| /* | 
 |  * Copyright (c) 2019, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <float.h> | 
 |  | 
 | #include "config/aom_dsp_rtcd.h" | 
 |  | 
 | #include "aom_ports/system_state.h" | 
 |  | 
 | #include "av1/common/enums.h" | 
 | #include "av1/common/reconinter.h" | 
 |  | 
 | #if !CONFIG_REALTIME_ONLY | 
 | #include "av1/encoder/cnn.h" | 
 | #include "av1/encoder/partition_model_weights.h" | 
 | #include "av1/encoder/partition_cnn_weights.h" | 
 | #endif | 
 | #include "av1/encoder/encoder.h" | 
 |  | 
 | #include "av1/encoder/motion_search_facade.h" | 
 | #include "av1/encoder/partition_strategy.h" | 
 | #include "av1/encoder/rdopt.h" | 
 |  | 
 | #if !CONFIG_REALTIME_ONLY | 
 | static AOM_INLINE void simple_motion_search_prune_part_features( | 
 |     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
 |     int mi_row, int mi_col, BLOCK_SIZE bsize, float *features, | 
 |     int features_to_get); | 
 | #endif | 
 |  | 
 | static INLINE int convert_bsize_to_idx(BLOCK_SIZE bsize) { | 
 |   switch (bsize) { | 
 |     case BLOCK_128X128: return 0; | 
 |     case BLOCK_64X64: return 1; | 
 |     case BLOCK_32X32: return 2; | 
 |     case BLOCK_16X16: return 3; | 
 |     case BLOCK_8X8: return 4; | 
 |     default: assert(0 && "Invalid bsize"); return -1; | 
 |   } | 
 | } | 
 |  | 
 | #if !CONFIG_REALTIME_ONLY | 
 | // TODO(chiyotsai@google.com): This is very much a work in progress. We still | 
 | // need to the following: | 
 | //   -- add support for hdres | 
 | //   -- add support for pruning rectangular partitions | 
 | //   -- use reconstructed pixels instead of source pixels for padding | 
 | //   -- use chroma pixels in addition to luma pixels | 
 | void av1_intra_mode_cnn_partition(const AV1_COMMON *const cm, MACROBLOCK *x, | 
 |                                   int bsize, int quad_tree_idx, | 
 |                                   int *partition_none_allowed, | 
 |                                   int *partition_horz_allowed, | 
 |                                   int *partition_vert_allowed, | 
 |                                   int *do_rectangular_split, | 
 |                                   int *do_square_split) { | 
 |   assert(cm->seq_params.sb_size >= BLOCK_64X64 && | 
 |          "Invalid sb_size for intra_cnn!"); | 
 |   const int bsize_idx = convert_bsize_to_idx(bsize); | 
 |  | 
 |   if (bsize == BLOCK_128X128) { | 
 |     return; | 
 |   } | 
 |  | 
 |   PartitionSearchInfo *part_info = &x->part_search_info; | 
 |  | 
 |   // Precompute the CNN part and cache the result in MACROBLOCK | 
 |   if (bsize == BLOCK_64X64 && !part_info->cnn_output_valid) { | 
 |     aom_clear_system_state(); | 
 |     const CNN_CONFIG *cnn_config = &av1_intra_mode_cnn_partition_cnn_config; | 
 |  | 
 |     // Prepare the output | 
 |     const CNN_THREAD_DATA thread_data = { .num_workers = 1, .workers = NULL }; | 
 |     const int num_outputs = 4; | 
 |     const int output_dims[4] = { 1, 2, 4, 8 }; | 
 |     const int out_chs[4] = { CNN_BRANCH_0_OUT_CH, CNN_BRANCH_1_OUT_CH, | 
 |                              CNN_BRANCH_2_OUT_CH, CNN_BRANCH_3_OUT_CH }; | 
 |     float *output_buffer[CNN_TOT_OUT_CH]; | 
 |  | 
 |     float **cur_output_buf = output_buffer; | 
 |     float *curr_buf_ptr = part_info->cnn_buffer; | 
 |     for (int output_idx = 0; output_idx < num_outputs; output_idx++) { | 
 |       const int num_chs = out_chs[output_idx]; | 
 |       const int ch_size = output_dims[output_idx] * output_dims[output_idx]; | 
 |       for (int ch = 0; ch < num_chs; ch++) { | 
 |         cur_output_buf[ch] = curr_buf_ptr; | 
 |         curr_buf_ptr += ch_size; | 
 |       } | 
 |       cur_output_buf += num_chs; | 
 |     } | 
 |  | 
 |     CNN_MULTI_OUT output = { | 
 |       .num_outputs = 4, | 
 |       .output_channels = out_chs, | 
 |       .output_strides = output_dims, | 
 |       .output_buffer = output_buffer, | 
 |     }; | 
 |  | 
 |     // Prepare the input | 
 |     const MACROBLOCKD *xd = &x->e_mbd; | 
 |     const int bit_depth = xd->bd; | 
 |     const int dc_q = | 
 |         av1_dc_quant_QTX(x->qindex, 0, bit_depth) >> (bit_depth - 8); | 
 |     part_info->log_q = logf(1.0f + (float)(dc_q * dc_q) / 256.0f); | 
 |     part_info->log_q = | 
 |         (part_info->log_q - av1_intra_mode_cnn_partition_mean[0]) / | 
 |         av1_intra_mode_cnn_partition_std[0]; | 
 |  | 
 |     const int width = 65, height = 65, | 
 |               stride = x->plane[AOM_PLANE_Y].src.stride; | 
 |  | 
 |     if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |       uint16_t *image[1] = { | 
 |         CONVERT_TO_SHORTPTR(x->plane[AOM_PLANE_Y].src.buf) - stride - 1 | 
 |       }; | 
 |  | 
 |       av1_cnn_predict_img_multi_out_highbd(image, width, height, stride, | 
 |                                            cnn_config, &thread_data, bit_depth, | 
 |                                            &output); | 
 |     } else { | 
 |       uint8_t *image[1] = { x->plane[AOM_PLANE_Y].src.buf - stride - 1 }; | 
 |  | 
 |       av1_cnn_predict_img_multi_out(image, width, height, stride, cnn_config, | 
 |                                     &thread_data, &output); | 
 |     } | 
 |  | 
 |     part_info->cnn_output_valid = 1; | 
 |   } | 
 |  | 
 |   if (!part_info->cnn_output_valid) { | 
 |     return; | 
 |   } | 
 |  | 
 |   const NN_CONFIG *dnn_configs[5] = { | 
 |     NULL, | 
 |     &av1_intra_mode_cnn_partition_branch_0_dnn_config, | 
 |     &av1_intra_mode_cnn_partition_branch_1_dnn_config, | 
 |     &av1_intra_mode_cnn_partition_branch_2_dnn_config, | 
 |     &av1_intra_mode_cnn_partition_branch_3_dnn_config, | 
 |   }; | 
 |  | 
 |   const NN_CONFIG *dnn_config = dnn_configs[bsize_idx]; | 
 |  | 
 |   aom_clear_system_state(); | 
 |   float dnn_features[100]; | 
 |   float logits[4] = { 0.0f }; | 
 |  | 
 |   const float *branch_0 = part_info->cnn_buffer; | 
 |   const float *branch_1 = branch_0 + CNN_BRANCH_0_OUT_SIZE; | 
 |   const float *branch_2 = branch_1 + CNN_BRANCH_1_OUT_SIZE; | 
 |   const float *branch_3 = branch_2 + CNN_BRANCH_2_OUT_SIZE; | 
 |  | 
 |   if (bsize == BLOCK_64X64) { | 
 |     int f_idx = 0; | 
 |     for (int ch_idx = 0; ch_idx < CNN_BRANCH_0_OUT_CH; ch_idx++) { | 
 |       dnn_features[f_idx++] = branch_0[ch_idx]; | 
 |     } | 
 |  | 
 |     const int spa_stride = 2 * 2; | 
 |     for (int lin_idx = 0; lin_idx < spa_stride; lin_idx++) { | 
 |       for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) { | 
 |         dnn_features[f_idx++] = branch_1[lin_idx + ch_idx * spa_stride]; | 
 |       } | 
 |     } | 
 |     dnn_features[f_idx++] = part_info->log_q; | 
 |   } else if (bsize == BLOCK_32X32) { | 
 |     int f_idx = 0; | 
 |     for (int idx = 0; idx < CNN_BRANCH_0_OUT_CH; idx++) { | 
 |       dnn_features[f_idx++] = branch_0[idx]; | 
 |     } | 
 |  | 
 |     const int curr_lin_idx = quad_to_linear_1[quad_tree_idx - 1]; | 
 |     const int spa_stride = 2 * 2; | 
 |     for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) { | 
 |       dnn_features[f_idx++] = branch_1[curr_lin_idx + ch_idx * spa_stride]; | 
 |     } | 
 |     dnn_features[f_idx++] = part_info->log_q; | 
 |   } else if (bsize == BLOCK_16X16) { | 
 |     int f_idx = 0; | 
 |     const int prev_quad_idx = (quad_tree_idx - 1) / 4; | 
 |     const int prev_lin_idx = quad_to_linear_1[prev_quad_idx - 1]; | 
 |     const int prev_spa_stride = 2 * 2; | 
 |     for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) { | 
 |       dnn_features[f_idx++] = branch_1[prev_lin_idx + ch_idx * prev_spa_stride]; | 
 |     } | 
 |  | 
 |     const int curr_lin_idx = quad_to_linear_2[quad_tree_idx - 5]; | 
 |     const int spa_stride = 4 * 4; | 
 |     for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) { | 
 |       dnn_features[f_idx++] = branch_2[curr_lin_idx + ch_idx * spa_stride]; | 
 |     } | 
 |     dnn_features[f_idx++] = part_info->log_q; | 
 |   } else if (bsize == BLOCK_8X8) { | 
 |     int f_idx = 0; | 
 |     const int prev_quad_idx = (quad_tree_idx - 1) / 4; | 
 |     const int prev_lin_idx = quad_to_linear_2[prev_quad_idx - 5]; | 
 |     const int prev_spa_stride = 4 * 4; | 
 |     for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) { | 
 |       dnn_features[f_idx++] = branch_2[prev_lin_idx + ch_idx * prev_spa_stride]; | 
 |     } | 
 |  | 
 |     const int curr_lin_idx = quad_to_linear_3[quad_tree_idx - 21]; | 
 |     const int spa_stride = 8 * 8; | 
 |     for (int ch_idx = 0; ch_idx < CNN_BRANCH_3_OUT_CH; ch_idx++) { | 
 |       dnn_features[f_idx++] = branch_3[curr_lin_idx + ch_idx * spa_stride]; | 
 |     } | 
 |     dnn_features[f_idx++] = part_info->log_q; | 
 |   } else { | 
