|  | /* | 
|  | * Copyright (c) 2019, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <float.h> | 
|  |  | 
|  | #include "av1/encoder/encodeframe_utils.h" | 
|  | #include "av1/encoder/thirdpass.h" | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  |  | 
|  | #include "av1/common/enums.h" | 
|  | #include "av1/common/reconinter.h" | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | #include "av1/encoder/cnn.h" | 
|  | #include "av1/encoder/partition_model_weights.h" | 
|  | #include "av1/encoder/partition_cnn_weights.h" | 
|  | #endif | 
|  | #include "av1/encoder/encoder.h" | 
|  |  | 
|  | #include "av1/encoder/motion_search_facade.h" | 
|  | #include "av1/encoder/partition_strategy.h" | 
|  | #include "av1/encoder/partition_search.h" | 
|  | #include "av1/encoder/rdopt.h" | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | static AOM_INLINE void simple_motion_search_prune_part_features( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, float *features, | 
|  | int features_to_get); | 
|  |  | 
|  | static bool ext_ml_model_decision_before_none( | 
|  | AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT], | 
|  | int *partition_none_allowed, int *partition_horz_allowed, | 
|  | int *partition_vert_allowed, int *do_rectangular_split, | 
|  | int *do_square_split); | 
|  |  | 
|  | static bool ext_ml_model_decision_before_none_part2( | 
|  | AV1_COMP *cpi, | 
|  | const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART], | 
|  | int *prune_horz, int *prune_vert); | 
|  |  | 
|  | static bool ext_ml_model_decision_after_none( | 
|  | ExtPartController *const ext_part_controller, const int is_intra_frame, | 
|  | const float *const features_after_none, int *do_square_split, | 
|  | int *do_rectangular_split); | 
|  |  | 
|  | static bool ext_ml_model_decision_after_none_part2( | 
|  | AV1_COMP *const cpi, const float *const features_terminate, | 
|  | int *terminate_partition_search); | 
|  |  | 
|  | static bool ext_ml_model_decision_after_split( | 
|  | AV1_COMP *const cpi, const float *const features_terminate, | 
|  | int *terminate_partition_search); | 
|  |  | 
|  | static bool ext_ml_model_decision_after_split_part2( | 
|  | ExtPartController *const ext_part_controller, const int is_intra_frame, | 
|  | const float *const features_prune, int *prune_rect_part_horz, | 
|  | int *prune_rect_part_vert); | 
|  |  | 
|  | static bool ext_ml_model_decision_after_rect( | 
|  | ExtPartController *const ext_part_controller, const int is_intra_frame, | 
|  | const float *const features_after_rect, int *horza_partition_allowed, | 
|  | int *horzb_partition_allowed, int *verta_partition_allowed, | 
|  | int *vertb_partition_allowed); | 
|  |  | 
|  | static bool ext_ml_model_decision_after_part_ab( | 
|  | AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx, | 
|  | int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT], | 
|  | int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed, | 
|  | int *const partition_vert4_allowed, unsigned int pb_source_variance, | 
|  | int mi_row, int mi_col); | 
|  |  | 
|  | static INLINE int convert_bsize_to_idx(BLOCK_SIZE bsize) { | 
|  | switch (bsize) { | 
|  | case BLOCK_128X128: return 0; | 
|  | case BLOCK_64X64: return 1; | 
|  | case BLOCK_32X32: return 2; | 
|  | case BLOCK_16X16: return 3; | 
|  | case BLOCK_8X8: return 4; | 
|  | default: assert(0 && "Invalid bsize"); return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static char *get_feature_file_name(int id) { | 
|  | static char *feature_file_names[] = { | 
|  | "feature_before_partition_none", | 
|  | "feature_before_partition_none_prune_rect", | 
|  | "feature_after_partition_none_prune", | 
|  | "feature_after_partition_none_terminate", | 
|  | "feature_after_partition_split_terminate", | 
|  | "feature_after_partition_split_prune_rect", | 
|  | "feature_after_partition_rect", | 
|  | "feature_after_partition_ab", | 
|  | }; | 
|  |  | 
|  | return feature_file_names[id]; | 
|  | } | 
|  |  | 
|  | static void write_features_to_file(const char *const path, | 
|  | const bool is_test_mode, | 
|  | const float *features, | 
|  | const int feature_size, const int id, | 
|  | const int bsize, const int mi_row, | 
|  | const int mi_col) { | 
|  | if (!WRITE_FEATURE_TO_FILE && !is_test_mode) return; | 
|  |  | 
|  | char filename[256]; | 
|  | snprintf(filename, sizeof(filename), "%s/%s", path, | 
|  | get_feature_file_name(id)); | 
|  | FILE *pfile = fopen(filename, "a"); | 
|  | if (pfile == NULL) return; | 
|  | if (!is_test_mode) { | 
|  | fprintf(pfile, "%d,%d,%d,%d,%d\n", id, bsize, mi_row, mi_col, feature_size); | 
|  | } | 
|  | for (int i = 0; i < feature_size; ++i) { | 
|  | fprintf(pfile, "%.6f", features[i]); | 
|  | if (i < feature_size - 1) fprintf(pfile, ","); | 
|  | } | 
|  | fprintf(pfile, "\n"); | 
|  | fclose(pfile); | 
|  | } | 
|  |  | 
|  | // TODO(chiyotsai@google.com): This is very much a work in progress. We still | 
|  | // need to the following: | 
|  | //   -- add support for hdres | 
|  | //   -- add support for pruning rectangular partitions | 
|  | //   -- use reconstructed pixels instead of source pixels for padding | 
|  | //   -- use chroma pixels in addition to luma pixels | 
|  | void av1_intra_mode_cnn_partition(const AV1_COMMON *const cm, MACROBLOCK *x, | 
|  | int quad_tree_idx, | 
|  | int intra_cnn_based_part_prune_level, | 
|  | PartitionSearchState *part_state) { | 
|  | assert(cm->seq_params->sb_size >= BLOCK_64X64 && | 
|  | "Invalid sb_size for intra_cnn!"); | 
|  | const PartitionBlkParams *blk_params = &part_state->part_blk_params; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | const int bsize_idx = convert_bsize_to_idx(bsize); | 
|  |  | 
|  | if (bsize == BLOCK_128X128) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | PartitionSearchInfo *part_info = &x->part_search_info; | 
|  |  | 
|  | // Precompute the CNN part and cache the result in MACROBLOCK | 
|  | if (bsize == BLOCK_64X64 && !part_info->cnn_output_valid) { | 
|  | const CNN_CONFIG *cnn_config = &av1_intra_mode_cnn_partition_cnn_config; | 
|  |  | 
|  | // Prepare the output | 
|  | const CNN_THREAD_DATA thread_data = { .num_workers = 1, .workers = NULL }; | 
|  | const int num_outputs = 4; | 
|  | const int output_dims[4] = { 1, 2, 4, 8 }; | 
|  | const int out_chs[4] = { CNN_BRANCH_0_OUT_CH, CNN_BRANCH_1_OUT_CH, | 
|  | CNN_BRANCH_2_OUT_CH, CNN_BRANCH_3_OUT_CH }; | 
|  | float *output_buffer[CNN_TOT_OUT_CH]; | 
|  |  | 
|  | float **cur_output_buf = output_buffer; | 
|  | float *curr_buf_ptr = part_info->cnn_buffer; | 
|  | for (int output_idx = 0; output_idx < num_outputs; output_idx++) { | 
|  | const int num_chs = out_chs[output_idx]; | 
|  | const int ch_size = output_dims[output_idx] * output_dims[output_idx]; | 
|  | for (int ch = 0; ch < num_chs; ch++) { | 
|  | cur_output_buf[ch] = curr_buf_ptr; | 
|  | curr_buf_ptr += ch_size; | 
|  | } | 
|  | cur_output_buf += num_chs; | 
|  | } | 
|  |  | 
|  | CNN_MULTI_OUT output = { | 
|  | .num_outputs = 4, | 
|  | .output_channels = out_chs, | 
|  | .output_strides = output_dims, | 
|  | .output_buffer = output_buffer, | 
|  | }; | 
|  |  | 
|  | // Prepare the input | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | const int bit_depth = xd->bd; | 
|  | const int dc_q = | 
|  | av1_dc_quant_QTX(x->qindex, 0, bit_depth) >> (bit_depth - 8); | 
|  | part_info->log_q = log1pf((float)(dc_q * dc_q) / 256.0f); | 
|  | part_info->log_q = | 
|  | (part_info->log_q - av1_intra_mode_cnn_partition_mean[0]) / | 
|  | av1_intra_mode_cnn_partition_std[0]; | 
|  |  | 
|  | const int width = 65, height = 65, | 
|  | stride = x->plane[AOM_PLANE_Y].src.stride; | 
|  |  | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | uint16_t *image[1] = { | 
|  | CONVERT_TO_SHORTPTR(x->plane[AOM_PLANE_Y].src.buf) - stride - 1 | 
|  | }; | 
|  |  | 
|  | if (!av1_cnn_predict_img_multi_out_highbd(image, width, height, stride, | 
|  | cnn_config, &thread_data, | 
|  | bit_depth, &output)) { | 
|  | aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, | 
|  | "Error allocating CNN data"); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | uint8_t *image[1] = { x->plane[AOM_PLANE_Y].src.buf - stride - 1 }; | 
|  |  | 
|  | if (!av1_cnn_predict_img_multi_out(image, width, height, stride, | 
|  | cnn_config, &thread_data, &output)) { | 
|  | aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, | 
|  | "Error allocating CNN data"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | part_info->cnn_output_valid = 1; | 
|  | } | 
|  |  | 
|  | if (!part_info->cnn_output_valid) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const NN_CONFIG *dnn_configs[5] = { | 
|  | NULL, | 
|  | &av1_intra_mode_cnn_partition_branch_0_dnn_config, | 
|  | &av1_intra_mode_cnn_partition_branch_1_dnn_config, | 
|  | &av1_intra_mode_cnn_partition_branch_2_dnn_config, | 
|  | &av1_intra_mode_cnn_partition_branch_3_dnn_config, | 
|  | }; | 
|  |  | 
|  | const NN_CONFIG *dnn_config = dnn_configs[bsize_idx]; | 
|  |  | 
|  | float dnn_features[100]; | 
|  | float logits[4] = { 0.0f }; | 
|  |  | 
|  | const float *branch_0 = part_info->cnn_buffer; | 
|  | const float *branch_1 = branch_0 + CNN_BRANCH_0_OUT_SIZE; | 
|  | const float *branch_2 = branch_1 + CNN_BRANCH_1_OUT_SIZE; | 
|  | const float *branch_3 = branch_2 + CNN_BRANCH_2_OUT_SIZE; | 
|  |  | 
|  | if (bsize == BLOCK_64X64) { | 
|  | int f_idx = 0; | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_0_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_0[ch_idx]; | 
|  | } | 
|  |  | 
|  | const int spa_stride = 2 * 2; | 
|  | for (int lin_idx = 0; lin_idx < spa_stride; lin_idx++) { | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_1[lin_idx + ch_idx * spa_stride]; | 
|  | } | 
|  | } | 
|  | dnn_features[f_idx++] = part_info->log_q; | 
|  | } else if (bsize == BLOCK_32X32) { | 
|  | int f_idx = 0; | 
|  | for (int idx = 0; idx < CNN_BRANCH_0_OUT_CH; idx++) { | 
|  | dnn_features[f_idx++] = branch_0[idx]; | 
|  | } | 
|  |  | 
|  | const int curr_lin_idx = quad_to_linear_1[quad_tree_idx - 1]; | 
|  | const int spa_stride = 2 * 2; | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_1[curr_lin_idx + ch_idx * spa_stride]; | 
|  | } | 
|  | dnn_features[f_idx++] = part_info->log_q; | 
|  | } else if (bsize == BLOCK_16X16) { | 
|  | int f_idx = 0; | 
|  | const int prev_quad_idx = (quad_tree_idx - 1) / 4; | 
|  | const int prev_lin_idx = quad_to_linear_1[prev_quad_idx - 1]; | 
|  | const int prev_spa_stride = 2 * 2; | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_1[prev_lin_idx + ch_idx * prev_spa_stride]; | 
|  | } | 
|  |  | 
|  | const int curr_lin_idx = quad_to_linear_2[quad_tree_idx - 5]; | 
|  | const int spa_stride = 4 * 4; | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_2[curr_lin_idx + ch_idx * spa_stride]; | 
|  | } | 
|  | dnn_features[f_idx++] = part_info->log_q; | 
|  | } else if (bsize == BLOCK_8X8) { | 
|  | int f_idx = 0; | 
|  | const int prev_quad_idx = (quad_tree_idx - 1) / 4; | 
|  | const int prev_lin_idx = quad_to_linear_2[prev_quad_idx - 5]; | 
|  | const int prev_spa_stride = 4 * 4; | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_2[prev_lin_idx + ch_idx * prev_spa_stride]; | 
|  | } | 
|  |  | 
|  | const int curr_lin_idx = quad_to_linear_3[quad_tree_idx - 21]; | 
|  | const int spa_stride = 8 * 8; | 
|  | for (int ch_idx = 0; ch_idx < CNN_BRANCH_3_OUT_CH; ch_idx++) { | 
|  | dnn_features[f_idx++] = branch_3[curr_lin_idx + ch_idx * spa_stride]; | 
|  | } | 
|  | dnn_features[f_idx++] = part_info->log_q; | 
|  | } else { | 
|  | assert(0 && "Invalid bsize in intra_cnn partition"); | 
|  | } | 
|  |  | 
|  | // Make decision | 
|  | av1_nn_predict(dnn_features, dnn_config, 1, logits); | 
|  |  | 
|  | const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720; | 
|  | const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; | 
|  | float split_only_thresh = 100.0f, no_split_thresh = -100.0f; | 
|  | if (is_720p_or_larger) { | 
|  | split_only_thresh = | 
|  | av1_intra_mode_cnn_partition_split_thresh_hdres[bsize_idx]; | 
|  | no_split_thresh = | 
|  | av1_intra_mode_cnn_partition_no_split_thresh_hdres[bsize_idx]; | 
|  | } else if (is_480p_or_larger) { | 
|  | split_only_thresh = | 
|  | av1_intra_mode_cnn_partition_split_thresh_midres[bsize_idx]; | 
|  | no_split_thresh = | 
|  | av1_intra_mode_cnn_partition_no_split_thresh_midres[bsize_idx]; | 
|  | } else { | 
|  | split_only_thresh = | 
|  | av1_intra_mode_cnn_partition_split_thresh_lowres[bsize_idx]; | 
|  | no_split_thresh = | 
|  | av1_intra_mode_cnn_partition_no_split_thresh_lowres[bsize_idx]; | 
|  | } | 
|  |  | 
|  | if (logits[0] > split_only_thresh) { | 
|  | // As screen contents tend to choose larger partitions, do not prune | 
|  | // PARTITION_NONE when intra_cnn_based_part_prune_level=1. | 
|  | if (intra_cnn_based_part_prune_level != 1) { | 
|  | part_state->partition_none_allowed = 0; | 
|  | } | 
|  | part_state->do_square_split = 1; | 
|  | av1_disable_rect_partitions(part_state); | 
|  | } | 
|  |  | 
|  | if (logits[0] < no_split_thresh) { | 
|  | av1_disable_square_split_partition(part_state); | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE int get_simple_motion_search_prune_agg(int qindex, | 
|  | int prune_level, | 
|  | int is_rect_part) { | 
