blob: 0b39bc76dd8e12b28db9b47ac74a7c8263a6d583 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdlib.h> // qsort()
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "./aom_scale_rtcd.h"
#include "./av1_rtcd.h"
#include "aom/aom_codec.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/bitreader.h"
#include "aom_dsp/bitreader_buffer.h"
#include "aom_dsp/binary_codes_reader.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/mem_ops.h"
#include "aom_scale/aom_scale.h"
#include "aom_util/aom_thread.h"
#if CONFIG_BITSTREAM_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG
#include "av1/common/alloccommon.h"
#if CONFIG_CDEF
#include "av1/common/cdef.h"
#include "av1/common/clpf.h"
#endif
#if CONFIG_INSPECTION
#include "av1/decoder/inspection.h"
#endif
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/idct.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/common/thread_common.h"
#include "av1/common/tile_common.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decodemv.h"
#include "av1/decoder/decoder.h"
#if CONFIG_LV_MAP
#include "av1/decoder/decodetxb.h"
#endif
#include "av1/decoder/detokenize.h"
#include "av1/decoder/dsubexp.h"
#if CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION
#include "av1/common/warped_motion.h"
#endif // CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION
#define MAX_AV1_HEADER_SIZE 80
#define ACCT_STR __func__
#if CONFIG_PVQ
#include "av1/common/partition.h"
#include "av1/common/pvq.h"
#include "av1/common/scan.h"
#include "av1/decoder/decint.h"
#include "av1/decoder/pvq_decoder.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#endif
#if CONFIG_CFL
#include "av1/common/cfl.h"
#endif
static struct aom_read_bit_buffer *init_read_bit_buffer(
AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data,
const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]);
static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data,
size_t partition_size);
static size_t read_uncompressed_header(AV1Decoder *pbi,
struct aom_read_bit_buffer *rb);
static int is_compound_reference_allowed(const AV1_COMMON *cm) {
#if CONFIG_LOWDELAY_COMPOUND // Normative in decoder
return !frame_is_intra_only(cm);
#else
int i;
if (frame_is_intra_only(cm)) return 0;
for (i = 1; i < INTER_REFS_PER_FRAME; ++i)
if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1;
return 0;
#endif
}
static void setup_compound_reference_mode(AV1_COMMON *cm) {
#if CONFIG_EXT_REFS
cm->comp_fwd_ref[0] = LAST_FRAME;
cm->comp_fwd_ref[1] = LAST2_FRAME;
cm->comp_fwd_ref[2] = LAST3_FRAME;
cm->comp_fwd_ref[3] = GOLDEN_FRAME;
cm->comp_bwd_ref[0] = BWDREF_FRAME;
cm->comp_bwd_ref[1] = ALTREF_FRAME;
#else
if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
} else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[ALTREF_FRAME]) {
cm->comp_fixed_ref = GOLDEN_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
} else {
cm->comp_fixed_ref = LAST_FRAME;
cm->comp_var_ref[0] = GOLDEN_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
}
#endif // CONFIG_EXT_REFS
}
static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
return len != 0 && len <= (size_t)(end - start);
}
static int decode_unsigned_max(struct aom_read_bit_buffer *rb, int max) {
const int data = aom_rb_read_literal(rb, get_unsigned_bits(max));
return data > max ? max : data;
}
static TX_MODE read_tx_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
struct aom_read_bit_buffer *rb) {
int i, all_lossless = 1;
#if CONFIG_TX64X64
TX_MODE tx_mode;
#endif
if (cm->seg.enabled) {
for (i = 0; i < MAX_SEGMENTS; ++i) {
if (!xd->lossless[i]) {
all_lossless = 0;
break;
}
}
} else {
all_lossless = xd->lossless[0];
}
if (all_lossless) return ONLY_4X4;
#if CONFIG_TX64X64
tx_mode = aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2);
if (tx_mode == ALLOW_32X32) tx_mode += aom_rb_read_bit(rb);
return tx_mode;
#else
return aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2);
#endif // CONFIG_TX64X64
}
#if !CONFIG_EC_ADAPT
static void read_tx_size_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i, j, k;
for (i = 0; i < MAX_TX_DEPTH; ++i)
for (j = 0; j < TX_SIZE_CONTEXTS; ++j)
for (k = 0; k < i + 1; ++k)
av1_diff_update_prob(r, &fc->tx_size_probs[i][j][k], ACCT_STR);
}
#endif
#if !CONFIG_EC_ADAPT
static void read_switchable_interp_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i, j;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) {
for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
av1_diff_update_prob(r, &fc->switchable_interp_prob[j][i], ACCT_STR);
}
}
#endif
static void read_inter_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i;
for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->newmv_prob[i], ACCT_STR);
for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->zeromv_prob[i], ACCT_STR);
for (i = 0; i < REFMV_MODE_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->refmv_prob[i], ACCT_STR);
for (i = 0; i < DRL_MODE_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->drl_prob[i], ACCT_STR);
}
#if CONFIG_EXT_INTER
static void read_inter_compound_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i, j;
if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
for (j = 0; j < INTER_MODE_CONTEXTS; ++j) {
for (i = 0; i < INTER_COMPOUND_MODES - 1; ++i) {
av1_diff_update_prob(r, &fc->inter_compound_mode_probs[j][i], ACCT_STR);
}
}
}
}
#endif // CONFIG_EXT_INTER
#if !CONFIG_EC_ADAPT
#if !CONFIG_EXT_TX
static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i, j, k;
if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (j = 0; j < TX_TYPES; ++j) {
for (k = 0; k < TX_TYPES - 1; ++k)
av1_diff_update_prob(r, &fc->intra_ext_tx_prob[i][j][k], ACCT_STR);
}
}
}
if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (k = 0; k < TX_TYPES - 1; ++k)
av1_diff_update_prob(r, &fc->inter_ext_tx_prob[i][k], ACCT_STR);
}
}
}
#endif
#endif
static REFERENCE_MODE read_frame_reference_mode(
const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
if (is_compound_reference_allowed(cm)) {
#if CONFIG_REF_ADAPT
return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE;
#else
return aom_rb_read_bit(rb)
? REFERENCE_MODE_SELECT
: (aom_rb_read_bit(rb) ? COMPOUND_REFERENCE : SINGLE_REFERENCE);
#endif // CONFIG_REF_ADAPT
} else {
return SINGLE_REFERENCE;
}
}
static void read_frame_reference_mode_probs(AV1_COMMON *cm, aom_reader *r) {
FRAME_CONTEXT *const fc = cm->fc;
int i, j;
if (cm->reference_mode == REFERENCE_MODE_SELECT)
for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->comp_inter_prob[i], ACCT_STR);
if (cm->reference_mode != COMPOUND_REFERENCE) {
for (i = 0; i < REF_CONTEXTS; ++i) {
for (j = 0; j < (SINGLE_REFS - 1); ++j) {
av1_diff_update_prob(r, &fc->single_ref_prob[i][j], ACCT_STR);
}
}
}
if (cm->reference_mode != SINGLE_REFERENCE) {
for (i = 0; i < REF_CONTEXTS; ++i) {
#if CONFIG_EXT_REFS
for (j = 0; j < (FWD_REFS - 1); ++j)
av1_diff_update_prob(r, &fc->comp_ref_prob[i][j], ACCT_STR);
for (j = 0; j < (BWD_REFS - 1); ++j)
av1_diff_update_prob(r, &fc->comp_bwdref_prob[i][j], ACCT_STR);
#else
for (j = 0; j < (COMP_REFS - 1); ++j)
av1_diff_update_prob(r, &fc->comp_ref_prob[i][j], ACCT_STR);
#endif // CONFIG_EXT_REFS
}
}
}
static void update_mv_probs(aom_prob *p, int n, aom_reader *r) {
int i;
for (i = 0; i < n; ++i) av1_diff_update_prob(r, &p[i], ACCT_STR);
}
static void read_mv_probs(nmv_context *ctx, int allow_hp, aom_reader *r) {
int i;
#if !CONFIG_EC_ADAPT
int j;
update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
update_mv_probs(&comp_ctx->sign, 1, r);
update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
}
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
for (j = 0; j < CLASS0_SIZE; ++j) {
update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
}
update_mv_probs(comp_ctx->fp, MV_FP_SIZE - 1, r);
}
#endif // !CONFIG_EC_ADAPT
if (allow_hp) {
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
update_mv_probs(&comp_ctx->class0_hp, 1, r);
update_mv_probs(&comp_ctx->hp, 1, r);
}
}
}
static void inverse_transform_block(MACROBLOCKD *xd, int plane,
const TX_TYPE tx_type,
const TX_SIZE tx_size, uint8_t *dst,
int stride, int16_t scan_line, int eob) {
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = pd->dqcoeff;
av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst, stride, eob);
memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0]));
}
#if CONFIG_PVQ
static int av1_pvq_decode_helper(MACROBLOCKD *xd, tran_low_t *ref_coeff,
tran_low_t *dqcoeff, int16_t *quant, int pli,
int bs, TX_TYPE tx_type, int xdec,
PVQ_SKIP_TYPE ac_dc_coded) {
unsigned int flags; // used for daala's stream analyzer.
int off;
const int is_keyframe = 0;
const int has_dc_skip = 1;
int coeff_shift = 3 - av1_get_tx_scale(bs);
int hbd_downshift = 0;
int rounding_mask;
// DC quantizer for PVQ
int pvq_dc_quant;
int lossless = (quant[0] == 0);
const int blk_size = tx_size_wide[bs];
int eob = 0;
int i;
od_dec_ctx *dec = &xd->daala_dec;
int use_activity_masking = dec->use_activity_masking;
DECLARE_ALIGNED(16, tran_low_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, tran_low_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
od_coeff ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX];
od_coeff out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX];
hbd_downshift = xd->bd - 8;
od_raster_to_coding_order(ref_coeff_pvq, blk_size, tx_type, ref_coeff,
blk_size);
assert(OD_COEFF_SHIFT >= 4);
if (lossless)
pvq_dc_quant = 1;
else {
if (use_activity_masking)
pvq_dc_quant = OD_MAXI(
1, (quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift) *
dec->state.pvq_qm_q4[pli][od_qm_get_index(bs, 0)] >>
4);
else
pvq_dc_quant =
OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift);
}
off = od_qm_offset(bs, xdec);
// copy int16 inputs to int32
for (i = 0; i < blk_size * blk_size; i++) {
ref_int32[i] =
AOM_SIGNED_SHL(ref_coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >>
hbd_downshift;
}
od_pvq_decode(dec, ref_int32, out_int32,
OD_MAXI(1, quant[1] << (OD_COEFF_SHIFT - 3) >> hbd_downshift),
pli, bs, OD_PVQ_BETA[use_activity_masking][pli][bs],
is_keyframe, &flags, ac_dc_coded, dec->state.qm + off,
dec->state.qm_inv + off);
if (!has_dc_skip || out_int32[0]) {
out_int32[0] =
has_dc_skip + generic_decode(dec->r, &dec->state.adapt->model_dc[pli],
&dec->state.adapt->ex_dc[pli][bs][0], 2,
"dc:mag");
if (out_int32[0]) out_int32[0] *= aom_read_bit(dec->r, "dc:sign") ? -1 : 1;
}
out_int32[0] = out_int32[0] * pvq_dc_quant + ref_int32[0];
// copy int32 result back to int16
assert(OD_COEFF_SHIFT > coeff_shift);
rounding_mask = (1 << (OD_COEFF_SHIFT - coeff_shift - 1)) - 1;
for (i = 0; i < blk_size * blk_size; i++) {
out_int32[i] = AOM_SIGNED_SHL(out_int32[i], hbd_downshift);
dqcoeff_pvq[i] = (out_int32[i] + (out_int32[i] < 0) + rounding_mask) >>
(OD_COEFF_SHIFT - coeff_shift);
}
od_coding_order_to_raster(dqcoeff, blk_size, tx_type, dqcoeff_pvq, blk_size);
eob = blk_size * blk_size;
return eob;
}
static PVQ_SKIP_TYPE read_pvq_skip(AV1_COMMON *cm, MACROBLOCKD *const xd,
int plane, TX_SIZE tx_size) {
// decode ac/dc coded flag. bit0: DC coded, bit1 : AC coded
// NOTE : we don't use 5 symbols for luma here in aom codebase,
// since block partition is taken care of by aom.
// So, only AC/DC skip info is coded
const int ac_dc_coded = aom_read_symbol(
xd->daala_dec.r,
xd->daala_dec.state.adapt->skip_cdf[2 * tx_size + (plane != 0)], 4,
"skip");
if (ac_dc_coded < 0 || ac_dc_coded > 3) {
aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM,
"Invalid PVQ Skip Type");
}
return ac_dc_coded;
}
static int av1_pvq_decode_helper2(AV1_COMMON *cm, MACROBLOCKD *const xd,
MB_MODE_INFO *const mbmi, int plane, int row,
int col, TX_SIZE tx_size, TX_TYPE tx_type) {
struct macroblockd_plane *const pd = &xd->plane[plane];
// transform block size in pixels
int tx_blk_size = tx_size_wide[tx_size];
int i, j;
tran_low_t *pvq_ref_coeff = pd->pvq_ref_coeff;
const int diff_stride = tx_blk_size;
int16_t *pred = pd->pred;
tran_low_t *const dqcoeff = pd->dqcoeff;
uint8_t *dst;
int eob;
const PVQ_SKIP_TYPE ac_dc_coded = read_pvq_skip(cm, xd, plane, tx_size);
eob = 0;
dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
if (ac_dc_coded) {
int xdec = pd->subsampling_x;
int seg_id = mbmi->segment_id;
int16_t *quant;
FWD_TXFM_PARAM fwd_txfm_param;
// ToDo(yaowu): correct this with optimal number from decoding process.