 |     assert(0 && "Invalid bsize in intra_cnn partition"); | 
 |   } | 
 |  | 
 |   // Make decision | 
 |   av1_nn_predict(dnn_features, dnn_config, 1, logits); | 
 |   aom_clear_system_state(); | 
 |  | 
 |   const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720; | 
 |   const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; | 
 |   float split_only_thresh = 100.0f, no_split_thresh = -100.0f; | 
 |   if (is_720p_or_larger) { | 
 |     split_only_thresh = | 
 |         av1_intra_mode_cnn_partition_split_thresh_hdres[bsize_idx]; | 
 |     no_split_thresh = | 
 |         av1_intra_mode_cnn_partition_no_split_thresh_hdres[bsize_idx]; | 
 |   } else if (is_480p_or_larger) { | 
 |     split_only_thresh = | 
 |         av1_intra_mode_cnn_partition_split_thresh_midres[bsize_idx]; | 
 |     no_split_thresh = | 
 |         av1_intra_mode_cnn_partition_no_split_thresh_midres[bsize_idx]; | 
 |   } else { | 
 |     split_only_thresh = | 
 |         av1_intra_mode_cnn_partition_split_thresh_lowres[bsize_idx]; | 
 |     no_split_thresh = | 
 |         av1_intra_mode_cnn_partition_no_split_thresh_lowres[bsize_idx]; | 
 |   } | 
 |  | 
 |   if (logits[0] > split_only_thresh) { | 
 |     *partition_none_allowed = 0; | 
 |     *partition_horz_allowed = 0; | 
 |     *partition_vert_allowed = 0; | 
 |     *do_rectangular_split = 0; | 
 |   } | 
 |  | 
 |   if (logits[0] < no_split_thresh) { | 
 |     *do_square_split = 0; | 
 |   } | 
 | } | 
 |  | 
 | void av1_simple_motion_search_based_split( | 
 |     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
 |     int mi_row, int mi_col, BLOCK_SIZE bsize, int *partition_none_allowed, | 
 |     int *partition_horz_allowed, int *partition_vert_allowed, | 
 |     int *do_rectangular_split, int *do_square_split) { | 
 |   aom_clear_system_state(); | 
 |  | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   const int bsize_idx = convert_bsize_to_idx(bsize); | 
 |   const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720; | 
 |   const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; | 
 |   // res_idx is 0 for res < 480p, 1 for 480p, 2 for 720p+ | 
 |   const int res_idx = is_480p_or_larger + is_720p_or_larger; | 
 |  | 
 |   assert(bsize_idx >= 0 && bsize_idx <= 4 && | 
 |          "Invalid bsize in simple_motion_search_based_split"); | 
 |  | 
 |   const float *ml_mean = av1_simple_motion_search_split_mean[bsize_idx]; | 
 |   const float *ml_std = av1_simple_motion_search_split_std[bsize_idx]; | 
 |   const NN_CONFIG *nn_config = | 
 |       av1_simple_motion_search_split_nn_config[bsize_idx]; | 
 |   const int agg = cpi->sf.part_sf.simple_motion_search_prune_agg; | 
 |  | 
 |   const float split_only_thresh = | 
 |       av1_simple_motion_search_split_thresh[agg][res_idx][bsize_idx]; | 
 |   const float no_split_thresh = | 
 |       av1_simple_motion_search_no_split_thresh[agg][res_idx][bsize_idx]; | 
 |  | 
 |   float features[FEATURE_SIZE_SMS_SPLIT] = { 0.0f }; | 
 |   simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col, | 
 |                                            bsize, features, | 
 |                                            FEATURE_SMS_SPLIT_MODEL_FLAG); | 
 |   for (int idx = 0; idx < FEATURE_SIZE_SMS_SPLIT; idx++) { | 
 |     features[idx] = (features[idx] - ml_mean[idx]) / ml_std[idx]; | 
 |   } | 
 |  | 
 |   float score = 0.0f; | 
 |  | 
 |   av1_nn_predict(features, nn_config, 1, &score); | 
 |   aom_clear_system_state(); | 
 |  | 
 |   if (score > split_only_thresh) { | 
 |     *partition_none_allowed = 0; | 
 |     *partition_horz_allowed = 0; | 
 |     *partition_vert_allowed = 0; | 
 |     *do_rectangular_split = 0; | 
 |   } | 
 |  | 
 |   if (cpi->sf.part_sf.simple_motion_search_split >= 2 && | 
 |       score < no_split_thresh) { | 
 |     *do_square_split = 0; | 
 |   } | 
 | } | 
 |  | 
 | // Given a list of ref frames in refs, performs simple_motion_search on each of | 
 | // the refs and returns the ref with the smallest sse. Returns -1 if none of the | 
 | // ref in the list is available. Also stores the best sse and var in best_sse, | 
 | // best_var, respectively. If save_mv is 0, don't update mv_ref_fulls in | 
 | // sms_tree. If save_mv is 1, update mv_ref_fulls under sms_tree and the | 
 | // subtrees. | 
 | static int simple_motion_search_get_best_ref( | 
 |     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
 |     int mi_row, int mi_col, BLOCK_SIZE bsize, const int *const refs, | 
 |     int num_refs, int use_subpixel, int save_mv, unsigned int *best_sse, | 
 |     unsigned int *best_var) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   int best_ref = -1; | 
 |  | 
 |   if (mi_col >= cm->mi_params.mi_cols || mi_row >= cm->mi_params.mi_rows) { | 
 |     // If the whole block is outside of the image, set the var and sse to 0. | 
 |     *best_var = 0; | 
 |     *best_sse = 0; | 
 |  | 
 |     return best_ref; | 
 |   } | 
 |  | 
 |   // Otherwise do loop through the reference frames and find the one with the | 
 |   // minimum SSE | 
 |   const MACROBLOCKD *xd = &x->e_mbd; | 
 |  | 
 |   const int num_planes = 1; | 
 |  | 
 |   *best_sse = INT_MAX; | 
 |  | 
 |   for (int ref_idx = 0; ref_idx < num_refs; ref_idx++) { | 
 |     const int ref = refs[ref_idx]; | 
 |  | 
 |     if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref]) { | 
 |       const FULLPEL_MV *start_mvs = sms_tree->start_mvs; | 
 |       unsigned int curr_sse = 0, curr_var = 0; | 
 |       int_mv best_mv = | 
 |           av1_simple_motion_search(cpi, x, mi_row, mi_col, bsize, ref, | 
 |                                    start_mvs[ref], num_planes, use_subpixel); | 
 |       curr_var = cpi->fn_ptr[bsize].vf( | 
 |           x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].dst.buf, | 
 |           xd->plane[0].dst.stride, &curr_sse); | 
 |       if (curr_sse < *best_sse) { | 
 |         *best_sse = curr_sse; | 
 |         *best_var = curr_var; | 
 |         best_ref = ref; | 
 |       } | 
 |  | 
 |       if (save_mv) { | 
 |         sms_tree->start_mvs[ref].row = best_mv.as_mv.row / 8; | 
 |         sms_tree->start_mvs[ref].col = best_mv.as_mv.col / 8; | 
 |  | 
 |         if (bsize >= BLOCK_8X8) { | 
 |           for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) { | 
 |             // Propagate the new motion vectors to a lower level | 
 |             SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx]; | 
 |             sub_tree->start_mvs[ref] = sms_tree->start_mvs[ref]; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return best_ref; | 
 | } | 
 |  | 
 | // Collects features using simple_motion_search and store them in features. The | 
 | // features are also cached in SIMPLE_MOTION_DATA_TREE. By default, the features | 
 | // collected are the sse and var from the subblocks flagged by features_to_get. | 
 | // Furthermore, if features is not NULL, then 7 more features are appended to | 
 | // the end of features: | 
 | //  - log(1.0 + dc_q ** 2) | 
 | //  - whether an above macroblock exists | 
 | //  - width of above macroblock | 
 | //  - height of above macroblock | 
 | //  - whether a left marcoblock exists | 
 | //  - width of left macroblock | 
 | //  - height of left macroblock | 
 | static AOM_INLINE void simple_motion_search_prune_part_features( | 
 |     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
 |     int mi_row, int mi_col, BLOCK_SIZE bsize, float *features, | 
 |     int features_to_get) { | 
 |   const int w_mi = mi_size_wide[bsize]; | 
 |   const int h_mi = mi_size_high[bsize]; | 
 |   assert(mi_size_wide[bsize] == mi_size_high[bsize]); | 
 |   assert(cpi->ref_frame_flags & av1_ref_frame_flag_list[LAST_FRAME] || | 
 |          cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]); | 
 |  | 
 |   // Setting up motion search | 
 |   const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME | 
 |                                                         : LAST_FRAME }; | 
 |   const int num_refs = 1; | 
 |   const int use_subpixel = 1; | 
 |  | 
 |   // Doing whole block first to update the mv | 
 |   if (!sms_tree->sms_none_valid && features_to_get & FEATURE_SMS_NONE_FLAG) { | 
 |     simple_motion_search_get_best_ref(cpi, x, sms_tree, mi_row, mi_col, bsize, | 
 |                                       ref_list, num_refs, use_subpixel, 1, | 
 |                                       &sms_tree->sms_none_feat[0], | 
 |                                       &sms_tree->sms_none_feat[1]); | 
 |     sms_tree->sms_none_valid = 1; | 
 |   } | 
 |  | 
 |   // Split subblocks | 
 |   if (features_to_get & FEATURE_SMS_SPLIT_FLAG) { | 
 |     const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