|  | assert(prune_level < TOTAL_AGG_LVLS); | 
|  | if (prune_level == NO_PRUNING) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Aggressiveness value for SIMPLE_MOTION_SEARCH_PRUNE_LEVEL except | 
|  | // QIDX_BASED_AGG_LVL | 
|  | const int sms_prune_agg_levels[TOTAL_SIMPLE_AGG_LVLS] = { 0, 1, 2, 3 }; | 
|  | if (prune_level < TOTAL_SIMPLE_AGG_LVLS) { | 
|  | return sms_prune_agg_levels[prune_level]; | 
|  | } | 
|  |  | 
|  | // Map the QIDX_BASED_AGG_LVL to corresponding aggressiveness value. | 
|  | // Aggressive pruning for lower quantizers in non-boosted frames to prune | 
|  | // rectangular partitions. | 
|  | const int qband = is_rect_part ? (qindex <= 90 ? 1 : 0) : 0; | 
|  | const int sms_prune_agg_qindex_based[2] = { 1, 2 }; | 
|  | return sms_prune_agg_qindex_based[qband]; | 
|  | } | 
|  |  | 
|  | void av1_simple_motion_search_based_split(AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | PartitionSearchState *part_state) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const PartitionBlkParams *blk_params = &part_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | const int bsize_idx = convert_bsize_to_idx(bsize); | 
|  | const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720; | 
|  | const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; | 
|  | // res_idx is 0 for res < 480p, 1 for 480p, 2 for 720p+ | 
|  | const int res_idx = is_480p_or_larger + is_720p_or_larger; | 
|  |  | 
|  | assert(bsize_idx >= 0 && bsize_idx <= 4 && | 
|  | "Invalid bsize in simple_motion_search_based_split"); | 
|  |  | 
|  | const float *ml_mean = av1_simple_motion_search_split_mean[bsize_idx]; | 
|  | const float *ml_std = av1_simple_motion_search_split_std[bsize_idx]; | 
|  | const NN_CONFIG *nn_config = | 
|  | av1_simple_motion_search_split_nn_config[bsize_idx]; | 
|  |  | 
|  | const int agg = get_simple_motion_search_prune_agg( | 
|  | x->qindex, cpi->sf.part_sf.simple_motion_search_prune_agg, 0); | 
|  | if (agg < 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const float split_only_thresh = | 
|  | av1_simple_motion_search_split_thresh[agg][res_idx][bsize_idx]; | 
|  | const float no_split_thresh = | 
|  | av1_simple_motion_search_no_split_thresh[agg][res_idx][bsize_idx]; | 
|  |  | 
|  | float features[FEATURE_SIZE_SMS_SPLIT] = { 0.0f }; | 
|  | simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col, | 
|  | bsize, features, | 
|  | FEATURE_SMS_SPLIT_MODEL_FLAG); | 
|  |  | 
|  | // Write features to file | 
|  | write_features_to_file(cpi->oxcf.partition_info_path, | 
|  | cpi->ext_part_controller.test_mode, features, | 
|  | FEATURE_SIZE_SMS_SPLIT, 0, bsize, mi_row, mi_col); | 
|  |  | 
|  | // Note: it is intended to not normalize the features here, to keep it | 
|  | // consistent for all features collected and passed to the external model. | 
|  | if (ext_ml_model_decision_before_none( | 
|  | cpi, features, &part_state->partition_none_allowed, | 
|  | &part_state->partition_rect_allowed[HORZ], | 
|  | &part_state->partition_rect_allowed[VERT], | 
|  | &part_state->do_rectangular_split, &part_state->do_square_split)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (int idx = 0; idx < FEATURE_SIZE_SMS_SPLIT; idx++) { | 
|  | features[idx] = (features[idx] - ml_mean[idx]) / ml_std[idx]; | 
|  | } | 
|  |  | 
|  | float score = 0.0f; | 
|  |  | 
|  | av1_nn_predict(features, nn_config, 1, &score); | 
|  |  | 
|  | if (score > split_only_thresh) { | 
|  | av1_set_square_split_only(part_state); | 
|  | } | 
|  |  | 
|  | if (cpi->sf.part_sf.simple_motion_search_split >= 2 && | 
|  | score < no_split_thresh) { | 
|  | av1_disable_square_split_partition(part_state); | 
|  | } | 
|  |  | 
|  | // If the score is very low, prune rectangular split since it is unlikely to | 
|  | // occur. | 
|  | if (cpi->sf.part_sf.simple_motion_search_rect_split) { | 
|  | const float scale = res_idx >= 2 ? 3.0f : 2.0f; | 
|  | const float rect_split_thresh = | 
|  | scale * av1_simple_motion_search_no_split_thresh | 
|  | [cpi->sf.part_sf.simple_motion_search_rect_split][res_idx] | 
|  | [bsize_idx]; | 
|  | if (score < rect_split_thresh) { | 
|  | part_state->do_rectangular_split = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Given a list of ref frames in refs, performs simple_motion_search on each of | 
|  | // the refs and returns the ref with the smallest sse. Returns -1 if none of the | 
|  | // ref in the list is available. Also stores the best sse and var in best_sse, | 
|  | // best_var, respectively. If save_mv is 0, don't update mv_ref_fulls in | 
|  | // sms_tree. If save_mv is 1, update mv_ref_fulls under sms_tree and the | 
|  | // subtrees. | 
|  | static int simple_motion_search_get_best_ref( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, const int *const refs, | 
|  | int num_refs, int use_subpixel, int save_mv, unsigned int *best_sse, | 
|  | unsigned int *best_var) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | int best_ref = -1; | 
|  |  | 
|  | if (mi_col >= cm->mi_params.mi_cols || mi_row >= cm->mi_params.mi_rows) { | 
|  | // If the whole block is outside of the image, set the var and sse to 0. | 
|  | *best_var = 0; | 
|  | *best_sse = 0; | 
|  |  | 
|  | return best_ref; | 
|  | } | 
|  |  | 
|  | // Otherwise do loop through the reference frames and find the one with the | 
|  | // minimum SSE | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  |  | 
|  | const int num_planes = 1; | 
|  |  | 
|  | *best_sse = INT_MAX; | 
|  |  | 
|  | for (int ref_idx = 0; ref_idx < num_refs; ref_idx++) { | 
|  | const int ref = refs[ref_idx]; | 
|  |  | 
|  | if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref]) { | 
|  | const FULLPEL_MV *start_mvs = sms_tree->start_mvs; | 
|  | unsigned int curr_sse = 0, curr_var = 0; | 
|  | int_mv best_mv = | 
|  | av1_simple_motion_search(cpi, x, mi_row, mi_col, bsize, ref, | 
|  | start_mvs[ref], num_planes, use_subpixel); | 
|  | curr_var = cpi->ppi->fn_ptr[bsize].vf( | 
|  | x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].dst.buf, | 
|  | xd->plane[0].dst.stride, &curr_sse); | 
|  | if (curr_sse < *best_sse) { | 
|  | *best_sse = curr_sse; | 
|  | *best_var = curr_var; | 
|  | best_ref = ref; | 
|  | } | 
|  |  | 
|  | if (save_mv) { | 
|  | sms_tree->start_mvs[ref].row = best_mv.as_mv.row / 8; | 
|  | sms_tree->start_mvs[ref].col = best_mv.as_mv.col / 8; | 
|  |  | 
|  | if (bsize >= BLOCK_8X8) { | 
|  | for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) { | 
|  | // Propagate the new motion vectors to a lower level | 
|  | SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx]; | 
|  | sub_tree->start_mvs[ref] = sms_tree->start_mvs[ref]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return best_ref; | 
|  | } | 
|  |  | 
|  | // Collects features using simple_motion_search and store them in features. The | 
|  | // features are also cached in SIMPLE_MOTION_DATA_TREE. By default, the features | 
|  | // collected are the sse and var from the subblocks flagged by features_to_get. | 
|  | // Furthermore, if features is not NULL, then 7 more features are appended to | 
|  | // the end of features: | 
|  | //  - log(1.0 + dc_q ** 2) | 
|  | //  - whether an above macroblock exists | 
|  | //  - width of above macroblock | 
|  | //  - height of above macroblock | 
|  | //  - whether a left marcoblock exists | 
|  | //  - width of left macroblock | 
|  | //  - height of left macroblock | 
|  | static AOM_INLINE void simple_motion_search_prune_part_features( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, float *features, | 
|  | int features_to_get) { | 
|  | const int w_mi = mi_size_wide[bsize]; | 
|  | const int h_mi = mi_size_high[bsize]; | 
|  | assert(mi_size_wide[bsize] == mi_size_high[bsize]); | 
|  | assert(bsize >= BLOCK_8X8); | 
|  | assert(cpi->ref_frame_flags & av1_ref_frame_flag_list[LAST_FRAME] || | 
|  | cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]); | 
|  |  | 
|  | // Setting up motion search | 
|  | const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME | 
|  | : LAST_FRAME }; | 
|  | const int num_refs = 1; | 
|  | const int use_subpixel = 1; | 
|  |  | 
|  | // Doing whole block first to update the mv | 
|  | if (!sms_tree->sms_none_valid && features_to_get & FEATURE_SMS_NONE_FLAG) { | 
|  | simple_motion_search_get_best_ref(cpi, x, sms_tree, mi_row, mi_col, bsize, | 
|  | ref_list, num_refs, use_subpixel, 1, | 
|  | &sms_tree->sms_none_feat[0], | 
|  | &sms_tree->sms_none_feat[1]); | 
|  | sms_tree->sms_none_valid = 1; | 
|  | } | 
|  |  | 
|  | // Split subblocks | 
|  | if (features_to_get & FEATURE_SMS_SPLIT_FLAG) { | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) { | 
|  | const int sub_mi_col = mi_col + (r_idx & 1) * w_mi / 2; | 
|  | const int sub_mi_row = mi_row + (r_idx >> 1) * h_mi / 2; | 
|  | SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx]; | 
|  |  | 
|  | if (!sub_tree->sms_none_valid) { | 
|  | simple_motion_search_get_best_ref( | 
|  | cpi, x, sub_tree, sub_mi_row, sub_mi_col, subsize, ref_list, | 
|  | num_refs, use_subpixel, 1, &sub_tree->sms_none_feat[0], | 
|  | &sub_tree->sms_none_feat[1]); | 
|  | sub_tree->sms_none_valid = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rectangular subblocks | 
|  | if (!sms_tree->sms_rect_valid && features_to_get & FEATURE_SMS_RECT_FLAG) { | 
|  | // Horz subblock | 
|  | BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) { | 
|  | const int sub_mi_col = mi_col + 0; | 
|  | const int sub_mi_row = mi_row + r_idx * h_mi / 2; | 
|  |  | 
|  | simple_motion_search_get_best_ref( | 
|  | cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs, | 
|  | use_subpixel, 0, &sms_tree->sms_rect_feat[2 * r_idx], | 
|  | &sms_tree->sms_rect_feat[2 * r_idx + 1]); | 
|  | } | 
|  |  | 
|  | // Vert subblock | 
|  | subsize = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) { | 
|  | const int sub_mi_col = mi_col + r_idx * w_mi / 2; | 
|  | const int sub_mi_row = mi_row + 0; | 
|  |  | 
|  | simple_motion_search_get_best_ref( | 
|  | cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs, | 
|  | use_subpixel, 0, &sms_tree->sms_rect_feat[4 + 2 * r_idx], | 
|  | &sms_tree->sms_rect_feat[4 + 2 * r_idx + 1]); | 
|  | } | 
|  | sms_tree->sms_rect_valid = 1; | 
|  | } | 
|  |  | 
|  | if (!features) return; | 
|  |  | 
|  | int f_idx = 0; | 
|  | if (features_to_get & FEATURE_SMS_NONE_FLAG) { | 
|  | for (int sub_idx = 0; sub_idx < 2; sub_idx++) { | 
|  | features[f_idx++] = log1pf((float)sms_tree->sms_none_feat[sub_idx]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (features_to_get & FEATURE_SMS_SPLIT_FLAG) { | 
|  | for (int sub_idx = 0; sub_idx < SUB_PARTITIONS_SPLIT; sub_idx++) { | 
|  | SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[sub_idx]; | 
|  | features[f_idx++] = log1pf((float)sub_tree->sms_none_feat[0]); | 
|  | features[f_idx++] = log1pf((float)sub_tree->sms_none_feat[1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (features_to_get & FEATURE_SMS_RECT_FLAG) { | 
|  | for (int sub_idx = 0; sub_idx < 8; sub_idx++) { | 
|  | features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[sub_idx]); | 
|  | } | 
|  | } | 
|  |  | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | set_offsets_for_motion_search(cpi, x, mi_row, mi_col, bsize); | 
|  |  | 
|  | // Q_INDEX | 
|  | const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8); | 
|  | features[f_idx++] = log1pf((float)(dc_q * dc_q) / 256.0f); | 
|  |  | 
|  | // Neighbor stuff | 
|  | const int has_above = !!xd->above_mbmi; | 
|  | const int has_left = !!xd->left_mbmi; | 
|  | const BLOCK_SIZE above_bsize = has_above ? xd->above_mbmi->bsize : bsize; | 
|  | const BLOCK_SIZE left_bsize = has_left ? xd->left_mbmi->bsize : bsize; | 
|  | features[f_idx++] = (float)has_above; | 
|  | features[f_idx++] = (float)mi_size_wide_log2[above_bsize]; | 
|  | features[f_idx++] = (float)mi_size_high_log2[above_bsize]; | 
|  | features[f_idx++] = (float)has_left; | 
|  | features[f_idx++] = (float)mi_size_wide_log2[left_bsize]; | 
|  | features[f_idx++] = (float)mi_size_high_log2[left_bsize]; | 
|  | } | 
|  |  | 
|  | void av1_simple_motion_search_prune_rect(AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | PartitionSearchState *part_state) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const PartitionBlkParams *blk_params = &part_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | const int bsize_idx = convert_bsize_to_idx(bsize); | 
|  | const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720; | 
|  | const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; | 
|  | // res_idx is 0 for lowres, 1 for 48p, 2 for 720p+ | 
|  | const int res_idx = is_480p_or_larger + is_720p_or_larger; | 
|  |  | 
|  | // Get model parameters | 
|  | const NN_CONFIG *nn_config = | 
|  | av1_simple_motion_search_prune_rect_nn_config[bsize_idx]; | 
|  | const float *ml_mean = av1_simple_motion_search_prune_rect_mean[bsize_idx], | 
|  | *ml_std = av1_simple_motion_search_prune_rect_std[bsize_idx]; | 
|  |  | 
|  | const int agg = get_simple_motion_search_prune_agg( | 
|  | x->qindex, cpi->sf.part_sf.simple_motion_search_prune_agg, 1); | 
|  | if (agg < 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const float prune_thresh = | 
|  | av1_simple_motion_search_prune_rect_thresh[agg][res_idx][bsize_idx]; | 
|  |  | 
