV1_COMP *cpi, | 
 |                                    TileDataEnc *tile_data, struct macroblock *x, | 
 |                                    int mi_row, int mi_col, | 
 |                                    struct RD_STATS *rd_cost, | 
 | #if CONFIG_SUPERTX | 
 |                                    int *returnrate_nocoef, | 
 | #endif  // CONFIG_SUPERTX | 
 |                                    BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, | 
 |                                    int64_t best_rd_so_far) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   const RD_OPT *const rd_opt = &cpi->rd; | 
 |   const SPEED_FEATURES *const sf = &cpi->sf; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   const struct segmentation *const seg = &cm->seg; | 
 |   MV_REFERENCE_FRAME ref_frame, second_ref_frame; | 
 |   unsigned char segment_id = mbmi->segment_id; | 
 |   int comp_pred, i; | 
 |   int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; | 
 |   struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME][MAX_MB_PLANE]; | 
 |   static const int flag_list[TOTAL_REFS_PER_FRAME] = { | 
 |     0, | 
 |     AOM_LAST_FLAG, | 
 | #if CONFIG_EXT_REFS | 
 |     AOM_LAST2_FLAG, | 
 |     AOM_LAST3_FLAG, | 
 | #endif  // CONFIG_EXT_REFS | 
 |     AOM_GOLD_FLAG, | 
 | #if CONFIG_EXT_REFS | 
 |     AOM_BWD_FLAG, | 
 | #endif  // CONFIG_EXT_REFS | 
 |     AOM_ALT_FLAG | 
 |   }; | 
 |   int64_t best_rd = best_rd_so_far; | 
 |   int64_t best_yrd = best_rd_so_far;  // FIXME(rbultje) more precise | 
 |   int64_t best_pred_diff[REFERENCE_MODES]; | 
 |   int64_t best_pred_rd[REFERENCE_MODES]; | 
 |   MB_MODE_INFO best_mbmode; | 
 |   int ref_index, best_ref_index = 0; | 
 |   unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME]; | 
 |   unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME]; | 
 |   aom_prob comp_mode_p; | 
 | #if CONFIG_DUAL_FILTER | 
 |   InterpFilter tmp_best_filter[4] = { 0 }; | 
 | #else | 
 |   InterpFilter tmp_best_filter = SWITCHABLE; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |   int rate_uv_intra, rate_uv_tokenonly = INT_MAX; | 
 |   int64_t dist_uv = INT64_MAX; | 
 |   int skip_uv; | 
 |   PREDICTION_MODE mode_uv = DC_PRED; | 
 |   const int intra_cost_penalty = av1_get_intra_cost_penalty( | 
 |       cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth); | 
 |   int_mv seg_mvs[4][TOTAL_REFS_PER_FRAME]; | 
 |   b_mode_info best_bmodes[4]; | 
 |   int best_skip2 = 0; | 
 |   int ref_frame_skip_mask[2] = { 0 }; | 
 |   int internal_active_edge = | 
 |       av1_active_edge_sb(cpi, mi_row, mi_col) && av1_internal_image_edge(cpi); | 
 | #if CONFIG_PVQ | 
 |   od_rollback_buffer pre_buf; | 
 |  | 
 |   od_encode_checkpoint(&x->daala_enc, &pre_buf); | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 | #if CONFIG_SUPERTX | 
 |   best_rd_so_far = INT64_MAX; | 
 |   best_rd = best_rd_so_far; | 
 |   best_yrd = best_rd_so_far; | 
 | #endif  // CONFIG_SUPERTX | 
 |   av1_zero(best_mbmode); | 
 |  | 
 | #if CONFIG_FILTER_INTRA | 
 |   mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0; | 
 |   mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0; | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |   mbmi->motion_mode = SIMPLE_TRANSLATION; | 
 | #if CONFIG_EXT_INTER | 
 |   mbmi->interinter_compound_data.type = COMPOUND_AVERAGE; | 
 |   mbmi->use_wedge_interintra = 0; | 
 | #endif  // CONFIG_EXT_INTER | 
 | #if CONFIG_WARPED_MOTION | 
 |   mbmi->num_proj_ref[0] = 0; | 
 |   mbmi->num_proj_ref[1] = 0; | 
 | #endif  // CONFIG_WARPED_MOTION | 
 |  | 
 |   for (i = 0; i < 4; i++) { | 
 |     int j; | 
 |     for (j = 0; j < TOTAL_REFS_PER_FRAME; j++) | 
 |       seg_mvs[i][j].as_int = INVALID_MV; | 
 |   } | 
 |  | 
 |   estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, | 
 |                            &comp_mode_p); | 
 |  | 
 |   for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX; | 
 |   rate_uv_intra = INT_MAX; | 
 |  | 
 |   rd_cost->rate = INT_MAX; | 
 | #if CONFIG_SUPERTX | 
 |   *returnrate_nocoef = INT_MAX; | 
 | #endif  // CONFIG_SUPERTX | 
 |  | 
 |   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { | 
 |     x->mbmi_ext->mode_context[ref_frame] = 0; | 
 | #if CONFIG_REF_MV && CONFIG_EXT_INTER | 
 |     x->mbmi_ext->compound_mode_context[ref_frame] = 0; | 
 | #endif  // CONFIG_REF_MV && CONFIG_EXT_INTER | 
 |     if (cpi->ref_frame_flags & flag_list[ref_frame]) { | 
 |       setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, | 
 |                          frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb); | 
 |     } else { | 
 |       ref_frame_skip_mask[0] |= (1 << ref_frame); | 
 |       ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; | 
 |     } | 
 |     frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; | 
 | #if CONFIG_EXT_INTER | 
 | #endif  // CONFIG_EXT_INTER | 
 |     frame_mv[ZEROMV][ref_frame].as_int = 0; | 
 |   } | 
 |  | 
 | #if CONFIG_PALETTE | 
 |   mbmi->palette_mode_info.palette_size[0] = 0; | 
 |   mbmi->palette_mode_info.palette_size[1] = 0; | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 |   for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) { | 
 |     int mode_excluded = 0; | 
 |     int64_t this_rd = INT64_MAX; | 
 |     int disable_skip = 0; | 
 |     int compmode_cost = 0; | 
 |     int rate2 = 0, rate_y = 0, rate_uv = 0; | 
 |     int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; | 
 |     int skippable = 0; | 
 |     int this_skip2 = 0; | 
 |     int64_t total_sse = INT_MAX; | 
 |  | 
 | #if CONFIG_PVQ | 
 |     od_encode_rollback(&x->daala_enc, &pre_buf); | 
 | #endif  // CONFIG_PVQ | 
 |  | 
 |     ref_frame = av1_ref_order[ref_index].ref_frame[0]; | 
 |     second_ref_frame = av1_ref_order[ref_index].ref_frame[1]; | 
 |  | 
 | #if CONFIG_REF_MV | 
 |     mbmi->ref_mv_idx = 0; | 
 | #endif  // CONFIG_REF_MV | 
 |  | 
 |     // Look at the reference frame of the best mode so far and set the | 