 |     for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) { | 
 |       const int sub_mi_col = mi_col + (r_idx & 1) * w_mi / 2; | 
 |       const int sub_mi_row = mi_row + (r_idx >> 1) * h_mi / 2; | 
 |       SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx]; | 
 |  | 
 |       if (!sub_tree->sms_none_valid) { | 
 |         simple_motion_search_get_best_ref( | 
 |             cpi, x, sub_tree, sub_mi_row, sub_mi_col, subsize, ref_list, | 
 |             num_refs, use_subpixel, 1, &sub_tree->sms_none_feat[0], | 
 |             &sub_tree->sms_none_feat[1]); | 
 |         sub_tree->sms_none_valid = 1; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Rectangular subblocks | 
 |   if (!sms_tree->sms_rect_valid && features_to_get & FEATURE_SMS_RECT_FLAG) { | 
 |     // Horz subblock | 
 |     BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ); | 
 |     for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) { | 
 |       const int sub_mi_col = mi_col + 0; | 
 |       const int sub_mi_row = mi_row + r_idx * h_mi / 2; | 
 |  | 
 |       simple_motion_search_get_best_ref( | 
 |           cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs, | 
 |           use_subpixel, 0, &sms_tree->sms_rect_feat[2 * r_idx], | 
 |           &sms_tree->sms_rect_feat[2 * r_idx + 1]); | 
 |     } | 
 |  | 
 |     // Vert subblock | 
 |     subsize = get_partition_subsize(bsize, PARTITION_VERT); | 
 |     for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) { | 
 |       const int sub_mi_col = mi_col + r_idx * w_mi / 2; | 
 |       const int sub_mi_row = mi_row + 0; | 
 |  | 
 |       simple_motion_search_get_best_ref( | 
 |           cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs, | 
 |           use_subpixel, 0, &sms_tree->sms_rect_feat[4 + 2 * r_idx], | 
 |           &sms_tree->sms_rect_feat[4 + 2 * r_idx + 1]); | 
 |     } | 
 |     sms_tree->sms_rect_valid = 1; | 
 |   } | 
 |  | 
 |   if (!features) return; | 
 |  | 
 |   aom_clear_system_state(); | 
 |   int f_idx = 0; | 
 |   if (features_to_get & FEATURE_SMS_NONE_FLAG) { | 
 |     for (int sub_idx = 0; sub_idx < 2; sub_idx++) { | 
 |       features[f_idx++] = logf(1.0f + sms_tree->sms_none_feat[sub_idx]); | 
 |     } | 
 |   } | 
 |  | 
 |   if (features_to_get & FEATURE_SMS_SPLIT_FLAG) { | 
 |     for (int sub_idx = 0; sub_idx < SUB_PARTITIONS_SPLIT; sub_idx++) { | 
 |       SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[sub_idx]; | 
 |       features[f_idx++] = logf(1.0f + sub_tree->sms_none_feat[0]); | 
 |       features[f_idx++] = logf(1.0f + sub_tree->sms_none_feat[1]); | 
 |     } | 
 |   } | 
 |  | 
 |   if (features_to_get & FEATURE_SMS_RECT_FLAG) { | 
 |     for (int sub_idx = 0; sub_idx < 8; sub_idx++) { | 
 |       features[f_idx++] = logf(1.0f + sms_tree->sms_rect_feat[sub_idx]); | 
 |     } | 
 |   } | 
 |   aom_clear_system_state(); | 
 |  | 
 |   const MACROBLOCKD *xd = &x->e_mbd; | 
 |   set_offsets_for_motion_search(cpi, x, mi_row, mi_col, bsize); | 
 |  | 
 |   // Q_INDEX | 
 |   const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8); | 
 |   features[f_idx++] = logf(1.0f + (float)(dc_q * dc_q) / 256.0f); | 
 |  | 
 |   // Neighbor stuff | 
 |   const int has_above = !!xd->above_mbmi; | 
 |   const int has_left = !!xd->left_mbmi; | 
 |   const BLOCK_SIZE above_bsize = has_above ? xd->above_mbmi->sb_type : bsize; | 
 |   const BLOCK_SIZE left_bsize = has_left ? xd->left_mbmi->sb_type : bsize; | 
 |   features[f_idx++] = (float)has_above; | 
 |   features[f_idx++] = (float)mi_size_wide_log2[above_bsize]; | 
 |   features[f_idx++] = (float)mi_size_high_log2[above_bsize]; | 
 |   features[f_idx++] = (float)has_left; | 
 |   features[f_idx++] = (float)mi_size_wide_log2[left_bsize]; | 
 |   features[f_idx++] = (float)mi_size_high_log2[left_bsize]; | 
 | } | 
 |  | 
 | void av1_simple_motion_search_prune_rect( | 
 |     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
 |     int mi_row, int mi_col, BLOCK_SIZE bsize, int partition_horz_allowed, | 
 |     int partition_vert_allowed, int *prune_horz, int *prune_vert) { | 
 |   aom_clear_system_state(); | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   const int bsize_idx = convert_bsize_to_idx(bsize); | 
 |   const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720; | 
 |   const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; | 
 |   // res_idx is 0 for lowres, 1 for 48p, 2 for 720p+ | 
 |   const int res_idx = is_480p_or_larger + is_720p_or_larger; | 
 |  | 
 |   // Get model parameters | 
 |   const NN_CONFIG *nn_config = | 
 |       av1_simple_motion_search_prune_rect_nn_config[bsize_idx]; | 
 |   const float *ml_mean = av1_simple_motion_search_prune_rect_mean[bsize_idx], | 
 |               *ml_std = av1_simple_motion_search_prune_rect_std[bsize_idx]; | 
 |  | 
 |   const int agg = cpi->sf.part_sf.simple_motion_search_prune_agg; | 
 |   const float prune_thresh = | 
 |       av1_simple_motion_search_prune_rect_thresh[agg][res_idx][bsize_idx]; | 
 |  | 
 |   // If there is no valid threshold, return immediately. | 
 |   if (!nn_config || prune_thresh == 0.0f) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Get features | 
 |   float features[FEATURE_SIZE_SMS_PRUNE_PART] = { 0.0f }; | 
 |   simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col, | 
 |                                            bsize, features, | 
 |                                            FEATURE_SMS_PRUNE_PART_FLAG); | 
 |   for (int f_idx = 0; f_idx < FEATURE_SIZE_SMS_PRUNE_PART; f_idx++) { | 
 |     features[f_idx] = (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx]; | 
 |   } | 
 |  | 
 |   // Get probabilities | 
 |   float scores[EXT_PARTITION_TYPES] = { 0.0f }, | 
 |         probs[EXT_PARTITION_TYPES] = { 0.0f }; | 
 |   const int num_classes = (bsize == BLOCK_128X128 || bsize == BLOCK_8X8) | 
 |                               ? PARTITION_TYPES | 
 |                               : EXT_PARTITION_TYPES; | 
 |  | 
 |   av1_nn_predict(features, nn_config, 1, scores); | 
 |   aom_clear_system_state(); | 
 |  | 
 |   av1_nn_softmax(scores, probs, num_classes); | 
 |  | 
 |   // Determine if we should prune rectangular partitions. | 
 |   if (cpi->sf.part_sf.simple_motion_search_prune_rect && | 
 |       !frame_is_intra_only(cm) && | 
 |       (partition_horz_allowed || partition_vert_allowed) && | 
 |       bsize >= BLOCK_8X8 && !av1_superres_scaled(cm)) { | 
 |     *prune_horz = probs[PARTITION_HORZ] <= prune_thresh; | 
 |     *prune_vert = probs[PARTITION_VERT] <= prune_thresh; | 
 |   } | 
 | } | 
 |  | 
 | // Early terminates PARTITION_NONE using simple_motion_search features and the | 
 | // rate, distortion, and rdcost of PARTITION_NONE. This is only called when: | 
 | //  - The frame is a show frame | 
 | //  - The frame is not intra only | 
 | //  - The current bsize is > BLOCK_8X8 | 
 | //  - blk_row + blk_height/2 < total_rows and blk_col + blk_width/2 < total_cols | 
 | void av1_simple_motion_search_early_term_none( | 
 |     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
 |     int mi_row, int mi_col, BLOCK_SIZE bsize, const RD_STATS *none_rdc, | 
 |     int *early_terminate) { | 
 |   // TODO(chiyotsai@google.com): There are other features we can extract from | 
 |   // PARTITION_NONE. Play with this later. | 
 |   float features[FEATURE_SIZE_SMS_TERM_NONE] = { 0.0f }; | 
 |   simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col, | 
 |                                            bsize, features, | 
 |                                            FEATURE_SMS_PRUNE_PART_FLAG); | 
 |   int f_idx = FEATURE_SIZE_SMS_PRUNE_PART; | 
 |  | 
 |   features[f_idx++] = logf(1.0f + (float)none_rdc->rate); | 
 |   features[f_idx++] = logf(1.0f + (float)none_rdc->dist); | 
 |   features[f_idx++] = logf(1.0f + (float)none_rdc->rdcost); | 
 |  | 
 |   assert(f_idx == FEATURE_SIZE_SMS_TERM_NONE); | 
 |  | 
 |   const float *ml_mean = NULL; | 
 |   const float *ml_std = NULL; | 
 |   const float *ml_model = NULL; | 
 |  | 
 |   if (bsize == BLOCK_128X128) { | 
 |     ml_mean = av1_simple_motion_search_term_none_mean_128; | 
 |     ml_std = av1_simple_motion_search_term_none_std_128; | 
 |     ml_model = av1_simple_motion_search_term_none_model_128; | 
 |   } else if (bsize == BLOCK_64X64) { | 
 |     ml_mean = av1_simple_motion_search_term_none_mean_64; | 
 |     ml_std = av1_simple_motion_search_term_none_std_64; | 
 |     ml_model = av1_simple_motion_search_term_none_model_64; | 
 |   } else if (bsize == BLOCK_32X32) { | 
 |     ml_mean = av1_simple_motion_search_term_none_mean_32; | 
 |     ml_std = av1_simple_motion_search_term_none_std_32; | 
 |     ml_model = av1_simple_motion_search_term_none_model_32; | 
