blob: 13f955d5077a48f46223f1da4a7e34e1635ba0c3 [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include "./vpx_scale_rtcd.h"
#include "vpx_dsp/psnr.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vp10/common/onyxc_int.h"
#include "vp10/common/quant_common.h"
#include "vp10/encoder/encoder.h"
#include "vp10/encoder/quantize.h"
#include "vp10/encoder/picklpf.h"
#include "vp10/encoder/pickrst.h"
static int64_t try_restoration_frame(const YV12_BUFFER_CONFIG *sd,
VP10_COMP *const cpi,
RestorationInfo *rsi,
int partial_frame) {
VP10_COMMON *const cm = &cpi->common;
int64_t filt_err;
vp10_loop_restoration_frame(cm->frame_to_show, cm,
rsi, 1, partial_frame);
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
filt_err = vpx_highbd_get_y_sse(sd, cm->frame_to_show);
} else {
filt_err = vpx_get_y_sse(sd, cm->frame_to_show);
}
#else
filt_err = vpx_get_y_sse(sd, cm->frame_to_show);
#endif // CONFIG_VP9_HIGHBITDEPTH
// Re-instate the unfiltered frame
vpx_yv12_copy_y(&cpi->last_frame_db, cm->frame_to_show);
return filt_err;
}
static int search_bilateral_level(const YV12_BUFFER_CONFIG *sd,
VP10_COMP *cpi,
int filter_level, int partial_frame,
double *best_cost_ret) {
VP10_COMMON *const cm = &cpi->common;
int i, restoration_best;
int64_t err;
double best_cost;
double cost;
const int restoration_level_bits = vp10_restoration_level_bits(&cpi->common);
const int restoration_levels = 1 << restoration_level_bits;
MACROBLOCK *x = &cpi->td.mb;
int bits;
RestorationInfo rsi;
// Make a copy of the unfiltered / processed recon buffer
vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
vp10_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
1, partial_frame);
vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);
restoration_best = -1;
rsi.restoration_type = RESTORE_NONE;
err = try_restoration_frame(sd, cpi, &rsi, partial_frame);
bits = 0;
best_cost = RDCOST_DBL(x->rdmult, x->rddiv, (bits << 2), err);
for (i = 0; i < restoration_levels; ++i) {
rsi.restoration_type = RESTORE_BILATERAL;
rsi.restoration_level = i;
err = try_restoration_frame(sd, cpi, &rsi, partial_frame);
// Normally the rate is rate in bits * 256 and dist is sum sq err * 64
// when RDCOST is used. However below we just scale both in the correct
// ratios appropriately but not exactly by these values.
bits = restoration_level_bits;
cost = RDCOST_DBL(x->rdmult, x->rddiv, (bits << 2), err);
if (cost < best_cost) {
restoration_best = i;
best_cost = cost;
}
}
if (best_cost_ret) *best_cost_ret = best_cost;
vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
return restoration_best;
}
static int search_filter_bilateral_level(const YV12_BUFFER_CONFIG *sd,
VP10_COMP *cpi,
int partial_frame,
int *restoration_level,
double *best_cost_ret) {
const VP10_COMMON *const cm = &cpi->common;
const struct loopfilter *const lf = &cm->lf;
const int min_filter_level = 0;
const int max_filter_level = vp10_get_max_filter_level(cpi);
int filt_direction = 0;
int filt_best, restoration_best;
double best_err;
int i;
int bilateral_lev;
// Start the search at the previous frame filter level unless it is now out of
// range.
int filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level);
int filter_step = filt_mid < 16 ? 4 : filt_mid / 4;
double ss_err[MAX_LOOP_FILTER + 1];
// Set each entry to -1
for (i = 0; i <= MAX_LOOP_FILTER; ++i)
ss_err[i] = -1.0;
bilateral_lev = search_bilateral_level(sd, cpi, filt_mid,
partial_frame, &best_err);
filt_best = filt_mid;
restoration_best = bilateral_lev;
ss_err[filt_mid] = best_err;
while (filter_step > 0) {
const int filt_high = VPXMIN(filt_mid + filter_step, max_filter_level);
const int filt_low = VPXMAX(filt_mid - filter_step, min_filter_level);
// Bias against raising loop filter in favor of lowering it.