 |     // skip mask to look at a subset of the remaining modes. | 
 |     if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) { | 
 |       if (ref_index == 3) { | 
 |         switch (best_mbmode.ref_frame[0]) { | 
 |           case INTRA_FRAME: break; | 
 |           case LAST_FRAME: | 
 |             ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | | 
 | #if CONFIG_EXT_REFS | 
 |                                       (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | | 
 |                                       (1 << BWDREF_FRAME) | | 
 | #endif  // CONFIG_EXT_REFS | 
 |                                       (1 << ALTREF_FRAME); | 
 |             ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; | 
 |             break; | 
 | #if CONFIG_EXT_REFS | 
 |           case LAST2_FRAME: | 
 |             ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST3_FRAME) | | 
 |                                       (1 << GOLDEN_FRAME) | | 
 |                                       (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME); | 
 |             ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; | 
 |             break; | 
 |           case LAST3_FRAME: | 
 |             ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST2_FRAME) | | 
 |                                       (1 << GOLDEN_FRAME) | | 
 |                                       (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME); | 
 |             ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; | 
 |             break; | 
 | #endif  // CONFIG_EXT_REFS | 
 |           case GOLDEN_FRAME: | 
 |             ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | | 
 | #if CONFIG_EXT_REFS | 
 |                                       (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | | 
 |                                       (1 << BWDREF_FRAME) | | 
 | #endif  // CONFIG_EXT_REFS | 
 |                                       (1 << ALTREF_FRAME); | 
 |             ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; | 
 |             break; | 
 | #if CONFIG_EXT_REFS | 
 |           case BWDREF_FRAME: | 
 |             ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST2_FRAME) | | 
 |                                       (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | | 
 |                                       (1 << ALTREF_FRAME); | 
 |             ref_frame_skip_mask[1] |= (1 << ALTREF_FRAME) | 0x01; | 
 |             break; | 
 | #endif  // CONFIG_EXT_REFS | 
 |           case ALTREF_FRAME: | 
 |             ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | | 
 | #if CONFIG_EXT_REFS | 
 |                                       (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | | 
 |                                       (1 << BWDREF_FRAME) | | 
 | #endif  // CONFIG_EXT_REFS | 
 |                                       (1 << GOLDEN_FRAME); | 
 | #if CONFIG_EXT_REFS | 
 |             ref_frame_skip_mask[1] |= (1 << BWDREF_FRAME) | 0x01; | 
 | #endif  // CONFIG_EXT_REFS | 
 |             break; | 
 |           case NONE_FRAME: | 
 |           case TOTAL_REFS_PER_FRAME: | 
 |             assert(0 && "Invalid Reference frame"); | 
 |             break; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     if ((ref_frame_skip_mask[0] & (1 << ref_frame)) && | 
 |         (ref_frame_skip_mask[1] & (1 << AOMMAX(0, second_ref_frame)))) | 
 |       continue; | 
 |  | 
 |     // Test best rd so far against threshold for trying this mode. | 
 |     if (!internal_active_edge && | 
 |         rd_less_than_thresh(best_rd, | 
 |                             rd_opt->threshes[segment_id][bsize][ref_index], | 
 |                             tile_data->thresh_freq_fact[bsize][ref_index])) | 
 |       continue; | 
 |  | 
 |     // This is only used in motion vector unit test. | 
 |     if (cpi->oxcf.motion_vector_unit_test && ref_frame == INTRA_FRAME) continue; | 
 |  | 
 | #if CONFIG_LOWDELAY_COMPOUND  // Changes LL bitstream | 
 | #if CONFIG_EXT_REFS | 
 |     if (cpi->oxcf.pass == 0) { | 
 |       // Complexity-compression trade-offs | 
 |       // if (ref_frame == ALTREF_FRAME) continue; | 
 |       // if (ref_frame == BWDREF_FRAME) continue; | 
 |       if (second_ref_frame == ALTREF_FRAME) continue; | 
 |       // if (second_ref_frame == BWDREF_FRAME) continue; | 
 |     } | 
 | #endif | 
 | #endif | 
 |     comp_pred = second_ref_frame > INTRA_FRAME; | 
 |     if (comp_pred) { | 
 |       if (!cpi->allow_comp_inter_inter) continue; | 
 |       if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; | 
 |       // Do not allow compound prediction if the segment level reference frame | 
 |       // feature is in use as in this case there can only be one reference. | 
 |       if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue; | 
 |  | 
 |       if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && | 
 |           best_mbmode.ref_frame[0] == INTRA_FRAME) | 
 |         continue; | 
 |     } | 
 |  | 
 |     // TODO(jingning, jkoleszar): scaling reference frame not supported for | 
 |     // sub8x8 blocks. | 
 |     if (ref_frame > INTRA_FRAME && | 
 |         av1_is_scaled(&cm->frame_refs[ref_frame - 1].sf)) | 
 |       continue; | 
 |  | 
 |     if (second_ref_frame > INTRA_FRAME && | 
 |         av1_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf)) | 
 |       continue; | 
 |  | 
 |     if (comp_pred) | 
 |       mode_excluded = cm->reference_mode == SINGLE_REFERENCE; | 
 |     else if (ref_frame != INTRA_FRAME) | 
 |       mode_excluded = cm->reference_mode == COMPOUND_REFERENCE; | 
 |  | 
 |     // If the segment reference frame feature is enabled.... | 
 |     // then do nothing if the current ref frame is not allowed.. | 
 |     if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && | 
 |         get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { | 
 |       continue; | 
 |       // Disable this drop out case if the ref frame | 