const int max_scan_line = tx_size_2d[tx_size];
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++)
pred[diff_stride * j + i] =
CONVERT_TO_SHORTPTR(dst)[pd->dst.stride * j + i];
} else {
#endif
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++)
pred[diff_stride * j + i] = dst[pd->dst.stride * j + i];
#if CONFIG_HIGHBITDEPTH
}
#endif
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.lossless = xd->lossless[seg_id];
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
fwd_txfm_param.bd = xd->bd;
av1_highbd_fwd_txfm(pred, pvq_ref_coeff, diff_stride, &fwd_txfm_param);
} else {
#endif // CONFIG_HIGHBITDEPTH
av1_fwd_txfm(pred, pvq_ref_coeff, diff_stride, &fwd_txfm_param);
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
quant = &pd->seg_dequant[seg_id][0]; // aom's quantizer
eob = av1_pvq_decode_helper(xd, pvq_ref_coeff, dqcoeff, quant, plane,
tx_size, tx_type, xdec, ac_dc_coded);
inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride,
max_scan_line, eob);
}
return eob;
}
#endif
static int get_block_idx(const MACROBLOCKD *xd, int plane, int row, int col) {
const int bsize = xd->mi[0]->mbmi.sb_type;
const struct macroblockd_plane *pd = &xd->plane[plane];
#if CONFIG_CB4X4
#if CONFIG_CHROMA_2X2
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
#else
const BLOCK_SIZE plane_bsize =
AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
#endif // CONFIG_CHROMA_2X2
#else
const BLOCK_SIZE plane_bsize =
get_plane_block_size(AOMMAX(BLOCK_8X8, bsize), pd);
#endif
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const TX_SIZE tx_size = get_tx_size(plane, xd);
const uint8_t txh_unit = tx_size_high_unit[tx_size];
return row * max_blocks_wide + col * txh_unit;
}
#if CONFIG_DPCM_INTRA
static void process_block_dpcm_vert(TX_SIZE tx_size, TX_TYPE_1D tx_type_1d,
const tran_low_t *dqcoeff, uint8_t *dst,
int dst_stride) {
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
dpcm_inv_txfm_add_func inverse_tx =
av1_get_dpcm_inv_txfm_add_func(tx1d_width);
for (int r = 0; r < tx1d_height; ++r) {
if (r > 0) memcpy(dst, dst - dst_stride, tx1d_width * sizeof(dst[0]));
inverse_tx(dqcoeff, 1, tx_type_1d, dst);
dqcoeff += tx1d_width;
dst += dst_stride;
}
}
static void process_block_dpcm_horz(TX_SIZE tx_size, TX_TYPE_1D tx_type_1d,
const tran_low_t *dqcoeff, uint8_t *dst,
int dst_stride) {
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
dpcm_inv_txfm_add_func inverse_tx =
av1_get_dpcm_inv_txfm_add_func(tx1d_height);
tran_low_t tx_buff[64];
for (int c = 0; c < tx1d_width; ++c, ++dqcoeff, ++dst) {
for (int r = 0; r < tx1d_height; ++r) {
if (c > 0) dst[r * dst_stride] = dst[r * dst_stride - 1];
tx_buff[r] = dqcoeff[r * tx1d_width];
}
inverse_tx(tx_buff, dst_stride, tx_type_1d, dst);
}
}
#if CONFIG_HIGHBITDEPTH
static void hbd_process_block_dpcm_vert(TX_SIZE tx_size, TX_TYPE_1D tx_type_1d,
int bd, const tran_low_t *dqcoeff,
uint8_t *dst8, int dst_stride) {
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
hbd_dpcm_inv_txfm_add_func inverse_tx =
av1_get_hbd_dpcm_inv_txfm_add_func(tx1d_width);
for (int r = 0; r < tx1d_height; ++r) {
if (r > 0) memcpy(dst, dst - dst_stride, tx1d_width * sizeof(dst[0]));
inverse_tx(dqcoeff, 1, tx_type_1d, bd, dst);
dqcoeff += tx1d_width;
dst += dst_stride;
}
}
static void hbd_process_block_dpcm_horz(TX_SIZE tx_size, TX_TYPE_1D tx_type_1d,
int bd, const tran_low_t *dqcoeff,
uint8_t *dst8, int dst_stride) {
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
hbd_dpcm_inv_txfm_add_func inverse_tx =
av1_get_hbd_dpcm_inv_txfm_add_func(tx1d_height);
tran_low_t tx_buff[64];
switch (tx1d_height) {
case 4: inverse_tx = av1_hbd_dpcm_inv_txfm_add_4_c; break;
case 8: inverse_tx = av1_hbd_dpcm_inv_txfm_add_8_c; break;
case 16: inverse_tx = av1_hbd_dpcm_inv_txfm_add_16_c; break;
case 32: inverse_tx = av1_hbd_dpcm_inv_txfm_add_32_c; break;
default: assert(0);
}
for (int c = 0; c < tx1d_width; ++c, ++dqcoeff, ++dst) {
for (int r = 0; r < tx1d_height; ++r) {
if (c > 0) dst[r * dst_stride] = dst[r * dst_stride - 1];
tx_buff[r] = dqcoeff[r * tx1d_width];
}
inverse_tx(tx_buff, dst_stride, tx_type_1d, bd, dst);
}
}
#endif // CONFIG_HIGHBITDEPTH
static void inverse_transform_block_dpcm(MACROBLOCKD *xd, int plane,
PREDICTION_MODE mode, TX_SIZE tx_size,
TX_TYPE tx_type, uint8_t *dst,
int dst_stride, int16_t scan_line) {
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = pd->dqcoeff;
TX_TYPE_1D tx_type_1d = DCT_1D;
switch (tx_type) {
case IDTX: tx_type_1d = IDTX_1D; break;
case V_DCT:
assert(mode == H_PRED);
tx_type_1d = DCT_1D;
break;
case H_DCT:
assert(mode == V_PRED);
tx_type_1d = DCT_1D;
break;
default: assert(0);
}
switch (mode) {
case V_PRED:
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
hbd_process_block_dpcm_vert(tx_size, tx_type_1d, xd->bd, dqcoeff, dst,
dst_stride);
} else {
#endif // CONFIG_HIGHBITDEPTH
process_block_dpcm_vert(tx_size, tx_type_1d, dqcoeff, dst, dst_stride);
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
break;
case H_PRED:
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
hbd_process_block_dpcm_horz(tx_size, tx_type_1d, xd->bd, dqcoeff, dst,
dst_stride);
} else {
#endif // CONFIG_HIGHBITDEPTH
process_block_dpcm_horz(tx_size, tx_type_1d, dqcoeff, dst, dst_stride);
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
break;
default: assert(0);
}
memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0]));
}
#endif // CONFIG_DPCM_INTRA
static void predict_and_reconstruct_intra_block(
AV1_COMMON *cm, MACROBLOCKD *const xd, aom_reader *const r,
MB_MODE_INFO *const mbmi, int plane, int row, int col, TX_SIZE tx_size) {
PLANE_TYPE plane_type = get_plane_type(plane);
const int block_idx = get_block_idx(xd, plane, row, col);
#if CONFIG_PVQ
(void)r;
#endif
av1_predict_intra_block_facade(xd, plane, block_idx, col, row, tx_size);
if (!mbmi->skip) {
#if !CONFIG_PVQ
struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_LV_MAP
int16_t max_scan_line = 0;
int eob;
av1_read_coeffs_txb_facade(cm, xd, r, row, col, block_idx, plane,
pd->dqcoeff, &max_scan_line, &eob);
// tx_type will be read out in av1_read_coeffs_txb_facade
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
#else // CONFIG_LV_MAP
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 0);
int16_t max_scan_line = 0;
const int eob =
av1_decode_block_tokens(cm, xd, plane, scan_order, col, row, tx_size,
tx_type, &max_scan_line, r, mbmi->segment_id);
#endif // CONFIG_LV_MAP
if (eob) {
uint8_t *dst =
&pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]];
#if CONFIG_DPCM_INTRA
const int block_raster_idx =
av1_block_index_to_raster_order(tx_size, block_idx);
const PREDICTION_MODE mode = (plane == 0)
? get_y_mode(xd->mi[0], block_raster_idx)
: mbmi->uv_mode;
if (av1_use_dpcm_intra(plane, mode, tx_type, mbmi)) {
inverse_transform_block_dpcm(xd, plane, mode, tx_size, tx_type, dst,
pd->dst.stride, max_scan_line);
} else {
#endif // CONFIG_DPCM_INTRA
inverse_transform_block(xd, plane, tx_type, tx_size, dst,
pd->dst.stride, max_scan_line, eob);
#if CONFIG_DPCM_INTRA
}
#endif // CONFIG_DPCM_INTRA
}
#else
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
av1_pvq_decode_helper2(cm, xd, mbmi, plane, row, col, tx_size, tx_type);
#endif
}
#if CONFIG_CFL
if (plane == AOM_PLANE_Y) {
struct macroblockd_plane *const pd = &xd->plane[plane];
uint8_t *dst =
&pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]];
cfl_store(xd->cfl, dst, pd->dst.stride, row, col, tx_size);
}
#endif
}
#if CONFIG_VAR_TX && !CONFIG_COEF_INTERLEAVE
static void decode_reconstruct_tx(AV1_COMMON *cm, MACROBLOCKD *const xd,
aom_reader *r, MB_MODE_INFO *const mbmi,
int plane, BLOCK_SIZE plane_bsize,
int blk_row, int blk_col, TX_SIZE tx_size,
int *eob_total) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
const TX_SIZE plane_tx_size =
plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
: mbmi->inter_tx_size[tx_row][tx_col];
// Scale to match transform block unit.
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size) {
PLANE_TYPE plane_type = get_plane_type(plane);
int block_idx = get_block_idx(xd, plane, blk_row, blk_col);
#if CONFIG_LV_MAP
int16_t max_scan_line = 0;
int eob;
av1_read_coeffs_txb_facade(cm, xd, r, blk_row, blk_col, block_idx, plane,
pd->dqcoeff, &max_scan_line, &eob);
// tx_type will be read out in av1_read_coeffs_txb_facade
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, plane_tx_size);
#else // CONFIG_LV_MAP
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, plane_tx_size);
const SCAN_ORDER *sc = get_scan(cm, plane_tx_size, tx_type, 1);
int16_t max_scan_line = 0;
const int eob = av1_decode_block_tokens(
cm, xd, plane, sc, blk_col, blk_row, plane_tx_size, tx_type,
&max_scan_line, r, mbmi->segment_id);
#endif // CONFIG_LV_MAP
inverse_transform_block(xd, plane, tx_type, plane_tx_size,
&pd->dst.buf[(blk_row * pd->dst.stride + blk_col)
<< tx_size_wide_log2[0]],
pd->dst.stride, max_scan_line, eob);
*eob_total += eob;
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsl = tx_size_wide_unit[sub_txs];
assert(sub_txs < tx_size);
int i;
assert(bsl > 0);
for (i = 0; i < 4; ++i) {
const int offsetr = blk_row + (i >> 1) * bsl;
const int offsetc = blk_col + (i & 0x01) * bsl;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize, offsetr,
offsetc, sub_txs, eob_total);
}
}
}
#endif // CONFIG_VAR_TX
#if !CONFIG_VAR_TX || CONFIG_SUPERTX || CONFIG_COEF_INTERLEAVE || \
(!CONFIG_VAR_TX && CONFIG_EXT_TX && CONFIG_RECT_TX)
static int reconstruct_inter_block(AV1_COMMON *cm, MACROBLOCKD *const xd,
aom_reader *const r, int segment_id,
int plane, int row, int col,
TX_SIZE tx_size) {
PLANE_TYPE plane_type = get_plane_type(plane);
int block_idx = get_block_idx(xd, plane, row, col);
#if CONFIG_PVQ
int eob;
(void)r;
(void)segment_id;
#else
struct macroblockd_plane *const pd = &xd->plane[plane];
#endif
#if !CONFIG_PVQ
#if CONFIG_LV_MAP
(void)segment_id;
int16_t max_scan_line = 0;
int eob;
av1_read_coeffs_txb_facade(cm, xd, r, row, col, block_idx, plane, pd->dqcoeff,
&max_scan_line, &eob);
// tx_type will be read out in av1_read_coeffs_txb_facade
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
#else // CONFIG_LV_MAP
int16_t max_scan_line = 0;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 1);
const int eob =
av1_decode_block_tokens(cm, xd, plane, scan_order, col, row, tx_size,
tx_type, &max_scan_line, r, segment_id);
#endif // CONFIG_LV_MAP
uint8_t *dst =
&pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]];
if (eob)
inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride,
max_scan_line, eob);
#else
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
eob = av1_pvq_decode_helper2(cm, xd, &xd->mi[0]->mbmi, plane, row, col,
tx_size, tx_type);
#endif
return eob;
}
#endif // !CONFIG_VAR_TX || CONFIG_SUPER_TX
static void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col, int bw,
int bh, int x_mis, int y_mis) {
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
const TileInfo *const tile = &xd->tile;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
// TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of
// passing bsize from decode_partition().
xd->mi[0]->mbmi.sb_type = bsize;
#if CONFIG_RD_DEBUG
xd->mi[0]->mbmi.mi_row = mi_row;
xd->mi[0]->mbmi.mi_col = mi_col;
#endif
for (y = 0; y < y_mis; ++y)
for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0];
set_plane_n4(xd, bw, bh);
set_skip_context(xd, mi_row, mi_col);
#if CONFIG_VAR_TX
xd->max_tx_size = max_txsize_lookup[bsize];
#endif
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw,
#if CONFIG_DEPENDENT_HORZTILES
cm->dependent_horz_tiles,
#endif // CONFIG_DEPENDENT_HORZTILES
cm->mi_rows, cm->mi_cols);
av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
mi_col);
}
#if CONFIG_SUPERTX
static MB_MODE_INFO *set_offsets_extend(AV1_COMMON *const cm,
MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE bsize_pred, int mi_row_pred,
int mi_col_pred, int mi_row_ori,
int mi_col_ori) {
// Used in supertx
// (mi_row_ori, mi_col_ori): location for mv
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
const int bw = mi_size_wide[bsize_pred];
const int bh = mi_size_high[bsize_pred];
const int offset = mi_row_ori * cm->mi_stride + mi_col_ori;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
set_mi_row_col(xd, tile, mi_row_pred, bh, mi_col_pred, bw,
#if CONFIG_DEPENDENT_HORZTILES
cm->dependent_horz_tiles,
#endif // CONFIG_DEPENDENT_HORZTILES
cm->mi_rows, cm->mi_cols);
xd->up_available = (mi_row_ori > tile->mi_row_start);
xd->left_available = (mi_col_ori > tile->mi_col_start);
set_plane_n4(xd, bw, bh);
return &xd->mi[0]->mbmi;
}
#if CONFIG_SUPERTX
static MB_MODE_INFO *set_mb_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int bw, int bh, int x_mis, int y_mis) {
const int offset = mi_row * cm->mi_stride + mi_col;
const TileInfo *const tile = &xd->tile;
int x, y;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
xd->mi[0]->mbmi.sb_type = bsize;
for (y = 0; y < y_mis; ++y)
for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0];
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw,
#if CONFIG_DEPENDENT_HORZTILES
cm->dependent_horz_tiles,
#endif // CONFIG_DEPENDENT_HORZTILES
cm->mi_rows, cm->mi_cols);
return &xd->mi[0]->mbmi;
}
#endif
static void set_offsets_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int offset = mi_row * cm->mi_stride + mi_col;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
set_plane_n4(xd, bw, bh);
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw,
#if CONFIG_DEPENDENT_HORZTILES
cm->dependent_horz_tiles,
#endif // CONFIG_DEPENDENT_HORZTILES
cm->mi_rows, cm->mi_cols);
av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
mi_col);
}
static void set_param_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int txfm, int skip) {
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
for (y = 0; y < y_mis; ++y)
for (x = 0; x < x_mis; ++x) {
xd->mi[y * cm->mi_stride + x]->mbmi.skip = skip;
xd->mi[y * cm->mi_stride + x]->mbmi.tx_type = txfm;
}
#if CONFIG_VAR_TX
xd->above_txfm_context = cm->above_txfm_context + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
set_txfm_ctxs(xd->mi[0]->mbmi.tx_size, bw, bh, skip, xd);
#endif
}
static void set_ref(AV1_COMMON *const cm, MACROBLOCKD *const xd, int idx,
int mi_row, int mi_col) {
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
RefBuffer *ref_buffer = &cm->frame_refs[mbmi->ref_frame[idx] - LAST_FRAME];
xd->block_refs[idx] = ref_buffer;
if (!av1_is_valid_scale(&ref_buffer->sf))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Invalid scale factors");
av1_setup_pre_planes(xd, idx, ref_buffer->buf, mi_row, mi_col,
&ref_buffer->sf);
aom_merge_corrupted_flag(&xd->corrupted, ref_buffer->buf->corrupted);
}
static void dec_predict_b_extend(
AV1Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile,
int block, int mi_row_ori, int mi_col_ori, int mi_row_pred, int mi_col_pred,
int mi_row_top, int mi_col_top, uint8_t *dst_buf[3], int dst_stride[3],
BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred, int b_sub8x8, int bextend) {
// Used in supertx
// (mi_row_ori, mi_col_ori): location for mv
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
// (mi_row_top, mi_col_top, bsize_top): region of the top partition size
// block: sub location of sub8x8 blocks
// b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8
// bextend: 1: region to predict is an extension of ori; 0: not
int r = (mi_row_pred - mi_row_top) * MI_SIZE;
int c = (mi_col_pred - mi_col_top) * MI_SIZE;
const int mi_width_top = mi_size_wide[bsize_top];
const int mi_height_top = mi_size_high[bsize_top];
MB_MODE_INFO *mbmi;
AV1_COMMON *const cm = &pbi->common;
if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top ||
mi_row_pred >= mi_row_top + mi_height_top ||
mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows ||
mi_col_pred >= cm->mi_cols)
return;
mbmi = set_offsets_extend(cm, xd, tile, bsize_pred, mi_row_pred, mi_col_pred,
mi_row_ori, mi_col_ori);
set_ref(cm, xd, 0, mi_row_pred, mi_col_pred);
if (has_second_ref(&xd->mi[0]->mbmi))
set_ref(cm, xd, 1, mi_row_pred, mi_col_pred);