double bias = (best_err / (1 << (15 - (filt_mid / 8)))) * filter_step;
if ((cpi->oxcf.pass == 2) && (cpi->twopass.section_intra_rating < 20))
bias = (bias * cpi->twopass.section_intra_rating) / 20;
// yx, bias less for large block size
if (cm->tx_mode != ONLY_4X4)
bias /= 2;
if (filt_direction <= 0 && filt_low != filt_mid) {
// Get Low filter error score
if (ss_err[filt_low] < 0) {
bilateral_lev = search_bilateral_level(sd, cpi, filt_low,
partial_frame, &ss_err[filt_low]);
}
// If value is close to the best so far then bias towards a lower loop
// filter value.
if ((ss_err[filt_low] - bias) < best_err) {
// Was it actually better than the previous best?
if (ss_err[filt_low] < best_err) {
best_err = ss_err[filt_low];
}
filt_best = filt_low;
restoration_best = bilateral_lev;
}
}
// Now look at filt_high
if (filt_direction >= 0 && filt_high != filt_mid) {
if (ss_err[filt_high] < 0) {
bilateral_lev = search_bilateral_level(
sd, cpi, filt_high, partial_frame, &ss_err[filt_high]);
}
// Was it better than the previous best?
if (ss_err[filt_high] < (best_err - bias)) {
best_err = ss_err[filt_high];
filt_best = filt_high;
restoration_best = bilateral_lev;
}
}
// Half the step distance if the best filter value was the same as last time
if (filt_best == filt_mid) {
filter_step /= 2;
filt_direction = 0;
} else {
filt_direction = (filt_best < filt_mid) ? -1 : 1;
filt_mid = filt_best;
}
}
*restoration_level = restoration_best;
if (best_cost_ret) *best_cost_ret = best_err;
return filt_best;
}
static double find_average(uint8_t *src, int width, int height, int stride) {
uint64_t sum = 0;
double avg = 0;
int i, j;
for (i = 0; i < height; i++)
for (j = 0; j < width; j++)
sum += src[i * stride + j];
avg = (double)sum / (height * width);
return avg;
}
static void compute_stats(uint8_t *dgd, uint8_t *src, int width, int height,
int dgd_stride, int src_stride,
double *M, double *H) {
int i, j, k, l;
double Y[RESTORATION_WIN2];
const double avg = find_average(dgd, width, height, dgd_stride);
memset(M, 0, sizeof(*M) * RESTORATION_WIN2);
memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2);
for (i = RESTORATION_HALFWIN; i < height - RESTORATION_HALFWIN; i++) {
for (j = RESTORATION_HALFWIN; j < width - RESTORATION_HALFWIN; j++) {
const double X = (double)src[i * src_stride + j] - avg;
int idx = 0;
for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) {
for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) {
Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
idx++;
}
}
for (k = 0; k < RESTORATION_WIN2; ++k) {
M[k] += Y[k] * X;
H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k];
for (l = k + 1; l < RESTORATION_WIN2; ++l) {
double value = Y[k] * Y[l];
H[k * RESTORATION_WIN2 + l] += value;
H[l * RESTORATION_WIN2 + k] += value;
}
}
}
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static double find_average_highbd(uint16_t *src,
int width, int height, int stride) {
uint64_t sum = 0;
double avg = 0;
int i, j;
for (i = 0; i < height; i++)
for (j = 0; j < width; j++)
sum += src[i * stride + j];
avg = (double)sum / (height * width);
return avg;
}
static void compute_stats_highbd(
uint8_t *dgd8, uint8_t *src8, int width, int height,
int dgd_stride, int src_stride, double *M, double *H) {
int i, j, k, l;
double Y[RESTORATION_WIN2];
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
const double avg = find_average_highbd(dgd, width, height, dgd_stride);