 |       // segment level feature is enabled for this segment. This is to | 
 |       // prevent the possibility that we end up unable to pick any mode. | 
 |     } else if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { | 
 |       // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, | 
 |       // unless ARNR filtering is enabled in which case we want | 
 |       // an unfiltered alternative. We allow near/nearest as well | 
 |       // because they may result in zero-zero MVs but be cheaper. | 
 |       if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) | 
 |         continue; | 
 |     } | 
 |  | 
 |     mbmi->tx_size = TX_4X4; | 
 |     mbmi->uv_mode = DC_PRED; | 
 |     mbmi->ref_frame[0] = ref_frame; | 
 |     mbmi->ref_frame[1] = second_ref_frame; | 
 | // Evaluate all sub-pel filters irrespective of whether we can use | 
 | // them for this frame. | 
 | #if CONFIG_DUAL_FILTER | 
 |     for (i = 0; i < 4; ++i) | 
 |       mbmi->interp_filter[i] = cm->interp_filter == SWITCHABLE | 
 |                                    ? EIGHTTAP_REGULAR | 
 |                                    : cm->interp_filter; | 
 | #else | 
 |     mbmi->interp_filter = | 
 |         cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR : cm->interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |     x->skip = 0; | 
 |     set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); | 
 |  | 
 |     // Select prediction reference frames. | 
 |     for (i = 0; i < MAX_MB_PLANE; i++) { | 
 |       xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; | 
 |       if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; | 
 |     } | 
 |  | 
 | #if CONFIG_VAR_TX | 
 |     mbmi->inter_tx_size[0][0] = mbmi->tx_size; | 
 |     mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size); | 
 | #endif  // CONFIG_VAR_TX | 
 |  | 
 |     if (ref_frame == INTRA_FRAME) { | 
 |       int rate; | 
 |       if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y, &distortion_y, | 
 |                                        NULL, best_rd) >= best_rd) | 
 |         continue; | 
 |       rate2 += rate; | 
 |       rate2 += intra_cost_penalty; | 
 |       distortion2 += distortion_y; | 
 |  | 
 |       if (rate_uv_intra == INT_MAX) { | 
 |         choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4, &rate_uv_intra, | 
 |                              &rate_uv_tokenonly, &dist_uv, &skip_uv, &mode_uv); | 
 |       } | 
 |       rate2 += rate_uv_intra; | 
 |       rate_uv = rate_uv_tokenonly; | 
 |       distortion2 += dist_uv; | 
 |       distortion_uv = dist_uv; | 
 |       mbmi->uv_mode = mode_uv; | 
 |     } else { | 
 |       int rate; | 
 |       int64_t distortion; | 
 |       int64_t this_rd_thresh; | 
 |       int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX; | 
 |       int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX; | 
 |       int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse; | 
 |       int tmp_best_skippable = 0; | 
 |       int switchable_filter_index; | 
 |       int_mv *second_ref = | 
 |           comp_pred ? &x->mbmi_ext->ref_mvs[second_ref_frame][0] : NULL; | 
 |       b_mode_info tmp_best_bmodes[16];  // Should this be 4 ? | 
 |       MB_MODE_INFO tmp_best_mbmode; | 
 | #if CONFIG_DUAL_FILTER | 
 |       BEST_SEG_INFO bsi[DUAL_FILTER_SET_SIZE]; | 
 | #else | 
 |       BEST_SEG_INFO bsi[SWITCHABLE_FILTERS]; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |       int pred_exists = 0; | 
 |       int uv_skippable; | 
 | #if CONFIG_EXT_INTER | 
 |       int_mv compound_seg_newmvs[4][2]; | 
 |       for (i = 0; i < 4; i++) { | 
 |         compound_seg_newmvs[i][0].as_int = INVALID_MV; | 
 |         compound_seg_newmvs[i][1].as_int = INVALID_MV; | 
 |       } | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |       this_rd_thresh = (ref_frame == LAST_FRAME) | 
 |                            ? rd_opt->threshes[segment_id][bsize][THR_LAST] | 
 |                            : rd_opt->threshes[segment_id][bsize][THR_ALTR]; | 
 | #if CONFIG_EXT_REFS | 
 |       this_rd_thresh = (ref_frame == LAST2_FRAME) | 
 |                            ? rd_opt->threshes[segment_id][bsize][THR_LAST2] | 
 |                            : this_rd_thresh; | 
 |       this_rd_thresh = (ref_frame == LAST3_FRAME) | 
 |                            ? rd_opt->threshes[segment_id][bsize][THR_LAST3] | 
 |                            : this_rd_thresh; | 
 |       this_rd_thresh = (ref_frame == BWDREF_FRAME) | 
 |                            ? rd_opt->threshes[segment_id][bsize][THR_BWDR] | 
 |                            : this_rd_thresh; | 
 | #endif  // CONFIG_EXT_REFS | 
 |       this_rd_thresh = (ref_frame == GOLDEN_FRAME) | 
 |                            ? rd_opt->threshes[segment_id][bsize][THR_GOLD] | 
 |                            : this_rd_thresh; | 
 |  | 
 |       // TODO(any): Add search of the tx_type to improve rd performance at the | 
 |       // expense of speed. | 
 |       mbmi->tx_type = DCT_DCT; | 
 |  | 
 |       if (cm->interp_filter != BILINEAR) { | 
 | #if CONFIG_DUAL_FILTER | 
 |         tmp_best_filter[0] = EIGHTTAP_REGULAR; | 
 |         tmp_best_filter[1] = EIGHTTAP_REGULAR; | 
 |         tmp_best_filter[2] = EIGHTTAP_REGULAR; | 
 |         tmp_best_filter[3] = EIGHTTAP_REGULAR; | 
 | #else | 
 |         tmp_best_filter = EIGHTTAP_REGULAR; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |         if (x->source_variance < sf->disable_filter_search_var_thresh) { | 
 | #if CONFIG_DUAL_FILTER | 
 |           tmp_best_filter[0] = EIGHTTAP_REGULAR; | 
 | #else | 
 |           tmp_best_filter = EIGHTTAP_REGULAR; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |         } else if (sf->adaptive_pred_interp_filter == 1 && | 
 |                    ctx->pred_interp_filter < SWITCHABLE) { | 
 | #if CONFIG_DUAL_FILTER | 
 |           tmp_best_filter[0] = ctx->pred_interp_filter; | 
 | #else | 
 |           tmp_best_filter = ctx->pred_interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |         } else if (sf->adaptive_pred_interp_filter == 2) { | 