|  | // If there is no valid threshold, return immediately. | 
|  | if (!nn_config || prune_thresh == 0.0f) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get features | 
|  | float features[FEATURE_SIZE_SMS_PRUNE_PART] = { 0.0f }; | 
|  | simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col, | 
|  | bsize, features, | 
|  | FEATURE_SMS_PRUNE_PART_FLAG); | 
|  |  | 
|  | // Note: it is intended to not normalize the features here, to keep it | 
|  | // consistent for all features collected and passed to the external model. | 
|  | if (cpi->sf.part_sf.simple_motion_search_prune_rect && | 
|  | !frame_is_intra_only(cm) && | 
|  | (part_state->partition_rect_allowed[HORZ] || | 
|  | part_state->partition_rect_allowed[VERT]) && | 
|  | bsize >= BLOCK_8X8 && !av1_superres_scaled(cm)) { | 
|  | // Write features to file | 
|  | write_features_to_file( | 
|  | cpi->oxcf.partition_info_path, cpi->ext_part_controller.test_mode, | 
|  | features, FEATURE_SIZE_SMS_PRUNE_PART, 1, bsize, mi_row, mi_col); | 
|  |  | 
|  | if (ext_ml_model_decision_before_none_part2( | 
|  | cpi, features, &part_state->prune_rect_part[HORZ], | 
|  | &part_state->prune_rect_part[VERT])) { | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int f_idx = 0; f_idx < FEATURE_SIZE_SMS_PRUNE_PART; f_idx++) { | 
|  | features[f_idx] = (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx]; | 
|  | } | 
|  |  | 
|  | // Get probabilities | 
|  | float scores[EXT_PARTITION_TYPES] = { 0.0f }, | 
|  | probs[EXT_PARTITION_TYPES] = { 0.0f }; | 
|  | const int num_classes = (bsize == BLOCK_128X128 || bsize == BLOCK_8X8) | 
|  | ? PARTITION_TYPES | 
|  | : EXT_PARTITION_TYPES; | 
|  |  | 
|  | av1_nn_predict(features, nn_config, 1, scores); | 
|  |  | 
|  | av1_nn_softmax(scores, probs, num_classes); | 
|  |  | 
|  | // Determine if we should prune rectangular partitions. | 
|  | if (probs[PARTITION_HORZ] <= prune_thresh) { | 
|  | part_state->prune_rect_part[HORZ] = 1; | 
|  | } | 
|  | if (probs[PARTITION_VERT] <= prune_thresh) { | 
|  | part_state->prune_rect_part[VERT] = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Early terminates PARTITION_NONE using simple_motion_search features and the | 
|  | // rate, distortion, and rdcost of PARTITION_NONE. This is only called when: | 
|  | //  - The frame is a show frame | 
|  | //  - The frame is not intra only | 
|  | //  - The current bsize is > BLOCK_8X8 | 
|  | //  - blk_row + blk_height/2 < total_rows and blk_col + blk_width/2 < total_cols | 
|  | void av1_simple_motion_search_early_term_none( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | const RD_STATS *none_rdc, PartitionSearchState *part_state) { | 
|  | const PartitionBlkParams *blk_params = &part_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | float features[FEATURE_SIZE_SMS_TERM_NONE] = { 0.0f }; | 
|  | simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col, | 
|  | bsize, features, | 
|  | FEATURE_SMS_PRUNE_PART_FLAG); | 
|  | int f_idx = FEATURE_SIZE_SMS_PRUNE_PART; | 
|  |  | 
|  | features[f_idx++] = log1pf((float)none_rdc->rate); | 
|  | features[f_idx++] = log1pf((float)none_rdc->dist); | 
|  | features[f_idx++] = log1pf((float)none_rdc->rdcost); | 
|  |  | 
|  | assert(f_idx == FEATURE_SIZE_SMS_TERM_NONE); | 
|  |  | 
|  | const float *ml_mean = NULL; | 
|  | const float *ml_std = NULL; | 
|  | const float *ml_model = NULL; | 
|  |  | 
|  | if (bsize == BLOCK_128X128) { | 
|  | ml_mean = av1_simple_motion_search_term_none_mean_128; | 
|  | ml_std = av1_simple_motion_search_term_none_std_128; | 
|  | ml_model = av1_simple_motion_search_term_none_model_128; | 
|  | } else if (bsize == BLOCK_64X64) { | 
|  | ml_mean = av1_simple_motion_search_term_none_mean_64; | 
|  | ml_std = av1_simple_motion_search_term_none_std_64; | 
|  | ml_model = av1_simple_motion_search_term_none_model_64; | 
|  | } else if (bsize == BLOCK_32X32) { | 
|  | ml_mean = av1_simple_motion_search_term_none_mean_32; | 
|  | ml_std = av1_simple_motion_search_term_none_std_32; | 
|  | ml_model = av1_simple_motion_search_term_none_model_32; | 
|  | } else if (bsize == BLOCK_16X16) { | 
|  | ml_mean = av1_simple_motion_search_term_none_mean_16; | 
|  | ml_std = av1_simple_motion_search_term_none_std_16; | 
|  | ml_model = av1_simple_motion_search_term_none_model_16; | 
|  | } else { | 
|  | assert(0 && "Unexpected block size in simple_motion_term_none"); | 
|  | } | 
|  |  | 
|  | // Write features to file | 
|  | write_features_to_file(cpi->oxcf.partition_info_path, | 
|  | cpi->ext_part_controller.test_mode, features, | 
|  | FEATURE_SIZE_SMS_TERM_NONE, 3, bsize, mi_row, mi_col); | 
|  |  | 
|  | if (ext_ml_model_decision_after_none_part2( | 
|  | cpi, features, &part_state->terminate_partition_search)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ml_model) { | 
|  | float score = 0.0f; | 
|  | for (f_idx = 0; f_idx < FEATURE_SIZE_SMS_TERM_NONE; f_idx++) { | 
|  | score += | 
|  | ml_model[f_idx] * (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx]; | 
|  | } | 
|  | score += ml_model[FEATURE_SIZE_SMS_TERM_NONE]; | 
|  |  | 
|  | if (score >= 0.0f) { | 
|  | part_state->terminate_partition_search = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_get_max_min_partition_features(AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | int mi_row, int mi_col, | 
|  | float *features) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
|  |  | 
|  | // Currently this only allows 128X128 SB size. May extend it to 64X64 SB size. | 
|  | assert(sb_size == BLOCK_128X128); | 
|  |  | 
|  | int f_idx = 0; | 
|  |  | 
|  | const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8); | 
|  | const float log_q_sq = log1pf((float)(dc_q * dc_q) / 256.0f); | 
|  |  | 
|  | // Perform full-pixel single motion search in Y plane of 16x16 mbs in the sb | 
|  | float sum_mv_row_sq = 0; | 
|  | float sum_mv_row = 0; | 
|  | float min_abs_mv_row = FLT_MAX; | 
|  | float max_abs_mv_row = 0; | 
|  |  | 
|  | float sum_mv_col_sq = 0; | 
|  | float sum_mv_col = 0; | 
|  | float min_abs_mv_col = FLT_MAX; | 
|  | float max_abs_mv_col = 0; | 
|  |  | 
|  | float sum_log_sse_sq = 0; | 
|  | float sum_log_sse = 0; | 
|  | float min_log_sse = FLT_MAX; | 
|  | float max_log_sse = 0; | 
|  |  | 
|  | const BLOCK_SIZE mb_size = BLOCK_16X16; | 
|  | const int mb_rows = block_size_high[sb_size] / block_size_high[mb_size]; | 
|  | const int mb_cols = block_size_wide[sb_size] / block_size_wide[mb_size]; | 
|  | const int mb_in_mi_size_high_log2 = mi_size_high_log2[mb_size]; | 
|  | const int mb_in_mi_size_wide_log2 = mi_size_wide_log2[mb_size]; | 
|  |  | 
|  | for (int mb_row = 0; mb_row < mb_rows; mb_row++) | 
|  | for (int mb_col = 0; mb_col < mb_cols; mb_col++) { | 
|  | const int this_mi_row = mi_row + (mb_row << mb_in_mi_size_high_log2); | 
|  | const int this_mi_col = mi_col + (mb_col << mb_in_mi_size_wide_log2); | 
|  | unsigned int sse = 0; | 
|  | unsigned int var = 0; | 
|  | const FULLPEL_MV start_mv = kZeroFullMv; | 
|  | int_mv best_mv = av1_simple_motion_sse_var( | 
|  | cpi, x, this_mi_row, this_mi_col, mb_size, start_mv, 0, &sse, &var); | 
|  |  | 
|  | const float mv_row = (float)(best_mv.as_mv.row / 8); | 
|  | const float mv_col = (float)(best_mv.as_mv.col / 8); | 
|  | const float log_sse = log1pf((float)sse); | 
|  | const float abs_mv_row = fabsf(mv_row); | 
|  | const float abs_mv_col = fabsf(mv_col); | 
|  |  | 
|  | sum_mv_row_sq += mv_row * mv_row; | 
|  | sum_mv_row += mv_row; | 
|  | sum_mv_col_sq += mv_col * mv_col; | 
|  | sum_mv_col += mv_col; | 
|  |  | 
|  | if (abs_mv_row < min_abs_mv_row) min_abs_mv_row = abs_mv_row; | 
|  | if (abs_mv_row > max_abs_mv_row) max_abs_mv_row = abs_mv_row; | 
|  | if (abs_mv_col < min_abs_mv_col) min_abs_mv_col = abs_mv_col; | 
|  | if (abs_mv_col > max_abs_mv_col) max_abs_mv_col = abs_mv_col; | 
|  |  | 
|  | sum_log_sse_sq += log_sse * log_sse; | 
|  | sum_log_sse += log_sse; | 
|  | if (log_sse < min_log_sse) min_log_sse = log_sse; | 
|  | if (log_sse > max_log_sse) max_log_sse = log_sse; | 
|  | } | 
|  | const int blks = mb_rows * mb_cols; | 
|  | const float avg_mv_row = sum_mv_row / (float)blks; | 
|  | const float var_mv_row = | 
|  | sum_mv_row_sq / (float)blks - avg_mv_row * avg_mv_row; | 
|  |  | 
|  | const float avg_mv_col = sum_mv_col / (float)blks; | 
|  | const float var_mv_col = | 
|  | sum_mv_col_sq / (float)blks - avg_mv_col * avg_mv_col; | 
|  |  | 
|  | const float avg_log_sse = sum_log_sse / (float)blks; | 
|  | const float var_log_sse = | 
|  | sum_log_sse_sq / (float)blks - avg_log_sse * avg_log_sse; | 
|  |  | 
|  | features[f_idx++] = avg_log_sse; | 
|  | features[f_idx++] = avg_mv_col; | 
|  | features[f_idx++] = avg_mv_row; | 
|  | features[f_idx++] = log_q_sq; | 
|  | features[f_idx++] = max_abs_mv_col; | 
|  | features[f_idx++] = max_abs_mv_row; | 
|  | features[f_idx++] = max_log_sse; | 
|  | features[f_idx++] = min_abs_mv_col; | 
|  | features[f_idx++] = min_abs_mv_row; | 
|  | features[f_idx++] = min_log_sse; | 
|  | features[f_idx++] = var_log_sse; | 
|  | features[f_idx++] = var_mv_col; | 
|  | features[f_idx++] = var_mv_row; | 
|  |  | 
|  | assert(f_idx == FEATURE_SIZE_MAX_MIN_PART_PRED); | 
|  | } | 
|  |  | 
|  | // Convert result index to block size. | 
|  | // result idx     block size | 
|  | //     0          BLOCK_16X16 | 
|  | //     1          BLOCK_32X32 | 
|  | //     2          BLOCK_64X64 | 
|  | //     3          BLOCK_128X128 | 
|  | static BLOCK_SIZE get_block_size(int idx) { | 
|  | return (BLOCK_SIZE)((idx + 2) * 3); | 
|  | } | 
|  |  | 
|  | BLOCK_SIZE av1_predict_max_partition(const AV1_COMP *const cpi, | 
|  | const MACROBLOCK *const x, | 
|  | const float *features) { | 
|  | float scores[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f }; | 
|  | const NN_CONFIG *nn_config = &av1_max_part_pred_nn_config; | 
|  |  | 
|  | assert(cpi->sf.part_sf.auto_max_partition_based_on_simple_motion != | 
|  | NOT_IN_USE); | 
|  |  | 
|  | av1_nn_predict(features, nn_config, 1, scores); | 
|  |  | 
|  | int result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; | 
|  | if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion == | 
|  | DIRECT_PRED) { | 
|  | result = 0; | 
|  | float max_score = scores[0]; | 
|  | for (int i = 1; i < MAX_NUM_CLASSES_MAX_MIN_PART_PRED; ++i) { | 
|  | if (scores[i] > max_score) { | 
|  | max_score = scores[i]; | 
|  | result = i; | 
|  | } | 
|  | } | 
|  | return get_block_size(result); | 
|  | } | 
|  |  | 
|  | float probs[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f }; | 
|  | av1_nn_softmax(scores, probs, MAX_NUM_CLASSES_MAX_MIN_PART_PRED); | 
|  |  | 
|  | if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion == | 
|  | RELAXED_PRED) { | 
|  | for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0; | 
|  | --result) { | 
|  | if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) { | 
|  | probs[result] += probs[result + 1]; | 
|  | } | 
|  | if (probs[result] > 0.2) break; | 
|  | } | 
|  | } else if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion == | 
|  | ADAPT_PRED) { | 
|  | const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size; | 
|  | // TODO(debargha): x->source_variance is unavailable at this point, | 
|  | // so compute. The redundant recomputation later can be removed. | 
|  | const unsigned int source_variance = av1_get_perpixel_variance_facade( | 
|  | cpi, &x->e_mbd, &x->plane[0].src, sb_size, AOM_PLANE_Y); | 
|  | if (source_variance > 16) { | 
|  | const double thresh = source_variance < 128 ? 0.05 : 0.1; | 
|  | for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0; | 
|  | --result) { | 
|  | if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) { | 
|  | probs[result] += probs[result + 1]; | 
|  | } | 
|  | if (probs[result] > thresh) break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return get_block_size(result); | 
|  | } | 
|  |  | 
|  | // Get the minimum partition block width and height(in log scale) under a | 
|  | // SIMPLE_MOTION_DATA_TREE. | 
|  | static AOM_INLINE void get_min_bsize(const SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | int *min_bw, int *min_bh) { | 
|  | if (!sms_tree) return; | 
|  |  | 
|  | const BLOCK_SIZE bsize = sms_tree->block_size; | 
|  | if (bsize == BLOCK_4X4) { | 
|  | *min_bw = 0; | 
|  | *min_bh = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | PARTITION_TYPE part_type = sms_tree->partitioning; | 
|  | if (part_type == PARTITION_INVALID) return; | 
|  |  | 
|  | if (part_type == PARTITION_SPLIT) { | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | get_min_bsize(sms_tree->split[i], min_bw, min_bh); | 
|  | } | 
|  | } else { | 
|  | if (part_type == PARTITION_HORZ_A || part_type == PARTITION_HORZ_B || | 
|  | part_type == PARTITION_VERT_A || part_type == PARTITION_VERT_B) | 
|  | part_type = PARTITION_SPLIT; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, part_type); | 
|  | if (subsize != BLOCK_INVALID) { | 
|  | *min_bw = AOMMIN(*min_bw, mi_size_wide_log2[subsize]); | 
|  | *min_bh = AOMMIN(*min_bh, mi_size_high_log2[subsize]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void add_rd_feature(int64_t rd, int64_t best_rd, float *features, | 
|  | int *feature_idx) { | 
|  | const int rd_valid = rd > 0 && rd < INT64_MAX; | 
|  | const float rd_ratio = rd_valid ? (float)rd / best_rd : 1.0f; | 