 |   } else if (bsize == BLOCK_16X16) { | 
 |     ml_mean = av1_simple_motion_search_term_none_mean_16; | 
 |     ml_std = av1_simple_motion_search_term_none_std_16; | 
 |     ml_model = av1_simple_motion_search_term_none_model_16; | 
 |   } else { | 
 |     assert(0 && "Unexpected block size in simple_motion_term_none"); | 
 |   } | 
 |  | 
 |   if (ml_model) { | 
 |     float score = 0.0f; | 
 |     for (f_idx = 0; f_idx < FEATURE_SIZE_SMS_TERM_NONE; f_idx++) { | 
 |       score += | 
 |           ml_model[f_idx] * (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx]; | 
 |     } | 
 |     score += ml_model[FEATURE_SIZE_SMS_TERM_NONE]; | 
 |  | 
 |     if (score >= 0.0f) { | 
 |       *early_terminate = 1; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void av1_get_max_min_partition_features(AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                         int mi_row, int mi_col, | 
 |                                         float *features) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   const BLOCK_SIZE sb_size = cm->seq_params.sb_size; | 
 |  | 
 |   assert(sb_size == BLOCK_128X128); | 
 |  | 
 |   int f_idx = 0; | 
 |  | 
 |   const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8); | 
 |   aom_clear_system_state(); | 
 |   const float log_q_sq = logf(1.0f + (float)(dc_q * dc_q) / 256.0f); | 
 |  | 
 |   // Perform full-pixel single motion search in Y plane of 16x16 mbs in the sb | 
 |   float sum_mv_row_sq = 0; | 
 |   float sum_mv_row = 0; | 
 |   float min_abs_mv_row = FLT_MAX; | 
 |   float max_abs_mv_row = 0; | 
 |  | 
 |   float sum_mv_col_sq = 0; | 
 |   float sum_mv_col = 0; | 
 |   float min_abs_mv_col = FLT_MAX; | 
 |   float max_abs_mv_col = 0; | 
 |  | 
 |   float sum_log_sse_sq = 0; | 
 |   float sum_log_sse = 0; | 
 |   float min_log_sse = FLT_MAX; | 
 |   float max_log_sse = 0; | 
 |  | 
 |   const BLOCK_SIZE mb_size = BLOCK_16X16; | 
 |   const int mb_rows = block_size_high[sb_size] / block_size_high[mb_size]; | 
 |   const int mb_cols = block_size_wide[sb_size] / block_size_wide[mb_size]; | 
 |   const int mb_in_mi_size_high_log2 = mi_size_high_log2[mb_size]; | 
 |   const int mb_in_mi_size_wide_log2 = mi_size_wide_log2[mb_size]; | 
 |  | 
 |   for (int mb_row = 0; mb_row < mb_rows; mb_row++) | 
 |     for (int mb_col = 0; mb_col < mb_cols; mb_col++) { | 
 |       const int this_mi_row = mi_row + (mb_row << mb_in_mi_size_high_log2); | 
 |       const int this_mi_col = mi_col + (mb_col << mb_in_mi_size_wide_log2); | 
 |       unsigned int sse = 0; | 
 |       unsigned int var = 0; | 
 |       const FULLPEL_MV start_mv = kZeroFullMv; | 
 |       int_mv best_mv = av1_simple_motion_sse_var( | 
 |           cpi, x, this_mi_row, this_mi_col, mb_size, start_mv, 0, &sse, &var); | 
 |  | 
 |       aom_clear_system_state(); | 
 |       const float mv_row = (float)(best_mv.as_mv.row / 8); | 
 |       const float mv_col = (float)(best_mv.as_mv.col / 8); | 
 |       const float log_sse = logf(1.0f + (float)sse); | 
 |       const float abs_mv_row = fabsf(mv_row); | 
 |       const float abs_mv_col = fabsf(mv_col); | 
 |  | 
 |       sum_mv_row_sq += mv_row * mv_row; | 
 |       sum_mv_row += mv_row; | 
 |       sum_mv_col_sq += mv_col * mv_col; | 
 |       sum_mv_col += mv_col; | 
 |  | 
 |       if (abs_mv_row < min_abs_mv_row) min_abs_mv_row = abs_mv_row; | 
 |       if (abs_mv_row > max_abs_mv_row) max_abs_mv_row = abs_mv_row; | 
 |       if (abs_mv_col < min_abs_mv_col) min_abs_mv_col = abs_mv_col; | 
 |       if (abs_mv_col > max_abs_mv_col) max_abs_mv_col = abs_mv_col; | 
 |  | 
 |       sum_log_sse_sq += log_sse * log_sse; | 
 |       sum_log_sse += log_sse; | 
 |       if (log_sse < min_log_sse) min_log_sse = log_sse; | 
 |       if (log_sse > max_log_sse) max_log_sse = log_sse; | 
 |     } | 
 |   aom_clear_system_state(); | 
 |   const float avg_mv_row = sum_mv_row / 64.0f; | 
 |   const float var_mv_row = sum_mv_row_sq / 64.0f - avg_mv_row * avg_mv_row; | 
 |  | 
 |   const float avg_mv_col = sum_mv_col / 64.0f; | 
 |   const float var_mv_col = sum_mv_col_sq / 64.0f - avg_mv_col * avg_mv_col; | 
 |  | 
 |   const float avg_log_sse = sum_log_sse / 64.0f; | 
 |   const float var_log_sse = sum_log_sse_sq / 64.0f - avg_log_sse * avg_log_sse; | 
 |  | 
 |   features[f_idx++] = avg_log_sse; | 
 |   features[f_idx++] = avg_mv_col; | 
 |   features[f_idx++] = avg_mv_row; | 
 |   features[f_idx++] = log_q_sq; | 
 |   features[f_idx++] = max_abs_mv_col; | 
 |   features[f_idx++] = max_abs_mv_row; | 
 |   features[f_idx++] = max_log_sse; | 
 |   features[f_idx++] = min_abs_mv_col; | 
 |   features[f_idx++] = min_abs_mv_row; | 
 |   features[f_idx++] = min_log_sse; | 
 |   features[f_idx++] = var_log_sse; | 
 |   features[f_idx++] = var_mv_col; | 
 |   features[f_idx++] = var_mv_row; | 
 |  | 
 |   assert(f_idx == FEATURE_SIZE_MAX_MIN_PART_PRED); | 
 | } | 
 |  | 
 | BLOCK_SIZE av1_predict_max_partition(const AV1_COMP *const cpi, | 
 |                                      const MACROBLOCK *const x, | 
 |                                      const float *features) { | 
 |   float scores[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f }, | 
 |         probs[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f }; | 
 |   const NN_CONFIG *nn_config = &av1_max_part_pred_nn_config; | 
 |  | 
 |   assert(cpi->sf.part_sf.auto_max_partition_based_on_simple_motion != | 
 |          NOT_IN_USE); | 
 |  | 
 |   aom_clear_system_state(); | 
 |   av1_nn_predict(features, nn_config, 1, scores); | 
 |   av1_nn_softmax(scores, probs, MAX_NUM_CLASSES_MAX_MIN_PART_PRED); | 
 |  | 
 |   int result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; | 
 |   if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion == | 
 |       DIRECT_PRED) { | 
 |     result = 0; | 
 |     float max_prob = probs[0]; | 
 |     for (int i = 1; i < MAX_NUM_CLASSES_MAX_MIN_PART_PRED; ++i) { | 
 |       if (probs[i] > max_prob) { | 
 |         max_prob = probs[i]; | 
 |         result = i; | 
 |       } | 
 |     } | 
 |   } else if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion == | 
 |              RELAXED_PRED) { | 
 |     for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0; | 
 |          --result) { | 
 |       if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) { | 
 |         probs[result] += probs[result + 1]; | 
 |       } | 
 |       if (probs[result] > 0.2) break; | 
 |     } | 
 |   } else if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion == | 
 |              ADAPT_PRED) { | 
 |     const BLOCK_SIZE sb_size = cpi->common.seq_params.sb_size; | 
 |     const MACROBLOCKD *const xd = &x->e_mbd; | 
 |     // TODO(debargha): x->source_variance is unavailable at this point, | 
 |     // so compute. The redundant recomputation later can be removed. | 
 |     const unsigned int source_variance = | 
 |         is_cur_buf_hbd(xd) | 
 |             ? av1_high_get_sby_perpixel_variance(cpi, &x->plane[0].src, sb_size, | 
 |                                                  xd->bd) | 
 |             : av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, sb_size); | 
 |     if (source_variance > 16) { | 
 |       const double thresh = source_variance < 128 ? 0.05 : 0.1; | 
 |       for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0; | 
 |            --result) { | 
 |         if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) { | 
 |           probs[result] += probs[result + 1]; | 
 |         } | 
 |         if (probs[result] > thresh) break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return (BLOCK_SIZE)((result + 2) * 3); | 
 | } | 
 |  | 
 | // Get the minimum partition block width and height(in log scale) under a | 
 | // SIMPLE_MOTION_DATA_TREE. | 
 | static AOM_INLINE void get_min_bsize(const SIMPLE_MOTION_DATA_TREE *sms_tree, | 
 |                                      int *min_bw, int *min_bh) { | 
 |   if (!sms_tree) return; | 
 |  | 
 |   const BLOCK_SIZE bsize = sms_tree->block_size; | 
 |   if (bsize == BLOCK_4X4) { | 
 |     *min_bw = 0; | 
 |     *min_bh = 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   PARTITION_TYPE part_type = sms_tree->partitioning; | 
 |   if (part_type == PARTITION_INVALID) return; | 
 |  | 
 |   if (part_type == PARTITION_SPLIT) { | 
 |     for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
 |       get_min_bsize(sms_tree->split[i], min_bw, min_bh); | 
 |     } | 
 |   } else { | 
 |     if (part_type == PARTITION_HORZ_A || part_type == PARTITION_HORZ_B || | 
 |         part_type == PARTITION_VERT_A || part_type == PARTITION_VERT_B) | 
 |       part_type = PARTITION_SPLIT; | 