 | #if CONFIG_DUAL_FILTER | 
 |           tmp_best_filter[0] = ctx->pred_interp_filter < SWITCHABLE | 
 |                                    ? ctx->pred_interp_filter | 
 |                                    : 0; | 
 | #else | 
 |           tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE | 
 |                                 ? ctx->pred_interp_filter | 
 |                                 : 0; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |         } else { | 
 | #if CONFIG_DUAL_FILTER | 
 |           const int filter_set_size = DUAL_FILTER_SET_SIZE; | 
 | #else | 
 |           const int filter_set_size = SWITCHABLE_FILTERS; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |           for (switchable_filter_index = 0; | 
 |                switchable_filter_index < filter_set_size; | 
 |                ++switchable_filter_index) { | 
 |             int newbest, rs; | 
 |             int64_t rs_rd; | 
 |             MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext; | 
 | #if CONFIG_DUAL_FILTER | 
 |             mbmi->interp_filter[0] = filter_sets[switchable_filter_index][0]; | 
 |             mbmi->interp_filter[1] = filter_sets[switchable_filter_index][1]; | 
 |             mbmi->interp_filter[2] = filter_sets[switchable_filter_index][0]; | 
 |             mbmi->interp_filter[3] = filter_sets[switchable_filter_index][1]; | 
 | #else | 
 |             mbmi->interp_filter = switchable_filter_index; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |             tmp_rd = rd_pick_inter_best_sub8x8_mode( | 
 |                 cpi, x, &mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd, | 
 |                 &rate, &rate_y, &distortion, &skippable, &total_sse, | 
 |                 (int)this_rd_thresh, seg_mvs, | 
 | #if CONFIG_EXT_INTER | 
 |                 compound_seg_newmvs, | 
 | #endif  // CONFIG_EXT_INTER | 
 |                 bsi, switchable_filter_index, mi_row, mi_col); | 
 |             if (tmp_rd == INT64_MAX) continue; | 
 |             rs = av1_get_switchable_rate(cpi, xd); | 
 |             rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); | 
 |             if (cm->interp_filter == SWITCHABLE) tmp_rd += rs_rd; | 
 |  | 
 |             newbest = (tmp_rd < tmp_best_rd); | 
 |             if (newbest) { | 
 | #if CONFIG_DUAL_FILTER | 
 |               tmp_best_filter[0] = mbmi->interp_filter[0]; | 
 |               tmp_best_filter[1] = mbmi->interp_filter[1]; | 
 |               tmp_best_filter[2] = mbmi->interp_filter[2]; | 
 |               tmp_best_filter[3] = mbmi->interp_filter[3]; | 
 | #else | 
 |               tmp_best_filter = mbmi->interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |               tmp_best_rd = tmp_rd; | 
 |             } | 
 |             if ((newbest && cm->interp_filter == SWITCHABLE) || | 
 |                 ( | 
 | #if CONFIG_DUAL_FILTER | 
 |                     mbmi->interp_filter[0] == cm->interp_filter | 
 | #else | 
 |                     mbmi->interp_filter == cm->interp_filter | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |                     && cm->interp_filter != SWITCHABLE)) { | 
 |               tmp_best_rdu = tmp_rd; | 
 |               tmp_best_rate = rate; | 
 |               tmp_best_ratey = rate_y; | 
 |               tmp_best_distortion = distortion; | 
 |               tmp_best_sse = total_sse; | 
 |               tmp_best_skippable = skippable; | 
 |               tmp_best_mbmode = *mbmi; | 
 |               for (i = 0; i < 4; i++) { | 
 |                 tmp_best_bmodes[i] = xd->mi[0]->bmi[i]; | 
 |               } | 
 |               pred_exists = 1; | 
 |             } | 
 |           }  // switchable_filter_index loop | 
 |         } | 
 |       } | 
 |  | 
 |       if (tmp_best_rdu == INT64_MAX && pred_exists) continue; | 
 |  | 
 | #if CONFIG_DUAL_FILTER | 
 |       mbmi->interp_filter[0] = | 
 |           (cm->interp_filter == SWITCHABLE ? tmp_best_filter[0] | 
 |                                            : cm->interp_filter); | 
 |       mbmi->interp_filter[1] = | 
 |           (cm->interp_filter == SWITCHABLE ? tmp_best_filter[1] | 
 |                                            : cm->interp_filter); | 
 |       mbmi->interp_filter[2] = | 
 |           (cm->interp_filter == SWITCHABLE ? tmp_best_filter[2] | 
 |                                            : cm->interp_filter); | 
 |       mbmi->interp_filter[3] = | 
 |           (cm->interp_filter == SWITCHABLE ? tmp_best_filter[3] | 
 |                                            : cm->interp_filter); | 
 | #else | 
 |       mbmi->interp_filter = | 
 |           (cm->interp_filter == SWITCHABLE ? tmp_best_filter | 
 |                                            : cm->interp_filter); | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |  | 
 |       if (!pred_exists) { | 
 |         // Handles the special case when a filter that is not in the | 
 |         // switchable list (bilinear) is indicated at the frame level | 
 |         tmp_rd = rd_pick_inter_best_sub8x8_mode( | 
 |             cpi, x, &x->mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd, | 
 |             &rate, &rate_y, &distortion, &skippable, &total_sse, | 
 |             (int)this_rd_thresh, seg_mvs, | 
 | #if CONFIG_EXT_INTER | 
 |             compound_seg_newmvs, | 
 | #endif  // CONFIG_EXT_INTER | 
 |             bsi, 0, mi_row, mi_col); | 
 |         if (tmp_rd == INT64_MAX) continue; | 
 |       } else { | 
 |         total_sse = tmp_best_sse; | 
 |         rate = tmp_best_rate; | 
 |         rate_y = tmp_best_ratey; | 
 |         distortion = tmp_best_distortion; | 
 |         skippable = tmp_best_skippable; | 
 |         *mbmi = tmp_best_mbmode; | 
 |         for (i = 0; i < 4; i++) xd->mi[0]->bmi[i] = tmp_best_bmodes[i]; | 
 |       } | 
 |       // Add in the cost of the transform type | 
 |       if (!xd->lossless[mbmi->segment_id]) { | 
 |         int rate_tx_type = 0; | 