if (!bextend) mbmi->tx_size = max_txsize_lookup[bsize_top];
xd->plane[0].dst.stride = dst_stride[0];
xd->plane[1].dst.stride = dst_stride[1];
xd->plane[2].dst.stride = dst_stride[2];
xd->plane[0].dst.buf = dst_buf[0] +
(r >> xd->plane[0].subsampling_y) * dst_stride[0] +
(c >> xd->plane[0].subsampling_x);
xd->plane[1].dst.buf = dst_buf[1] +
(r >> xd->plane[1].subsampling_y) * dst_stride[1] +
(c >> xd->plane[1].subsampling_x);
xd->plane[2].dst.buf = dst_buf[2] +
(r >> xd->plane[2].subsampling_y) * dst_stride[2] +
(c >> xd->plane[2].subsampling_x);
if (!b_sub8x8)
av1_build_inter_predictors_sb_extend(&pbi->common, xd,
#if CONFIG_EXT_INTER
mi_row_ori, mi_col_ori,
#endif // CONFIG_EXT_INTER
mi_row_pred, mi_col_pred, bsize_pred);
else
av1_build_inter_predictors_sb_sub8x8_extend(&pbi->common, xd,
#if CONFIG_EXT_INTER
mi_row_ori, mi_col_ori,
#endif // CONFIG_EXT_INTER
mi_row_pred, mi_col_pred,
bsize_pred, block);
}
static void dec_extend_dir(AV1Decoder *const pbi, MACROBLOCKD *const xd,
const TileInfo *const tile, int block,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row,
int mi_col, int mi_row_top, int mi_col_top,
uint8_t *dst_buf[3], int dst_stride[3], int dir) {
// dir: 0-lower, 1-upper, 2-left, 3-right
// 4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
int xss = xd->plane[1].subsampling_x;
int yss = xd->plane[1].subsampling_y;
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
#endif
int b_sub8x8 = (bsize < BLOCK_8X8) && !unify_bsize ? 1 : 0;
BLOCK_SIZE extend_bsize;
int mi_row_pred, mi_col_pred;
int wide_unit, high_unit;
int i, j;
int ext_offset = 0;
if (dir == 0 || dir == 1) {
extend_bsize =
(mi_width == mi_size_wide[BLOCK_8X8] || bsize < BLOCK_8X8 || xss < yss)
? BLOCK_8X8
: BLOCK_16X8;
#if CONFIG_CB4X4
if (bsize < BLOCK_8X8) {
extend_bsize = BLOCK_4X4;
ext_offset = mi_size_wide[BLOCK_8X8];
}
#endif
wide_unit = mi_size_wide[extend_bsize];
high_unit = mi_size_high[extend_bsize];
mi_row_pred = mi_row + ((dir == 0) ? mi_height : -(mi_height + ext_offset));
mi_col_pred = mi_col;
for (j = 0; j < mi_height + ext_offset; j += high_unit)
for (i = 0; i < mi_width + ext_offset; i += wide_unit)
dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col,
mi_row_pred + j, mi_col_pred + i, mi_row_top,
mi_col_top, dst_buf, dst_stride, top_bsize,
extend_bsize, b_sub8x8, 1);
} else if (dir == 2 || dir == 3) {
extend_bsize =
(mi_height == mi_size_high[BLOCK_8X8] || bsize < BLOCK_8X8 || yss < xss)
? BLOCK_8X8
: BLOCK_8X16;
#if CONFIG_CB4X4
if (bsize < BLOCK_8X8) {
extend_bsize = BLOCK_4X4;
ext_offset = mi_size_wide[BLOCK_8X8];
}
#endif
wide_unit = mi_size_wide[extend_bsize];
high_unit = mi_size_high[extend_bsize];
mi_row_pred = mi_row;
mi_col_pred = mi_col + ((dir == 3) ? mi_width : -(mi_width + ext_offset));
for (j = 0; j < mi_height + ext_offset; j += high_unit)
for (i = 0; i < mi_width + ext_offset; i += wide_unit)
dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col,
mi_row_pred + j, mi_col_pred + i, mi_row_top,
mi_col_top, dst_buf, dst_stride, top_bsize,
extend_bsize, b_sub8x8, 1);
} else {
extend_bsize = BLOCK_8X8;
#if CONFIG_CB4X4
if (bsize < BLOCK_8X8) {
extend_bsize = BLOCK_4X4;
ext_offset = mi_size_wide[BLOCK_8X8];
}
#endif
wide_unit = mi_size_wide[extend_bsize];
high_unit = mi_size_high[extend_bsize];
mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height
: -(mi_height + ext_offset));
mi_col_pred =
mi_col + ((dir == 6 || dir == 7) ? mi_width : -(mi_width + ext_offset));
for (j = 0; j < mi_height + ext_offset; j += high_unit)
for (i = 0; i < mi_width + ext_offset; i += wide_unit)
dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col,
mi_row_pred + j, mi_col_pred + i, mi_row_top,
mi_col_top, dst_buf, dst_stride, top_bsize,
extend_bsize, b_sub8x8, 1);
}
}
static void dec_extend_all(AV1Decoder *const pbi, MACROBLOCKD *const xd,
const TileInfo *const tile, int block,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row,
int mi_col, int mi_row_top, int mi_col_top,
uint8_t *dst_buf[3], int dst_stride[3]) {
for (int i = 0; i < 8; ++i) {
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, i);
}
}
static void dec_predict_sb_complex(AV1Decoder *const pbi, MACROBLOCKD *const xd,
const TileInfo *const tile, int mi_row,
int mi_col, int mi_row_top, int mi_col_top,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize,
uint8_t *dst_buf[3], int dst_stride[3]) {
const AV1_COMMON *const cm = &pbi->common;
const int hbs = mi_size_wide[bsize] / 2;
const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
#if CONFIG_EXT_PARTITION_TYPES
const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
int i;
const int mi_offset = mi_row * cm->mi_stride + mi_col;
uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3];
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
#endif
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf3[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
int dst_stride1[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
int dst_stride2[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
int dst_stride3[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_TX_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_TX_SQUARE * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_TX_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_TX_SQUARE * len);
dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3);
dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAX_TX_SQUARE * len);
dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAX_TX_SQUARE * len);
} else {
#endif
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_TX_SQUARE;
dst_buf1[2] = tmp_buf1 + 2 * MAX_TX_SQUARE;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_TX_SQUARE;
dst_buf2[2] = tmp_buf2 + 2 * MAX_TX_SQUARE;
dst_buf3[0] = tmp_buf3;
dst_buf3[1] = tmp_buf3 + MAX_TX_SQUARE;
dst_buf3[2] = tmp_buf3 + 2 * MAX_TX_SQUARE;
#if CONFIG_HIGHBITDEPTH
}
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
xd->mi = cm->mi_grid_visible + mi_offset;
xd->mi[0] = cm->mi + mi_offset;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
}
switch (partition) {
case PARTITION_NONE:
assert(bsize < top_bsize);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, bsize, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
break;
case PARTITION_HORZ:
if (bsize == BLOCK_8X8 && !unify_bsize) {
// For sub8x8, predict in 8x8 unit
// First half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, BLOCK_8X8, 1, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
// Second half
dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, 1, 1);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
// weighted average to smooth the boundary
xd->plane[0].dst.buf = dst_buf[0];
xd->plane[0].dst.stride = dst_stride[0];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
0);
} else {
// First half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 0);
if (mi_row + hbs < cm->mi_rows) {
// Second half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col,
mi_row + hbs, mi_col, mi_row_top, mi_col_top,
dst_buf1, dst_stride1, top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1,
dst_stride1);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, 1);
// weighted average to smooth the boundary
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
}
}
break;
case PARTITION_VERT:
if (bsize == BLOCK_8X8 && !unify_bsize) {
// First half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, BLOCK_8X8, 1, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
// Second half
dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, 1, 1);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
// Smooth
xd->plane[0].dst.buf = dst_buf[0];
xd->plane[0].dst.stride = dst_stride[0];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
0);
} else {
// First half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 3);
// Second half
if (mi_col + hbs < cm->mi_cols) {
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, 2);
// Smooth
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
}
}
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8 && !unify_bsize) {
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, BLOCK_8X8, 1, 0);
dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, 1, 1);
dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf2, dst_stride2,
top_bsize, BLOCK_8X8, 1, 1);
dec_predict_b_extend(pbi, xd, tile, 3, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf3, dst_stride3,
top_bsize, BLOCK_8X8, 1, 1);
if (bsize < top_bsize) {
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf2, dst_stride2);
dec_extend_all(pbi, xd, tile, 3, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf3, dst_stride3);
}
} else {
dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row_top,
mi_col_top, subsize, top_bsize, dst_buf,
dst_stride);
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols)
dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, subsize, top_bsize,
dst_buf1, dst_stride1);
if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols)
dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, subsize, top_bsize,
dst_buf2, dst_stride2);
if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols)
dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col + hbs,
mi_row_top, mi_col_top, subsize, top_bsize,
dst_buf3, dst_stride3);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
#if !CONFIG_CB4X4
if (bsize == BLOCK_8X8 && i != 0)
continue; // Skip <4x4 chroma smoothing
#endif
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
if (mi_row + hbs < cm->mi_rows) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
} else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
}
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf2,
dst_stride2, top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2,
1);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
i);
}
break;
case PARTITION_VERT_A:
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2, top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2, 2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
i);
}
break;
case PARTITION_HORZ_B:
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 0);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs,
mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf1[i];
xd->plane[i].dst.stride = dst_stride1[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
i);
}
break;
case PARTITION_VERT_B:
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 3);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs,
mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf1[i];
xd->plane[i].dst.stride = dst_stride1[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
i);
}
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0);
}
}
static void set_segment_id_supertx(const AV1_COMMON *const cm, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
const struct segmentation *seg = &cm->seg;
const int miw = AOMMIN(mi_size_wide[bsize], cm->mi_cols - mi_col);
const int mih = AOMMIN(mi_size_high[bsize], cm->mi_rows - mi_row);
const int mi_offset = mi_row * cm->mi_stride + mi_col;
MODE_INFO **const mip = cm->mi_grid_visible + mi_offset;
int r, c;
int seg_id_supertx = MAX_SEGMENTS;
if (!seg->enabled) {
seg_id_supertx = 0;
} else {
// Find the minimum segment_id
for (r = 0; r < mih; r++)
for (c = 0; c < miw; c++)
seg_id_supertx =
AOMMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx);
assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS);
}
// Assign the the segment_id back to segment_id_supertx
for (r = 0; r < mih; r++)
for (c = 0; c < miw; c++)
mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx;
}
#endif // CONFIG_SUPERTX
static void decode_mbmi_block(AV1Decoder *const pbi, MACROBLOCKD *const xd,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif // CONFIG_SUPERTX
int mi_row, int mi_col, aom_reader *r,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_TYPE partition,
#endif // CONFIG_EXT_PARTITION_TYPES
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &pbi->common;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
#if CONFIG_ACCOUNTING
aom_accounting_set_context(&pbi->accounting, mi_col, mi_row);
#endif
#if CONFIG_SUPERTX
if (supertx_enabled) {
set_mb_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
} else {
set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
}
#if CONFIG_EXT_PARTITION_TYPES
xd->mi[0]->mbmi.partition = partition;
#endif
av1_read_mode_info(pbi, xd, supertx_enabled, mi_row, mi_col, r, x_mis, y_mis);
#else
set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
#if CONFIG_EXT_PARTITION_TYPES
xd->mi[0]->mbmi.partition = partition;
#endif
av1_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis);
#endif // CONFIG_SUPERTX
if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
const BLOCK_SIZE uv_subsize =
ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
if (uv_subsize == BLOCK_INVALID)
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Invalid block size.");
}
#if CONFIG_SUPERTX
xd->mi[0]->mbmi.segment_id_supertx = MAX_SEGMENTS;
#endif // CONFIG_SUPERTX
int reader_corrupted_flag = aom_reader_has_error(r);
aom_merge_corrupted_flag(&xd->corrupted, reader_corrupted_flag);
}
static void decode_token_and_recon_block(AV1Decoder *const pbi,
MACROBLOCKD *const xd, int mi_row,
int mi_col, aom_reader *r,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &pbi->common;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
#if CONFIG_DELTA_Q
if (cm->delta_q_present_flag) {
int i;
for (i = 0; i < MAX_SEGMENTS; i++) {
#if CONFIG_EXT_DELTA_Q
xd->plane[0].seg_dequant[i][0] =
av1_dc_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex),
cm->y_dc_delta_q, cm->bit_depth);
xd->plane[0].seg_dequant[i][1] = av1_ac_quant(
av1_get_qindex(&cm->seg, i, xd->current_qindex), 0, cm->bit_depth);
xd->plane[1].seg_dequant[i][0] =
av1_dc_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex),
cm->uv_dc_delta_q, cm->bit_depth);
xd->plane[1].seg_dequant[i][1] =
av1_ac_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex),
cm->uv_ac_delta_q, cm->bit_depth);
xd->plane[2].seg_dequant[i][0] =
av1_dc_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex),
cm->uv_dc_delta_q, cm->bit_depth);
xd->plane[2].seg_dequant[i][1] =
av1_ac_quant(av1_get_qindex(&cm->seg, i, xd->current_qindex),
cm->uv_ac_delta_q, cm->bit_depth);
#else
xd->plane[0].seg_dequant[i][0] =
av1_dc_quant(xd->current_qindex, cm->y_dc_delta_q, cm->bit_depth);
xd->plane[0].seg_dequant[i][1] =
av1_ac_quant(xd->current_qindex, 0, cm->bit_depth);
xd->plane[1].seg_dequant[i][0] =
av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth);
xd->plane[1].seg_dequant[i][1] =
av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth);
xd->plane[2].seg_dequant[i][0] =
av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth);
xd->plane[2].seg_dequant[i][1] =
av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth);
#endif
}
}
#endif
#if CONFIG_CB4X4
if (mbmi->skip) av1_reset_skip_context(xd, mi_row, mi_col, bsize);
#else
if (mbmi->skip) {
av1_reset_skip_context(xd, mi_row, mi_col, AOMMAX(BLOCK_8X8, bsize));
}
#endif
#if CONFIG_COEF_INTERLEAVE
{
const struct macroblockd_plane *const pd_y = &xd->plane[0];
const struct macroblockd_plane *const pd_c = &xd->plane[1];
const TX_SIZE tx_log2_y = mbmi->tx_size;
const TX_SIZE tx_log2_c = get_uv_tx_size(mbmi, pd_c);
const int tx_sz_y = (1 << tx_log2_y);
const int tx_sz_c = (1 << tx_log2_c);
const int num_4x4_w_y = pd_y->n4_w;
const int num_4x4_h_y = pd_y->n4_h;
const int num_4x4_w_c = pd_c->n4_w;
const int num_4x4_h_c = pd_c->n4_h;
const int max_4x4_w_y = get_max_4x4_size(num_4x4_w_y, xd->mb_to_right_edge,
pd_y->subsampling_x);
const int max_4x4_h_y = get_max_4x4_size(num_4x4_h_y, xd->mb_to_bottom_edge,
pd_y->subsampling_y);
const int max_4x4_w_c = get_max_4x4_size(num_4x4_w_c, xd->mb_to_right_edge,
pd_c->subsampling_x);
const int max_4x4_h_c = get_max_4x4_size(num_4x4_h_c, xd->mb_to_bottom_edge,
pd_c->subsampling_y);
// The max_4x4_w/h may be smaller than tx_sz under some corner cases,
// i.e. when the SB is splitted by tile boundaries.