|  | features[(*feature_idx)++] = (float)rd_valid; | 
|  | features[(*feature_idx)++] = rd_ratio; | 
|  | } | 
|  |  | 
|  | #define FEATURES 31 | 
|  | void av1_ml_early_term_after_split(AV1_COMP *const cpi, MACROBLOCK *const x, | 
|  | SIMPLE_MOTION_DATA_TREE *const sms_tree, | 
|  | int64_t best_rd, int64_t part_none_rd, | 
|  | int64_t part_split_rd, | 
|  | int64_t *split_block_rd, | 
|  | PartitionSearchState *part_state) { | 
|  | const PartitionBlkParams *blk_params = &part_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | if (best_rd <= 0 || best_rd == INT64_MAX || | 
|  | part_state->terminate_partition_search) | 
|  | return; | 
|  |  | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; | 
|  | const NN_CONFIG *nn_config = NULL; | 
|  | float thresh = -1e6; | 
|  | switch (bsize) { | 
|  | case BLOCK_128X128: break; | 
|  | case BLOCK_64X64: | 
|  | nn_config = &av1_early_term_after_split_nnconfig_64; | 
|  | thresh = is_480p_or_larger ? -2.0f : -1.2f; | 
|  | break; | 
|  | case BLOCK_32X32: | 
|  | nn_config = &av1_early_term_after_split_nnconfig_32; | 
|  | thresh = is_480p_or_larger ? -2.6f : -2.3f; | 
|  | break; | 
|  | case BLOCK_16X16: | 
|  | nn_config = &av1_early_term_after_split_nnconfig_16; | 
|  | thresh = is_480p_or_larger ? -2.0f : -2.4f; | 
|  | break; | 
|  | case BLOCK_8X8: | 
|  | nn_config = &av1_early_term_after_split_nnconfig_8; | 
|  | thresh = is_480p_or_larger ? -1.0f : -1.4f; | 
|  | break; | 
|  | case BLOCK_4X4: break; | 
|  | default: | 
|  | assert(0 && "Invalid block size in av1_ml_early_term_after_split()."); | 
|  | break; | 
|  | } | 
|  | if (!nn_config) return; | 
|  |  | 
|  | // Use more conservative threshold for level 1. | 
|  | if (cpi->sf.part_sf.ml_early_term_after_part_split_level < 2) thresh -= 0.3f; | 
|  |  | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8); | 
|  | const int bs = block_size_wide[bsize]; | 
|  | int f_idx = 0; | 
|  | float features[FEATURES] = { 0.0f }; | 
|  |  | 
|  | features[f_idx++] = log1pf((float)dc_q / 4.0f); | 
|  | features[f_idx++] = log1pf((float)best_rd / bs / bs / 1024.0f); | 
|  |  | 
|  | add_rd_feature(part_none_rd, best_rd, features, &f_idx); | 
|  | add_rd_feature(part_split_rd, best_rd, features, &f_idx); | 
|  |  | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | add_rd_feature(split_block_rd[i], best_rd, features, &f_idx); | 
|  | int min_bw = MAX_SB_SIZE_LOG2; | 
|  | int min_bh = MAX_SB_SIZE_LOG2; | 
|  | get_min_bsize(sms_tree->split[i], &min_bw, &min_bh); | 
|  | features[f_idx++] = (float)min_bw; | 
|  | features[f_idx++] = (float)min_bh; | 
|  | } | 
|  |  | 
|  | simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col, | 
|  | bsize, NULL, | 
|  | FEATURE_SMS_PRUNE_PART_FLAG); | 
|  |  | 
|  | features[f_idx++] = log1pf((float)sms_tree->sms_none_feat[1]); | 
|  |  | 
|  | features[f_idx++] = log1pf((float)sms_tree->split[0]->sms_none_feat[1]); | 
|  | features[f_idx++] = log1pf((float)sms_tree->split[1]->sms_none_feat[1]); | 
|  | features[f_idx++] = log1pf((float)sms_tree->split[2]->sms_none_feat[1]); | 
|  | features[f_idx++] = log1pf((float)sms_tree->split[3]->sms_none_feat[1]); | 
|  |  | 
|  | features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[1]); | 
|  | features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[3]); | 
|  | features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[5]); | 
|  | features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[7]); | 
|  |  | 
|  | assert(f_idx == FEATURES); | 
|  |  | 
|  | // Write features to file | 
|  | write_features_to_file(cpi->oxcf.partition_info_path, | 
|  | cpi->ext_part_controller.test_mode, features, FEATURES, | 
|  | 4, bsize, mi_row, mi_col); | 
|  |  | 
|  | if (ext_ml_model_decision_after_split( | 
|  | cpi, features, &part_state->terminate_partition_search)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | float score = 0.0f; | 
|  | av1_nn_predict(features, nn_config, 1, &score); | 
|  | // Score is indicator of confidence that we should NOT terminate. | 
|  | if (score < thresh) { | 
|  | part_state->terminate_partition_search = 1; | 
|  | } | 
|  | } | 
|  | #undef FEATURES | 
|  |  | 
|  | void av1_ml_prune_rect_partition(AV1_COMP *const cpi, const MACROBLOCK *const x, | 
|  | int64_t best_rd, int64_t none_rd, | 
|  | const int64_t *split_rd, | 
|  | PartitionSearchState *part_state) { | 
|  | const PartitionBlkParams *blk_params = &part_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return; | 
|  | best_rd = AOMMAX(best_rd, 1); | 
|  | const NN_CONFIG *nn_config = NULL; | 
|  | const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f }; | 
|  | float cur_thresh = 0.0f; | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: | 
|  | nn_config = &av1_rect_partition_nnconfig_8; | 
|  | cur_thresh = prob_thresholds[0]; | 
|  | break; | 
|  | case BLOCK_16X16: | 
|  | nn_config = &av1_rect_partition_nnconfig_16; | 
|  | cur_thresh = prob_thresholds[1]; | 
|  | break; | 
|  | case BLOCK_32X32: | 
|  | nn_config = &av1_rect_partition_nnconfig_32; | 
|  | cur_thresh = prob_thresholds[2]; | 
|  | break; | 
|  | case BLOCK_64X64: | 
|  | nn_config = &av1_rect_partition_nnconfig_64; | 
|  | cur_thresh = prob_thresholds[3]; | 
|  | break; | 
|  | case BLOCK_128X128: | 
|  | nn_config = &av1_rect_partition_nnconfig_128; | 
|  | cur_thresh = prob_thresholds[4]; | 
|  | break; | 
|  | default: assert(0 && "Unexpected bsize."); | 
|  | } | 
|  | if (!nn_config) return; | 
|  |  | 
|  | // 1. Compute input features | 
|  | float features[9]; | 
|  |  | 
|  | // RD cost ratios | 
|  | for (int i = 0; i < 5; i++) features[i] = 1.0f; | 
|  | if (none_rd > 0 && none_rd < 1000000000) | 
|  | features[0] = (float)none_rd / (float)best_rd; | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { | 
|  | if (split_rd[i] > 0 && split_rd[i] < 1000000000) | 
|  | features[1 + i] = (float)split_rd[i] / (float)best_rd; | 
|  | } | 
|  |  | 
|  | // Variance ratios | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | int whole_block_variance; | 
|  | whole_block_variance = av1_get_perpixel_variance_facade( | 
|  | cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y); | 
|  | whole_block_variance = AOMMAX(whole_block_variance, 1); | 
|  |  | 
|  | int split_variance[SUB_PARTITIONS_SPLIT]; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | struct buf_2d buf; | 
|  | buf.stride = x->plane[0].src.stride; | 
|  | const int bw = block_size_wide[bsize]; | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | const int x_idx = (i & 1) * bw / 2; | 
|  | const int y_idx = (i >> 1) * bw / 2; | 
|  | buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride; | 
|  | split_variance[i] = | 
|  | av1_get_perpixel_variance_facade(cpi, xd, &buf, subsize, AOM_PLANE_Y); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) | 
|  | features[5 + i] = (float)split_variance[i] / (float)whole_block_variance; | 
|  |  | 
|  | // Write features to file | 
|  | write_features_to_file(cpi->oxcf.partition_info_path, | 
|  | cpi->ext_part_controller.test_mode, features, | 
|  | /*feature_size=*/9, 5, bsize, mi_row, mi_col); | 
|  |  | 
|  | if (ext_ml_model_decision_after_split_part2( | 
|  | &cpi->ext_part_controller, frame_is_intra_only(&cpi->common), | 
|  | features, &part_state->prune_rect_part[HORZ], | 
|  | &part_state->prune_rect_part[VERT])) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // 2. Do the prediction and prune 0-2 partitions based on their probabilities | 
|  | float raw_scores[3] = { 0.0f }; | 
|  | av1_nn_predict(features, nn_config, 1, raw_scores); | 
|  | float probs[3] = { 0.0f }; | 
|  | av1_nn_softmax(raw_scores, probs, 3); | 
|  |  | 
|  | // probs[0] is the probability of the fact that both rectangular partitions | 
|  | // are worse than current best_rd | 
|  | if (probs[1] <= cur_thresh) part_state->prune_rect_part[HORZ] = 1; | 
|  | if (probs[2] <= cur_thresh) part_state->prune_rect_part[VERT] = 1; | 
|  | } | 
|  |  | 
|  | // Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be | 
|  | // considered. | 
|  | void av1_ml_prune_ab_partition(AV1_COMP *const cpi, int part_ctx, int var_ctx, | 
|  | int64_t best_rd, | 
|  | PartitionSearchState *part_state, | 
|  | int *ab_partitions_allowed) { | 
|  | const PartitionBlkParams blk_params = part_state->part_blk_params; | 
|  | const int mi_row = blk_params.mi_row; | 
|  | const int mi_col = blk_params.mi_col; | 
|  | const int bsize = blk_params.bsize; | 
|  |  | 
|  | if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return; | 
|  | const NN_CONFIG *nn_config = NULL; | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: nn_config = NULL; break; | 
|  | case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break; | 
|  | case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break; | 
|  | case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break; | 
|  | case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break; | 
|  | default: assert(0 && "Unexpected bsize."); | 
|  | } | 
|  | if (!nn_config) return; | 
|  |  | 
|  | // Generate features. | 
|  | float features[10]; | 
|  | int feature_index = 0; | 
|  | features[feature_index++] = (float)part_ctx; | 
|  | features[feature_index++] = (float)var_ctx; | 
|  | const int rdcost = (int)AOMMIN(INT_MAX, best_rd); | 
|  | int sub_block_rdcost[8] = { 0 }; | 
|  | int rd_index = 0; | 
|  | for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
|  | const int64_t *horz_rd = part_state->rect_part_rd[HORZ]; | 
|  | if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)horz_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
|  | const int64_t *vert_rd = part_state->rect_part_rd[VERT]; | 
|  | if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)vert_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | const int64_t *split_rd = part_state->split_rd; | 
|  | if (split_rd[i] > 0 && split_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)split_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | // Ratio between the sub-block RD and the whole-block RD. | 
|  | float rd_ratio = 1.0f; | 
|  | if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) | 
|  | rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; | 
|  | features[feature_index++] = rd_ratio; | 
|  | } | 
|  | assert(feature_index == 10); | 
|  |  | 
|  | // Write features to file | 
|  | if (!frame_is_intra_only(&cpi->common)) { | 
|  | write_features_to_file(cpi->oxcf.partition_info_path, | 
|  | cpi->ext_part_controller.test_mode, features, | 
|  | /*feature_size=*/10, 6, bsize, mi_row, mi_col); | 
|  | } | 
|  |  | 
|  | if (ext_ml_model_decision_after_rect( | 
|  | &cpi->ext_part_controller, frame_is_intra_only(&cpi->common), | 
|  | features, &ab_partitions_allowed[HORZ_A], | 
|  | &ab_partitions_allowed[HORZ_B], &ab_partitions_allowed[VERT_A], | 
|  | &ab_partitions_allowed[VERT_B])) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Calculate scores using the NN model. | 
|  | float score[16] = { 0.0f }; | 
|  | av1_nn_predict(features, nn_config, 1, score); | 
|  | int int_score[16]; | 
|  | int max_score = -1000; | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | int_score[i] = (int)(100 * score[i]); | 
|  | max_score = AOMMAX(int_score[i], max_score); | 
|  | } | 
|  |  | 
|  | // Make decisions based on the model scores. | 
|  | int thresh = max_score; | 
|  | switch (bsize) { | 
|  | case BLOCK_16X16: thresh -= 150; break; | 
|  | case BLOCK_32X32: thresh -= 100; break; | 
|  | default: break; | 
|  | } | 
|  | av1_zero_array(ab_partitions_allowed, NUM_AB_PARTS); | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | if (int_score[i] >= thresh) { | 
|  | if ((i >> 0) & 1) ab_partitions_allowed[HORZ_A] = 1; | 
|  | if ((i >> 1) & 1) ab_partitions_allowed[HORZ_B] = 1; | 
|  | if ((i >> 2) & 1) ab_partitions_allowed[VERT_A] = 1; | 
|  | if ((i >> 3) & 1) ab_partitions_allowed[VERT_B] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define FEATURES 18 | 
|  | #define LABELS 4 | 
|  | // Use a ML model to predict if horz4 and vert4 should be considered. | 
|  | void av1_ml_prune_4_partition(AV1_COMP *const cpi, MACROBLOCK *const x, | 
|  | int part_ctx, int64_t best_rd, | 
|  | PartitionSearchState *part_state, | 
|  | int *part4_allowed, | 
|  | unsigned int pb_source_variance) { | 
|  | const PartitionBlkParams blk_params = part_state->part_blk_params; | 
|  | const int mi_row = blk_params.mi_row; | 
|  | const int mi_col = blk_params.mi_col; | 
|  | const int bsize = blk_params.bsize; | 
|  |  | 
|  | int64_t(*rect_part_rd)[SUB_PARTITIONS_RECT] = part_state->rect_part_rd; | 
|  | int64_t *split_rd = part_state->split_rd; | 
|  | if (ext_ml_model_decision_after_part_ab( | 
|  | cpi, x, bsize, part_ctx, best_rd, rect_part_rd, split_rd, | 
|  | &part4_allowed[HORZ4], &part4_allowed[VERT4], pb_source_variance, | 
|  | mi_row, mi_col)) | 
|  | return; | 
|  |  | 
|  | if (best_rd >= 1000000000) return; | 
|  | int64_t *horz_rd = rect_part_rd[HORZ4]; | 
|  | int64_t *vert_rd = rect_part_rd[VERT4]; | 
|  | const NN_CONFIG *nn_config = NULL; | 
|  | switch (bsize) { | 
|  | case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break; | 
|  | case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break; | 
|  | case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break; | 
|  | default: assert(0 && "Unexpected bsize."); | 