 | #if CONFIG_EXT_TX | 
 |         if (get_ext_tx_types(mbmi->tx_size, bsize, 1, cm->reduced_tx_set_used) > | 
 |             1) { | 
 |           const int eset = | 
 |               get_ext_tx_set(mbmi->tx_size, bsize, 1, cm->reduced_tx_set_used); | 
 |           rate_tx_type = | 
 |               cpi->inter_tx_type_costs[eset][mbmi->tx_size][mbmi->tx_type]; | 
 |         } | 
 | #else | 
 |         if (mbmi->tx_size < TX_32X32) { | 
 |           rate_tx_type = cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type]; | 
 |         } | 
 | #endif  // CONFIG_EXT_TX | 
 |         rate += rate_tx_type; | 
 |         rate_y += rate_tx_type; | 
 |       } | 
 |  | 
 |       rate2 += rate; | 
 |       distortion2 += distortion; | 
 |  | 
 |       if (cm->interp_filter == SWITCHABLE) | 
 |         rate2 += av1_get_switchable_rate(cpi, xd); | 
 |  | 
 |       if (!mode_excluded) | 
 |         mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE | 
 |                                   : cm->reference_mode == COMPOUND_REFERENCE; | 
 |  | 
 |       compmode_cost = av1_cost_bit(comp_mode_p, comp_pred); | 
 |  | 
 |       tmp_best_rdu = | 
 |           best_rd - AOMMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2), | 
 |                            RDCOST(x->rdmult, x->rddiv, 0, total_sse)); | 
 |  | 
 |       if (tmp_best_rdu > 0) { | 
 |         // If even the 'Y' rd value of split is higher than best so far | 
 |         // then dont bother looking at UV | 
 |         int is_cost_valid_uv; | 
 |         RD_STATS rd_stats_uv; | 
 |         av1_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, NULL, | 
 |                                         BLOCK_8X8); | 
 | #if CONFIG_VAR_TX | 
 |         is_cost_valid_uv = | 
 |             inter_block_uvrd(cpi, x, &rd_stats_uv, BLOCK_8X8, tmp_best_rdu); | 
 | #else | 
 |         is_cost_valid_uv = | 
 |             super_block_uvrd(cpi, x, &rd_stats_uv, BLOCK_8X8, tmp_best_rdu); | 
 | #endif  // CONFIG_VAR_TX | 
 |         rate_uv = rd_stats_uv.rate; | 
 |         distortion_uv = rd_stats_uv.dist; | 
 |         uv_skippable = rd_stats_uv.skip; | 
 |         uv_sse = rd_stats_uv.sse; | 
 |  | 
 |         if (!is_cost_valid_uv) continue; | 
 |         rate2 += rate_uv; | 
 |         distortion2 += distortion_uv; | 
 |         skippable = skippable && uv_skippable; | 
 |         total_sse += uv_sse; | 
 |       } else { | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost; | 
 |  | 
 |     // Estimate the reference frame signaling cost and add it | 
 |     // to the rolling cost variable. | 
 |     if (second_ref_frame > INTRA_FRAME) { | 
 |       rate2 += ref_costs_comp[ref_frame]; | 
 | #if CONFIG_EXT_REFS | 
 |       rate2 += ref_costs_comp[second_ref_frame]; | 
 | #endif  // CONFIG_EXT_REFS | 
 |     } else { | 
 |       rate2 += ref_costs_single[ref_frame]; | 
 |     } | 
 |  | 
 |     if (!disable_skip) { | 
 |       // Skip is never coded at the segment level for sub8x8 blocks and instead | 
 |       // always coded in the bitstream at the mode info level. | 
 |  | 
 |       if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) { | 
 |         if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) < | 
 |             RDCOST(x->rdmult, x->rddiv, 0, total_sse)) { | 
 |           // Add in the cost of the no skip flag. | 
 |           rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); | 
 |         } else { | 
 |           // FIXME(rbultje) make this work for splitmv also | 
 |           rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1); | 
 |           distortion2 = total_sse; | 
 |           assert(total_sse >= 0); | 
 |           rate2 -= (rate_y + rate_uv); | 
 |           rate_y = 0; | 
 |           rate_uv = 0; | 
 |           this_skip2 = 1; | 
 |         } | 
 |       } else { | 
 |         // Add in the cost of the no skip flag. | 
 |         rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); | 
 |       } | 
 |  | 
 |       // Calculate the final RD estimate for this mode. | 
 |       this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); | 
 |     } | 
 |  | 
 |     if (!disable_skip && ref_frame == INTRA_FRAME) { | 
 |       for (i = 0; i < REFERENCE_MODES; ++i) | 
 |         best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd); | 
 |     } | 
 |  | 
 |     // Did this mode help.. i.e. is it the new best mode | 
 |     if (this_rd < best_rd || x->skip) { | 
 |       if (!mode_excluded) { | 
 |         // Note index of best mode so far | 
 |         best_ref_index = ref_index; | 
 |  | 
 |         if (ref_frame == INTRA_FRAME) { | 
 |           /* required for left and above block mv */ | 
 |           mbmi->mv[0].as_int = 0; | 
 |         } | 
 |  | 
 |         rd_cost->rate = rate2; | 
 | #if CONFIG_SUPERTX | 
 |         *returnrate_nocoef = rate2 - rate_y - rate_uv; | 
 |         if (!disable_skip) | 
 |           *returnrate_nocoef -= | 
 |               av1_cost_bit(av1_get_skip_prob(cm, xd), this_skip2); | 
 |         *returnrate_nocoef -= av1_cost_bit(av1_get_intra_inter_prob(cm, xd), | 
 |                                            mbmi->ref_frame[0] != INTRA_FRAME); | 
 |         assert(*returnrate_nocoef > 0); | 
 | #endif  // CONFIG_SUPERTX | 
 |         rd_cost->dist = distortion2; | 
 |         rd_cost->rdcost = this_rd; | 
 |         best_rd = this_rd; | 
 |         best_yrd = | 
 |             best_rd - RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv); | 
 |         best_mbmode = *mbmi; | 
 |         best_skip2 = this_skip2; | 
 |  | 
 | #if CONFIG_VAR_TX | 
 |         for (i = 0; i < MAX_MB_PLANE; ++i) | 
 |           memset(ctx->blk_skip[i], 0, sizeof(uint8_t) * ctx->num_4x4_blk); | 
 | #endif  // CONFIG_VAR_TX | 
 |  | 
 |         for (i = 0; i < 4; i++) best_bmodes[i] = xd->mi[0]->bmi[i]; | 
 |       } | 
 |     } | 
 |  | 
 |     /* keep record of best compound/single-only prediction */ | 
 |     if (!disable_skip && ref_frame != INTRA_FRAME) { | 