const int tu_num_w_y = (max_4x4_w_y + tx_sz_y - 1) / tx_sz_y;
const int tu_num_h_y = (max_4x4_h_y + tx_sz_y - 1) / tx_sz_y;
const int tu_num_w_c = (max_4x4_w_c + tx_sz_c - 1) / tx_sz_c;
const int tu_num_h_c = (max_4x4_h_c + tx_sz_c - 1) / tx_sz_c;
const int tu_num_c = tu_num_w_c * tu_num_h_c;
if (!is_inter_block(mbmi)) {
int tu_idx_c = 0;
int row_y, col_y, row_c, col_c;
int plane;
#if CONFIG_PALETTE
for (plane = 0; plane <= 1; ++plane) {
if (mbmi->palette_mode_info.palette_size[plane])
av1_decode_palette_tokens(xd, plane, r);
}
#endif
for (row_y = 0; row_y < tu_num_h_y; row_y++) {
for (col_y = 0; col_y < tu_num_w_y; col_y++) {
// luma
predict_and_reconstruct_intra_block(
cm, xd, r, mbmi, 0, row_y * tx_sz_y, col_y * tx_sz_y, tx_log2_y);
// chroma
if (tu_idx_c < tu_num_c) {
row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 1, row_c,
col_c, tx_log2_c);
predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 2, row_c,
col_c, tx_log2_c);
tu_idx_c++;
}
}
}
// In 422 case, it's possilbe that Chroma has more TUs than Luma
while (tu_idx_c < tu_num_c) {
row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 1, row_c, col_c,
tx_log2_c);
predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 2, row_c, col_c,
tx_log2_c);
tu_idx_c++;
}
} else {
// Prediction
av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL,
AOMMAX(bsize, BLOCK_8X8));
// Reconstruction
if (!mbmi->skip) {
int eobtotal = 0;
int tu_idx_c = 0;
int row_y, col_y, row_c, col_c;
for (row_y = 0; row_y < tu_num_h_y; row_y++) {
for (col_y = 0; col_y < tu_num_w_y; col_y++) {
// luma
eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 0,
row_y * tx_sz_y,
col_y * tx_sz_y, tx_log2_y);
// chroma
if (tu_idx_c < tu_num_c) {
row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id,
1, row_c, col_c, tx_log2_c);
eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id,
2, row_c, col_c, tx_log2_c);
tu_idx_c++;
}
}
}
// In 422 case, it's possilbe that Chroma has more TUs than Luma
while (tu_idx_c < tu_num_c) {
row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 1,
row_c, col_c, tx_log2_c);
eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 2,
row_c, col_c, tx_log2_c);
tu_idx_c++;
}
// TODO(CONFIG_COEF_INTERLEAVE owners): bring eob == 0 corner case
// into line with the defaut configuration
if (bsize >= BLOCK_8X8 && eobtotal == 0) mbmi->skip = 1;
}
}
}
#else // CONFIG_COEF_INTERLEAVE
if (!is_inter_block(mbmi)) {
int plane;
#if CONFIG_PALETTE
for (plane = 0; plane <= 1; ++plane) {
if (mbmi->palette_mode_info.palette_size[plane])
av1_decode_palette_tokens(xd, plane, r);
}
#endif // CONFIG_PALETTE
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = get_tx_size(plane, xd);
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
#if CONFIG_CB4X4
#if CONFIG_CHROMA_2X2
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
#else
const BLOCK_SIZE plane_bsize =
AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
#endif // CONFIG_CHROMA_2X2
#else
const BLOCK_SIZE plane_bsize =
get_plane_block_size(AOMMAX(BLOCK_8X8, bsize), pd);
#endif
int row, col;
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
#if CONFIG_CB4X4
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y))
continue;
#endif
for (row = 0; row < max_blocks_high; row += stepr)
for (col = 0; col < max_blocks_wide; col += stepc)
predict_and_reconstruct_intra_block(cm, xd, r, mbmi, plane, row, col,
tx_size);
}
} else {
int ref;
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
if (frame < LAST_FRAME) {
#if CONFIG_INTRABC
assert(is_intrabc_block(mbmi));
assert(frame == INTRA_FRAME);
assert(ref == 0);
#else
assert(0);
#endif // CONFIG_INTRABC
} else {
RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col,
&ref_buf->sf);
}
}
#if CONFIG_CB4X4
av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize);
#else
av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL,
AOMMAX(bsize, BLOCK_8X8));
#endif
#if CONFIG_MOTION_VAR
if (mbmi->motion_mode == OBMC_CAUSAL) {
#if CONFIG_NCOBMC
av1_build_ncobmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
#else
av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
#endif
}
#endif // CONFIG_MOTION_VAR
// Reconstruction
if (!mbmi->skip) {
int eobtotal = 0;
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_CB4X4
#if CONFIG_CHROMA_2X2
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
#else
const BLOCK_SIZE plane_bsize =
AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
#endif // CONFIG_CHROMA_2X2
#else
const BLOCK_SIZE plane_bsize =
get_plane_block_size(AOMMAX(BLOCK_8X8, bsize), pd);
#endif
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
int row, col;
#if CONFIG_CB4X4
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y))
continue;
#endif
#if CONFIG_VAR_TX
const TX_SIZE max_tx_size = get_vartx_max_txsize(mbmi, plane_bsize);
const int bh_var_tx = tx_size_high_unit[max_tx_size];
const int bw_var_tx = tx_size_wide_unit[max_tx_size];
for (row = 0; row < max_blocks_high; row += bh_var_tx)
for (col = 0; col < max_blocks_wide; col += bw_var_tx)
decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize, row, col,
max_tx_size, &eobtotal);
#else
const TX_SIZE tx_size = get_tx_size(plane, xd);
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
for (row = 0; row < max_blocks_high; row += stepr)
for (col = 0; col < max_blocks_wide; col += stepc)
eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id,
plane, row, col, tx_size);
#endif
}
}
}
#endif // CONFIG_COEF_INTERLEAVE
int reader_corrupted_flag = aom_reader_has_error(r);
aom_merge_corrupted_flag(&xd->corrupted, reader_corrupted_flag);
}
#if CONFIG_NCOBMC && CONFIG_MOTION_VAR
static void detoken_and_recon_sb(AV1Decoder *const pbi, MACROBLOCKD *const xd,
int mi_row, int mi_col, aom_reader *r,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &pbi->common;
const int hbs = mi_size_wide[bsize] >> 1;
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
#endif
#if CONFIG_EXT_PARTITION_TYPES
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
partition = get_partition(cm, mi_row, mi_col, bsize);
subsize = subsize_lookup[partition][bsize];
if (!hbs && !unify_bsize) {
xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize);
} else {
switch (partition) {
case PARTITION_NONE:
decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize);
break;
case PARTITION_HORZ:
decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize);
if (has_rows)
decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r,
subsize);
break;
case PARTITION_VERT:
decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize);
if (has_cols)
decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r,
subsize);
break;
case PARTITION_SPLIT:
detoken_and_recon_sb(pbi, xd, mi_row, mi_col, r, subsize);
detoken_and_recon_sb(pbi, xd, mi_row, mi_col + hbs, r, subsize);
detoken_and_recon_sb(pbi, xd, mi_row + hbs, mi_col, r, subsize);
detoken_and_recon_sb(pbi, xd, mi_row + hbs, mi_col + hbs, r, subsize);
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize2);
decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, bsize2);
decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, subsize);
break;
case PARTITION_HORZ_B:
decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize);
decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, bsize2);
decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col + hbs, r,
bsize2);
break;
case PARTITION_VERT_A:
decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize2);
decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col, r, bsize2);
decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, subsize);
break;
case PARTITION_VERT_B:
decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, subsize);
decode_token_and_recon_block(pbi, xd, mi_row, mi_col + hbs, r, bsize2);
decode_token_and_recon_block(pbi, xd, mi_row + hbs, mi_col + hbs, r,
bsize2);
break;
#endif
default: assert(0 && "Invalid partition type");
}
}
}
#endif
static void decode_block(AV1Decoder *const pbi, MACROBLOCKD *const xd,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif // CONFIG_SUPERTX
int mi_row, int mi_col, aom_reader *r,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_TYPE partition,
#endif // CONFIG_EXT_PARTITION_TYPES
BLOCK_SIZE bsize) {
decode_mbmi_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
bsize);
#if !(CONFIG_MOTION_VAR && CONFIG_NCOBMC)
#if CONFIG_SUPERTX
if (!supertx_enabled)
#endif // CONFIG_SUPERTX
decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize);
#endif
}
static PARTITION_TYPE read_partition(AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, aom_reader *r,
int has_rows, int has_cols,
BLOCK_SIZE bsize) {
#if CONFIG_UNPOISON_PARTITION_CTX
const int ctx =
partition_plane_context(xd, mi_row, mi_col, has_rows, has_cols, bsize);
const aom_prob *const probs =
ctx < PARTITION_CONTEXTS ? cm->fc->partition_prob[ctx] : NULL;
FRAME_COUNTS *const counts = ctx < PARTITION_CONTEXTS ? xd->counts : NULL;
#else
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
const aom_prob *const probs = cm->fc->partition_prob[ctx];
FRAME_COUNTS *const counts = xd->counts;
#endif
PARTITION_TYPE p;
#if CONFIG_EC_ADAPT
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
(void)cm;
#else
FRAME_CONTEXT *ec_ctx = cm->fc;
#endif
aom_cdf_prob *partition_cdf = (ctx >= 0) ? ec_ctx->partition_cdf[ctx] : NULL;
if (has_rows && has_cols)
#if CONFIG_EXT_PARTITION_TYPES
if (bsize <= BLOCK_8X8)
p = (PARTITION_TYPE)aom_read_symbol(r, partition_cdf, PARTITION_TYPES,
ACCT_STR);
else
p = (PARTITION_TYPE)aom_read_symbol(r, partition_cdf, EXT_PARTITION_TYPES,
ACCT_STR);
#else
p = (PARTITION_TYPE)aom_read_symbol(r, partition_cdf, PARTITION_TYPES,
ACCT_STR);
#endif // CONFIG_EXT_PARTITION_TYPES
else if (!has_rows && has_cols)
p = aom_read(r, probs[1], ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ;
else if (has_rows && !has_cols)
p = aom_read(r, probs[2], ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT;
else
p = PARTITION_SPLIT;
if (counts) ++counts->partition[ctx][p];
return p;
}
#if CONFIG_SUPERTX
static int read_skip(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
aom_reader *r) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int ctx = av1_get_skip_context(xd);
const int skip = aom_read(r, cm->fc->skip_probs[ctx], ACCT_STR);
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->skip[ctx][skip];
return skip;
}
}
#endif // CONFIG_SUPERTX
// TODO(slavarnway): eliminate bsize and subsize in future commits
static void decode_partition(AV1Decoder *const pbi, MACROBLOCKD *const xd,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col, aom_reader *r,
BLOCK_SIZE bsize, int n4x4_l2) {
AV1_COMMON *const cm = &pbi->common;
const int n8x8_l2 = n4x4_l2 - 1;
const int num_8x8_wh = mi_size_wide[bsize];
const int hbs = num_8x8_wh >> 1;
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
#endif
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
#if CONFIG_EXT_PARTITION_TYPES
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
#if CONFIG_SUPERTX
const int read_token = !supertx_enabled;
int skip = 0;
TX_SIZE supertx_size = max_txsize_lookup[bsize];
const TileInfo *const tile = &xd->tile;
int txfm = DCT_DCT;
#endif // CONFIG_SUPERTX
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
partition = (bsize < BLOCK_8X8) ? PARTITION_NONE
: read_partition(cm, xd, mi_row, mi_col, r,
has_rows, has_cols, bsize);
subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition);
#if CONFIG_PVQ
assert(partition < PARTITION_TYPES);
assert(subsize < BLOCK_SIZES);
#endif
#if CONFIG_SUPERTX
if (!frame_is_intra_only(cm) && partition != PARTITION_NONE &&
bsize <= MAX_SUPERTX_BLOCK_SIZE && !supertx_enabled && !xd->lossless[0]) {
const int supertx_context = partition_supertx_context_lookup[partition];
supertx_enabled = aom_read(
r, cm->fc->supertx_prob[supertx_context][supertx_size], ACCT_STR);
if (xd->counts)
xd->counts->supertx[supertx_context][supertx_size][supertx_enabled]++;
#if CONFIG_VAR_TX
if (supertx_enabled) xd->supertx_size = supertx_size;
#endif
}
#endif // CONFIG_SUPERTX
if (!hbs && !unify_bsize) {
// calculate bmode block dimensions (log 2)
xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize);
} else {
switch (partition) {
case PARTITION_NONE:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize);
break;
case PARTITION_HORZ:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize);
if (has_rows)
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row + hbs, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize);
break;
case PARTITION_VERT:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize);
if (has_cols)
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col + hbs, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize);
break;
case PARTITION_SPLIT:
decode_partition(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r, subsize, n8x8_l2);
decode_partition(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col + hbs, r, subsize, n8x8_l2);
decode_partition(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row + hbs, mi_col, r, subsize, n8x8_l2);
decode_partition(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row + hbs, mi_col + hbs, r, subsize, n8x8_l2);
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, partition, bsize2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + hbs, r, partition, bsize2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col, r, partition, subsize);
break;
case PARTITION_HORZ_B:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, partition, subsize);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col, r, partition, bsize2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col + hbs, r, partition, bsize2);
break;
case PARTITION_VERT_A:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, partition, bsize2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col, r, partition, bsize2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + hbs, r, partition, subsize);
break;
case PARTITION_VERT_B:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, partition, subsize);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + hbs, r, partition, bsize2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col + hbs, r, partition, bsize2);
break;
#endif
default: assert(0 && "Invalid partition type");
}
}
#if CONFIG_SUPERTX
if (supertx_enabled && read_token) {
uint8_t *dst_buf[3];
int dst_stride[3], i;
int offset = mi_row * cm->mi_stride + mi_col;
set_segment_id_supertx(cm, mi_row, mi_col, bsize);
#if CONFIG_DELTA_Q
if (cm->delta_q_present_flag) {
for (i = 0; i < MAX_SEGMENTS; i++) {
xd->plane[0].seg_dequant[i][0] =
av1_dc_quant(xd->current_qindex, cm->y_dc_delta_q, cm->bit_depth);
xd->plane[0].seg_dequant[i][1] =
av1_ac_quant(xd->current_qindex, 0, cm->bit_depth);
xd->plane[1].seg_dequant[i][0] =
av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth);
xd->plane[1].seg_dequant[i][1] =
av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth);
xd->plane[2].seg_dequant[i][0] =
av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth);
xd->plane[2].seg_dequant[i][1] =
av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth);
}
}
#endif
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
set_mi_row_col(xd, tile, mi_row, mi_size_high[bsize], mi_col,
mi_size_wide[bsize],
#if CONFIG_DEPENDENT_HORZTILES
cm->dependent_horz_tiles,
#endif // CONFIG_DEPENDENT_HORZTILES
cm->mi_rows, cm->mi_cols);
set_skip_context(xd, mi_row, mi_col);
skip = read_skip(cm, xd, xd->mi[0]->mbmi.segment_id_supertx, r);
if (skip) {
av1_reset_skip_context(xd, mi_row, mi_col, bsize);
} else {
#if CONFIG_EXT_TX
if (get_ext_tx_types(supertx_size, bsize, 1, cm->reduced_tx_set_used) >
1) {
const int eset =
get_ext_tx_set(supertx_size, bsize, 1, cm->reduced_tx_set_used);
if (eset > 0) {
txfm = aom_read_tree(r, av1_ext_tx_inter_tree[eset],
cm->fc->inter_ext_tx_prob[eset][supertx_size],
ACCT_STR);
if (xd->counts) ++xd->counts->inter_ext_tx[eset][supertx_size][txfm];
}
}
#else
if (supertx_size < TX_32X32) {
txfm = aom_read_tree(r, av1_ext_tx_tree,
cm->fc->inter_ext_tx_prob[supertx_size], ACCT_STR);
if (xd->counts) ++xd->counts->inter_ext_tx[supertx_size][txfm];
}
#endif // CONFIG_EXT_TX
}
av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
mi_col);
for (i = 0; i < MAX_MB_PLANE; i++) {
dst_buf[i] = xd->plane[i].dst.buf;
dst_stride[i] = xd->plane[i].dst.stride;
}
dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row, mi_col, bsize,
bsize, dst_buf, dst_stride);
if (!skip) {
int eobtotal = 0;
MB_MODE_INFO *mbmi;
set_offsets_topblock(cm, xd, tile, bsize, mi_row, mi_col);