|  | } | 
|  | if (!nn_config) return; | 
|  |  | 
|  | // Generate features. | 
|  | float features[FEATURES]; | 
|  | int feature_index = 0; | 
|  | features[feature_index++] = (float)part_ctx; | 
|  | features[feature_index++] = (float)get_unsigned_bits(pb_source_variance); | 
|  |  | 
|  | const int rdcost = (int)AOMMIN(INT_MAX, best_rd); | 
|  | int sub_block_rdcost[8] = { 0 }; | 
|  | int rd_index = 0; | 
|  | for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
|  | if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)horz_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
|  | if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)vert_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | if (split_rd[i] > 0 && split_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)split_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | // Ratio between the sub-block RD and the whole-block RD. | 
|  | float rd_ratio = 1.0f; | 
|  | if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) | 
|  | rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; | 
|  | features[feature_index++] = rd_ratio; | 
|  | } | 
|  |  | 
|  | // Get variance of the 1:4 and 4:1 sub-blocks. | 
|  | unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 }; | 
|  | unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 }; | 
|  | { | 
|  | BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4); | 
|  | BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4); | 
|  | av1_setup_src_planes(x, cpi->source, mi_row, mi_col, | 
|  | av1_num_planes(&cpi->common), bsize); | 
|  | const int src_stride = x->plane[0].src.stride; | 
|  | uint8_t *src = x->plane[0].src.buf; | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  |  | 
|  | struct buf_2d horz_4_src, vert_4_src; | 
|  | horz_4_src.stride = src_stride; | 
|  | vert_4_src.stride = src_stride; | 
|  |  | 
|  | for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride; | 
|  | vert_4_src.buf = src + i * block_size_wide[vert_4_bs]; | 
|  |  | 
|  | horz_4_source_var[i] = av1_get_perpixel_variance_facade( | 
|  | cpi, xd, &horz_4_src, horz_4_bs, AOM_PLANE_Y); | 
|  | vert_4_source_var[i] = av1_get_perpixel_variance_facade( | 
|  | cpi, xd, &vert_4_src, vert_4_bs, AOM_PLANE_Y); | 
|  | } | 
|  | } | 
|  |  | 
|  | const float denom = (float)(pb_source_variance + 1); | 
|  | const float low_b = 0.1f; | 
|  | const float high_b = 10.0f; | 
|  | for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | // Ratio between the 4:1 sub-block variance and the whole-block variance. | 
|  | float var_ratio = (float)(horz_4_source_var[i] + 1) / denom; | 
|  | if (var_ratio < low_b) var_ratio = low_b; | 
|  | if (var_ratio > high_b) var_ratio = high_b; | 
|  | features[feature_index++] = var_ratio; | 
|  | } | 
|  | for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | // Ratio between the 1:4 sub-block RD and the whole-block RD. | 
|  | float var_ratio = (float)(vert_4_source_var[i] + 1) / denom; | 
|  | if (var_ratio < low_b) var_ratio = low_b; | 
|  | if (var_ratio > high_b) var_ratio = high_b; | 
|  | features[feature_index++] = var_ratio; | 
|  | } | 
|  | assert(feature_index == FEATURES); | 
|  |  | 
|  | // Write features to file | 
|  | if (!frame_is_intra_only(&cpi->common)) { | 
|  | write_features_to_file(cpi->oxcf.partition_info_path, | 
|  | cpi->ext_part_controller.test_mode, features, | 
|  | FEATURES, 7, bsize, mi_row, mi_col); | 
|  | } | 
|  |  | 
|  | // Calculate scores using the NN model. | 
|  | float score[LABELS] = { 0.0f }; | 
|  | av1_nn_predict(features, nn_config, 1, score); | 
|  | int int_score[LABELS]; | 
|  | int max_score = -1000; | 
|  | for (int i = 0; i < LABELS; ++i) { | 
|  | int_score[i] = (int)(100 * score[i]); | 
|  | max_score = AOMMAX(int_score[i], max_score); | 
|  | } | 
|  |  | 
|  | // Make decisions based on the model scores. | 
|  | int thresh = max_score; | 
|  | switch (bsize) { | 
|  | case BLOCK_16X16: thresh -= 500; break; | 
|  | case BLOCK_32X32: thresh -= 500; break; | 
|  | case BLOCK_64X64: thresh -= 200; break; | 
|  | default: break; | 
|  | } | 
|  | av1_zero_array(part4_allowed, NUM_PART4_TYPES); | 
|  | for (int i = 0; i < LABELS; ++i) { | 
|  | if (int_score[i] >= thresh) { | 
|  | if ((i >> 0) & 1) part4_allowed[HORZ4] = 1; | 
|  | if ((i >> 1) & 1) part4_allowed[VERT4] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | #undef FEATURES | 
|  | #undef LABELS | 
|  |  | 
|  | #define FEATURES 4 | 
|  | void av1_ml_predict_breakout(AV1_COMP *const cpi, const MACROBLOCK *const x, | 
|  | const RD_STATS *const rd_stats, | 
|  | unsigned int pb_source_variance, int bit_depth, | 
|  | PartitionSearchState *part_state) { | 
|  | const PartitionBlkParams *blk_params = &part_state->part_blk_params; | 
|  | const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | const NN_CONFIG *nn_config = NULL; | 
|  | int thresh = 0; | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: | 
|  | nn_config = &av1_partition_breakout_nnconfig_8; | 
|  | thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[0]; | 
|  | break; | 
|  | case BLOCK_16X16: | 
|  | nn_config = &av1_partition_breakout_nnconfig_16; | 
|  | thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[1]; | 
|  | break; | 
|  | case BLOCK_32X32: | 
|  | nn_config = &av1_partition_breakout_nnconfig_32; | 
|  | thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[2]; | 
|  | break; | 
|  | case BLOCK_64X64: | 
|  | nn_config = &av1_partition_breakout_nnconfig_64; | 
|  | thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[3]; | 
|  | break; | 
|  | case BLOCK_128X128: | 
|  | nn_config = &av1_partition_breakout_nnconfig_128; | 
|  | thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[4]; | 
|  | break; | 
|  | default: assert(0 && "Unexpected bsize."); | 
|  | } | 
|  | if (!nn_config || thresh < 0) return; | 
|  |  | 
|  | const float ml_predict_breakout_thresh_scale[3] = { 1.15f, 1.05f, 1.0f }; | 
|  | thresh = (int)((float)thresh * | 
|  | ml_predict_breakout_thresh_scale | 
|  | [cpi->sf.part_sf.ml_predict_breakout_level - 1]); | 
|  |  | 
|  | // Generate feature values. | 
|  | float features[FEATURES]; | 
|  | int feature_index = 0; | 
|  |  | 
|  | const int num_pels_log2 = num_pels_log2_lookup[bsize]; | 
|  | float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX); | 
|  | rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) * | 
|  | rate_f; | 
|  | features[feature_index++] = rate_f; | 
|  |  | 
|  | const float dist_f = | 
|  | (float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2); | 
|  | features[feature_index++] = dist_f; | 
|  |  | 
|  | features[feature_index++] = (float)pb_source_variance; | 
|  |  | 
|  | const int dc_q = (int)x->plane[0].dequant_QTX[0] >> (bit_depth - 8); | 
|  | features[feature_index++] = (float)(dc_q * dc_q) / 256.0f; | 
|  | assert(feature_index == FEATURES); | 
|  |  | 
|  | // Write features to file | 
|  | write_features_to_file(cpi->oxcf.partition_info_path, | 
|  | cpi->ext_part_controller.test_mode, features, FEATURES, | 
|  | 2, bsize, mi_row, mi_col); | 
|  |  | 
|  | if (ext_ml_model_decision_after_none(&cpi->ext_part_controller, | 
|  | frame_is_intra_only(&cpi->common), | 
|  | features, &part_state->do_square_split, | 
|  | &part_state->do_rectangular_split)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Calculate score using the NN model. | 
|  | float score = 0.0f; | 
|  | av1_nn_predict(features, nn_config, 1, &score); | 
|  |  | 
|  | // Make decision. | 
|  | if ((int)(score * 100) >= thresh) { | 
|  | part_state->do_square_split = 0; | 
|  | part_state->do_rectangular_split = 0; | 
|  | } | 
|  | } | 
|  | #undef FEATURES | 
|  |  | 
|  | void av1_prune_partitions_before_search(AV1_COMP *const cpi, | 
|  | MACROBLOCK *const x, | 
|  | SIMPLE_MOTION_DATA_TREE *const sms_tree, | 
|  | PartitionSearchState *part_state) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  |  | 
|  | const PartitionBlkParams *blk_params = &part_state->part_blk_params; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  |  | 
|  | if (cpi->third_pass_ctx) { | 
|  | int mi_row = blk_params->mi_row; | 
|  | int mi_col = blk_params->mi_col; | 
|  | double ratio_h, ratio_w; | 
|  | av1_get_third_pass_ratio(cpi->third_pass_ctx, 0, cm->height, cm->width, | 
|  | &ratio_h, &ratio_w); | 
|  | THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi( | 
|  | cpi->third_pass_ctx, 0, mi_row, mi_col, ratio_h, ratio_w); | 
|  | BLOCK_SIZE third_pass_bsize = | 
|  | av1_get_third_pass_adjusted_blk_size(this_mi, ratio_h, ratio_w); | 
|  | // check the actual partition of this block in the second pass | 
|  | PARTITION_TYPE third_pass_part = | 
|  | av1_third_pass_get_sb_part_type(cpi->third_pass_ctx, this_mi); | 
|  |  | 
|  | int is_edge = (mi_row + mi_size_high[bsize] >= cm->mi_params.mi_rows) || | 
|  | (mi_col + mi_size_wide[bsize] >= cm->mi_params.mi_cols); | 
|  |  | 
|  | if (!is_edge && block_size_wide[bsize] >= 16) { | 
|  | // If in second pass we used rectangular partition, then do not search for | 
|  | // rectangular partition in the different direction. | 
|  | if (third_pass_part != PARTITION_NONE) { | 
|  | if (third_pass_part == PARTITION_HORZ || | 
|  | third_pass_part == PARTITION_HORZ_4 || | 
|  | third_pass_part == PARTITION_HORZ_A || | 
|  | third_pass_part == PARTITION_HORZ_B) { | 
|  | part_state->partition_rect_allowed[VERT] = 0; | 
|  | } else if (third_pass_part == PARTITION_VERT || | 
|  | third_pass_part == PARTITION_VERT_4 || | 
|  | third_pass_part == PARTITION_VERT_A || | 
|  | third_pass_part == PARTITION_VERT_B) { | 
|  | part_state->partition_rect_allowed[HORZ] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int minSize = AOMMIN(block_size_wide[third_pass_bsize], | 
|  | block_size_high[third_pass_bsize]); | 
|  | int maxSize = AOMMAX(block_size_wide[third_pass_bsize], | 
|  | block_size_high[third_pass_bsize]); | 
|  | if (block_size_wide[bsize] < minSize / 4) { | 
|  | // Current partition is too small, just terminate | 
|  | part_state->terminate_partition_search = 1; | 
|  | return; | 
|  | } else if (block_size_wide[bsize] < minSize / 2) { | 
|  | if (third_pass_part != PARTITION_NONE) { | 
|  | // Current partition is very small, and in second pass we used | 
|  | // rectangular partition. Terminate the search here then. | 
|  | part_state->terminate_partition_search = 1; | 
|  | return; | 
|  | } else { | 
|  | // Partition is small, but we still check this partition, only disable | 
|  | // further splits. | 
|  | // TODO(any): check why this is not covered by the termination for < | 
|  | // minSize/4. | 
|  | av1_disable_square_split_partition(part_state); | 
|  | av1_disable_rect_partitions(part_state); | 
|  | return; | 
|  | } | 
|  | } else if (block_size_wide[bsize] > maxSize) { | 
|  | // Partition is larger than in the second pass. Only allow split. | 
|  | av1_set_square_split_only(part_state); | 
|  | return; | 
|  | } else if (block_size_wide[bsize] >= minSize && | 
|  | block_size_wide[bsize] <= maxSize) { | 
|  | // Partition is within a range where it is very likely to find a good | 
|  | // choice, so do not prune anything. | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prune rectangular partitions for larger blocks. | 
|  | if (bsize > cpi->sf.part_sf.rect_partition_eval_thresh) { | 
|  | part_state->do_rectangular_split = 0; | 
|  | part_state->partition_rect_allowed[HORZ] = 0; | 
|  | part_state->partition_rect_allowed[VERT] = 0; | 
|  | } | 
|  |  | 
|  | // Prune rectangular, AB and 4-way partition based on q index and block size | 
|  | if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 1) { | 
|  | if (bsize == BLOCK_8X8 && x->qindex < 35) | 
|  | av1_disable_rect_partitions(part_state); | 
|  |  | 
|  | } else if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 2) { | 
|  | // Enumeration difference between two square partitions | 
|  | const int sqr_bsize_step = BLOCK_32X32 - BLOCK_16X16; | 
|  | int max_bsize = | 
|  | BLOCK_32X32 - (x->qindex * 3 / QINDEX_RANGE) * sqr_bsize_step; | 
|  | max_bsize = AOMMAX(max_bsize, BLOCK_4X4); | 
|  | const BLOCK_SIZE max_prune_bsize = | 
|  | (BLOCK_SIZE)AOMMIN(max_bsize, BLOCK_32X32); | 
|  |  | 
|  | // Prune partition | 
|  | // qidx 0 to 85: prune bsize below BLOCK_32X32 | 
|  | // qidx 86 to 170: prune bsize below BLOCK_16X16 | 
|  | // qidx 171 to 255: prune bsize below BLOCK_8X8 | 
|  | if (bsize < max_prune_bsize) { | 
|  | av1_disable_rect_partitions(part_state); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cpi->sf.part_sf.prune_sub_8x8_partition_level && (bsize == BLOCK_8X8)) { | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | int prune_sub_8x8 = 1; | 
|  | if (cpi->sf.part_sf.prune_sub_8x8_partition_level == 1) { | 
|  | int num_neighbors_lt_8x8 = 0; | 
|  | if (xd->left_available) | 
|  | num_neighbors_lt_8x8 += (xd->left_mbmi->bsize <= BLOCK_8X8); | 
|  | if (xd->up_available) | 
|  | num_neighbors_lt_8x8 += (xd->above_mbmi->bsize <= BLOCK_8X8); | 
|  | // Evaluate only if both left and above blocks are of size <= BLOCK_8X8. | 
|  | if (num_neighbors_lt_8x8 == 2) { | 
|  | prune_sub_8x8 = 0; | 
|  | } | 
|  | } | 
|  | if (prune_sub_8x8) { | 
|  | av1_disable_all_splits(part_state); | 
|  | } | 
|  | } | 
|  |  | 
|  | // A CNN-based speed feature pruning out either split or all non-split | 