memset(M, 0, sizeof(*M) * RESTORATION_WIN2);
memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2);
for (i = RESTORATION_HALFWIN; i < height - RESTORATION_HALFWIN; i++) {
for (j = RESTORATION_HALFWIN; j < width - RESTORATION_HALFWIN; j++) {
const double X = (double)src[i * src_stride + j] - avg;
int idx = 0;
for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) {
for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) {
Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
idx++;
}
}
for (k = 0; k < RESTORATION_WIN2; ++k) {
M[k] += Y[k] * X;
H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k];
for (l = k + 1; l < RESTORATION_WIN2; ++l) {
double value = Y[k] * Y[l];
H[k * RESTORATION_WIN2 + l] += value;
H[l * RESTORATION_WIN2 + k] += value;
}
}
}
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
// Solves Ax = b, where x and b are column vectors
static int linsolve(int n, double *A, int stride, double *b, double *x) {
int i, j, k;
double c;
// Partial pivoting
for (i = n - 1; i > 0; i--) {
if (A[(i - 1) * stride] < A[i * stride]) {
for (j = 0; j < n; j++) {
c = A[i * stride + j];
A[i * stride + j] = A[(i - 1) * stride + j];
A[(i - 1) * stride + j] = c;
}
c = b[i];
b[i] = b[i - 1];
b[i - 1] = c;
}
}
// Forward elimination
for (k = 0; k < n - 1; k++) {
for (i = k; i < n - 1; i++) {
c = A[(i + 1) * stride + k] / A[k * stride + k];
for (j = 0; j < n; j++)
A[(i + 1) * stride + j] -= c * A[k * stride + j];
b[i + 1] -= c * b[k];
}
}
// Backward substitution
for (i = n - 1; i >= 0; i--) {
if (fabs(A[i * stride + i]) < 1e-10)
return 0;
c = 0;
for (j = i + 1; j <= n - 1; j++)
c += A[i * stride + j] * x[j];
x[i] = (b[i] - c) / A[i * stride + i];
}
return 1;
}
static INLINE int wrap_index(int i) {
return (i >= RESTORATION_HALFWIN1 ? RESTORATION_WIN - 1 - i : i);
}
static void normalize_copy(double *v, int n) {
double s = 0.0;
int i;
for (i = 0; i < n; ++i)
s += v[i];
s = 1.0 / s;
for (i = 0; i < n; ++i) v[i] *= s;
}
// Fix vector b, update vector a
static void update_a_sep_sym(double **Mc, double **Hc, double *a, double *b) {
int i, j;
double S[RESTORATION_WIN];
double A[RESTORATION_WIN], B[RESTORATION_WIN2];
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
for (i = 0; i < RESTORATION_WIN; i ++) {
int j;
for (j = 0; j < RESTORATION_WIN; ++j) {
const int jj = wrap_index(j);
A[jj] += Mc[i][j] * b[i];
}
}
for (i = 0; i < RESTORATION_WIN; i ++) {
for (j = 0; j < RESTORATION_WIN; j ++) {
int k, l;
for (k = 0; k < RESTORATION_WIN; ++k)
for (l = 0; l < RESTORATION_WIN; ++l) {
const int kk = wrap_index(k);
const int ll = wrap_index(l);
B[ll * RESTORATION_HALFWIN1 + kk] +=
Hc[j * RESTORATION_WIN + i][k * RESTORATION_WIN2 + l] *
b[i] * b[j];
}
}
}
if (linsolve(RESTORATION_HALFWIN1, B, RESTORATION_HALFWIN1, A, S)) {
for (i = 0; i < RESTORATION_WIN; ++i) {
const int ii = wrap_index(i);
a[i] = S[ii];
}
normalize_copy(a, RESTORATION_WIN);
}
}
// Fix vector a, update vector b
static void update_b_sep_sym(double **Mc, double **Hc, double *a, double *b) {
int i, j;
double S[RESTORATION_WIN];
double A[RESTORATION_WIN], B[RESTORATION_WIN2];
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
for (i = 0; i < RESTORATION_WIN; i ++) {
int j;
const int ii = wrap_index(i);
for (j = 0; j < RESTORATION_WIN; j ++)
A[ii] += Mc[i][j] * a[j];
}
for (i = 0; i < RESTORATION_WIN; i++) {
for (j = 0; j < RESTORATION_WIN; j++) {