 |     const BLOCK_SIZE subsize = get_partition_subsize(bsize, part_type); | 
 |     if (subsize != BLOCK_INVALID) { | 
 |       *min_bw = AOMMIN(*min_bw, mi_size_wide_log2[subsize]); | 
 |       *min_bh = AOMMIN(*min_bh, mi_size_high_log2[subsize]); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static INLINE void add_rd_feature(int64_t rd, int64_t best_rd, float *features, | 
 |                                   int *feature_idx) { | 
 |   const int rd_valid = rd > 0 && rd < INT64_MAX; | 
 |   const float rd_ratio = rd_valid ? (float)rd / best_rd : 1.0f; | 
 |   features[(*feature_idx)++] = (float)rd_valid; | 
 |   features[(*feature_idx)++] = rd_ratio; | 
 | } | 
 |  | 
 | #define FEATURES 31 | 
 | void av1_ml_early_term_after_split(AV1_COMP *const cpi, MACROBLOCK *const x, | 
 |                                    SIMPLE_MOTION_DATA_TREE *const sms_tree, | 
 |                                    BLOCK_SIZE bsize, int64_t best_rd, | 
 |                                    int64_t part_none_rd, int64_t part_split_rd, | 
 |                                    int64_t *split_block_rd, int mi_row, | 
 |                                    int mi_col, | 
 |                                    int *const terminate_partition_search) { | 
 |   if (best_rd <= 0 || best_rd == INT64_MAX || *terminate_partition_search) | 
 |     return; | 
 |  | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; | 
 |   const NN_CONFIG *nn_config = NULL; | 
 |   float thresh = -1e6; | 
 |   switch (bsize) { | 
 |     case BLOCK_128X128: break; | 
 |     case BLOCK_64X64: | 
 |       nn_config = &av1_early_term_after_split_nnconfig_64; | 
 |       thresh = is_480p_or_larger ? -2.0f : -1.2f; | 
 |       break; | 
 |     case BLOCK_32X32: | 
 |       nn_config = &av1_early_term_after_split_nnconfig_32; | 
 |       thresh = is_480p_or_larger ? -2.6f : -2.3f; | 
 |       break; | 
 |     case BLOCK_16X16: | 
 |       nn_config = &av1_early_term_after_split_nnconfig_16; | 
 |       thresh = is_480p_or_larger ? -2.0f : -2.4f; | 
 |       break; | 
 |     case BLOCK_8X8: | 
 |       nn_config = &av1_early_term_after_split_nnconfig_8; | 
 |       thresh = is_480p_or_larger ? -1.0f : -1.4f; | 
 |       break; | 
 |     case BLOCK_4X4: break; | 
 |     default: | 
 |       assert(0 && "Invalid block size in av1_ml_early_term_after_split()."); | 
 |       break; | 
 |   } | 
 |   if (!nn_config) return; | 
 |  | 
 |   // Use more conservative threshold for level 1. | 
 |   if (cpi->sf.part_sf.ml_early_term_after_part_split_level < 2) thresh -= 0.3f; | 
 |  | 
 |   const MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8); | 
 |   const int bs = block_size_wide[bsize]; | 
 |   int f_idx = 0; | 
 |   float features[FEATURES] = { 0.0f }; | 
 |  | 
 |   aom_clear_system_state(); | 
 |  | 
 |   features[f_idx++] = logf(1.0f + (float)dc_q / 4.0f); | 
 |   features[f_idx++] = logf(1.0f + (float)best_rd / bs / bs / 1024.0f); | 
 |  | 
 |   add_rd_feature(part_none_rd, best_rd, features, &f_idx); | 
 |   add_rd_feature(part_split_rd, best_rd, features, &f_idx); | 
 |  | 
 |   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
 |     add_rd_feature(split_block_rd[i], best_rd, features, &f_idx); | 
 |     int min_bw = MAX_SB_SIZE_LOG2; | 
 |     int min_bh = MAX_SB_SIZE_LOG2; | 
 |     get_min_bsize(sms_tree->split[i], &min_bw, &min_bh); | 
 |     features[f_idx++] = (float)min_bw; | 
 |     features[f_idx++] = (float)min_bh; | 
 |   } | 
 |  | 
 |   simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col, | 
 |                                            bsize, NULL, | 
 |                                            FEATURE_SMS_PRUNE_PART_FLAG); | 
 |  | 
 |   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_none_feat[1]); | 
 |  | 
 |   features[f_idx++] = logf(1.0f + (float)sms_tree->split[0]->sms_none_feat[1]); | 
 |   features[f_idx++] = logf(1.0f + (float)sms_tree->split[1]->sms_none_feat[1]); | 
 |   features[f_idx++] = logf(1.0f + (float)sms_tree->split[2]->sms_none_feat[1]); | 
 |   features[f_idx++] = logf(1.0f + (float)sms_tree->split[3]->sms_none_feat[1]); | 
 |  | 
 |   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[1]); | 
 |   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[3]); | 
 |   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[5]); | 
 |   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[7]); | 
 |  | 
 |   assert(f_idx == FEATURES); | 
 |  | 
 |   float score = 0.0f; | 
 |   av1_nn_predict(features, nn_config, 1, &score); | 
 |   // Score is indicator of confidence that we should NOT terminate. | 
 |   if (score < thresh) *terminate_partition_search = 1; | 
 | } | 
 | #undef FEATURES | 
 |  | 
 | void av1_ml_prune_rect_partition(const AV1_COMP *const cpi, | 
 |                                  const MACROBLOCK *const x, BLOCK_SIZE bsize, | 
 |                                  int64_t best_rd, int64_t none_rd, | 
 |                                  int64_t *split_rd, int *const dst_prune_horz, | 
 |                                  int *const dst_prune_vert) { | 
 |   if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return; | 
 |   best_rd = AOMMAX(best_rd, 1); | 
 |   const NN_CONFIG *nn_config = NULL; | 
 |   const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f }; | 
 |   float cur_thresh = 0.0f; | 
 |   switch (bsize) { | 
 |     case BLOCK_8X8: | 
 |       nn_config = &av1_rect_partition_nnconfig_8; | 
 |       cur_thresh = prob_thresholds[0]; | 
 |       break; | 
 |     case BLOCK_16X16: | 
 |       nn_config = &av1_rect_partition_nnconfig_16; | 
 |       cur_thresh = prob_thresholds[1]; | 
 |       break; | 
 |     case BLOCK_32X32: | 
 |       nn_config = &av1_rect_partition_nnconfig_32; | 
 |       cur_thresh = prob_thresholds[2]; | 
 |       break; | 
 |     case BLOCK_64X64: | 
 |       nn_config = &av1_rect_partition_nnconfig_64; | 
 |       cur_thresh = prob_thresholds[3]; | 
 |       break; | 
 |     case BLOCK_128X128: | 
 |       nn_config = &av1_rect_partition_nnconfig_128; | 
 |       cur_thresh = prob_thresholds[4]; | 
 |       break; | 
 |     default: assert(0 && "Unexpected bsize."); | 
 |   } | 
 |   if (!nn_config) return; | 
 |   aom_clear_system_state(); | 
 |  | 
 |   // 1. Compute input features | 
 |   float features[9]; | 
 |  | 
 |   // RD cost ratios | 
 |   for (int i = 0; i < 5; i++) features[i] = 1.0f; | 
 |   if (none_rd > 0 && none_rd < 1000000000) | 
 |     features[0] = (float)none_rd / (float)best_rd; | 
 |   for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { | 
 |     if (split_rd[i] > 0 && split_rd[i] < 1000000000) | 
 |       features[1 + i] = (float)split_rd[i] / (float)best_rd; | 
 |   } | 
 |  | 
 |   // Variance ratios | 
 |   const MACROBLOCKD *const xd = &x->e_mbd; | 
 |   int whole_block_variance; | 
 |   if (is_cur_buf_hbd(xd)) { | 
 |     whole_block_variance = av1_high_get_sby_perpixel_variance( | 
 |         cpi, &x->plane[0].src, bsize, xd->bd); | 
 |   } else { | 
 |     whole_block_variance = | 
 |         av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); | 
 |   } | 
 |   whole_block_variance = AOMMAX(whole_block_variance, 1); | 
 |  | 
 |   int split_variance[SUB_PARTITIONS_SPLIT]; | 
 |   const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
 |   struct buf_2d buf; | 
 |   buf.stride = x->plane[0].src.stride; | 
 |   const int bw = block_size_wide[bsize]; | 
 |   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
 |     const int x_idx = (i & 1) * bw / 2; | 
 |     const int y_idx = (i >> 1) * bw / 2; | 
 |     buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride; | 
 |     if (is_cur_buf_hbd(xd)) { | 
 |       split_variance[i] = | 
 |           av1_high_get_sby_perpixel_variance(cpi, &buf, subsize, xd->bd); | 
 |     } else { | 
 |       split_variance[i] = av1_get_sby_perpixel_variance(cpi, &buf, subsize); | 
 |     } | 
 |   } | 
 |  | 
 |   for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) | 
 |     features[5 + i] = (float)split_variance[i] / (float)whole_block_variance; | 
 |  | 
 |   // 2. Do the prediction and prune 0-2 partitions based on their probabilities | 
 |   float raw_scores[3] = { 0.0f }; | 
 |   av1_nn_predict(features, nn_config, 1, raw_scores); | 
 |   aom_clear_system_state(); | 
 |   float probs[3] = { 0.0f }; | 
 |   av1_nn_softmax(raw_scores, probs, 3); | 
 |  | 
 |   // probs[0] is the probability of the fact that both rectangular partitions | 
 |   // are worse than current best_rd | 
 |   if (probs[1] <= cur_thresh) (*dst_prune_horz) = 1; | 
 |   if (probs[2] <= cur_thresh) (*dst_prune_vert) = 1; | 
 | } | 
 |  | 
 | // Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be | 
 | // considered. | 