mbmi = &xd->mi[0]->mbmi;
mbmi->tx_type = txfm;
assert(mbmi->segment_id_supertx != MAX_SEGMENTS);
for (i = 0; i < MAX_MB_PLANE; ++i) {
const struct macroblockd_plane *const pd = &xd->plane[i];
int row, col;
const TX_SIZE tx_size = get_tx_size(i, xd);
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
const int max_blocks_wide = max_block_wide(xd, plane_bsize, i);
const int max_blocks_high = max_block_high(xd, plane_bsize, i);
for (row = 0; row < max_blocks_high; row += stepr)
for (col = 0; col < max_blocks_wide; col += stepc)
eobtotal += reconstruct_inter_block(
cm, xd, r, mbmi->segment_id_supertx, i, row, col, tx_size);
}
if ((unify_bsize || !(subsize < BLOCK_8X8)) && eobtotal == 0) skip = 1;
}
set_param_topblock(cm, xd, bsize, mi_row, mi_col, txfm, skip);
}
#endif // CONFIG_SUPERTX
#if CONFIG_EXT_PARTITION_TYPES
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
#else
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
#endif // CONFIG_EXT_PARTITION_TYPES
#if CONFIG_CDEF
if (bsize == cm->sb_size) {
if (!sb_all_skip(cm, mi_row, mi_col)) {
cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.cdef_strength =
aom_read_literal(r, cm->cdef_bits, ACCT_STR);
} else {
cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.cdef_strength =
-1;
}
}
#endif // CONFIG_CDEF
}
static void setup_bool_decoder(const uint8_t *data, const uint8_t *data_end,
const size_t read_size,
struct aom_internal_error_info *error_info,
aom_reader *r,
#if CONFIG_ANS && ANS_MAX_SYMBOLS
int window_size,
#endif // CONFIG_ANS && ANS_MAX_SYMBOLS
aom_decrypt_cb decrypt_cb, void *decrypt_state) {
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, read_size, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
#if CONFIG_ANS && ANS_MAX_SYMBOLS
r->window_size = window_size;
#endif
if (aom_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
#if !CONFIG_PVQ && !CONFIG_EC_ADAPT && !CONFIG_LV_MAP
static void read_coef_probs_common(av1_coeff_probs_model *coef_probs,
aom_reader *r) {
int i, j, k, l, m;
#if CONFIG_EC_ADAPT
const int node_limit = UNCONSTRAINED_NODES - 1;
#else
const int node_limit = UNCONSTRAINED_NODES;
#endif
if (aom_read_bit(r, ACCT_STR))
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
for (m = 0; m < node_limit; ++m)
av1_diff_update_prob(r, &coef_probs[i][j][k][l][m], ACCT_STR);
}
static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, aom_reader *r) {
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
TX_SIZE tx_size;
for (tx_size = 0; tx_size <= max_tx_size; ++tx_size)
read_coef_probs_common(fc->coef_probs[tx_size], r);
}
#endif
static void setup_segmentation(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb) {
struct segmentation *const seg = &cm->seg;
int i, j;
seg->update_map = 0;
seg->update_data = 0;
seg->enabled = aom_rb_read_bit(rb);
if (!seg->enabled) return;
// Segmentation map update
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
seg->update_map = 1;
} else {
seg->update_map = aom_rb_read_bit(rb);
}
if (seg->update_map) {
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
seg->temporal_update = 0;
} else {
seg->temporal_update = aom_rb_read_bit(rb);
}
}
// Segmentation data update
seg->update_data = aom_rb_read_bit(rb);
if (seg->update_data) {
seg->abs_delta = aom_rb_read_bit(rb);
av1_clearall_segfeatures(seg);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = aom_rb_read_bit(rb);
if (feature_enabled) {
av1_enable_segfeature(seg, i, j);
data = decode_unsigned_max(rb, av1_seg_feature_data_max(j));
if (av1_is_segfeature_signed(j))
data = aom_rb_read_bit(rb) ? -data : data;
}
av1_set_segdata(seg, i, j, data);
}
}
}
}
#if CONFIG_LOOP_RESTORATION
static void decode_restoration_mode(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
int p;
RestorationInfo *rsi = &cm->rst_info[0];
if (aom_rb_read_bit(rb)) {
rsi->frame_restoration_type =
aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER;
} else {
rsi->frame_restoration_type =
aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE;
}
for (p = 1; p < MAX_MB_PLANE; ++p) {
rsi = &cm->rst_info[p];
if (aom_rb_read_bit(rb)) {
rsi->frame_restoration_type =
aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER;
} else {
rsi->frame_restoration_type = RESTORE_NONE;
}
}
cm->rst_info[0].restoration_tilesize = RESTORATION_TILESIZE_MAX;
cm->rst_info[1].restoration_tilesize = RESTORATION_TILESIZE_MAX;
cm->rst_info[2].restoration_tilesize = RESTORATION_TILESIZE_MAX;
if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
rsi = &cm->rst_info[0];
rsi->restoration_tilesize >>= aom_rb_read_bit(rb);
if (rsi->restoration_tilesize != RESTORATION_TILESIZE_MAX) {
rsi->restoration_tilesize >>= aom_rb_read_bit(rb);
}
cm->rst_info[1].restoration_tilesize = cm->rst_info[0].restoration_tilesize;
cm->rst_info[2].restoration_tilesize = cm->rst_info[0].restoration_tilesize;
}
}
static void read_wiener_filter(WienerInfo *wiener_info,
WienerInfo *ref_wiener_info, aom_reader *rb) {
wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) +
WIENER_FILT_TAP0_MINV;
wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) +
WIENER_FILT_TAP1_MINV;
wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) +
WIENER_FILT_TAP2_MINV;
// The central element has an implicit +WIENER_FILT_STEP
wiener_info->vfilter[WIENER_HALFWIN] =
-2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] +
wiener_info->vfilter[2]);
wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) +
WIENER_FILT_TAP0_MINV;
wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) +
WIENER_FILT_TAP1_MINV;
wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) +
WIENER_FILT_TAP2_MINV;
// The central element has an implicit +WIENER_FILT_STEP
wiener_info->hfilter[WIENER_HALFWIN] =
-2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] +
wiener_info->hfilter[2]);
memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
}
static void read_sgrproj_filter(SgrprojInfo *sgrproj_info,
SgrprojInfo *ref_sgrproj_info, aom_reader *rb) {
sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR);
sgrproj_info->xqd[0] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) +
SGRPROJ_PRJ_MIN0;
sgrproj_info->xqd[1] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) +
SGRPROJ_PRJ_MIN1;
memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
}
static void decode_restoration(AV1_COMMON *cm, aom_reader *rb) {
int i, p;
SgrprojInfo ref_sgrproj_info;
WienerInfo ref_wiener_info;
set_default_wiener(&ref_wiener_info);
set_default_sgrproj(&ref_sgrproj_info);
const int ntiles = av1_get_rest_ntiles(cm->width, cm->height,
cm->rst_info[0].restoration_tilesize,
NULL, NULL, NULL, NULL);
const int ntiles_uv = av1_get_rest_ntiles(
ROUND_POWER_OF_TWO(cm->width, cm->subsampling_x),
ROUND_POWER_OF_TWO(cm->height, cm->subsampling_y),
cm->rst_info[1].restoration_tilesize, NULL, NULL, NULL, NULL);
RestorationInfo *rsi = &cm->rst_info[0];
if (rsi->frame_restoration_type != RESTORE_NONE) {
if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) {
for (i = 0; i < ntiles; ++i) {
rsi->restoration_type[i] =
aom_read_tree(rb, av1_switchable_restore_tree,
cm->fc->switchable_restore_prob, ACCT_STR);
if (rsi->restoration_type[i] == RESTORE_WIENER) {
read_wiener_filter(&rsi->wiener_info[i], &ref_wiener_info, rb);
} else if (rsi->restoration_type[i] == RESTORE_SGRPROJ) {
read_sgrproj_filter(&rsi->sgrproj_info[i], &ref_sgrproj_info, rb);
}
}
} else if (rsi->frame_restoration_type == RESTORE_WIENER) {
for (i = 0; i < ntiles; ++i) {
if (aom_read(rb, RESTORE_NONE_WIENER_PROB, ACCT_STR)) {
rsi->restoration_type[i] = RESTORE_WIENER;
read_wiener_filter(&rsi->wiener_info[i], &ref_wiener_info, rb);
} else {
rsi->restoration_type[i] = RESTORE_NONE;
}
}
} else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) {
for (i = 0; i < ntiles; ++i) {
if (aom_read(rb, RESTORE_NONE_SGRPROJ_PROB, ACCT_STR)) {
rsi->restoration_type[i] = RESTORE_SGRPROJ;
read_sgrproj_filter(&rsi->sgrproj_info[i], &ref_sgrproj_info, rb);
} else {
rsi->restoration_type[i] = RESTORE_NONE;
}
}
}
}
for (p = 1; p < MAX_MB_PLANE; ++p) {
set_default_wiener(&ref_wiener_info);
set_default_sgrproj(&ref_sgrproj_info);
rsi = &cm->rst_info[p];
if (rsi->frame_restoration_type == RESTORE_WIENER) {
for (i = 0; i < ntiles_uv; ++i) {
if (ntiles_uv > 1)
rsi->restoration_type[i] =
aom_read(rb, RESTORE_NONE_WIENER_PROB, ACCT_STR) ? RESTORE_WIENER
: RESTORE_NONE;
else
rsi->restoration_type[i] = RESTORE_WIENER;
if (rsi->restoration_type[i] == RESTORE_WIENER) {
read_wiener_filter(&rsi->wiener_info[i], &ref_wiener_info, rb);
}
}
} else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) {
for (i = 0; i < ntiles_uv; ++i) {
if (ntiles_uv > 1)
rsi->restoration_type[i] =
aom_read(rb, RESTORE_NONE_SGRPROJ_PROB, ACCT_STR)
? RESTORE_SGRPROJ
: RESTORE_NONE;
else
rsi->restoration_type[i] = RESTORE_SGRPROJ;
if (rsi->restoration_type[i] == RESTORE_SGRPROJ) {
read_sgrproj_filter(&rsi->sgrproj_info[i], &ref_sgrproj_info, rb);
}
}
} else if (rsi->frame_restoration_type != RESTORE_NONE) {
assert(0);
}
}
}
#endif // CONFIG_LOOP_RESTORATION
static void setup_loopfilter(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
struct loopfilter *lf = &cm->lf;
lf->filter_level = aom_rb_read_literal(rb, 6);
lf->sharpness_level = aom_rb_read_literal(rb, 3);
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
lf->mode_ref_delta_update = 0;
lf->mode_ref_delta_enabled = aom_rb_read_bit(rb);
if (lf->mode_ref_delta_enabled) {
lf->mode_ref_delta_update = aom_rb_read_bit(rb);
if (lf->mode_ref_delta_update) {
int i;
for (i = 0; i < TOTAL_REFS_PER_FRAME; i++)
if (aom_rb_read_bit(rb))
lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
if (aom_rb_read_bit(rb))
lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
}
}
}
#if CONFIG_CDEF
static void setup_cdef(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
int i;
cm->cdef_dering_damping = aom_rb_read_literal(rb, 1) + 5;
cm->cdef_clpf_damping = aom_rb_read_literal(rb, 2) + 3;
cm->cdef_bits = aom_rb_read_literal(rb, 2);
cm->nb_cdef_strengths = 1 << cm->cdef_bits;
for (i = 0; i < cm->nb_cdef_strengths; i++) {
cm->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS);
cm->cdef_uv_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS);
}
}
#endif // CONFIG_CDEF
static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) {
return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0;
}
static void setup_quantization(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb) {
cm->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS);
cm->y_dc_delta_q = read_delta_q(rb);
cm->uv_dc_delta_q = read_delta_q(rb);
cm->uv_ac_delta_q = read_delta_q(rb);
cm->dequant_bit_depth = cm->bit_depth;
#if CONFIG_AOM_QM
cm->using_qmatrix = aom_rb_read_bit(rb);
if (cm->using_qmatrix) {
cm->min_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS);
cm->max_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS);
} else {
cm->min_qmlevel = 0;
cm->max_qmlevel = 0;
}
#endif
}
// Build y/uv dequant values based on segmentation.
static void setup_segmentation_dequant(AV1_COMMON *const cm) {
#if CONFIG_AOM_QM
const int using_qm = cm->using_qmatrix;
const int minqm = cm->min_qmlevel;
const int maxqm = cm->max_qmlevel;
#endif
// When segmentation is disabled, only the first value is used. The
// remaining are don't cares.
const int max_segments = cm->seg.enabled ? MAX_SEGMENTS : 1;
for (int i = 0; i < max_segments; ++i) {
const int qindex = av1_get_qindex(&cm->seg, i, cm->base_qindex);
cm->y_dequant[i][0] = av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
cm->y_dequant[i][1] = av1_ac_quant(qindex, 0, cm->bit_depth);
cm->uv_dequant[i][0] =
av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
cm->uv_dequant[i][1] =
av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
#if CONFIG_AOM_QM
const int lossless = qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
// NB: depends on base index so there is only 1 set per frame
// No quant weighting when lossless or signalled not using QM
const int qmlevel = (lossless || using_qm == 0)
? NUM_QM_LEVELS - 1
: aom_get_qmlevel(cm->base_qindex, minqm, maxqm);
for (int j = 0; j < TX_SIZES_ALL; ++j) {
cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1);
cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0);
cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1);
cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0);
}
#endif // CONFIG_AOM_QM
#if CONFIG_NEW_QUANT
for (int dq = 0; dq < QUANT_PROFILES; dq++) {
for (int b = 0; b < COEF_BANDS; ++b) {
av1_get_dequant_val_nuq(cm->y_dequant[i][b != 0], b,
cm->y_dequant_nuq[i][dq][b], NULL, dq);
av1_get_dequant_val_nuq(cm->uv_dequant[i][b != 0], b,
cm->uv_dequant_nuq[i][dq][b], NULL, dq);
}
}
#endif // CONFIG_NEW_QUANT
}
}
static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) {
return aom_rb_read_bit(rb) ? SWITCHABLE
: aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS);
}
static void setup_render_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
cm->render_width = cm->width;
cm->render_height = cm->height;
if (aom_rb_read_bit(rb))
av1_read_frame_size(rb, &cm->render_width, &cm->render_height);
}
#if CONFIG_FRAME_SUPERRES
// TODO(afergs): make "struct aom_read_bit_buffer *const rb"?
static void setup_superres_scale(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb) {
if (aom_rb_read_bit(rb)) {
cm->superres_scale_numerator =
(uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS);
cm->superres_scale_numerator += SUPERRES_SCALE_NUMERATOR_MIN;
} else {
// 1:1 scaling - ie. no scaling, scale not provided
cm->superres_scale_numerator = SUPERRES_SCALE_DENOMINATOR;
}
}
#endif // CONFIG_FRAME_SUPERRES
static void resize_mv_buffer(AV1_COMMON *cm) {
aom_free(cm->cur_frame->mvs);
cm->cur_frame->mi_rows = cm->mi_rows;
cm->cur_frame->mi_cols = cm->mi_cols;
CHECK_MEM_ERROR(cm, cm->cur_frame->mvs,
(MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols,
sizeof(*cm->cur_frame->mvs)));
}
static void resize_context_buffers(AV1_COMMON *cm, int width, int height) {
#if CONFIG_SIZE_LIMIT
if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Dimensions of %dx%d beyond allowed size of %dx%d.",
width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
#endif
if (cm->width != width || cm->height != height) {
const int new_mi_rows =
ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
const int new_mi_cols =
ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
// Allocations in av1_alloc_context_buffers() depend on individual
// dimensions as well as the overall size.
if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
if (av1_alloc_context_buffers(cm, width, height))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate context buffers");
} else {
av1_set_mb_mi(cm, width, height);
}
av1_init_context_buffers(cm);
cm->width = width;
cm->height = height;
}
if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows ||
cm->mi_cols > cm->cur_frame->mi_cols) {
resize_mv_buffer(cm);
}
}
static void setup_frame_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
int width, height;
BufferPool *const pool = cm->buffer_pool;
av1_read_frame_size(rb, &width, &height);
resize_context_buffers(cm, width, height);
setup_render_size(cm, rb);
lock_buffer_pool(pool);
if (aom_realloc_frame_buffer(
get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
cm->subsampling_y,
#if CONFIG_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment,
&pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
pool->cb_priv)) {
unlock_buffer_pool(pool);
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
}
static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth,
int ref_xss, int ref_yss,
aom_bit_depth_t this_bit_depth,
int this_xss, int this_yss) {
return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
ref_yss == this_yss;
}
static void setup_frame_size_with_refs(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
int width, height;
int found = 0, i;
int has_valid_ref_frame = 0;
BufferPool *const pool = cm->buffer_pool;
for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
if (aom_rb_read_bit(rb)) {
YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
width = buf->y_crop_width;
height = buf->y_crop_height;
cm->render_width = buf->render_width;
cm->render_height = buf->render_height;
found = 1;
break;
}
}
if (!found) {
av1_read_frame_size(rb, &width, &height);
setup_render_size(cm, rb);
}
if (width <= 0 || height <= 0)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid frame size");
// Check to make sure at least one of frames that this frame references
// has valid dimensions.