 |       int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; | 
 |  | 
 |       if (cm->reference_mode == REFERENCE_MODE_SELECT) { | 
 |         single_rate = rate2 - compmode_cost; | 
 |         hybrid_rate = rate2; | 
 |       } else { | 
 |         single_rate = rate2; | 
 |         hybrid_rate = rate2 + compmode_cost; | 
 |       } | 
 |  | 
 |       single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); | 
 |       hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); | 
 |  | 
 |       if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE]) | 
 |         best_pred_rd[SINGLE_REFERENCE] = single_rd; | 
 |       else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE]) | 
 |         best_pred_rd[COMPOUND_REFERENCE] = single_rd; | 
 |  | 
 |       if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT]) | 
 |         best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; | 
 |     } | 
 |  | 
 |     if (x->skip && !comp_pred) break; | 
 |   } | 
 |  | 
 |   if (best_rd >= best_rd_so_far) { | 
 |     rd_cost->rate = INT_MAX; | 
 |     rd_cost->rdcost = INT64_MAX; | 
 | #if CONFIG_SUPERTX | 
 |     *returnrate_nocoef = INT_MAX; | 
 | #endif  // CONFIG_SUPERTX | 
 |     return; | 
 |   } | 
 |  | 
 |   if (best_rd == INT64_MAX) { | 
 |     rd_cost->rate = INT_MAX; | 
 |     rd_cost->dist = INT64_MAX; | 
 |     rd_cost->rdcost = INT64_MAX; | 
 | #if CONFIG_SUPERTX | 
 |     *returnrate_nocoef = INT_MAX; | 
 | #endif  // CONFIG_SUPERTX | 
 |     return; | 
 |   } | 
 |  | 
 | #if CONFIG_DUAL_FILTER | 
 |   assert((cm->interp_filter == SWITCHABLE) || | 
 |          (cm->interp_filter == best_mbmode.interp_filter[0]) || | 
 |          !is_inter_block(&best_mbmode)); | 
 | #else | 
 |   assert((cm->interp_filter == SWITCHABLE) || | 
 |          (cm->interp_filter == best_mbmode.interp_filter) || | 
 |          !is_inter_block(&best_mbmode)); | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |  | 
 |   av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, | 
 |                             sf->adaptive_rd_thresh, bsize, best_ref_index); | 
 |  | 
 |   // macroblock modes | 
 |   *mbmi = best_mbmode; | 
 | #if CONFIG_VAR_TX | 
 |   mbmi->inter_tx_size[0][0] = mbmi->tx_size; | 
 | #endif  // CONFIG_VAR_TX | 
 |  | 
 |   x->skip |= best_skip2; | 
 |   if (!is_inter_block(&best_mbmode)) { | 
 |     for (i = 0; i < 4; i++) xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode; | 
 |   } else { | 
 |     for (i = 0; i < 4; ++i) | 
 |       memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info)); | 
 |  | 
 | #if CONFIG_REF_MV | 
 |     mbmi->pred_mv[0].as_int = xd->mi[0]->bmi[3].pred_mv[0].as_int; | 
 |     mbmi->pred_mv[1].as_int = xd->mi[0]->bmi[3].pred_mv[1].as_int; | 
 | #endif  // CONFIG_REF_MV | 
 |     mbmi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int; | 
 |     mbmi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int; | 
 |   } | 
 |  | 
 | // Note: this section is needed since the mode may have been forced to ZEROMV | 
 | #if CONFIG_GLOBAL_MOTION | 
 |   if (mbmi->mode == ZEROMV | 
 | #if CONFIG_EXT_INTER | 
 |       || mbmi->mode == ZERO_ZEROMV | 
 | #endif  // CONFIG_EXT_INTER | 
 |       ) { | 
 |     if (is_nontrans_global_motion(xd)) { | 
 | #if CONFIG_DUAL_FILTER | 
 |       mbmi->interp_filter[0] = cm->interp_filter == SWITCHABLE | 
 |                                    ? EIGHTTAP_REGULAR | 
 |                                    : cm->interp_filter; | 
 |       mbmi->interp_filter[1] = cm->interp_filter == SWITCHABLE | 
 |                                    ? EIGHTTAP_REGULAR | 
 |                                    : cm->interp_filter; | 
 | #else | 
 |       mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR | 
 |                                                             : cm->interp_filter; | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 |  | 
 |   for (i = 0; i < REFERENCE_MODES; ++i) { | 
 |     if (best_pred_rd[i] == INT64_MAX) | 
 |       best_pred_diff[i] = INT_MIN; | 
 |     else | 
 |       best_pred_diff[i] = best_rd - best_pred_rd[i]; | 
 |   } | 
 |  | 
 |   store_coding_context(x, ctx, best_ref_index, best_pred_diff, 0); | 
 | } | 
 |  | 
 | #if CONFIG_MOTION_VAR | 
 | // This function has a structure similar to av1_build_obmc_inter_prediction | 
 | // | 
 | // The OBMC predictor is computed as: | 
 | // | 
 | //  PObmc(x,y) = | 
 | //    AOM_BLEND_A64(Mh(x), | 
 | //                  AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)), | 
 | //                  PLeft(x, y)) | 
 | // | 
 | // Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate | 
 | // rounding, this can be written as: | 
 | // | 
 | //  AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) = | 
 | //    Mh(x) * Mv(y) * P(x,y) + | 
 | //      Mh(x) * Cv(y) * Pabove(x,y) + | 
 | //      AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) | 
 | // | 
 | // Where : | 
 | // | 
 | //  Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y) | 
 | //  Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y) | 
 | // | 
 | // This function computes 'wsrc' and 'mask' as: | 
 | // | 
 | //  wsrc(x, y) = | 
 | //    AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) - | 
 | //      Mh(x) * Cv(y) * Pabove(x,y) + | 
 | //      AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) | 
 | // | 
 | //  mask(x, y) = Mh(x) * Mv(y) | 
 | // | 
 | // These can then be used to efficiently approximate the error for any | 
 | // predictor P in the context of the provided neighbouring predictors by | 
 | // computing: | 
 | // | 
 | //  error(x, y) = | 
 | //    wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2) | 
 | // | 
 | static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, | 
 |                                       const MACROBLOCKD *xd, int mi_row, | 
 |                                       int mi_col, const uint8_t *above, | 
 |                                       int above_stride, const uint8_t *left, | 