 | void av1_ml_prune_ab_partition( | 
 |     BLOCK_SIZE bsize, int part_ctx, int var_ctx, int64_t best_rd, | 
 |     int64_t horz_rd[SUB_PARTITIONS_RECT], int64_t vert_rd[SUB_PARTITIONS_RECT], | 
 |     int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const horza_partition_allowed, | 
 |     int *const horzb_partition_allowed, int *const verta_partition_allowed, | 
 |     int *const vertb_partition_allowed) { | 
 |   if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return; | 
 |   const NN_CONFIG *nn_config = NULL; | 
 |   switch (bsize) { | 
 |     case BLOCK_8X8: nn_config = NULL; break; | 
 |     case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break; | 
 |     case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break; | 
 |     case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break; | 
 |     case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break; | 
 |     default: assert(0 && "Unexpected bsize."); | 
 |   } | 
 |   if (!nn_config) return; | 
 |  | 
 |   aom_clear_system_state(); | 
 |  | 
 |   // Generate features. | 
 |   float features[10]; | 
 |   int feature_index = 0; | 
 |   features[feature_index++] = (float)part_ctx; | 
 |   features[feature_index++] = (float)var_ctx; | 
 |   const int rdcost = (int)AOMMIN(INT_MAX, best_rd); | 
 |   int sub_block_rdcost[8] = { 0 }; | 
 |   int rd_index = 0; | 
 |   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
 |     if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) | 
 |       sub_block_rdcost[rd_index] = (int)horz_rd[i]; | 
 |     ++rd_index; | 
 |   } | 
 |   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
 |     if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) | 
 |       sub_block_rdcost[rd_index] = (int)vert_rd[i]; | 
 |     ++rd_index; | 
 |   } | 
 |   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
 |     if (split_rd[i] > 0 && split_rd[i] < 1000000000) | 
 |       sub_block_rdcost[rd_index] = (int)split_rd[i]; | 
 |     ++rd_index; | 
 |   } | 
 |   for (int i = 0; i < 8; ++i) { | 
 |     // Ratio between the sub-block RD and the whole-block RD. | 
 |     float rd_ratio = 1.0f; | 
 |     if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) | 
 |       rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; | 
 |     features[feature_index++] = rd_ratio; | 
 |   } | 
 |   assert(feature_index == 10); | 
 |  | 
 |   // Calculate scores using the NN model. | 
 |   float score[16] = { 0.0f }; | 
 |   av1_nn_predict(features, nn_config, 1, score); | 
 |   aom_clear_system_state(); | 
 |   int int_score[16]; | 
 |   int max_score = -1000; | 
 |   for (int i = 0; i < 16; ++i) { | 
 |     int_score[i] = (int)(100 * score[i]); | 
 |     max_score = AOMMAX(int_score[i], max_score); | 
 |   } | 
 |  | 
 |   // Make decisions based on the model scores. | 
 |   int thresh = max_score; | 
 |   switch (bsize) { | 
 |     case BLOCK_16X16: thresh -= 150; break; | 
 |     case BLOCK_32X32: thresh -= 100; break; | 
 |     default: break; | 
 |   } | 
 |   *horza_partition_allowed = 0; | 
 |   *horzb_partition_allowed = 0; | 
 |   *verta_partition_allowed = 0; | 
 |   *vertb_partition_allowed = 0; | 
 |   for (int i = 0; i < 16; ++i) { | 
 |     if (int_score[i] >= thresh) { | 
 |       if ((i >> 0) & 1) *horza_partition_allowed = 1; | 
 |       if ((i >> 1) & 1) *horzb_partition_allowed = 1; | 
 |       if ((i >> 2) & 1) *verta_partition_allowed = 1; | 
 |       if ((i >> 3) & 1) *vertb_partition_allowed = 1; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #define FEATURES 18 | 
 | #define LABELS 4 | 
 | // Use a ML model to predict if horz4 and vert4 should be considered. | 
 | void av1_ml_prune_4_partition( | 
 |     const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, | 
 |     int part_ctx, int64_t best_rd, | 
 |     int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT], | 
 |     int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed, | 
 |     int *const partition_vert4_allowed, unsigned int pb_source_variance, | 
 |     int mi_row, int mi_col) { | 
 |   if (best_rd >= 1000000000) return; | 
 |   int64_t *horz_rd = rect_part_rd[HORZ]; | 
 |   int64_t *vert_rd = rect_part_rd[VERT]; | 
 |   const NN_CONFIG *nn_config = NULL; | 
 |   switch (bsize) { | 
 |     case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break; | 
 |     case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break; | 
 |     case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break; | 
 |     default: assert(0 && "Unexpected bsize."); | 
 |   } | 
 |   if (!nn_config) return; | 
 |  | 
 |   aom_clear_system_state(); | 
 |  | 
 |   // Generate features. | 
 |   float features[FEATURES]; | 
 |   int feature_index = 0; | 
 |   features[feature_index++] = (float)part_ctx; | 
 |   features[feature_index++] = (float)get_unsigned_bits(pb_source_variance); | 
 |  | 
 |   const int rdcost = (int)AOMMIN(INT_MAX, best_rd); | 
 |   int sub_block_rdcost[8] = { 0 }; | 
 |   int rd_index = 0; | 
 |   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
 |     if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) | 
 |       sub_block_rdcost[rd_index] = (int)horz_rd[i]; | 
 |     ++rd_index; | 
 |   } | 
 |   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
 |     if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) | 
 |       sub_block_rdcost[rd_index] = (int)vert_rd[i]; | 
 |     ++rd_index; | 
 |   } | 
 |   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
 |     if (split_rd[i] > 0 && split_rd[i] < 1000000000) | 
 |       sub_block_rdcost[rd_index] = (int)split_rd[i]; | 
 |     ++rd_index; | 
 |   } | 
 |   for (int i = 0; i < 8; ++i) { | 
 |     // Ratio between the sub-block RD and the whole-block RD. | 
 |     float rd_ratio = 1.0f; | 
 |     if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) | 
 |       rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; | 
 |     features[feature_index++] = rd_ratio; | 
 |   } | 
 |  | 
 |   // Get variance of the 1:4 and 4:1 sub-blocks. | 
 |   unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 }; | 
 |   unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 }; | 
 |   { | 
 |     BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4); | 
 |     BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4); | 
 |     av1_setup_src_planes(x, cpi->source, mi_row, mi_col, | 
 |                          av1_num_planes(&cpi->common), bsize); | 
 |     const int src_stride = x->plane[0].src.stride; | 
 |     uint8_t *src = x->plane[0].src.buf; | 
 |     const MACROBLOCKD *const xd = &x->e_mbd; | 
 |  | 
 |     struct buf_2d horz_4_src, vert_4_src; | 
 |     horz_4_src.stride = src_stride; | 
 |     vert_4_src.stride = src_stride; | 
 |  | 
 |     for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
 |       horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride; | 
 |       vert_4_src.buf = src + i * block_size_wide[vert_4_bs]; | 
 |  | 
 |       if (is_cur_buf_hbd(xd)) { | 
 |         horz_4_source_var[i] = av1_high_get_sby_perpixel_variance( | 
 |             cpi, &horz_4_src, horz_4_bs, xd->bd); | 
 |         vert_4_source_var[i] = av1_high_get_sby_perpixel_variance( | 
 |             cpi, &vert_4_src, vert_4_bs, xd->bd); | 
 |       } else { | 
 |         horz_4_source_var[i] = | 
 |             av1_get_sby_perpixel_variance(cpi, &horz_4_src, horz_4_bs); | 
 |         vert_4_source_var[i] = | 
 |             av1_get_sby_perpixel_variance(cpi, &vert_4_src, vert_4_bs); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   const float denom = (float)(pb_source_variance + 1); | 
 |   const float low_b = 0.1f; | 
 |   const float high_b = 10.0f; | 
 |   for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
 |     // Ratio between the 4:1 sub-block variance and the whole-block variance. | 
 |     float var_ratio = (float)(horz_4_source_var[i] + 1) / denom; | 
 |     if (var_ratio < low_b) var_ratio = low_b; | 
 |     if (var_ratio > high_b) var_ratio = high_b; | 
 |     features[feature_index++] = var_ratio; | 
 |   } | 
 |   for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
 |     // Ratio between the 1:4 sub-block RD and the whole-block RD. | 
 |     float var_ratio = (float)(vert_4_source_var[i] + 1) / denom; | 
 |     if (var_ratio < low_b) var_ratio = low_b; | 
 |     if (var_ratio > high_b) var_ratio = high_b; | 
 |     features[feature_index++] = var_ratio; | 
 |   } | 
 |   assert(feature_index == FEATURES); | 
 |  | 
 |   // Calculate scores using the NN model. | 
 |   float score[LABELS] = { 0.0f }; | 
 |   av1_nn_predict(features, nn_config, 1, score); | 
 |   aom_clear_system_state(); | 
 |   int int_score[LABELS]; | 
 |   int max_score = -1000; | 