|  | // partition in INTRA frame coding. | 
|  | const int try_intra_cnn_based_part_prune = | 
|  | frame_is_intra_only(cm) && | 
|  | cpi->sf.part_sf.intra_cnn_based_part_prune_level && | 
|  | cm->seq_params->sb_size >= BLOCK_64X64 && bsize <= BLOCK_64X64 && | 
|  | blk_params->bsize_at_least_8x8 && | 
|  | av1_is_whole_blk_in_frame(blk_params, mi_params); | 
|  |  | 
|  | if (try_intra_cnn_based_part_prune) { | 
|  | av1_intra_mode_cnn_partition( | 
|  | &cpi->common, x, x->part_search_info.quad_tree_idx, | 
|  | cpi->sf.part_sf.intra_cnn_based_part_prune_level, part_state); | 
|  | } | 
|  |  | 
|  | // Use simple motion search to prune out split or non-split partitions. This | 
|  | // must be done prior to PARTITION_SPLIT to propagate the initial mvs to a | 
|  | // smaller blocksize. | 
|  | const int try_split_only = | 
|  | cpi->sf.part_sf.simple_motion_search_split && | 
|  | part_state->do_square_split && blk_params->bsize_at_least_8x8 && | 
|  | av1_is_whole_blk_in_frame(blk_params, mi_params) && | 
|  | !frame_is_intra_only(cm) && !av1_superres_scaled(cm); | 
|  |  | 
|  | if (try_split_only) { | 
|  | av1_simple_motion_search_based_split(cpi, x, sms_tree, part_state); | 
|  | } | 
|  |  | 
|  | // Use simple motion search to prune out rectangular partition in some | 
|  | // direction. The results are stored in prune_horz and prune_vert in order to | 
|  | // bypass future related pruning checks if a pruning decision has been made. | 
|  |  | 
|  | // We want to search at least one partition mode, so don't prune if NONE and | 
|  | // SPLIT are disabled. | 
|  | const int non_rect_part_allowed = | 
|  | part_state->do_square_split || part_state->partition_none_allowed; | 
|  | // Only run the model if the partitions are not already pruned. | 
|  | const int rect_part_allowed = part_state->do_rectangular_split && | 
|  | ((part_state->partition_rect_allowed[HORZ] && | 
|  | !part_state->prune_rect_part[HORZ]) || | 
|  | (part_state->partition_rect_allowed[VERT] && | 
|  | !part_state->prune_rect_part[VERT])); | 
|  |  | 
|  | const int try_prune_rect = cpi->sf.part_sf.simple_motion_search_prune_rect && | 
|  | !frame_is_intra_only(cm) && | 
|  | non_rect_part_allowed && rect_part_allowed && | 
|  | !av1_superres_scaled(cm); | 
|  |  | 
|  | if (try_prune_rect) { | 
|  | av1_simple_motion_search_prune_rect(cpi, x, sms_tree, part_state); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static AOM_INLINE int is_bsize_square(BLOCK_SIZE bsize) { | 
|  | return block_size_wide[bsize] == block_size_high[bsize]; | 
|  | } | 
|  | #endif  // NDEBUG | 
|  |  | 
|  | void av1_prune_partitions_by_max_min_bsize(SuperBlockEnc *sb_enc, | 
|  | PartitionSearchState *part_state) { | 
|  | assert(is_bsize_square(sb_enc->max_partition_size)); | 
|  | assert(is_bsize_square(sb_enc->min_partition_size)); | 
|  | assert(sb_enc->min_partition_size <= sb_enc->max_partition_size); | 
|  | const PartitionBlkParams *blk_params = &part_state->part_blk_params; | 
|  | const BLOCK_SIZE bsize = blk_params->bsize; | 
|  | assert(is_bsize_square(bsize)); | 
|  | const int max_partition_size_1d = block_size_wide[sb_enc->max_partition_size]; | 
|  | const int min_partition_size_1d = block_size_wide[sb_enc->min_partition_size]; | 
|  | const int bsize_1d = block_size_wide[bsize]; | 
|  | assert(min_partition_size_1d <= max_partition_size_1d); | 
|  | const int is_le_min_sq_part = bsize_1d <= min_partition_size_1d; | 
|  | const int is_gt_max_sq_part = bsize_1d > max_partition_size_1d; | 
|  | if (is_gt_max_sq_part) { | 
|  | // If current block size is larger than max, only allow split. | 
|  | av1_set_square_split_only(part_state); | 
|  | } else if (is_le_min_sq_part) { | 
|  | // If current block size is less or equal to min, only allow none if valid | 
|  | // block large enough; only allow split otherwise. | 
|  | av1_disable_rect_partitions(part_state); | 
|  |  | 
|  | // only disable square split when current block is not at the picture | 
|  | // boundary. otherwise, inherit the square split flag from previous logic | 
|  | if (av1_blk_has_rows_and_cols(blk_params)) { | 
|  | part_state->do_square_split = 0; | 
|  | } | 
|  | part_state->partition_none_allowed = !(part_state->do_square_split); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Decide whether to evaluate the AB partition specified by part_type based on | 
|  | // split and HORZ/VERT info | 
|  | int evaluate_ab_partition_based_on_split( | 
|  | const PC_TREE *pc_tree, PARTITION_TYPE rect_part, | 
|  | const RD_RECT_PART_WIN_INFO *rect_part_win_info, int qindex, int split_idx1, | 
|  | int split_idx2) { | 
|  | int num_win = 0; | 
|  | // Threshold for number of winners | 
|  | // Conservative pruning for high quantizers | 
|  | const int num_win_thresh = AOMMIN(3 * (2 * (MAXQ - qindex) / MAXQ), 3); | 
|  | int sub_part_win = | 
|  | (rect_part_win_info == NULL)    ? (pc_tree->partitioning == rect_part) | 
|  | : (rect_part == PARTITION_HORZ) ? rect_part_win_info->rect_part_win[HORZ] | 
|  | : rect_part_win_info->rect_part_win[VERT]; | 
|  | num_win += (sub_part_win) ? 1 : 0; | 
|  | if (pc_tree->split[split_idx1]) { | 
|  | num_win += | 
|  | (pc_tree->split[split_idx1]->partitioning == PARTITION_NONE) ? 1 : 0; | 
|  | } else { | 
|  | num_win += 1; | 
|  | } | 
|  | if (pc_tree->split[split_idx2]) { | 
|  | num_win += | 
|  | (pc_tree->split[split_idx2]->partitioning == PARTITION_NONE) ? 1 : 0; | 
|  | } else { | 
|  | num_win += 1; | 
|  | } | 
|  | if (num_win < num_win_thresh) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void av1_prune_ab_partitions(AV1_COMP *cpi, const MACROBLOCK *x, | 
|  | const PC_TREE *pc_tree, int pb_source_variance, | 
|  | int64_t best_rdcost, | 
|  | const RD_RECT_PART_WIN_INFO *rect_part_win_info, | 
|  | bool ext_partition_allowed, | 
|  | PartitionSearchState *part_state, | 
|  | int *ab_partitions_allowed) { | 
|  | int64_t *horz_rd = part_state->rect_part_rd[HORZ]; | 
|  | int64_t *vert_rd = part_state->rect_part_rd[VERT]; | 
|  | int64_t *split_rd = part_state->split_rd; | 
|  | const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg; | 
|  | // The standard AB partitions are allowed initially if ext-partition-types are | 
|  | // allowed. | 
|  | int horzab_partition_allowed = ext_partition_allowed && | 
|  | part_cfg->enable_ab_partitions && | 
|  | part_state->partition_rect_allowed[HORZ]; | 
|  | int vertab_partition_allowed = ext_partition_allowed && | 
|  | part_cfg->enable_ab_partitions && | 
|  | part_state->partition_rect_allowed[VERT]; | 
|  |  | 
|  | // Pruning: pruning out AB partitions on one main direction based on the | 
|  | // current best partition and source variance. | 
|  | if (cpi->sf.part_sf.prune_ext_partition_types_search_level) { | 
|  | if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 1) { | 
|  | // TODO(debargha,huisu@google.com): may need to tune the threshold for | 
|  | // pb_source_variance. | 
|  | horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || | 
|  | (pc_tree->partitioning == PARTITION_NONE && | 
|  | pb_source_variance < 32) || | 
|  | pc_tree->partitioning == PARTITION_SPLIT); | 
|  | vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || | 
|  | (pc_tree->partitioning == PARTITION_NONE && | 
|  | pb_source_variance < 32) || | 
|  | pc_tree->partitioning == PARTITION_SPLIT); | 
|  | } else { | 
|  | horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || | 
|  | pc_tree->partitioning == PARTITION_SPLIT); | 
|  | vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || | 
|  | pc_tree->partitioning == PARTITION_SPLIT); | 
|  | } | 
|  | horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0); | 
|  | horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0); | 
|  | vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0); | 
|  | vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0); | 
|  | split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0); | 
|  | split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0); | 
|  | split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0); | 
|  | split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0); | 
|  | } | 
|  |  | 
|  | // Pruning: pruning out horz_a or horz_b if the combined rdcost of its | 
|  | // subblocks estimated from previous partitions is much higher than the best | 
|  | // rd so far. | 
|  | ab_partitions_allowed[HORZ_A] = horzab_partition_allowed; | 
|  | ab_partitions_allowed[HORZ_B] = horzab_partition_allowed; | 
|  | if (cpi->sf.part_sf.prune_ext_partition_types_search_level) { | 
|  | const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1]; | 
|  | const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3]; | 
|  | switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) { | 
|  | case 1: | 
|  | ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 14 < best_rdcost); | 
|  | ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 14 < best_rdcost); | 
|  | break; | 
|  | case 2: | 
|  | default: | 
|  | ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 15 < best_rdcost); | 
|  | ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 15 < best_rdcost); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pruning: pruning out vert_a or vert_b if the combined rdcost of its | 
|  | // subblocks estimated from previous partitions is much higher than the best | 
|  | // rd so far. | 
|  | ab_partitions_allowed[VERT_A] = vertab_partition_allowed; | 
|  | ab_partitions_allowed[VERT_B] = vertab_partition_allowed; | 
|  | if (cpi->sf.part_sf.prune_ext_partition_types_search_level) { | 
|  | const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2]; | 
|  | const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3]; | 
|  | switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) { | 
|  | case 1: | 
|  | ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 14 < best_rdcost); | 
|  | ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 14 < best_rdcost); | 
|  | break; | 
|  | case 2: | 
|  | default: | 
|  | ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 15 < best_rdcost); | 
|  | ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 15 < best_rdcost); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pruning: pruning out some ab partitions using a DNN taking rd costs of | 
|  | // sub-blocks from previous basic partition types. | 
|  | if (cpi->sf.part_sf.ml_prune_partition && ext_partition_allowed && | 
|  | part_state->partition_rect_allowed[HORZ] && | 
|  | part_state->partition_rect_allowed[VERT]) { | 
|  | // TODO(huisu@google.com): x->source_variance may not be the current | 
|  | // block's variance. The correct one to use is pb_source_variance. Need to | 
|  | // re-train the model to fix it. | 
|  | av1_ml_prune_ab_partition(cpi, pc_tree->partitioning, | 
|  | get_unsigned_bits(x->source_variance), | 
|  | best_rdcost, part_state, ab_partitions_allowed); | 
|  | } | 
|  |  | 
|  | // Pruning: pruning AB partitions based on the number of horz/vert wins | 
|  | // in the current block and sub-blocks in PARTITION_SPLIT. | 
|  | if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 && | 
|  | ab_partitions_allowed[HORZ_A]) { | 
|  | ab_partitions_allowed[HORZ_A] &= evaluate_ab_partition_based_on_split( | 
|  | pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 0, 1); | 
|  | } | 
|  | if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 && | 
|  | ab_partitions_allowed[HORZ_B]) { | 
|  | ab_partitions_allowed[HORZ_B] &= evaluate_ab_partition_based_on_split( | 
|  | pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 2, 3); | 
|  | } | 
|  | if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 && | 
|  | ab_partitions_allowed[VERT_A]) { | 
|  | ab_partitions_allowed[VERT_A] &= evaluate_ab_partition_based_on_split( | 
|  | pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 0, 2); | 
|  | } | 
|  | if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 && | 
|  | ab_partitions_allowed[VERT_B]) { | 
|  | ab_partitions_allowed[VERT_B] &= evaluate_ab_partition_based_on_split( | 
|  | pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 1, 3); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prepare features for the external model. Specifically, features after | 
|  | // ab partition is searched. | 
|  | static void prepare_features_after_part_ab( | 
|  | const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, | 
|  | int part_ctx, int64_t best_rd, | 
|  | int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT], | 
|  | int64_t split_rd[SUB_PARTITIONS_SPLIT], unsigned int pb_source_variance, | 
|  | int mi_row, int mi_col, aom_partition_features_t *const features) { | 
|  | int64_t *horz_rd = rect_part_rd[HORZ]; | 
|  | int64_t *vert_rd = rect_part_rd[VERT]; | 
|  |  | 
|  | // Generate features. | 
|  | int feature_index = 0; | 
|  | features->after_part_ab.f[feature_index++] = (float)part_ctx; | 
|  | features->after_part_ab.f[feature_index++] = | 
|  | (float)get_unsigned_bits(pb_source_variance); | 
|  |  | 
|  | const int rdcost = (int)AOMMIN(INT_MAX, best_rd); | 
|  | int sub_block_rdcost[8] = { 0 }; | 
|  | int rd_index = 0; | 
|  | for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
|  | if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)horz_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