const int ii = wrap_index(i);
const int jj = wrap_index(j);
int k, l;
for (k = 0; k < RESTORATION_WIN; ++k)
for (l = 0; l < RESTORATION_WIN; ++l)
B[jj * RESTORATION_HALFWIN1 + ii] +=
Hc[i * RESTORATION_WIN + j][k * RESTORATION_WIN2 + l] *
a[k] * a[l];
}
}
if (linsolve(RESTORATION_HALFWIN1, B, RESTORATION_HALFWIN1, A, S)) {
for (i = 0; i < RESTORATION_WIN; ++i) {
const int ii = wrap_index(i);
b[i] = S[ii];
}
normalize_copy(b, RESTORATION_WIN);
}
}
static int wiener_decompose_sep_sym(double *M, double *H,
double *a, double *b) {
static const double init_filt[RESTORATION_WIN] = {
0.035623, -0.127154, 0.211436, 0.760190, 0.211436, -0.127154, 0.035623,
};
int i, j, iter;
double *Hc[RESTORATION_WIN2];
double *Mc[RESTORATION_WIN];
for (i = 0; i < RESTORATION_WIN; i++) {
Mc[i] = M + i * RESTORATION_WIN;
for (j = 0; j < RESTORATION_WIN; j++) {
Hc[i * RESTORATION_WIN + j] =
H + i * RESTORATION_WIN * RESTORATION_WIN2 + j * RESTORATION_WIN;
}
}
memcpy(a, init_filt, sizeof(*a) * RESTORATION_WIN);
memcpy(b, init_filt, sizeof(*b) * RESTORATION_WIN);
iter = 1;
while (iter < 10) {
update_a_sep_sym(Mc, Hc, a, b);
update_b_sep_sym(Mc, Hc, a, b);
iter++;
}
return 1;
}
#define CLIP(x, lo, hi) ((x) < (lo) ? (lo) : (x) > (hi) ? (hi) : (x))
#define RINT(x) ((x) < 0 ? (int)((x) - 0.5) : (int)((x) + 0.5))
static void quantize_sym_filter(double *f, int *fi) {
int i;
for (i = 0; i < RESTORATION_HALFWIN; ++i) {
fi[i] = RINT(f[i] * RESTORATION_FILT_STEP);
}
// Specialize for 7-tap filter
fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV);
fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
}
static int search_wiener_filter(const YV12_BUFFER_CONFIG *src,
VP10_COMP *cpi,
int filter_level,
int partial_frame,
int *vfilter, int *hfilter,
double *best_cost_ret) {
VP10_COMMON *const cm = &cpi->common;
RestorationInfo rsi;
int64_t err;
int bits;
double cost_wiener, cost_norestore;
MACROBLOCK *x = &cpi->td.mb;
double M[RESTORATION_WIN2];
double H[RESTORATION_WIN2 * RESTORATION_WIN2];
double vfilterd[RESTORATION_WIN], hfilterd[RESTORATION_WIN];
const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show;
const int width = cm->width;
const int height = cm->height;
const int src_stride = src->y_stride;
const int dgd_stride = dgd->y_stride;
assert(width == dgd->y_crop_width);
assert(height == dgd->y_crop_height);
assert(width == src->y_crop_width);
assert(height == src->y_crop_height);
// Make a copy of the unfiltered / processed recon buffer
vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
vp10_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
1, partial_frame);
vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);
rsi.restoration_type = RESTORE_NONE;
err = try_restoration_frame(src, cpi, &rsi, partial_frame);
bits = 0;
cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits << 2), err);
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth)
compute_stats_highbd(dgd->y_buffer, src->y_buffer, width, height,
dgd_stride, src_stride, M, H);
else
#endif // CONFIG_VP9_HIGHBITDEPTH
compute_stats(dgd->y_buffer, src->y_buffer, width, height,
dgd_stride, src_stride, M, H);
if (!wiener_decompose_sep_sym(M, H, vfilterd, hfilterd)) {
*best_cost_ret = DBL_MAX;
return 0;
}
quantize_sym_filter(vfilterd, vfilter);
quantize_sym_filter(hfilterd, hfilter);
rsi.restoration_type = RESTORE_WIENER;
memcpy(rsi.vfilter, vfilter, sizeof(rsi.vfilter));
memcpy(rsi.hfilter, hfilter, sizeof(rsi.hfilter));