 |   for (int i = 0; i < LABELS; ++i) { | 
 |     int_score[i] = (int)(100 * score[i]); | 
 |     max_score = AOMMAX(int_score[i], max_score); | 
 |   } | 
 |  | 
 |   // Make decisions based on the model scores. | 
 |   int thresh = max_score; | 
 |   switch (bsize) { | 
 |     case BLOCK_16X16: thresh -= 500; break; | 
 |     case BLOCK_32X32: thresh -= 500; break; | 
 |     case BLOCK_64X64: thresh -= 200; break; | 
 |     default: break; | 
 |   } | 
 |   *partition_horz4_allowed = 0; | 
 |   *partition_vert4_allowed = 0; | 
 |   for (int i = 0; i < LABELS; ++i) { | 
 |     if (int_score[i] >= thresh) { | 
 |       if ((i >> 0) & 1) *partition_horz4_allowed = 1; | 
 |       if ((i >> 1) & 1) *partition_vert4_allowed = 1; | 
 |     } | 
 |   } | 
 | } | 
 | #undef FEATURES | 
 | #undef LABELS | 
 |  | 
 | #define FEATURES 4 | 
 | int av1_ml_predict_breakout(const AV1_COMP *const cpi, BLOCK_SIZE bsize, | 
 |                             const MACROBLOCK *const x, | 
 |                             const RD_STATS *const rd_stats, | 
 |                             unsigned int pb_source_variance) { | 
 |   const NN_CONFIG *nn_config = NULL; | 
 |   int thresh = 0; | 
 |   switch (bsize) { | 
 |     case BLOCK_8X8: | 
 |       nn_config = &av1_partition_breakout_nnconfig_8; | 
 |       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[0]; | 
 |       break; | 
 |     case BLOCK_16X16: | 
 |       nn_config = &av1_partition_breakout_nnconfig_16; | 
 |       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[1]; | 
 |       break; | 
 |     case BLOCK_32X32: | 
 |       nn_config = &av1_partition_breakout_nnconfig_32; | 
 |       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[2]; | 
 |       break; | 
 |     case BLOCK_64X64: | 
 |       nn_config = &av1_partition_breakout_nnconfig_64; | 
 |       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[3]; | 
 |       break; | 
 |     case BLOCK_128X128: | 
 |       nn_config = &av1_partition_breakout_nnconfig_128; | 
 |       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[4]; | 
 |       break; | 
 |     default: assert(0 && "Unexpected bsize."); | 
 |   } | 
 |   if (!nn_config || thresh < 0) return 0; | 
 |  | 
 |   // Generate feature values. | 
 |   float features[FEATURES]; | 
 |   int feature_index = 0; | 
 |   aom_clear_system_state(); | 
 |  | 
 |   const int num_pels_log2 = num_pels_log2_lookup[bsize]; | 
 |   float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX); | 
 |   rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) * | 
 |            rate_f; | 
 |   features[feature_index++] = rate_f; | 
 |  | 
 |   const float dist_f = | 
 |       (float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2); | 
 |   features[feature_index++] = dist_f; | 
 |  | 
 |   features[feature_index++] = (float)pb_source_variance; | 
 |  | 
 |   const int dc_q = (int)x->plane[0].dequant_QTX[0]; | 
 |   features[feature_index++] = (float)(dc_q * dc_q) / 256.0f; | 
 |   assert(feature_index == FEATURES); | 
 |  | 
 |   // Calculate score using the NN model. | 
 |   float score = 0.0f; | 
 |   av1_nn_predict(features, nn_config, 1, &score); | 
 |   aom_clear_system_state(); | 
 |  | 
 |   // Make decision. | 
 |   return (int)(score * 100) >= thresh; | 
 | } | 
 | #undef FEATURES | 
 |  | 
 | void av1_prune_partitions_before_search( | 
 |     AV1_COMP *const cpi, MACROBLOCK *const x, int mi_row, int mi_col, | 
 |     BLOCK_SIZE bsize, SIMPLE_MOTION_DATA_TREE *const sms_tree, | 
 |     int *partition_none_allowed, int *partition_horz_allowed, | 
 |     int *partition_vert_allowed, int *do_rectangular_split, | 
 |     int *do_square_split, int *prune_horz, int *prune_vert) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
 |  | 
 |   // A CNN-based speed feature pruning out either split or all non-split | 
 |   // partition in INTRA frame coding. | 
 |   const int try_intra_cnn_split = | 
 |       !cpi->is_screen_content_type && frame_is_intra_only(cm) && | 
 |       cpi->sf.part_sf.intra_cnn_split && | 
 |       cm->seq_params.sb_size >= BLOCK_64X64 && bsize <= BLOCK_64X64 && | 
 |       bsize >= BLOCK_8X8 && | 
 |       mi_row + mi_size_high[bsize] <= mi_params->mi_rows && | 
 |       mi_col + mi_size_wide[bsize] <= mi_params->mi_cols; | 
 |  | 
 |   if (try_intra_cnn_split) { | 
 |     av1_intra_mode_cnn_partition( | 
 |         &cpi->common, x, bsize, x->part_search_info.quad_tree_idx, | 
 |         partition_none_allowed, partition_horz_allowed, partition_vert_allowed, | 
 |         do_rectangular_split, do_square_split); | 
 |   } | 
 |  | 
 |   // Use simple motion search to prune out split or non-split partitions. This | 
 |   // must be done prior to PARTITION_SPLIT to propagate the initial mvs to a | 
 |   // smaller blocksize. | 
 |   const int try_split_only = | 
 |       !cpi->is_screen_content_type && | 
 |       cpi->sf.part_sf.simple_motion_search_split && *do_square_split && | 
 |       bsize >= BLOCK_8X8 && | 
 |       mi_row + mi_size_high[bsize] <= mi_params->mi_rows && | 
 |       mi_col + mi_size_wide[bsize] <= mi_params->mi_cols && | 
 |       !frame_is_intra_only(cm) && !av1_superres_scaled(cm); | 
 |  | 
 |   if (try_split_only) { | 
 |     av1_simple_motion_search_based_split( | 
 |         cpi, x, sms_tree, mi_row, mi_col, bsize, partition_none_allowed, | 
 |         partition_horz_allowed, partition_vert_allowed, do_rectangular_split, | 
 |         do_square_split); | 
 |   } | 
 |  | 
 |   // Use simple motion search to prune out rectangular partition in some | 
 |   // direction. The results are stored in prune_horz and prune_vert in order to | 
 |   // bypass future related pruning checks if a pruning decision has been made. | 
 |   const int try_prune_rect = | 
 |       !cpi->is_screen_content_type && | 
 |       cpi->sf.part_sf.simple_motion_search_prune_rect && | 
 |       !frame_is_intra_only(cm) && *do_rectangular_split && | 
 |       (*do_square_split || *partition_none_allowed || | 
 |        (*prune_horz && *prune_vert)) && | 
 |       (*partition_horz_allowed || *partition_vert_allowed) && | 
 |       bsize >= BLOCK_8X8; | 
 |  | 
 |   if (try_prune_rect) { | 
 |     av1_simple_motion_search_prune_rect( | 
 |         cpi, x, sms_tree, mi_row, mi_col, bsize, *partition_horz_allowed, | 
 |         *partition_vert_allowed, prune_horz, prune_vert); | 
 |   } | 
 | } | 
 |  | 
 | #ifndef NDEBUG | 
 | static AOM_INLINE int is_bsize_square(BLOCK_SIZE bsize) { | 
 |   return block_size_wide[bsize] == block_size_high[bsize]; | 
 | } | 
 | #endif  // NDEBUG | 
 |  | 
 | void av1_prune_partitions_by_max_min_bsize( | 
 |     SuperBlockEnc *sb_enc, BLOCK_SIZE bsize, int is_not_edge_block, | 
 |     int *partition_none_allowed, int *partition_horz_allowed, | 
 |     int *partition_vert_allowed, int *do_square_split) { | 
 |   assert(is_bsize_square(sb_enc->max_partition_size)); | 
 |   assert(is_bsize_square(sb_enc->min_partition_size)); | 
 |   assert(sb_enc->min_partition_size <= sb_enc->max_partition_size); | 
 |   assert(is_bsize_square(bsize)); | 
 |   const int max_partition_size_1d = block_size_wide[sb_enc->max_partition_size]; | 
 |   const int min_partition_size_1d = block_size_wide[sb_enc->min_partition_size]; | 
 |   const int bsize_1d = block_size_wide[bsize]; | 
 |   assert(min_partition_size_1d <= max_partition_size_1d); | 
 |   const int is_le_min_sq_part = bsize_1d <= min_partition_size_1d; | 
 |   const int is_gt_max_sq_part = bsize_1d > max_partition_size_1d; | 
 |   if (is_gt_max_sq_part) { | 
 |     // If current block size is larger than max, only allow split. | 
 |     *partition_none_allowed = 0; | 
 |     *partition_horz_allowed = 0; | 
 |     *partition_vert_allowed = 0; | 
 |     *do_square_split = 1; | 
 |   } else if (is_le_min_sq_part) { | 
 |     // If current block size is less or equal to min, only allow none if valid | 
 |     // block large enough; only allow split otherwise. | 
 |     *partition_horz_allowed = 0; | 
 |     *partition_vert_allowed = 0; | 
 |     // only disable square split when current block is not at the picture | 
 |     // boundary. otherwise, inherit the square split flag from previous logic | 
 |     if (is_not_edge_block) *do_square_split = 0; | 
 |     *partition_none_allowed = !(*do_square_split); | 
 |   } | 
 | } | 
 |  | 
 | // Decide whether to evaluate the AB partition specified by part_type based on | 
 | // split and HORZ/VERT info | 
 | int evaluate_ab_partition_based_on_split( | 
 |     const PC_TREE *pc_tree, PARTITION_TYPE rect_part, | 
 |     const RD_RECT_PART_WIN_INFO *rect_part_win_info, int qindex, int split_idx1, | 
 |     int split_idx2) { | 
 |   int num_win = 0; | 