|  | if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)vert_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | if (split_rd[i] > 0 && split_rd[i] < 1000000000) | 
|  | sub_block_rdcost[rd_index] = (int)split_rd[i]; | 
|  | ++rd_index; | 
|  | } | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | // Ratio between the sub-block RD and the whole-block RD. | 
|  | float rd_ratio = 1.0f; | 
|  | if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) | 
|  | rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; | 
|  | features->after_part_ab.f[feature_index++] = rd_ratio; | 
|  | } | 
|  |  | 
|  | // Get variance of the 1:4 and 4:1 sub-blocks. | 
|  | unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 }; | 
|  | unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 }; | 
|  | { | 
|  | BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4); | 
|  | BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4); | 
|  | av1_setup_src_planes(x, cpi->source, mi_row, mi_col, | 
|  | av1_num_planes(&cpi->common), bsize); | 
|  | const int src_stride = x->plane[0].src.stride; | 
|  | uint8_t *src = x->plane[0].src.buf; | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  |  | 
|  | struct buf_2d horz_4_src, vert_4_src; | 
|  | horz_4_src.stride = src_stride; | 
|  | vert_4_src.stride = src_stride; | 
|  |  | 
|  | for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride; | 
|  | vert_4_src.buf = src + i * block_size_wide[vert_4_bs]; | 
|  |  | 
|  | horz_4_source_var[i] = av1_get_perpixel_variance_facade( | 
|  | cpi, xd, &horz_4_src, horz_4_bs, AOM_PLANE_Y); | 
|  | vert_4_source_var[i] = av1_get_perpixel_variance_facade( | 
|  | cpi, xd, &vert_4_src, vert_4_bs, AOM_PLANE_Y); | 
|  | } | 
|  | } | 
|  |  | 
|  | const float denom = (float)(pb_source_variance + 1); | 
|  | const float low_b = 0.1f; | 
|  | const float high_b = 10.0f; | 
|  | for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | // Ratio between the 4:1 sub-block variance and the whole-block variance. | 
|  | float var_ratio = (float)(horz_4_source_var[i] + 1) / denom; | 
|  | if (var_ratio < low_b) var_ratio = low_b; | 
|  | if (var_ratio > high_b) var_ratio = high_b; | 
|  | features->after_part_ab.f[feature_index++] = var_ratio; | 
|  | } | 
|  | for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | // Ratio between the 1:4 sub-block RD and the whole-block RD. | 
|  | float var_ratio = (float)(vert_4_source_var[i] + 1) / denom; | 
|  | if (var_ratio < low_b) var_ratio = low_b; | 
|  | if (var_ratio > high_b) var_ratio = high_b; | 
|  | features->after_part_ab.f[feature_index++] = var_ratio; | 
|  | } | 
|  | assert(feature_index == 18); | 
|  | } | 
|  |  | 
|  | // If the external partition model is used, we let it determine partition | 
|  | // decisions before partition none. Specifically, these parameters: | 
|  | // partition_none_allowed | 
|  | // partition_horz_allowed | 
|  | // partition_vert_allowed | 
|  | // do_rectangular_split | 
|  | // do_square_split | 
|  | static bool ext_ml_model_decision_before_none( | 
|  | AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT], | 
|  | int *partition_none_allowed, int *partition_horz_allowed, | 
|  | int *partition_vert_allowed, int *do_rectangular_split, | 
|  | int *do_square_split) { | 
|  | ExtPartController *const ext_part_controller = &cpi->ext_part_controller; | 
|  | if (!ext_part_controller->ready) return false; | 
|  |  | 
|  | // Setup features. | 
|  | aom_partition_features_t features; | 
|  | features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE; | 
|  | for (int i = 0; i < FEATURE_SIZE_SMS_SPLIT; ++i) { | 
|  | features.before_part_none.f[i] = features_from_motion[i]; | 
|  | } | 
|  |  | 
|  | // Send necessary features to the external model. | 
|  | av1_ext_part_send_features(ext_part_controller, &features); | 
|  |  | 
|  | // Get partition decisions from the external model. | 
|  | aom_partition_decision_t decision; | 
|  | const bool valid_decision = | 
|  | av1_ext_part_get_partition_decision(ext_part_controller, &decision); | 
|  | if (!valid_decision) return false; | 
|  |  | 
|  | // Populate decisions | 
|  | *partition_none_allowed = decision.partition_none_allowed; | 
|  | *partition_horz_allowed = decision.partition_rect_allowed[HORZ]; | 
|  | *partition_vert_allowed = decision.partition_rect_allowed[VERT]; | 
|  | *do_rectangular_split = decision.do_rectangular_split; | 
|  | *do_square_split = decision.do_square_split; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the external partition model is used, we let it determine partition | 
|  | // decisions before partition none. Specifically, these parameters: | 
|  | // prune_horz | 
|  | // prune_vert | 
|  | static bool ext_ml_model_decision_before_none_part2( | 
|  | AV1_COMP *cpi, | 
|  | const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART], | 
|  | int *prune_horz, int *prune_vert) { | 
|  | ExtPartController *const ext_part_controller = &cpi->ext_part_controller; | 
|  | if (!ext_part_controller->ready) return false; | 
|  |  | 
|  | // Setup features. | 
|  | aom_partition_features_t features; | 
|  | features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE_PART2; | 
|  | for (int i = 0; i < FEATURE_SIZE_SMS_PRUNE_PART; ++i) { | 
|  | features.before_part_none.f_part2[i] = features_from_motion[i]; | 
|  | } | 
|  |  | 
|  | // Send necessary features to the external model. | 
|  | av1_ext_part_send_features(ext_part_controller, &features); | 
|  |  | 
|  | // Get partition decisions from the external model. | 
|  | aom_partition_decision_t decision; | 
|  | const bool valid_decision = | 
|  | av1_ext_part_get_partition_decision(ext_part_controller, &decision); | 
|  | if (!valid_decision) return false; | 
|  |  | 
|  | // Populate decisions | 
|  | *prune_horz = decision.prune_rect_part[HORZ]; | 
|  | *prune_vert = decision.prune_rect_part[VERT]; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the external partition model is used, we let it determine partition | 
|  | // decisions after none partition. Specifically, these parameters: | 
|  | // do_square_split | 
|  | // do_rectangular_split | 
|  | bool ext_ml_model_decision_after_none( | 
|  | ExtPartController *const ext_part_controller, const int is_intra_frame, | 
|  | const float *const features_after_none, int *do_square_split, | 
|  | int *do_rectangular_split) { | 
|  | if (!ext_part_controller->ready || is_intra_frame) return false; | 
|  |  | 
|  | // Setup features. | 
|  | aom_partition_features_t features; | 
|  | features.id = AOM_EXT_PART_FEATURE_AFTER_NONE; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | features.after_part_none.f[i] = features_after_none[i]; | 
|  | } | 
|  |  | 
|  | // Send necessary features to the external model. | 
|  | av1_ext_part_send_features(ext_part_controller, &features); | 
|  |  | 
|  | // Get partition decisions from the external model. | 
|  | aom_partition_decision_t decision; | 
|  | const bool valid_decision = | 
|  | av1_ext_part_get_partition_decision(ext_part_controller, &decision); | 
|  | if (!valid_decision) return false; | 
|  |  | 
|  | // Populate decisions | 
|  | *do_square_split = decision.do_square_split; | 
|  | *do_rectangular_split = decision.do_rectangular_split; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the external partition model is used, we let it determine partition | 
|  | // decisions after none partition. Specifically, these parameters: | 
|  | // terminate_partition_search | 
|  | bool ext_ml_model_decision_after_none_part2( | 
|  | AV1_COMP *const cpi, const float *const features_terminate, | 
|  | int *terminate_partition_search) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | ExtPartController *const ext_part_controller = &cpi->ext_part_controller; | 
|  | if (!ext_part_controller->ready || frame_is_intra_only(cm)) return false; | 
|  |  | 
|  | // Setup features. | 
|  | aom_partition_features_t features; | 
|  | features.id = AOM_EXT_PART_FEATURE_AFTER_NONE_PART2; | 
|  | for (int i = 0; i < FEATURE_SIZE_SMS_TERM_NONE; ++i) { | 
|  | features.after_part_none.f_terminate[i] = features_terminate[i]; | 
|  | } | 
|  |  | 
|  | // Send necessary features to the external model. | 
|  | av1_ext_part_send_features(ext_part_controller, &features); | 
|  |  | 
|  | // Get partition decisions from the external model. | 
|  | aom_partition_decision_t decision; | 
|  | const bool valid_decision = | 
|  | av1_ext_part_get_partition_decision(ext_part_controller, &decision); | 
|  | if (!valid_decision) return false; | 
|  |  | 
|  | // Populate decisions | 
|  | *terminate_partition_search = decision.terminate_partition_search; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the external partition model is used, we let it determine partition | 
|  | // decisions after none partition. Specifically, these parameters: | 
|  | // terminate_partition_search | 
|  | bool ext_ml_model_decision_after_split(AV1_COMP *const cpi, | 
|  | const float *const features_terminate, | 
|  | int *terminate_partition_search) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | ExtPartController *const ext_part_controller = &cpi->ext_part_controller; | 
|  | if (frame_is_intra_only(cm) || !cpi->ext_part_controller.ready) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Setup features. | 
|  | aom_partition_features_t features; | 
|  | features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT; | 
|  | for (int i = 0; i < 31; ++i) { | 
|  | features.after_part_split.f_terminate[i] = features_terminate[i]; | 
|  | } | 
|  |  | 
|  | // Send necessary features to the external model. | 
|  | av1_ext_part_send_features(ext_part_controller, &features); | 
|  |  | 
|  | // Get partition decisions from the external model. | 
|  | aom_partition_decision_t decision; | 
|  | const bool valid_decision = | 
|  | av1_ext_part_get_partition_decision(ext_part_controller, &decision); | 
|  | if (!valid_decision) return false; | 
|  |  | 
|  | // Populate decisions | 
|  | *terminate_partition_search = decision.terminate_partition_search; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the external partition model is used, we let it determine partition | 
|  | // decisions after none partition. Specifically, these parameters: | 
|  | // prune_rect_part[HORZ] | 
|  | // prune_rect_part[VERT] | 
|  | bool ext_ml_model_decision_after_split_part2( | 
|  | ExtPartController *const ext_part_controller, const int is_intra_frame, | 
|  | const float *const features_prune, int *prune_rect_part_horz, | 
|  | int *prune_rect_part_vert) { | 
|  | if (is_intra_frame || !ext_part_controller->ready) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Setup features. | 
|  | aom_partition_features_t features; | 
|  | features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT_PART2; | 
|  | for (int i = 0; i < 9; ++i) { | 
|  | features.after_part_split.f_prune_rect[i] = features_prune[i]; | 
|  | } | 
|  |  | 
|  | // Send necessary features to the external model. | 
|  | av1_ext_part_send_features(ext_part_controller, &features); | 
|  |  | 
|  | // Get partition decisions from the external model. | 
|  | aom_partition_decision_t decision; | 
|  | const bool valid_decision = | 
|  | av1_ext_part_get_partition_decision(ext_part_controller, &decision); | 
|  | if (!valid_decision) return false; | 
|  |  | 
|  | // Populate decisions | 
|  | *prune_rect_part_horz = decision.prune_rect_part[0]; | 
|  | *prune_rect_part_vert = decision.prune_rect_part[1]; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the external partition model is used, we let it determine partition | 
|  | // decisions after rectangular partition. Specifically, these parameters: | 
|  | // horza_partition_allowed | 
|  | // horzb_partition_allowed | 
|  | // verta_partition_allowed | 
|  | // vertb_partition_allowed | 
|  | static bool ext_ml_model_decision_after_rect( | 
|  | ExtPartController *const ext_part_controller, const int is_intra_frame, | 
|  | const float *const features_after_rect, int *horza_partition_allowed, | 
|  | int *horzb_partition_allowed, int *verta_partition_allowed, | 
|  | int *vertb_partition_allowed) { | 
|  | if (is_intra_frame || !ext_part_controller->ready) return false; | 
|  |  | 
|  | // Setup features. | 
|  | aom_partition_features_t features; | 
|  | features.id = AOM_EXT_PART_FEATURE_AFTER_RECT; | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | features.after_part_rect.f[i] = features_after_rect[i]; | 
|  | } | 
|  |  | 
|  | // Send necessary features to the external model. | 
|  | av1_ext_part_send_features(ext_part_controller, &features); | 
|  |  | 
|  | // Get partition decisions from the external model. | 
|  | aom_partition_decision_t decision; | 
|  | const bool valid_decision = | 
|  | av1_ext_part_get_partition_decision(ext_part_controller, &decision); | 
|  | if (!valid_decision) return false; | 
|  |  | 
|  | // Populate decisions | 
|  | *horza_partition_allowed = decision.horza_partition_allowed; | 
|  | *horzb_partition_allowed = decision.horzb_partition_allowed; | 
|  | *verta_partition_allowed = decision.verta_partition_allowed; | 
|  | *vertb_partition_allowed = decision.vertb_partition_allowed; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the external partition model is used, we let it determine partition | 