err = try_restoration_frame(src, cpi, &rsi, partial_frame);
bits = WIENER_FILT_BITS;
cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv, (bits << 2), err);
vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
if (cost_wiener < cost_norestore) {
if (best_cost_ret) *best_cost_ret = cost_wiener;
return 1;
} else {
if (best_cost_ret) *best_cost_ret = cost_norestore;
return 0;
}
}
void vp10_pick_filter_restoration(
const YV12_BUFFER_CONFIG *sd, VP10_COMP *cpi, LPF_PICK_METHOD method) {
VP10_COMMON *const cm = &cpi->common;
struct loopfilter *const lf = &cm->lf;
int wiener_success = 0;
double cost_bilateral = DBL_MAX;
double cost_wiener = DBL_MAX;
double cost_norestore = DBL_MAX;
lf->sharpness_level =
cm->frame_type == KEY_FRAME ? 0 : cpi->oxcf.sharpness;
if (method == LPF_PICK_MINIMAL_LPF && lf->filter_level) {
lf->filter_level = 0;
} else if (method >= LPF_PICK_FROM_Q) {
const int min_filter_level = 0;
const int max_filter_level = vp10_get_max_filter_level(cpi);
const int q = vp10_ac_quant(cm->base_qindex, 0, cm->bit_depth);
// These values were determined by linear fitting the result of the
// searched level, filt_guess = q * 0.316206 + 3.87252
#if CONFIG_VP9_HIGHBITDEPTH
int filt_guess;
switch (cm->bit_depth) {
case VPX_BITS_8:
filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
break;
case VPX_BITS_10:
filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20);
break;
case VPX_BITS_12:
filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22);
break;
default:
assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 "
"or VPX_BITS_12");
return;
}
#else
int filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
#endif // CONFIG_VP9_HIGHBITDEPTH
if (cm->frame_type == KEY_FRAME)
filt_guess -= 4;
lf->filter_level = clamp(filt_guess, min_filter_level, max_filter_level);
cm->rst_info.restoration_level = search_bilateral_level(
sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
&cost_bilateral);
wiener_success = search_wiener_filter(
sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
cm->rst_info.vfilter, cm->rst_info.hfilter, &cost_wiener);
if (cost_bilateral < cost_wiener) {
if (cm->rst_info.restoration_level != -1)
cm->rst_info.restoration_type = RESTORE_BILATERAL;
else
cm->rst_info.restoration_type = RESTORE_NONE;
} else {
if (wiener_success)
cm->rst_info.restoration_type = RESTORE_WIENER;
else
cm->rst_info.restoration_type = RESTORE_NONE;
}
} else {
int blf_filter_level = -1;
blf_filter_level = search_filter_bilateral_level(
sd, cpi, method == LPF_PICK_FROM_SUBIMAGE,
&cm->rst_info.restoration_level, &cost_bilateral);
lf->filter_level = vp10_search_filter_level(
sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, &cost_norestore);
wiener_success = search_wiener_filter(
sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
cm->rst_info.vfilter, cm->rst_info.hfilter, &cost_wiener);
if (cost_bilateral < cost_wiener) {
lf->filter_level = blf_filter_level;
if (cm->rst_info.restoration_level != -1)
cm->rst_info.restoration_type = RESTORE_BILATERAL;
else
cm->rst_info.restoration_type = RESTORE_NONE;
} else {
if (wiener_success)
cm->rst_info.restoration_type = RESTORE_WIENER;
else
cm->rst_info.restoration_type = RESTORE_NONE;
}
// printf("[%d] Costs %g %g (%d) %g (%d)\n", cm->rst_info.restoration_type,
// cost_norestore, cost_bilateral, lf->filter_level, cost_wiener,
// wiener_success);
}
}