 |   // Threshold for number of winners | 
 |   // Conservative pruning for high quantizers | 
 |   const int num_win_thresh = AOMMIN(3 * (2 * (MAXQ - qindex) / MAXQ), 3); | 
 |   int sub_part_win = (rect_part_win_info == NULL) | 
 |                          ? (pc_tree->partitioning == rect_part) | 
 |                          : (rect_part == PARTITION_HORZ) | 
 |                                ? rect_part_win_info->rect_part_win[HORZ] | 
 |                                : rect_part_win_info->rect_part_win[VERT]; | 
 |   num_win += (sub_part_win) ? 1 : 0; | 
 |   if (pc_tree->split[split_idx1]) { | 
 |     num_win += | 
 |         (pc_tree->split[split_idx1]->partitioning == PARTITION_NONE) ? 1 : 0; | 
 |   } else { | 
 |     num_win += 1; | 
 |   } | 
 |   if (pc_tree->split[split_idx2]) { | 
 |     num_win += | 
 |         (pc_tree->split[split_idx2]->partitioning == PARTITION_NONE) ? 1 : 0; | 
 |   } else { | 
 |     num_win += 1; | 
 |   } | 
 |   if (num_win < num_win_thresh) { | 
 |     return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | void av1_prune_ab_partitions( | 
 |     const AV1_COMP *cpi, const MACROBLOCK *x, const PC_TREE *pc_tree, | 
 |     BLOCK_SIZE bsize, int pb_source_variance, int64_t best_rdcost, | 
 |     int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT], | 
 |     int64_t split_rd[SUB_PARTITIONS_SPLIT], | 
 |     const RD_RECT_PART_WIN_INFO *rect_part_win_info, int ext_partition_allowed, | 
 |     int partition_horz_allowed, int partition_vert_allowed, | 
 |     int *horza_partition_allowed, int *horzb_partition_allowed, | 
 |     int *verta_partition_allowed, int *vertb_partition_allowed) { | 
 |   int64_t *horz_rd = rect_part_rd[HORZ]; | 
 |   int64_t *vert_rd = rect_part_rd[VERT]; | 
 |   const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg; | 
 |   // The standard AB partitions are allowed initially if ext-partition-types are | 
 |   // allowed. | 
 |   int horzab_partition_allowed = | 
 |       ext_partition_allowed & part_cfg->enable_ab_partitions; | 
 |   int vertab_partition_allowed = | 
 |       ext_partition_allowed & part_cfg->enable_ab_partitions; | 
 |  | 
 |   // Pruning: pruning out AB partitions on one main direction based on the | 
 |   // current best partition and source variance. | 
 |   if (cpi->sf.part_sf.prune_ext_partition_types_search_level) { | 
 |     if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 1) { | 
 |       // TODO(debargha,huisu@google.com): may need to tune the threshold for | 
 |       // pb_source_variance. | 
 |       horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || | 
 |                                    (pc_tree->partitioning == PARTITION_NONE && | 
 |                                     pb_source_variance < 32) || | 
 |                                    pc_tree->partitioning == PARTITION_SPLIT); | 
 |       vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || | 
 |                                    (pc_tree->partitioning == PARTITION_NONE && | 
 |                                     pb_source_variance < 32) || | 
 |                                    pc_tree->partitioning == PARTITION_SPLIT); | 
 |     } else { | 
 |       horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || | 
 |                                    pc_tree->partitioning == PARTITION_SPLIT); | 
 |       vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || | 
 |                                    pc_tree->partitioning == PARTITION_SPLIT); | 
 |     } | 
 |     horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0); | 
 |     horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0); | 
 |     vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0); | 
 |     vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0); | 
 |     split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0); | 
 |     split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0); | 
 |     split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0); | 
 |     split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0); | 
 |   } | 
 |  | 
 |   // Pruning: pruning out horz_a or horz_b if the combined rdcost of its | 
 |   // subblocks estimated from previous partitions is much higher than the best | 
 |   // rd so far. | 
 |   *horza_partition_allowed = horzab_partition_allowed; | 
 |   *horzb_partition_allowed = horzab_partition_allowed; | 
 |   if (cpi->sf.part_sf.prune_ext_partition_types_search_level) { | 
 |     const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1]; | 
 |     const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3]; | 
 |     switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) { | 
 |       case 1: | 
 |         *horza_partition_allowed &= (horz_a_rd / 16 * 14 < best_rdcost); | 
 |         *horzb_partition_allowed &= (horz_b_rd / 16 * 14 < best_rdcost); | 
 |         break; | 
 |       case 2: | 
 |       default: | 
 |         *horza_partition_allowed &= (horz_a_rd / 16 * 15 < best_rdcost); | 
 |         *horzb_partition_allowed &= (horz_b_rd / 16 * 15 < best_rdcost); | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Pruning: pruning out vert_a or vert_b if the combined rdcost of its | 
 |   // subblocks estimated from previous partitions is much higher than the best | 
 |   // rd so far. | 
 |   *verta_partition_allowed = vertab_partition_allowed; | 
 |   *vertb_partition_allowed = vertab_partition_allowed; | 
 |   if (cpi->sf.part_sf.prune_ext_partition_types_search_level) { | 
 |     const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2]; | 
 |     const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3]; | 
 |     switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) { | 
 |       case 1: | 
 |         *verta_partition_allowed &= (vert_a_rd / 16 * 14 < best_rdcost); | 
 |         *vertb_partition_allowed &= (vert_b_rd / 16 * 14 < best_rdcost); | 
 |         break; | 
 |       case 2: | 
 |       default: | 
 |         *verta_partition_allowed &= (vert_a_rd / 16 * 15 < best_rdcost); | 
 |         *vertb_partition_allowed &= (vert_b_rd / 16 * 15 < best_rdcost); | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Pruning: pruning out some ab partitions using a DNN taking rd costs of | 
 |   // sub-blocks from previous basic partition types. | 
 |   if (cpi->sf.part_sf.ml_prune_ab_partition && ext_partition_allowed && | 
 |       partition_horz_allowed && partition_vert_allowed) { | 
 |     // TODO(huisu@google.com): x->source_variance may not be the current | 
 |     // block's variance. The correct one to use is pb_source_variance. Need to | 
 |     // re-train the model to fix it. | 
 |     av1_ml_prune_ab_partition(bsize, pc_tree->partitioning, | 
 |                               get_unsigned_bits(x->source_variance), | 
 |                               best_rdcost, horz_rd, vert_rd, split_rd, | 
 |                               horza_partition_allowed, horzb_partition_allowed, | 
 |                               verta_partition_allowed, vertb_partition_allowed); | 
 |   } | 
 |  | 
 |   // Disable ab partitions if they are disabled by the encoder parameter. | 
 |   *horza_partition_allowed &= part_cfg->enable_ab_partitions; | 
 |   *horzb_partition_allowed &= part_cfg->enable_ab_partitions; | 
 |   *verta_partition_allowed &= part_cfg->enable_ab_partitions; | 
 |   *vertb_partition_allowed &= part_cfg->enable_ab_partitions; | 
 |  | 
 |   // Pruning: pruning AB partitions based on the number of horz/vert wins | 
 |   // in the current block and sub-blocks in PARTITION_SPLIT. | 
 |   if (cpi->sf.part_sf.prune_ab_partition_using_split_info && | 
 |       *horza_partition_allowed) { | 
 |     *horza_partition_allowed &= evaluate_ab_partition_based_on_split( | 
 |         pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 0, 1); | 
 |   } | 
 |   if (cpi->sf.part_sf.prune_ab_partition_using_split_info && | 
 |       *horzb_partition_allowed) { | 
 |     *horzb_partition_allowed &= evaluate_ab_partition_based_on_split( | 
 |         pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 2, 3); | 
 |   } | 
 |   if (cpi->sf.part_sf.prune_ab_partition_using_split_info && | 
 |       *verta_partition_allowed) { | 
 |     *verta_partition_allowed &= evaluate_ab_partition_based_on_split( | 
 |         pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 0, 2); | 
 |   } | 
 |   if (cpi->sf.part_sf.prune_ab_partition_using_split_info && | 
 |       *vertb_partition_allowed) { | 
 |     *vertb_partition_allowed &= evaluate_ab_partition_based_on_split( | 
 |         pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 1, 3); | 
 |   } | 
 | } | 
 |  | 
 | #endif  // !CONFIG_REALTIME_ONLY |