|  | // decisions after AB partition. Specifically, these parameters: | 
|  | // partition_vert4_allowed | 
|  | // partition_horz4_allowed | 
|  | static bool ext_ml_model_decision_after_part_ab( | 
|  | AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx, | 
|  | int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT], | 
|  | int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed, | 
|  | int *const partition_vert4_allowed, unsigned int pb_source_variance, | 
|  | int mi_row, int mi_col) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | ExtPartController *const ext_part_controller = &cpi->ext_part_controller; | 
|  |  | 
|  | if (!frame_is_intra_only(cm) && ext_part_controller->ready) { | 
|  | // Setup features. | 
|  | aom_partition_features_t features; | 
|  | features.id = AOM_EXT_PART_FEATURE_AFTER_AB; | 
|  | prepare_features_after_part_ab(cpi, x, bsize, part_ctx, best_rd, | 
|  | rect_part_rd, split_rd, pb_source_variance, | 
|  | mi_row, mi_col, &features); | 
|  |  | 
|  | // Send necessary features to the external model. | 
|  | av1_ext_part_send_features(ext_part_controller, &features); | 
|  |  | 
|  | // Get partition decisions from the external model. | 
|  | aom_partition_decision_t decision; | 
|  | const bool valid_decision = | 
|  | av1_ext_part_get_partition_decision(ext_part_controller, &decision); | 
|  | if (!valid_decision) return false; | 
|  |  | 
|  | // Populate decisions | 
|  | *partition_horz4_allowed = decision.partition_horz4_allowed; | 
|  | *partition_vert4_allowed = decision.partition_vert4_allowed; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // This function resembles "av1_setup_sms_tree()" in context_tree.c | 
|  | // with function signature change. | 
|  | static SIMPLE_MOTION_DATA_TREE *setup_sms_tree( | 
|  | AV1_COMP *const cpi, SIMPLE_MOTION_DATA_TREE *sms_tree) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int stat_generation_stage = is_stat_generation_stage(cpi); | 
|  | const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128; | 
|  | const int tree_nodes = | 
|  | av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage); | 
|  | int sms_tree_index = 0; | 
|  | SIMPLE_MOTION_DATA_TREE *this_sms; | 
|  | int square_index = 1; | 
|  | int nodes; | 
|  | this_sms = &sms_tree[0]; | 
|  |  | 
|  | if (!stat_generation_stage) { | 
|  | const int leaf_factor = is_sb_size_128 ? 4 : 1; | 
|  | const int leaf_nodes = 256 * leaf_factor; | 
|  |  | 
|  | // Sets up all the leaf nodes in the tree. | 
|  | for (sms_tree_index = 0; sms_tree_index < leaf_nodes; ++sms_tree_index) { | 
|  | SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index]; | 
|  | tree->block_size = square[0]; | 
|  | } | 
|  |  | 
|  | // Each node has 4 leaf nodes, fill each block_size level of the tree | 
|  | // from leafs to the root. | 
|  | for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) { | 
|  | for (int i = 0; i < nodes; ++i) { | 
|  | SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index]; | 
|  | tree->block_size = square[square_index]; | 
|  | for (int j = 0; j < 4; j++) tree->split[j] = this_sms++; | 
|  | ++sms_tree_index; | 
|  | } | 
|  | ++square_index; | 
|  | } | 
|  | } else { | 
|  | // Allocation for firstpass/LAP stage | 
|  | // TODO(Mufaddal): refactor square_index to use a common block_size macro | 
|  | // from firstpass.c | 
|  | SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index]; | 
|  | square_index = 2; | 
|  | tree->block_size = square[square_index]; | 
|  | } | 
|  |  | 
|  | // Set up the root node for the largest superblock size | 
|  | return &sms_tree[tree_nodes - 1]; | 
|  | } | 
|  |  | 
|  | static void write_motion_feature_to_file( | 
|  | const char *const path, const int sb_counter, const unsigned int *block_sse, | 
|  | const unsigned int *block_var, const int num_blocks, const BLOCK_SIZE bsize, | 
|  | const BLOCK_SIZE fixed_block_size, const int mi_row, const int mi_col) { | 
|  | char filename[256]; | 
|  | snprintf(filename, sizeof(filename), "%s/motion_search_feature_sb%d", path, | 
|  | sb_counter); | 
|  | FILE *pfile = fopen(filename, "w"); | 
|  | fprintf(pfile, "%d,%d,%d,%d,%d\n", mi_row, mi_col, bsize, | 
|  | block_size_wide[fixed_block_size], num_blocks); | 
|  | for (int i = 0; i < num_blocks; ++i) { | 
|  | fprintf(pfile, "%d", block_sse[i]); | 
|  | if (i < num_blocks - 1) fprintf(pfile, ","); | 
|  | } | 
|  | fprintf(pfile, "\n"); | 
|  | for (int i = 0; i < num_blocks; ++i) { | 
|  | fprintf(pfile, "%d", block_var[i]); | 
|  | if (i < num_blocks - 1) fprintf(pfile, ","); | 
|  | } | 
|  | fprintf(pfile, "\n"); | 
|  | fclose(pfile); | 
|  | } | 
|  |  | 
|  | void av1_collect_motion_search_features_sb(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, | 
|  | const int mi_row, const int mi_col, | 
|  | const BLOCK_SIZE bsize, | 
|  | aom_partition_features_t *features) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | if (frame_is_intra_only(cm)) return; | 
|  |  | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | const BLOCK_SIZE fixed_block_size = BLOCK_16X16; | 
|  | const int col_step = mi_size_wide[fixed_block_size]; | 
|  | const int row_step = mi_size_high[fixed_block_size]; | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree = NULL; | 
|  | const int stat_generation_stage = is_stat_generation_stage(cpi); | 
|  | const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128; | 
|  | const int tree_nodes = | 
|  | av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage); | 
|  | CHECK_MEM_ERROR(cm, sms_tree, aom_calloc(tree_nodes, sizeof(*sms_tree))); | 
|  | SIMPLE_MOTION_DATA_TREE *sms_root = setup_sms_tree(cpi, sms_tree); | 
|  | TileInfo *const tile_info = &tile_data->tile_info; | 
|  | av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, bsize); | 
|  | av1_init_simple_motion_search_mvs_for_sb(cpi, NULL, x, sms_root, mi_row, | 
|  | mi_col); | 
|  | av1_reset_simple_motion_tree_partition(sms_root, bsize); | 
|  | const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME | 
|  | : LAST_FRAME }; | 
|  | const int mi_width = | 
|  | AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col); | 
|  | const int mi_height = | 
|  | AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row); | 
|  | const int col_steps = (mi_width / col_step) + ((mi_width % col_step) > 0); | 
|  | const int row_steps = (mi_height / row_step) + ((mi_height % row_step) > 0); | 
|  | const int num_blocks = col_steps * row_steps; | 
|  | unsigned int *block_sse = aom_calloc(num_blocks, sizeof(*block_sse)); | 
|  | unsigned int *block_var = aom_calloc(num_blocks, sizeof(*block_var)); | 
|  | if (!(block_sse && block_var)) { | 
|  | aom_free(sms_tree); | 
|  | aom_free(block_sse); | 
|  | aom_free(block_var); | 
|  | aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, | 
|  | "Error allocating block_sse & block_var"); | 
|  | } | 
|  | int idx = 0; | 
|  |  | 
|  | for (int row = mi_row; | 
|  | row < AOMMIN(mi_row + mi_size_high[bsize], cm->mi_params.mi_rows); | 
|  | row += row_step) { | 
|  | for (int col = mi_col; | 
|  | col < AOMMIN(mi_col + mi_size_wide[bsize], cm->mi_params.mi_cols); | 
|  | col += col_step) { | 
|  | simple_motion_search_get_best_ref( | 
|  | cpi, x, sms_root, row, col, fixed_block_size, ref_list, | 
|  | /*num_refs=*/1, /*use_subpixel=*/1, | 
|  | /*save_mv=*/1, &block_sse[idx], &block_var[idx]); | 
|  | ++idx; | 
|  | } | 
|  | } | 
|  | if (features == NULL) { | 
|  | write_motion_feature_to_file(cpi->oxcf.partition_info_path, cpi->sb_counter, | 
|  | block_sse, block_var, idx, bsize, | 
|  | fixed_block_size, mi_row, mi_col); | 
|  | } else { | 
|  | features->sb_features.motion_features.unit_length = | 
|  | block_size_wide[fixed_block_size]; | 
|  | features->sb_features.motion_features.num_units = idx; | 
|  | for (int i = 0; i < idx; ++i) { | 
|  | features->sb_features.motion_features.block_sse[i] = block_sse[i]; | 
|  | features->sb_features.motion_features.block_var[i] = block_var[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_free(block_sse); | 
|  | aom_free(block_var); | 
|  | aom_free(sms_tree); | 
|  | } | 
|  |  | 
|  | void av1_prepare_motion_search_features_block( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | const int mi_row, const int mi_col, const BLOCK_SIZE bsize, | 
|  | const int valid_partition_types, unsigned int *block_sse, | 
|  | unsigned int *block_var, unsigned int sub_block_sse[4], | 
|  | unsigned int sub_block_var[4], unsigned int horz_block_sse[2], | 
|  | unsigned int horz_block_var[2], unsigned int vert_block_sse[2], | 
|  | unsigned int vert_block_var[2]) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | if (frame_is_intra_only(cm)) return; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree = NULL; | 
|  | const int stat_generation_stage = is_stat_generation_stage(cpi); | 
|  | const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128; | 
|  | const int tree_nodes = | 
|  | av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage); | 
|  | CHECK_MEM_ERROR(cm, sms_tree, aom_calloc(tree_nodes, sizeof(*sms_tree))); | 
|  | SIMPLE_MOTION_DATA_TREE *sms_root = setup_sms_tree(cpi, sms_tree); | 
|  | TileInfo *const tile_info = &tile_data->tile_info; | 
|  | av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, bsize); | 
|  | av1_reset_simple_motion_tree_partition(sms_root, bsize); | 
|  | const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME | 
|  | : LAST_FRAME }; | 
|  | const int sub_mi_width = mi_size_wide[bsize] / 2; | 
|  | const int sub_mi_height = sub_mi_width; | 
|  | simple_motion_search_get_best_ref( | 
|  | cpi, x, sms_root, mi_row, mi_col, bsize, ref_list, /*num_refs=*/1, | 
|  | /*use_subpixel=*/1, /*save_mv=*/1, block_sse, block_var); | 
|  | // Split to 4 sub blocks. | 
|  | if (valid_partition_types & (1 << PARTITION_SPLIT)) { | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | const int row = mi_row + (i >> 1) * sub_mi_height; | 
|  | const int col = mi_col + (i & 1) * sub_mi_width; | 
|  | simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize, | 
|  | ref_list, /*num_refs=*/1, | 
|  | /*use_subpixel=*/1, /*save_mv=*/1, | 
|  | &sub_block_sse[i], &sub_block_var[i]); | 
|  | } | 
|  | } | 
|  | // Horizontal split | 
|  | if (valid_partition_types & (1 << PARTITION_HORZ)) { | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | const int row = mi_row + (i & 1) * sub_mi_height; | 
|  | const int col = mi_col; | 
|  | simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize, | 
|  | ref_list, /*num_refs=*/1, | 
|  | /*use_subpixel=*/1, /*save_mv=*/1, | 
|  | &horz_block_sse[i], &horz_block_var[i]); | 
|  | } | 
|  | } | 
|  | // Vertical split | 
|  | if (valid_partition_types & (1 << PARTITION_VERT)) { | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT); | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | const int row = mi_row; | 
|  | const int col = mi_col + (i & 1) * sub_mi_width; | 
|  | simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize, | 
|  | ref_list, /*num_refs=*/1, | 
|  | /*use_subpixel=*/1, /*save_mv=*/1, | 
|  | &vert_block_sse[i], &vert_block_var[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_free(sms_tree); | 
|  | } | 
|  | #endif  // !CONFIG_REALTIME_ONLY | 
|  |  | 
|  | static INLINE void init_simple_motion_search_mvs( | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree, const FULLPEL_MV *start_mvs) { | 
|  | memcpy(sms_tree->start_mvs, start_mvs, sizeof(sms_tree->start_mvs)); | 
|  | av1_zero(sms_tree->sms_none_feat); | 
|  | av1_zero(sms_tree->sms_rect_feat); | 
|  | av1_zero(sms_tree->sms_none_valid); | 
|  | av1_zero(sms_tree->sms_rect_valid); | 
|  |  | 
|  | if (sms_tree->block_size >= BLOCK_8X8) { | 
|  | init_simple_motion_search_mvs(sms_tree->split[0], start_mvs); | 
|  | init_simple_motion_search_mvs(sms_tree->split[1], start_mvs); | 
|  | init_simple_motion_search_mvs(sms_tree->split[2], start_mvs); | 
|  | init_simple_motion_search_mvs(sms_tree->split[3], start_mvs); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_init_simple_motion_search_mvs_for_sb(const AV1_COMP *cpi, | 
|  | const TileInfo *tile_info, | 
|  | MACROBLOCK *x, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_root, | 
|  | int mi_row, int mi_col) { | 
|  | // Use the NEARESTMV of the sb as the start mv | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | FULLPEL_MV ref_mvs[REF_FRAMES]; | 
|  | const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
|  | av1_zero(ref_mvs); | 
|  | // If tile_info is NULL, assume that the offsets have already been set. | 
|  | if (tile_info) { | 
|  | av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, | 
|  | sb_size); | 
|  | } | 
|  |  | 
|  | MB_MODE_INFO_EXT mbmi_ext; | 
|  | const int ref_frame = | 
|  | cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME; | 
|  | av1_find_mv_refs(cm, xd, xd->mi[0], ref_frame, mbmi_ext.ref_mv_count, | 
|  | xd->ref_mv_stack, xd->weight, NULL, mbmi_ext.global_mvs, | 
|  | mbmi_ext.mode_context); | 
|  | if (mbmi_ext.ref_mv_count[ref_frame] > 0) { | 
|  | ref_mvs[ref_frame] = | 
|  | get_fullmv_from_mv(&xd->ref_mv_stack[ref_frame][0].this_mv.as_mv); | 
|  | } else { | 
|  | ref_mvs[ref_frame] = | 
|  | get_fullmv_from_mv(&mbmi_ext.global_mvs[ref_frame].as_mv); | 
|  | } | 
|  |  | 
|  | init_simple_motion_search_mvs(sms_root, ref_mvs); | 
|  | } |