for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
RefBuffer *const ref_frame = &cm->frame_refs[i];
has_valid_ref_frame |=
valid_ref_frame_size(ref_frame->buf->y_crop_width,
ref_frame->buf->y_crop_height, width, height);
}
if (!has_valid_ref_frame)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Referenced frame has invalid size");
for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
RefBuffer *const ref_frame = &cm->frame_refs[i];
if (!valid_ref_frame_img_fmt(ref_frame->buf->bit_depth,
ref_frame->buf->subsampling_x,
ref_frame->buf->subsampling_y, cm->bit_depth,
cm->subsampling_x, cm->subsampling_y))
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Referenced frame has incompatible color format");
}
resize_context_buffers(cm, width, height);
lock_buffer_pool(pool);
if (aom_realloc_frame_buffer(
get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
cm->subsampling_y,
#if CONFIG_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment,
&pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
pool->cb_priv)) {
unlock_buffer_pool(pool);
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
}
static void read_tile_info(AV1Decoder *const pbi,
struct aom_read_bit_buffer *const rb) {
AV1_COMMON *const cm = &pbi->common;
#if CONFIG_EXT_TILE
cm->tile_encoding_mode = aom_rb_read_literal(rb, 1);
// Read the tile width/height
#if CONFIG_EXT_PARTITION
if (cm->sb_size == BLOCK_128X128) {
cm->tile_width = aom_rb_read_literal(rb, 5) + 1;
cm->tile_height = aom_rb_read_literal(rb, 5) + 1;
} else
#endif // CONFIG_EXT_PARTITION
{
cm->tile_width = aom_rb_read_literal(rb, 6) + 1;
cm->tile_height = aom_rb_read_literal(rb, 6) + 1;
}
#if CONFIG_LOOPFILTERING_ACROSS_TILES
cm->loop_filter_across_tiles_enabled = aom_rb_read_bit(rb);
#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
cm->tile_width <<= cm->mib_size_log2;
cm->tile_height <<= cm->mib_size_log2;
cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols);
cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows);
// Get the number of tiles
cm->tile_cols = 1;
while (cm->tile_cols * cm->tile_width < cm->mi_cols) ++cm->tile_cols;
cm->tile_rows = 1;
while (cm->tile_rows * cm->tile_height < cm->mi_rows) ++cm->tile_rows;
if (cm->tile_cols * cm->tile_rows > 1) {
// Read the number of bytes used to store tile size
pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1;
pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
}
#if CONFIG_DEPENDENT_HORZTILES
if (cm->tile_rows <= 1)
cm->dependent_horz_tiles = aom_rb_read_bit(rb);
else
cm->dependent_horz_tiles = 0;
#endif
#else
int min_log2_tile_cols, max_log2_tile_cols, max_ones;
av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
// columns
max_ones = max_log2_tile_cols - min_log2_tile_cols;
cm->log2_tile_cols = min_log2_tile_cols;
while (max_ones-- && aom_rb_read_bit(rb)) cm->log2_tile_cols++;
if (cm->log2_tile_cols > 6)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid number of tile columns");
// rows
cm->log2_tile_rows = aom_rb_read_bit(rb);
if (cm->log2_tile_rows) cm->log2_tile_rows += aom_rb_read_bit(rb);
#if CONFIG_DEPENDENT_HORZTILES
if (cm->log2_tile_rows != 0)
cm->dependent_horz_tiles = aom_rb_read_bit(rb);
else
cm->dependent_horz_tiles = 0;
#endif
#if CONFIG_LOOPFILTERING_ACROSS_TILES
cm->loop_filter_across_tiles_enabled = aom_rb_read_bit(rb);
#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
cm->tile_cols = 1 << cm->log2_tile_cols;
cm->tile_rows = 1 << cm->log2_tile_rows;
cm->tile_width = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
cm->tile_width >>= cm->log2_tile_cols;
cm->tile_height = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2);
cm->tile_height >>= cm->log2_tile_rows;
// round to integer multiples of superblock size
cm->tile_width = ALIGN_POWER_OF_TWO(cm->tile_width, MAX_MIB_SIZE_LOG2);
cm->tile_height = ALIGN_POWER_OF_TWO(cm->tile_height, MAX_MIB_SIZE_LOG2);
// tile size magnitude
#if !CONFIG_TILE_GROUPS
if (cm->tile_rows > 1 || cm->tile_cols > 1)
#endif
pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
#endif // CONFIG_EXT_TILE
#if CONFIG_TILE_GROUPS
// Store an index to the location of the tile group information
pbi->tg_size_bit_offset = rb->bit_offset;
pbi->tg_size = 1 << (cm->log2_tile_rows + cm->log2_tile_cols);
if (cm->log2_tile_rows + cm->log2_tile_cols > 0) {
pbi->tg_start =
aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols);
pbi->tg_size =
1 + aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols);
}
#endif
}
static int mem_get_varsize(const uint8_t *src, int sz) {
switch (sz) {
case 1: return src[0];
case 2: return mem_get_le16(src);
case 3: return mem_get_le24(src);
case 4: return mem_get_le32(src);
default: assert("Invalid size" && 0); return -1;
}
}
#if CONFIG_EXT_TILE
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'.
static void get_tile_buffer(const uint8_t *const data_end,
struct aom_internal_error_info *error_info,
const uint8_t **data, aom_decrypt_cb decrypt_cb,
void *decrypt_state,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS],
int tile_size_bytes, int col, int row,
unsigned int tile_encoding_mode) {
size_t size;
size_t copy_size = 0;
const uint8_t *copy_data = NULL;
if (!read_is_valid(*data, tile_size_bytes, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (decrypt_cb) {
uint8_t be_data[4];
decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes);
// Only read number of bytes in cm->tile_size_bytes.
size = mem_get_varsize(be_data, tile_size_bytes);
} else {
size = mem_get_varsize(*data, tile_size_bytes);
}
// If cm->tile_encoding_mode = 1 (i.e. TILE_VR), then the top bit of the tile
// header indicates copy mode.
if (tile_encoding_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) {
// The remaining bits in the top byte signal the row offset
int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f;
// Currently, only use tiles in same column as reference tiles.
copy_data = tile_buffers[row - offset][col].data;
copy_size = tile_buffers[row - offset][col].size;
size = 0;
}
*data += tile_size_bytes;
if (size > (size_t)(data_end - *data))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile size");
if (size > 0) {
tile_buffers[row][col].data = *data;
tile_buffers[row][col].size = size;
} else {
tile_buffers[row][col].data = copy_data;
tile_buffers[row][col].size = copy_size;
}
*data += size;
tile_buffers[row][col].raw_data_end = *data;
}
static void get_tile_buffers(
AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
AV1_COMMON *const cm = &pbi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
const int have_tiles = tile_cols * tile_rows > 1;
if (!have_tiles) {
const size_t tile_size = data_end - data;
tile_buffers[0][0].data = data;
tile_buffers[0][0].size = tile_size;
tile_buffers[0][0].raw_data_end = NULL;
} else {
// We locate only the tile buffers that are required, which are the ones
// specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always
// need the last (bottom right) tile buffer, as we need to know where the
// end of the compressed frame buffer is for proper superframe decoding.
const uint8_t *tile_col_data_end[MAX_TILE_COLS];
const uint8_t *const data_start = data;
const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int tile_rows_start = single_row ? dec_tile_row : 0;
const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows;
const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
const int tile_cols_start = single_col ? dec_tile_col : 0;
const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
const int tile_col_size_bytes = pbi->tile_col_size_bytes;
const int tile_size_bytes = pbi->tile_size_bytes;
size_t tile_col_size;
int r, c;
// Read tile column sizes for all columns (we need the last tile buffer)
for (c = 0; c < tile_cols; ++c) {
const int is_last = c == tile_cols - 1;
if (!is_last) {
tile_col_size = mem_get_varsize(data, tile_col_size_bytes);
data += tile_col_size_bytes;
tile_col_data_end[c] = data + tile_col_size;
} else {
tile_col_size = data_end - data;
tile_col_data_end[c] = data_end;
}
data += tile_col_size;
}
data = data_start;
// Read the required tile sizes.
for (c = tile_cols_start; c < tile_cols_end; ++c) {
const int is_last = c == tile_cols - 1;
if (c > 0) data = tile_col_data_end[c - 1];
if (!is_last) data += tile_col_size_bytes;
// Get the whole of the last column, otherwise stop at the required tile.
for (r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) {
tile_buffers[r][c].col = c;
get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data,
pbi->decrypt_cb, pbi->decrypt_state, tile_buffers,
tile_size_bytes, c, r, cm->tile_encoding_mode);
}
}
// If we have not read the last column, then read it to get the last tile.
if (tile_cols_end != tile_cols) {
c = tile_cols - 1;
data = tile_col_data_end[c - 1];
for (r = 0; r < tile_rows; ++r) {
tile_buffers[r][c].col = c;
get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data,
pbi->decrypt_cb, pbi->decrypt_state, tile_buffers,
tile_size_bytes, c, r, cm->tile_encoding_mode);
}
}
}
}
#else
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'.
static void get_tile_buffer(const uint8_t *const data_end,
const int tile_size_bytes, int is_last,
struct aom_internal_error_info *error_info,
const uint8_t **data, aom_decrypt_cb decrypt_cb,
void *decrypt_state, TileBufferDec *const buf) {
size_t size;
if (!is_last) {
if (!read_is_valid(*data, tile_size_bytes, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (decrypt_cb) {
uint8_t be_data[4];
decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes);
size = mem_get_varsize(be_data, tile_size_bytes);
} else {
size = mem_get_varsize(*data, tile_size_bytes);
}
*data += tile_size_bytes;
if (size > (size_t)(data_end - *data))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile size");
} else {
size = data_end - *data;
}
buf->data = *data;
buf->size = size;
*data += size;
}
static void get_tile_buffers(
AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
AV1_COMMON *const cm = &pbi->common;
#if CONFIG_TILE_GROUPS
int r, c;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
int tc = 0;
int first_tile_in_tg = 0;
struct aom_read_bit_buffer rb_tg_hdr;
uint8_t clear_data[MAX_AV1_HEADER_SIZE];
const int num_tiles = tile_rows * tile_cols;
const int num_bits = OD_ILOG(num_tiles) - 1;
const size_t hdr_size = pbi->uncomp_hdr_size + pbi->first_partition_size;
const int tg_size_bit_offset = pbi->tg_size_bit_offset;
#if CONFIG_DEPENDENT_HORZTILES
int tile_group_start_col = 0;
int tile_group_start_row = 0;
#endif
for (r = 0; r < tile_rows; ++r) {
for (c = 0; c < tile_cols; ++c, ++tc) {
TileBufferDec *const buf = &tile_buffers[r][c];
const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
const size_t hdr_offset = (tc && tc == first_tile_in_tg) ? hdr_size : 0;
buf->col = c;
if (hdr_offset) {
init_read_bit_buffer(pbi, &rb_tg_hdr, data, data_end, clear_data);
rb_tg_hdr.bit_offset = tg_size_bit_offset;
if (num_tiles) {
pbi->tg_start = aom_rb_read_literal(&rb_tg_hdr, num_bits);
pbi->tg_size = 1 + aom_rb_read_literal(&rb_tg_hdr, num_bits);
#if CONFIG_DEPENDENT_HORZTILES
tile_group_start_row = r;
tile_group_start_col = c;
#endif
}
}
first_tile_in_tg += tc == first_tile_in_tg ? pbi->tg_size : 0;
data += hdr_offset;
get_tile_buffer(data_end, pbi->tile_size_bytes, is_last,
&pbi->common.error, &data, pbi->decrypt_cb,
pbi->decrypt_state, buf);
#if CONFIG_DEPENDENT_HORZTILES
cm->tile_group_start_row[r][c] = tile_group_start_row;
cm->tile_group_start_col[r][c] = tile_group_start_col;
#endif
}
}
#else
int r, c;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
for (r = 0; r < tile_rows; ++r) {
for (c = 0; c < tile_cols; ++c) {
const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
TileBufferDec *const buf = &tile_buffers[r][c];
buf->col = c;
get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, &cm->error,
&data, pbi->decrypt_cb, pbi->decrypt_state, buf);
}
}
#endif
}
#endif // CONFIG_EXT_TILE
#if CONFIG_PVQ
static void daala_dec_init(AV1_COMMON *const cm, daala_dec_ctx *daala_dec,
aom_reader *r) {
daala_dec->r = r;
// TODO(yushin) : activity masking info needs be signaled by a bitstream
daala_dec->use_activity_masking = AV1_PVQ_ENABLE_ACTIVITY_MASKING;
#if !CONFIG_DAALA_DIST
daala_dec->use_activity_masking = 0;
#endif
if (daala_dec->use_activity_masking)
daala_dec->qm = OD_HVS_QM;
else
daala_dec->qm = OD_FLAT_QM;
od_init_qm(daala_dec->state.qm, daala_dec->state.qm_inv,
daala_dec->qm == OD_HVS_QM ? OD_QM8_Q4_HVS : OD_QM8_Q4_FLAT);
if (daala_dec->use_activity_masking) {
int pli;
int use_masking = daala_dec->use_activity_masking;
int segment_id = 0;
int qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
for (pli = 0; pli < MAX_MB_PLANE; pli++) {
int i;
int q;
q = qindex;
if (q <= OD_DEFAULT_QMS[use_masking][0][pli].interp_q << OD_COEFF_SHIFT) {
od_interp_qm(&daala_dec->state.pvq_qm_q4[pli][0], q,
&OD_DEFAULT_QMS[use_masking][0][pli], NULL);
} else {
i = 0;
while (OD_DEFAULT_QMS[use_masking][i + 1][pli].qm_q4 != NULL &&
q > OD_DEFAULT_QMS[use_masking][i + 1][pli].interp_q
<< OD_COEFF_SHIFT) {
i++;
}
od_interp_qm(&daala_dec->state.pvq_qm_q4[pli][0], q,
&OD_DEFAULT_QMS[use_masking][i][pli],
&OD_DEFAULT_QMS[use_masking][i + 1][pli]);
}
}
}
}
#endif // #if CONFIG_PVQ
static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end) {
AV1_COMMON *const cm = &pbi->common;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
const int n_tiles = tile_cols * tile_rows;
TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
#if CONFIG_EXT_TILE
const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int tile_rows_start = single_row ? dec_tile_row : 0;
const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
const int tile_cols_start = single_col ? dec_tile_col : 0;
const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
const int inv_col_order = pbi->inv_tile_order && !single_col;
const int inv_row_order = pbi->inv_tile_order && !single_row;
#else
const int tile_rows_start = 0;
const int tile_rows_end = tile_rows;
const int tile_cols_start = 0;
const int tile_cols_end = tile_cols;
const int inv_col_order = pbi->inv_tile_order;
const int inv_row_order = pbi->inv_tile_order;
#endif // CONFIG_EXT_TILE
int tile_row, tile_col;
if (cm->lf.filter_level && !cm->skip_loop_filter &&
pbi->lf_worker.data1 == NULL) {
CHECK_MEM_ERROR(cm, pbi->lf_worker.data1,
aom_memalign(32, sizeof(LFWorkerData)));
pbi->lf_worker.hook = (AVxWorkerHook)av1_loop_filter_worker;
if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Loop filter thread creation failed");
}
}
if (cm->lf.filter_level && !cm->skip_loop_filter) {
LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
// Be sure to sync as we might be resuming after a failed frame decode.
winterface->sync(&pbi->lf_worker);
av1_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm,
pbi->mb.plane);
}
assert(tile_rows <= MAX_TILE_ROWS);
assert(tile_cols <= MAX_TILE_COLS);
get_tile_buffers(pbi, data, data_end, tile_buffers);
if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
aom_free(pbi->tile_data);
CHECK_MEM_ERROR(cm, pbi->tile_data,
aom_memalign(32, n_tiles * (sizeof(*pbi->tile_data))));
pbi->allocated_tiles = n_tiles;
}
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
aom_accounting_reset(&pbi->accounting);
}
#endif
// Load all tile information into tile_data.
for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
const TileBufferDec *const buf = &tile_buffers[tile_row][tile_col];
TileData *const td = pbi->tile_data + tile_cols * tile_row + tile_col;
td->cm = cm;
td->xd = pbi->mb;
td->xd.corrupted = 0;
td->xd.counts =
cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD
? &cm->counts
: NULL;
av1_zero(td->dqcoeff);
#if CONFIG_PVQ
av1_zero(td->pvq_ref_coeff);
#endif
av1_tile_init(&td->xd.tile, td->cm, tile_row, tile_col);
setup_bool_decoder(buf->data, data_end, buf->size, &cm->error,
&td->bit_reader,
#if CONFIG_ANS && ANS_MAX_SYMBOLS
1 << cm->ans_window_size_log2,
#endif // CONFIG_ANS && ANS_MAX_SYMBOLS
pbi->decrypt_cb, pbi->decrypt_state);
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
td->bit_reader.accounting = &pbi->accounting;
} else {
td->bit_reader.accounting = NULL;
}
#endif
av1_init_macroblockd(cm, &td->xd,
#if CONFIG_PVQ
td->pvq_ref_coeff,
#endif
#if CONFIG_CFL
&td->cfl,
#endif
td->dqcoeff);
#if CONFIG_EC_ADAPT
// Initialise the tile context from the frame context
td->tctx = *cm->fc;
td->xd.tile_ctx = &td->tctx;
#endif
#if CONFIG_PVQ
daala_dec_init(cm, &td->xd.daala_dec, &td->bit_reader);
td->xd.daala_dec.state.adapt = &td->tctx.pvq_context;
#endif
#if CONFIG_PALETTE
td->xd.plane[0].color_index_map = td->color_index_map[0];
td->xd.plane[1].color_index_map = td->color_index_map[1];
#endif // CONFIG_PALETTE
}
}
for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row;
int mi_row = 0;
TileInfo tile_info;
av1_tile_set_row(&tile_info, cm, row);
for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col;
TileData *const td = pbi->tile_data + tile_cols * row + col;
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
td->bit_reader.accounting->last_tell_frac =
aom_reader_tell_frac(&td->bit_reader);
}
#endif
av1_tile_set_col(&tile_info, cm, col);
#if CONFIG_DEPENDENT_HORZTILES
#if CONFIG_TILE_GROUPS
av1_tile_set_tg_boundary(&tile_info, cm, tile_row, tile_col);
if (!cm->dependent_horz_tiles || tile_row == 0 ||
tile_info.tg_horz_boundary) {
#else
if (!cm->dependent_horz_tiles || tile_row == 0) {
#endif
av1_zero_above_context(cm, tile_info.mi_col_start,
tile_info.mi_col_end);
}
#else
av1_zero_above_context(cm, tile_info.mi_col_start, tile_info.mi_col_end);
#endif
for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
mi_row += cm->mib_size) {
int mi_col;
av1_zero_left_context(&td->xd);
for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
mi_col += cm->mib_size) {
av1_update_boundary_info(cm, &tile_info, mi_row, mi_col);
decode_partition(pbi, &td->xd,
#if CONFIG_SUPERTX
0,
#endif // CONFIG_SUPERTX
mi_row, mi_col, &td->bit_reader, cm->sb_size,
b_width_log2_lookup[cm->sb_size]);
#if CONFIG_NCOBMC && CONFIG_MOTION_VAR
detoken_and_recon_sb(pbi, &td->xd, mi_row, mi_col, &td->bit_reader,
cm->sb_size);
#endif
}
aom_merge_corrupted_flag(&pbi->mb.corrupted, td->xd.corrupted);
if (pbi->mb.corrupted)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Failed to decode tile data");
}
}
assert(mi_row > 0);
// when Parallel deblocking is enabled, deblocking should not
// be interleaved with decoding. Instead, deblocking should be done
// after the entire frame is decoded.