 |                                       int left_stride) { | 
 |   const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; | 
 |   int row, col, i; | 
 |   const int bw = xd->n8_w << MI_SIZE_LOG2; | 
 |   const int bh = xd->n8_h << MI_SIZE_LOG2; | 
 |   int32_t *mask_buf = x->mask_buf; | 
 |   int32_t *wsrc_buf = x->wsrc_buf; | 
 |   const int wsrc_stride = bw; | 
 |   const int mask_stride = bw; | 
 |   const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; | 
 | #else | 
 |   const int is_hbd = 0; | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |  | 
 |   // plane 0 should not be subsampled | 
 |   assert(xd->plane[0].subsampling_x == 0); | 
 |   assert(xd->plane[0].subsampling_y == 0); | 
 |  | 
 |   av1_zero_array(wsrc_buf, bw * bh); | 
 |   for (i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA; | 
 |  | 
 |   // handle above row | 
 |   if (xd->up_available) { | 
 |     const int overlap = num_4x4_blocks_high_lookup[bsize] * 2; | 
 |     const int miw = AOMMIN(xd->n8_w, cm->mi_cols - mi_col); | 
 |     const int mi_row_offset = -1; | 
 |     const uint8_t *const mask1d = av1_get_obmc_mask(overlap); | 
 |     const int neighbor_limit = max_neighbor_obmc[b_width_log2_lookup[bsize]]; | 
 |     int neighbor_count = 0; | 
 |  | 
 |     assert(miw > 0); | 
 |  | 
 |     i = 0; | 
 |     do {  // for each mi in the above row | 
 |       const int mi_col_offset = i; | 
 |       const MB_MODE_INFO *const above_mbmi = | 
 |           &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; | 
 |       const BLOCK_SIZE a_bsize = above_mbmi->sb_type; | 
 |       const int mi_step = AOMMIN(xd->n8_w, num_8x8_blocks_wide_lookup[a_bsize]); | 
 |       const int neighbor_bw = mi_step * MI_SIZE; | 
 |  | 
 |       if (is_neighbor_overlappable(above_mbmi)) { | 
 |         if (!CONFIG_CB4X4 && (a_bsize == BLOCK_4X4 || a_bsize == BLOCK_4X8)) | 
 |           neighbor_count += 2; | 
 |         else | 
 |           neighbor_count++; | 
 |         if (neighbor_count > neighbor_limit) break; | 
 |  | 
 |         const int tmp_stride = above_stride; | 
 |         int32_t *wsrc = wsrc_buf + (i * MI_SIZE); | 
 |         int32_t *mask = mask_buf + (i * MI_SIZE); | 
 |  | 
 |         if (!is_hbd) { | 
 |           const uint8_t *tmp = above; | 
 |  | 
 |           for (row = 0; row < overlap; ++row) { | 
 |             const uint8_t m0 = mask1d[row]; | 
 |             const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; | 
 |             for (col = 0; col < neighbor_bw; ++col) { | 
 |               wsrc[col] = m1 * tmp[col]; | 
 |               mask[col] = m0; | 
 |             } | 
 |             wsrc += wsrc_stride; | 
 |             mask += mask_stride; | 
 |             tmp += tmp_stride; | 
 |           } | 
 | #if CONFIG_HIGHBITDEPTH | 
 |         } else { | 
 |           const uint16_t *tmp = CONVERT_TO_SHORTPTR(above); | 
 |  | 
 |           for (row = 0; row < overlap; ++row) { | 
 |             const uint8_t m0 = mask1d[row]; | 
 |             const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; | 
 |             for (col = 0; col < neighbor_bw; ++col) { | 
 |               wsrc[col] = m1 * tmp[col]; | 
 |               mask[col] = m0; | 
 |             } | 
 |             wsrc += wsrc_stride; | 
 |             mask += mask_stride; | 
 |             tmp += tmp_stride; | 
 |           } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |         } | 
 |       } | 
 |  | 
 |       above += neighbor_bw; | 
 |       i += mi_step; | 
 |     } while (i < miw); | 
 |   } | 
 |  | 
 |   for (i = 0; i < bw * bh; ++i) { | 
 |     wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; | 
 |     mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; | 
 |   } | 
 |  | 
 |   // handle left column | 
 |   if (xd->left_available) { | 
 |     const int overlap = num_4x4_blocks_wide_lookup[bsize] * 2; | 
 |     const int mih = AOMMIN(xd->n8_h, cm->mi_rows - mi_row); | 
 |     const int mi_col_offset = -1; | 
 |     const uint8_t *const mask1d = av1_get_obmc_mask(overlap); | 
 |     const int neighbor_limit = max_neighbor_obmc[b_height_log2_lookup[bsize]]; | 
 |     int neighbor_count = 0; | 
 |  | 
 |     assert(mih > 0); | 
 |  | 
 |     i = 0; | 
 |     do {  // for each mi in the left column | 
 |       const int mi_row_offset = i; | 
 |       const MB_MODE_INFO *const left_mbmi = | 
 |           &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; | 
 |       const BLOCK_SIZE l_bsize = left_mbmi->sb_type; | 
 |       const int mi_step = AOMMIN(xd->n8_h, num_8x8_blocks_high_lookup[l_bsize]); | 
 |       const int neighbor_bh = mi_step * MI_SIZE; | 
 |  | 
 |       if (is_neighbor_overlappable(left_mbmi)) { | 
 |         if (!CONFIG_CB4X4 && (l_bsize == BLOCK_4X4 || l_bsize == BLOCK_8X4)) | 
 |           neighbor_count += 2; | 
 |         else | 
 |           neighbor_count++; | 
 |         if (neighbor_count > neighbor_limit) break; | 
 |  | 
 |         const int tmp_stride = left_stride; | 
 |         int32_t *wsrc = wsrc_buf + (i * MI_SIZE * wsrc_stride); | 
 |         int32_t *mask = mask_buf + (i * MI_SIZE * mask_stride); | 
 |  | 
 |         if (!is_hbd) { | 
 |           const uint8_t *tmp = left; | 
 |  | 
 |           for (row = 0; row < neighbor_bh; ++row) { | 
 |             for (col = 0; col < overlap; ++col) { | 
 |               const uint8_t m0 = mask1d[col]; | 
 |               const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; | 
 |               wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + | 
 |                           (tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1; | 
 |               mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; | 
 |             } | 
 |             wsrc += wsrc_stride; | 
 |             mask += mask_stride; | 
 |             tmp += tmp_stride; | 
 |           } | 
 | #if CONFIG_HIGHBITDEPTH | 
 |         } else { | 
 |           const uint16_t *tmp = CONVERT_TO_SHORTPTR(left); | 
 |  | 