#if !CONFIG_VAR_TX && !CONFIG_PARALLEL_DEBLOCKING && !CONFIG_CB4X4
// Loopfilter one tile row.
// Note: If out-of-order tile decoding is used(for example, inv_row_order
// = 1), the loopfiltering has be done after all tile rows are decoded.
if (!inv_row_order && cm->lf.filter_level && !cm->skip_loop_filter) {
LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
const int lf_start = AOMMAX(0, tile_info.mi_row_start - cm->mib_size);
const int lf_end = tile_info.mi_row_end - cm->mib_size;
// Delay the loopfilter if the first tile row is only
// a single superblock high.
if (lf_end <= 0) continue;
// Decoding has completed. Finish up the loop filter in this thread.
if (tile_info.mi_row_end >= cm->mi_rows) continue;
winterface->sync(&pbi->lf_worker);
lf_data->start = lf_start;
lf_data->stop = lf_end;
if (pbi->max_threads > 1) {
winterface->launch(&pbi->lf_worker);
} else {
winterface->execute(&pbi->lf_worker);
}
}
#endif // !CONFIG_VAR_TX && !CONFIG_PARALLEL_DEBLOCKING
// After loopfiltering, the last 7 row pixels in each superblock row may
// still be changed by the longest loopfilter of the next superblock row.
if (cm->frame_parallel_decode)
av1_frameworker_broadcast(pbi->cur_buf, mi_row << cm->mib_size_log2);
}
#if CONFIG_VAR_TX || CONFIG_CB4X4
// Loopfilter the whole frame.
av1_loop_filter_frame(get_frame_new_buffer(cm), cm, &pbi->mb,
cm->lf.filter_level, 0, 0);
#else
#if CONFIG_PARALLEL_DEBLOCKING
// Loopfilter all rows in the frame in the frame.
if (cm->lf.filter_level && !cm->skip_loop_filter) {
LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
winterface->sync(&pbi->lf_worker);
lf_data->start = 0;
lf_data->stop = cm->mi_rows;
winterface->execute(&pbi->lf_worker);
}
#else
// Loopfilter remaining rows in the frame.
if (cm->lf.filter_level && !cm->skip_loop_filter) {
LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
winterface->sync(&pbi->lf_worker);
lf_data->start = lf_data->stop;
lf_data->stop = cm->mi_rows;
winterface->execute(&pbi->lf_worker);
}
#endif // CONFIG_PARALLEL_DEBLOCKING
#endif // CONFIG_VAR_TX
if (cm->frame_parallel_decode)
av1_frameworker_broadcast(pbi->cur_buf, INT_MAX);
#if CONFIG_EXT_TILE
if (n_tiles == 1) {
#if CONFIG_ANS
return data_end;
#else
// Find the end of the single tile buffer
return aom_reader_find_end(&pbi->tile_data->bit_reader);
#endif // CONFIG_ANS
} else {
// Return the end of the last tile buffer
return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end;
}
#else
#if CONFIG_ANS
return data_end;
#else
{
// Get last tile data.
TileData *const td = pbi->tile_data + tile_cols * tile_rows - 1;
return aom_reader_find_end(&td->bit_reader);
}
#endif // CONFIG_ANS
#endif // CONFIG_EXT_TILE
}
static int tile_worker_hook(TileWorkerData *const tile_data,
const TileInfo *const tile) {
AV1Decoder *const pbi = tile_data->pbi;
const AV1_COMMON *const cm = &pbi->common;
int mi_row, mi_col;
if (setjmp(tile_data->error_info.jmp)) {
tile_data->error_info.setjmp = 0;
aom_merge_corrupted_flag(&tile_data->xd.corrupted, 1);
return 0;
}
tile_data->error_info.setjmp = 1;
tile_data->xd.error_info = &tile_data->error_info;
#if CONFIG_DEPENDENT_HORZTILES
#if CONFIG_TILE_GROUPS
if (!cm->dependent_horz_tiles || tile->tg_horz_boundary) {
#else
if (!cm->dependent_horz_tiles) {
#endif
av1_zero_above_context(&pbi->common, tile->mi_col_start, tile->mi_col_end);
}
#else
av1_zero_above_context(&pbi->common, tile->mi_col_start, tile->mi_col_end);
#endif
for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
mi_row += cm->mib_size) {
av1_zero_left_context(&tile_data->xd);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += cm->mib_size) {
decode_partition(pbi, &tile_data->xd,
#if CONFIG_SUPERTX
0,
#endif
mi_row, mi_col, &tile_data->bit_reader, cm->sb_size,
b_width_log2_lookup[cm->sb_size]);
#if CONFIG_NCOBMC && CONFIG_MOTION_VAR
detoken_and_recon_sb(pbi, &tile_data->xd, mi_row, mi_col,
&tile_data->bit_reader, cm->sb_size);
#endif
}
}
return !tile_data->xd.corrupted;
}
// sorts in descending order
static int compare_tile_buffers(const void *a, const void *b) {
const TileBufferDec *const buf1 = (const TileBufferDec *)a;
const TileBufferDec *const buf2 = (const TileBufferDec *)b;
return (int)(buf2->size - buf1->size);
}
static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end) {
AV1_COMMON *const cm = &pbi->common;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
const int num_workers = AOMMIN(pbi->max_threads & ~1, tile_cols);
TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
#if CONFIG_EXT_TILE
const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int tile_rows_start = single_row ? dec_tile_row : 0;
const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
const int tile_cols_start = single_col ? dec_tile_col : 0;
const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
#else
const int tile_rows_start = 0;
const int tile_rows_end = tile_rows;
const int tile_cols_start = 0;
const int tile_cols_end = tile_cols;
#endif // CONFIG_EXT_TILE
int tile_row, tile_col;
int i;
#if !(CONFIG_ANS || CONFIG_EXT_TILE)
int final_worker = -1;
#endif // !(CONFIG_ANS || CONFIG_EXT_TILE)
assert(tile_rows <= MAX_TILE_ROWS);
assert(tile_cols <= MAX_TILE_COLS);
assert(tile_cols * tile_rows > 1);
// TODO(jzern): See if we can remove the restriction of passing in max
// threads to the decoder.
if (pbi->num_tile_workers == 0) {
const int num_threads = pbi->max_threads & ~1;
CHECK_MEM_ERROR(cm, pbi->tile_workers,
aom_malloc(num_threads * sizeof(*pbi->tile_workers)));
// Ensure tile data offsets will be properly aligned. This may fail on
// platforms without DECLARE_ALIGNED().
assert((sizeof(*pbi->tile_worker_data) % 16) == 0);
CHECK_MEM_ERROR(
cm, pbi->tile_worker_data,
aom_memalign(32, num_threads * sizeof(*pbi->tile_worker_data)));
CHECK_MEM_ERROR(cm, pbi->tile_worker_info,
aom_malloc(num_threads * sizeof(*pbi->tile_worker_info)));
for (i = 0; i < num_threads; ++i) {
AVxWorker *const worker = &pbi->tile_workers[i];
++pbi->num_tile_workers;
winterface->init(worker);
if (i < num_threads - 1 && !winterface->reset(worker)) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Tile decoder thread creation failed");
}
}
}
// Reset tile decoding hook
for (i = 0; i < num_workers; ++i) {
AVxWorker *const worker = &pbi->tile_workers[i];
winterface->sync(worker);
worker->hook = (AVxWorkerHook)tile_worker_hook;
worker->data1 = &pbi->tile_worker_data[i];
worker->data2 = &pbi->tile_worker_info[i];
}
// Initialize thread frame counts.
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
for (i = 0; i < num_workers; ++i) {
TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1;
av1_zero(twd->counts);
}
}
// Load tile data into tile_buffers
get_tile_buffers(pbi, data, data_end, tile_buffers);
for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
// Sort the buffers in this tile row based on size in descending order.
qsort(&tile_buffers[tile_row][tile_cols_start],
tile_cols_end - tile_cols_start, sizeof(tile_buffers[0][0]),
compare_tile_buffers);
// Rearrange the tile buffers in this tile row such that per-tile group
// the largest, and presumably the most difficult tile will be decoded in
// the main thread. This should help minimize the number of instances
// where the main thread is waiting for a worker to complete.
{
int group_start;
for (group_start = tile_cols_start; group_start < tile_cols_end;
group_start += num_workers) {
const int group_end = AOMMIN(group_start + num_workers, tile_cols);
const TileBufferDec largest = tile_buffers[tile_row][group_start];
memmove(&tile_buffers[tile_row][group_start],
&tile_buffers[tile_row][group_start + 1],
(group_end - group_start - 1) * sizeof(tile_buffers[0][0]));
tile_buffers[tile_row][group_end - 1] = largest;
}
}
for (tile_col = tile_cols_start; tile_col < tile_cols_end;) {
// Launch workers for individual columns
for (i = 0; i < num_workers && tile_col < tile_cols_end;
++i, ++tile_col) {
TileBufferDec *const buf = &tile_buffers[tile_row][tile_col];
AVxWorker *const worker = &pbi->tile_workers[i];
TileWorkerData *const twd = (TileWorkerData *)worker->data1;
TileInfo *const tile_info = (TileInfo *)worker->data2;
twd->pbi = pbi;
twd->xd = pbi->mb;
twd->xd.corrupted = 0;
twd->xd.counts =
cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD
? &twd->counts
: NULL;
av1_zero(twd->dqcoeff);
av1_tile_init(tile_info, cm, tile_row, buf->col);
av1_tile_init(&twd->xd.tile, cm, tile_row, buf->col);
setup_bool_decoder(buf->data, data_end, buf->size, &cm->error,
&twd->bit_reader,
#if CONFIG_ANS && ANS_MAX_SYMBOLS
1 << cm->ans_window_size_log2,
#endif // CONFIG_ANS && ANS_MAX_SYMBOLS
pbi->decrypt_cb, pbi->decrypt_state);
av1_init_macroblockd(cm, &twd->xd,
#if CONFIG_PVQ
twd->pvq_ref_coeff,
#endif
#if CONFIG_CFL
&twd->cfl,
#endif
twd->dqcoeff);
#if CONFIG_PVQ
daala_dec_init(cm, &twd->xd.daala_dec, &twd->bit_reader);
twd->xd.daala_dec.state.adapt = &twd->tctx.pvq_context;
#endif
#if CONFIG_EC_ADAPT
// Initialise the tile context from the frame context
twd->tctx = *cm->fc;
twd->xd.tile_ctx = &twd->tctx;
#endif
#if CONFIG_PALETTE
twd->xd.plane[0].color_index_map = twd->color_index_map[0];
twd->xd.plane[1].color_index_map = twd->color_index_map[1];
#endif // CONFIG_PALETTE
worker->had_error = 0;
if (i == num_workers - 1 || tile_col == tile_cols_end - 1) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
#if !(CONFIG_ANS || CONFIG_EXT_TILE)
if (tile_row == tile_rows - 1 && buf->col == tile_cols - 1) {
final_worker = i;
}
#endif // !(CONFIG_ANS || CONFIG_EXT_TILE)
}
// Sync all workers
for (; i > 0; --i) {
AVxWorker *const worker = &pbi->tile_workers[i - 1];
// TODO(jzern): The tile may have specific error data associated with
// its aom_internal_error_info which could be propagated to the main
// info in cm. Additionally once the threads have been synced and an
// error is detected, there's no point in continuing to decode tiles.
pbi->mb.corrupted |= !winterface->sync(worker);
}
}
}
// Accumulate thread frame counts.
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
for (i = 0; i < num_workers; ++i) {
TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1;
av1_accumulate_frame_counts(&cm->counts, &twd->counts);
}
}
#if CONFIG_EXT_TILE
// Return the end of the last tile buffer
return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end;
#else
#if CONFIG_ANS
return data_end;
#else
assert(final_worker != -1);
{
TileWorkerData *const twd =
(TileWorkerData *)pbi->tile_workers[final_worker].data1;
return aom_reader_find_end(&twd->bit_reader);
}
#endif // CONFIG_ANS
#endif // CONFIG_EXT_TILE
}
static void error_handler(void *data) {
AV1_COMMON *const cm = (AV1_COMMON *)data;
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet");
}
static void read_bitdepth_colorspace_sampling(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
if (cm->profile >= PROFILE_2) {
cm->bit_depth = aom_rb_read_bit(rb) ? AOM_BITS_12 : AOM_BITS_10;
} else {
cm->bit_depth = AOM_BITS_8;
}
#if CONFIG_HIGHBITDEPTH
cm->use_highbitdepth = cm->bit_depth > AOM_BITS_8 || !CONFIG_LOWBITDEPTH;
#endif
cm->color_space = aom_rb_read_literal(rb, 3);
if (cm->color_space != AOM_CS_SRGB) {
// [16,235] (including xvycc) vs [0,255] range
cm->color_range = aom_rb_read_bit(rb);
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
cm->subsampling_x = aom_rb_read_bit(rb);
cm->subsampling_y = aom_rb_read_bit(rb);
if (cm->subsampling_x == 1 && cm->subsampling_y == 1)
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"4:2:0 color not supported in profile 1 or 3");
if (aom_rb_read_bit(rb))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Reserved bit set");
} else {
cm->subsampling_y = cm->subsampling_x = 1;
}
} else {
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
// Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed.