 |           for (row = 0; row < neighbor_bh; ++row) { | 
 |             for (col = 0; col < overlap; ++col) { | 
 |               const uint8_t m0 = mask1d[col]; | 
 |               const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; | 
 |               wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + | 
 |                           (tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1; | 
 |               mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; | 
 |             } | 
 |             wsrc += wsrc_stride; | 
 |             mask += mask_stride; | 
 |             tmp += tmp_stride; | 
 |           } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |         } | 
 |       } | 
 |  | 
 |       left += neighbor_bh * left_stride; | 
 |       i += mi_step; | 
 |     } while (i < mih); | 
 |   } | 
 |  | 
 |   if (!is_hbd) { | 
 |     const uint8_t *src = x->plane[0].src.buf; | 
 |  | 
 |     for (row = 0; row < bh; ++row) { | 
 |       for (col = 0; col < bw; ++col) { | 
 |         wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; | 
 |       } | 
 |       wsrc_buf += wsrc_stride; | 
 |       src += x->plane[0].src.stride; | 
 |     } | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   } else { | 
 |     const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf); | 
 |  | 
 |     for (row = 0; row < bh; ++row) { | 
 |       for (col = 0; col < bw; ++col) { | 
 |         wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; | 
 |       } | 
 |       wsrc_buf += wsrc_stride; | 
 |       src += x->plane[0].src.stride; | 
 |     } | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_NCOBMC | 
 | void av1_check_ncobmc_rd(const struct AV1_COMP *cpi, struct macroblock *x, | 
 |                          int mi_row, int mi_col) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   MB_MODE_INFO backup_mbmi; | 
 |   BLOCK_SIZE bsize = mbmi->sb_type; | 
 |   int ref, skip_blk, backup_skip = x->skip; | 
 |   int64_t rd_causal; | 
 |   RD_STATS rd_stats_y, rd_stats_uv; | 
 |   int rate_skip0 = av1_cost_bit(av1_get_skip_prob(cm, xd), 0); | 
 |   int rate_skip1 = av1_cost_bit(av1_get_skip_prob(cm, xd), 1); | 
 |  | 
 |   // Recompute the best causal predictor and rd | 
 |   mbmi->motion_mode = SIMPLE_TRANSLATION; | 
 |   set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); | 
 |   for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { | 
 |     YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]); | 
 |     assert(cfg != NULL); | 
 |     av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, | 
 |                          &xd->block_refs[ref]->sf); | 
 |   } | 
 |   av1_setup_dst_planes(x->e_mbd.plane, get_frame_new_buffer(&cpi->common), | 
 |                        mi_row, mi_col); | 
 |  | 
 |   av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, bsize); | 
 |  | 
 |   av1_subtract_plane(x, bsize, 0); | 
 |   super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); | 
 |   super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); | 
 |   assert(rd_stats_y.rate != INT_MAX && rd_stats_uv.rate != INT_MAX); | 
 |   if (rd_stats_y.skip && rd_stats_uv.skip) { | 
 |     rd_stats_y.rate = rate_skip1; | 
 |     rd_stats_uv.rate = 0; | 
 |     rd_stats_y.dist = rd_stats_y.sse; | 
 |     rd_stats_uv.dist = rd_stats_uv.sse; | 
 |     skip_blk = 0; | 
 |   } else if (RDCOST(x->rdmult, x->rddiv, | 
 |                     (rd_stats_y.rate + rd_stats_uv.rate + rate_skip0), | 
 |                     (rd_stats_y.dist + rd_stats_uv.dist)) > | 
 |              RDCOST(x->rdmult, x->rddiv, rate_skip1, | 
 |                     (rd_stats_y.sse + rd_stats_uv.sse))) { | 
 |     rd_stats_y.rate = rate_skip1; | 
 |     rd_stats_uv.rate = 0; | 
 |     rd_stats_y.dist = rd_stats_y.sse; | 
 |     rd_stats_uv.dist = rd_stats_uv.sse; | 
 |     skip_blk = 1; | 
 |   } else { | 
 |     rd_stats_y.rate += rate_skip0; | 
 |     skip_blk = 0; | 
 |   } | 
 |   backup_skip = skip_blk; | 
 |   backup_mbmi = *mbmi; | 
 |   rd_causal = RDCOST(x->rdmult, x->rddiv, (rd_stats_y.rate + rd_stats_uv.rate), | 
 |                      (rd_stats_y.dist + rd_stats_uv.dist)); | 
 |   rd_causal += RDCOST(x->rdmult, x->rddiv, | 
 |                       av1_cost_bit(cm->fc->motion_mode_prob[bsize][0], 0), 0); | 
 |  | 
 |   // Check non-causal mode | 
 |   mbmi->motion_mode = OBMC_CAUSAL; | 
 |   av1_build_ncobmc_inter_predictors_sb(cm, xd, mi_row, mi_col); | 
 |  | 
 |   av1_subtract_plane(x, bsize, 0); | 
 |   super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); | 
 |   super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); | 
 |   assert(rd_stats_y.rate != INT_MAX && rd_stats_uv.rate != INT_MAX); | 
 |   if (rd_stats_y.skip && rd_stats_uv.skip) { | 
 |     rd_stats_y.rate = rate_skip1; | 
 |     rd_stats_uv.rate = 0; | 
 |     rd_stats_y.dist = rd_stats_y.sse; | 
 |     rd_stats_uv.dist = rd_stats_uv.sse; | 
 |     skip_blk = 0; | 
 |   } else if (RDCOST(x->rdmult, x->rddiv, | 
 |                     (rd_stats_y.rate + rd_stats_uv.rate + rate_skip0), | 
 |                     (rd_stats_y.dist + rd_stats_uv.dist)) > | 
 |              RDCOST(x->rdmult, x->rddiv, rate_skip1, | 
 |                     (rd_stats_y.sse + rd_stats_uv.sse))) { | 
 |     rd_stats_y.rate = rate_skip1; | 
 |     rd_stats_uv.rate = 0; | 
 |     rd_stats_y.dist = rd_stats_y.sse; | 
 |     rd_stats_uv.dist = rd_stats_uv.sse; | 
 |     skip_blk = 1; | 
 |   } else { | 
 |     rd_stats_y.rate += rate_skip0; | 
 |     skip_blk = 0; | 
 |   } | 
 |  | 
 |   if (rd_causal > | 
 |       RDCOST(x->rdmult, x->rddiv, | 
 |              rd_stats_y.rate + rd_stats_uv.rate + | 
 |                  av1_cost_bit(cm->fc->motion_mode_prob[bsize][0], 1), | 
 |              (rd_stats_y.dist + rd_stats_uv.dist))) { | 
 |     x->skip = skip_blk; | 
 |   } else { | 
 |     *mbmi = backup_mbmi; | 
 |     x->skip = backup_skip; | 
 |   } | 
 | } | 
 | #endif  // CONFIG_NCOBMC | 
 | #endif  // CONFIG_MOTION_VAR |