// 4:2:2 or 4:4:0 chroma sampling is not allowed.
cm->subsampling_y = cm->subsampling_x = 0;
if (aom_rb_read_bit(rb))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Reserved bit set");
} else {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"4:4:4 color not supported in profile 0 or 2");
}
}
}
#if CONFIG_REFERENCE_BUFFER
void read_sequence_header(SequenceHeader *seq_params) {
/* Placeholder for actually reading from the bitstream */
seq_params->frame_id_numbers_present_flag = FRAME_ID_NUMBERS_PRESENT_FLAG;
seq_params->frame_id_length_minus7 = FRAME_ID_LENGTH_MINUS7;
seq_params->delta_frame_id_length_minus2 = DELTA_FRAME_ID_LENGTH_MINUS2;
}
#endif
static size_t read_uncompressed_header(AV1Decoder *pbi,
struct aom_read_bit_buffer *rb) {
AV1_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
BufferPool *const pool = cm->buffer_pool;
RefCntBuffer *const frame_bufs = pool->frame_bufs;
int i, mask, ref_index = 0;
size_t sz;
#if CONFIG_REFERENCE_BUFFER
/* TODO: Move outside frame loop or inside key-frame branch */
read_sequence_header(&pbi->seq_params);
#endif
cm->last_frame_type = cm->frame_type;
cm->last_intra_only = cm->intra_only;
#if CONFIG_EXT_REFS
// NOTE: By default all coded frames to be used as a reference
cm->is_reference_frame = 1;
#endif // CONFIG_EXT_REFS
if (aom_rb_read_literal(rb, 2) != AOM_FRAME_MARKER)
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Invalid frame marker");
cm->profile = av1_read_profile(rb);
const BITSTREAM_PROFILE MAX_SUPPORTED_PROFILE =
CONFIG_HIGHBITDEPTH ? MAX_PROFILES : PROFILE_2;
if (cm->profile >= MAX_SUPPORTED_PROFILE)
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Unsupported bitstream profile");
cm->show_existing_frame = aom_rb_read_bit(rb);
if (cm->show_existing_frame) {
// Show an existing frame directly.
const int existing_frame_idx = aom_rb_read_literal(rb, 3);
const int frame_to_show = cm->ref_frame_map[existing_frame_idx];
#if CONFIG_REFERENCE_BUFFER
if (pbi->seq_params.frame_id_numbers_present_flag) {
int frame_id_length = pbi->seq_params.frame_id_length_minus7 + 7;
int display_frame_id = aom_rb_read_literal(rb, frame_id_length);
/* Compare display_frame_id with ref_frame_id and check valid for
* referencing */
if (display_frame_id != cm->ref_frame_id[existing_frame_idx] ||
cm->valid_for_referencing[existing_frame_idx] == 0)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Reference buffer frame ID mismatch");
}
#endif
lock_buffer_pool(pool);
if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
unlock_buffer_pool(pool);
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Buffer %d does not contain a decoded frame",
frame_to_show);
}
ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
unlock_buffer_pool(pool);
cm->lf.filter_level = 0;
cm->show_frame = 1;
pbi->refresh_frame_flags = 0;
if (cm->frame_parallel_decode) {
for (i = 0; i < REF_FRAMES; ++i)
cm->next_ref_frame_map[i] = cm->ref_frame_map[i];
}
return 0;
}
cm->frame_type = (FRAME_TYPE)aom_rb_read_bit(rb);
cm->show_frame = aom_rb_read_bit(rb);
cm->error_resilient_mode = aom_rb_read_bit(rb);
#if CONFIG_REFERENCE_BUFFER
if (pbi->seq_params.frame_id_numbers_present_flag) {
int frame_id_length = pbi->seq_params.frame_id_length_minus7 + 7;
int diff_len = pbi->seq_params.delta_frame_id_length_minus2 + 2;
int prev_frame_id = 0;
if (cm->frame_type != KEY_FRAME) {
prev_frame_id = cm->current_frame_id;
}
cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length);
if (cm->frame_type != KEY_FRAME) {
int diff_frame_id;
if (cm->current_frame_id > prev_frame_id) {
diff_frame_id = cm->current_frame_id - prev_frame_id;
} else {
diff_frame_id =
(1 << frame_id_length) + cm->current_frame_id - prev_frame_id;
}
/* Check current_frame_id for conformance */
if (prev_frame_id == cm->current_frame_id ||
diff_frame_id >= (1 << (frame_id_length - 1))) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid value of current_frame_id");
}
}
/* Check if some frames need to be marked as not valid for referencing */
for (i = 0; i < REF_FRAMES; i++) {
if (cm->frame_type == KEY_FRAME) {
cm->valid_for_referencing[i] = 0;
} else if (cm->current_frame_id - (1 << diff_len) > 0) {
if (cm->ref_frame_id[i] > cm->current_frame_id ||
cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len))
cm->valid_for_referencing[i] = 0;
} else {
if (cm->ref_frame_id[i] > cm->current_frame_id &&
cm->ref_frame_id[i] <
(1 << frame_id_length) + cm->current_frame_id - (1 << diff_len))
cm->valid_for_referencing[i] = 0;
}
}
}
#endif
if (cm->frame_type == KEY_FRAME) {
if (!av1_read_sync_code(rb))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
read_bitdepth_colorspace_sampling(cm, rb);
pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
cm->frame_refs[i].idx = INVALID_IDX;
cm->frame_refs[i].buf = NULL;
}
setup_frame_size(cm, rb);
if (pbi->need_resync) {
memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
pbi->need_resync = 0;
}
#if CONFIG_ANS && ANS_MAX_SYMBOLS
cm->ans_window_size_log2 = aom_rb_read_literal(rb, 4) + 8;
#endif // CONFIG_ANS && ANS_MAX_SYMBOLS
#if CONFIG_PALETTE || CONFIG_INTRABC
cm->allow_screen_content_tools = aom_rb_read_bit(rb);
#endif // CONFIG_PALETTE || CONFIG_INTRABC
#if CONFIG_TEMPMV_SIGNALING
cm->use_prev_frame_mvs = 0;
#endif
} else {
cm->intra_only = cm->show_frame ? 0 : aom_rb_read_bit(rb);
#if CONFIG_PALETTE || CONFIG_INTRABC
if (cm->intra_only) cm->allow_screen_content_tools = aom_rb_read_bit(rb);
#endif // CONFIG_PALETTE || CONFIG_INTRABC
#if CONFIG_TEMPMV_SIGNALING
if (cm->intra_only || cm->error_resilient_mode) cm->use_prev_frame_mvs = 0;
#endif
if (cm->error_resilient_mode) {
cm->reset_frame_context = RESET_FRAME_CONTEXT_ALL;
} else {
if (cm->intra_only) {
cm->reset_frame_context = aom_rb_read_bit(rb)
? RESET_FRAME_CONTEXT_ALL
: RESET_FRAME_CONTEXT_CURRENT;
} else {
cm->reset_frame_context = aom_rb_read_bit(rb)
? RESET_FRAME_CONTEXT_CURRENT
: RESET_FRAME_CONTEXT_NONE;
if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT)
cm->reset_frame_context = aom_rb_read_bit(rb)
? RESET_FRAME_CONTEXT_ALL
: RESET_FRAME_CONTEXT_CURRENT;
}
}
if (cm->intra_only) {
if (!av1_read_sync_code(rb))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
read_bitdepth_colorspace_sampling(cm, rb);
pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
setup_frame_size(cm, rb);
if (pbi->need_resync) {
memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
pbi->need_resync = 0;
}
#if CONFIG_ANS && ANS_MAX_SYMBOLS
cm->ans_window_size_log2 = aom_rb_read_literal(rb, 4) + 8;
#endif
} else if (pbi->need_resync != 1) { /* Skip if need resync */
pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
#if CONFIG_EXT_REFS
if (!pbi->refresh_frame_flags) {
// NOTE: "pbi->refresh_frame_flags == 0" indicates that the coded frame
// will not be used as a reference
cm->is_reference_frame = 0;
}
#endif // CONFIG_EXT_REFS
for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
const int ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
const int idx = cm->ref_frame_map[ref];
RefBuffer *const ref_frame = &cm->frame_refs[i];
ref_frame->idx = idx;
ref_frame->buf = &frame_bufs[idx].buf;
cm->ref_frame_sign_bias[LAST_FRAME + i] = aom_rb_read_bit(rb);
#if CONFIG_REFERENCE_BUFFER
if (pbi->seq_params.frame_id_numbers_present_flag) {
int frame_id_length = pbi->seq_params.frame_id_length_minus7 + 7;
int diff_len = pbi->seq_params.delta_frame_id_length_minus2 + 2;
int delta_frame_id_minus1 = aom_rb_read_literal(rb, diff_len);
int ref_frame_id =
((cm->current_frame_id - (delta_frame_id_minus1 + 1) +
(1 << frame_id_length)) %
(1 << frame_id_length));
/* Compare values derived from delta_frame_id_minus1 and
* refresh_frame_flags. Also, check valid for referencing */
if (ref_frame_id != cm->ref_frame_id[ref] ||
cm->valid_for_referencing[ref] == 0)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Reference buffer frame ID mismatch");
}
#endif
}
#if CONFIG_FRAME_SIZE
if (cm->error_resilient_mode == 0) {
setup_frame_size_with_refs(cm, rb);
} else {
setup_frame_size(cm, rb);
}
#else
setup_frame_size_with_refs(cm, rb);
#endif
cm->allow_high_precision_mv = aom_rb_read_bit(rb);
cm->interp_filter = read_frame_interp_filter(rb);
#if CONFIG_TEMPMV_SIGNALING
if (!cm->error_resilient_mode) {
cm->use_prev_frame_mvs = aom_rb_read_bit(rb);
}
#endif
for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
RefBuffer *const ref_buf = &cm->frame_refs[i];
#if CONFIG_HIGHBITDEPTH
av1_setup_scale_factors_for_frame(
&ref_buf->sf, ref_buf->buf->y_crop_width,
ref_buf->buf->y_crop_height, cm->width, cm->height,
cm->use_highbitdepth);
#else
av1_setup_scale_factors_for_frame(
&ref_buf->sf, ref_buf->buf->y_crop_width,
ref_buf->buf->y_crop_height, cm->width, cm->height);
#endif
}
}
}
#if CONFIG_TEMPMV_SIGNALING
cm->cur_frame->intra_only = cm->frame_type == KEY_FRAME || cm->intra_only;
#endif
#if CONFIG_REFERENCE_BUFFER
if (pbi->seq_params.frame_id_numbers_present_flag) {
/* If bitmask is set, update reference frame id values and
mark frames as valid for reference */
int refresh_frame_flags =
cm->frame_type == KEY_FRAME ? 0xFF : pbi->refresh_frame_flags;
for (i = 0; i < REF_FRAMES; i++) {
if ((refresh_frame_flags >> i) & 1) {
cm->ref_frame_id[i] = cm->current_frame_id;
cm->valid_for_referencing[i] = 1;
}
}
}
#endif
get_frame_new_buffer(cm)->bit_depth = cm->bit_depth;
get_frame_new_buffer(cm)->color_space = cm->color_space;
get_frame_new_buffer(cm)->color_range = cm->color_range;
get_frame_new_buffer(cm)->render_width = cm->render_width;
get_frame_new_buffer(cm)->render_height = cm->render_height;
if (pbi->need_resync) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Keyframe / intra-only frame required to reset decoder"
" state");
}
if (!cm->error_resilient_mode) {
cm->refresh_frame_context = aom_rb_read_bit(rb)
? REFRESH_FRAME_CONTEXT_FORWARD
: REFRESH_FRAME_CONTEXT_BACKWARD;
} else {
cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_FORWARD;
}
// This flag will be overridden by the call to av1_setup_past_independence
// below, forcing the use of context 0 for those frame types.
cm->frame_context_idx = aom_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
// Generate next_ref_frame_map.
lock_buffer_pool(pool);
for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
if (mask & 1) {
cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
++frame_bufs[cm->new_fb_idx].ref_count;
} else {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
}
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
++ref_index;
}
for (; ref_index < REF_FRAMES; ++ref_index) {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
}
unlock_buffer_pool(pool);
pbi->hold_ref_buf = 1;
if (frame_is_intra_only(cm) || cm->error_resilient_mode)
av1_setup_past_independence(cm);
#if CONFIG_EXT_PARTITION
set_sb_size(cm, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64);
#else
set_sb_size(cm, BLOCK_64X64);
#endif // CONFIG_EXT_PARTITION
#if CONFIG_FRAME_SUPERRES
setup_superres_scale(cm, rb);
#endif // CONFIG_FRAME_SUPERRES
setup_loopfilter(cm, rb);
#if CONFIG_CDEF
setup_cdef(cm, rb);
#endif
#if CONFIG_LOOP_RESTORATION
decode_restoration_mode(cm, rb);
#endif // CONFIG_LOOP_RESTORATION
setup_quantization(cm, rb);
xd->bd = (int)cm->bit_depth;
#if CONFIG_Q_ADAPT_PROBS
av1_default_coef_probs(cm);
if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode ||
cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL) {
for (i = 0; i < FRAME_CONTEXTS; ++i) cm->frame_contexts[i] = *cm->fc;
} else if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) {
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
}
#endif // CONFIG_Q_ADAPT_PROBS
setup_segmentation(cm, rb);
#if CONFIG_DELTA_Q
{
struct segmentation *const seg = &cm->seg;
int segment_quantizer_active = 0;
for (i = 0; i < MAX_SEGMENTS; i++) {
if (segfeature_active(seg, i, SEG_LVL_ALT_Q)) {
segment_quantizer_active = 1;
}
}
cm->delta_q_res = 1;
#if CONFIG_EXT_DELTA_Q
cm->delta_lf_res = 1;
#endif
if (segment_quantizer_active == 0 && cm->base_qindex > 0) {
cm->delta_q_present_flag = aom_rb_read_bit(rb);
} else {
cm->delta_q_present_flag = 0;
}
if (cm->delta_q_present_flag) {
xd->prev_qindex = cm->base_qindex;
cm->delta_q_res = 1 << aom_rb_read_literal(rb, 2);
#if CONFIG_EXT_DELTA_Q
if (segment_quantizer_active) {
assert(seg->abs_delta == SEGMENT_DELTADATA);
}
cm->delta_lf_present_flag = aom_rb_read_bit(rb);
if (cm->delta_lf_present_flag) {
xd->prev_delta_lf_from_base = 0;
cm->delta_lf_res = 1 << aom_rb_read_literal(rb, 2);
} else {
cm->delta_lf_present_flag = 0;
}
#endif // CONFIG_EXT_DELTA_Q
}
}
#endif
for (i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = cm->seg.enabled
? av1_get_qindex(&cm->seg, i, cm->base_qindex)
: cm->base_qindex;
xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
xd->qindex[i] = qindex;
}
setup_segmentation_dequant(cm);
cm->tx_mode = read_tx_mode(cm, xd, rb);
cm->reference_mode = read_frame_reference_mode(cm, rb);
#if CONFIG_EXT_TX
cm->reduced_tx_set_used = aom_rb_read_bit(rb);
#endif // CONFIG_EXT_TX
read_tile_info(pbi, rb);
sz = aom_rb_read_literal(rb, 16);
if (sz == 0)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid header size");
return sz;
}
#if CONFIG_EXT_TX
#if !CONFIG_EC_ADAPT
static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i, j, k;
int s;
for (s = 1; s < EXT_TX_SETS_INTER; ++s) {
if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
if (!use_inter_ext_tx_for_txsize[s][i]) continue;
for (j = 0; j < num_ext_tx_set[ext_tx_set_type_inter[s]] - 1; ++j)
av1_diff_update_prob(r, &fc->inter_ext_tx_prob[s][i][j], ACCT_STR);
}
}
}
for (s = 1; s < EXT_TX_SETS_INTRA; ++s) {
if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
if (!use_intra_ext_tx_for_txsize[s][i]) continue;
for (j = 0; j < INTRA_MODES; ++j)
for (k = 0; k < num_ext_tx_set[ext_tx_set_type_intra[s]] - 1; ++k)
av1_diff_update_prob(r, &fc->intra_ext_tx_prob[s][i][j][k],
ACCT_STR);
}
}
}
}
#endif // !CONFIG_EC_ADAPT
#else
#endif // CONFIG_EXT_TX
#if CONFIG_SUPERTX
static void read_supertx_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i, j;
if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) {
for (j = TX_8X8; j < TX_SIZES; ++j) {
av1_diff_update_prob(r, &fc->supertx_prob[i][j], ACCT_STR);
}
}
}
}
#endif // CONFIG_SUPERTX
#if CONFIG_GLOBAL_MOTION
static void read_global_motion_params(WarpedMotionParams *params,
WarpedMotionParams *ref_params,
aom_prob *probs, aom_reader *r,
int allow_hp) {
TransformationType type =
aom_read_tree(r, av1_global_motion_types_tree, probs, ACCT_STR);
int trans_bits;
int trans_dec_factor;
int trans_prec_diff;
set_default_warp_params(params);
params->wmtype = type;
switch (type) {
case HOMOGRAPHY:
case HORTRAPEZOID:
case VERTRAPEZOID:
if (type != HORTRAPEZOID)
params->wmmat[6] =
aom_read_signed_primitive_refsubexpfin(
r, GM_ROW3HOMO_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[6] >> GM_ROW3HOMO_PREC_DIFF), ACCT_STR) *
GM_ROW3HOMO_DECODE_FACTOR;
if (type != VERTRAPEZOID)
params->wmmat[7] =
aom_read_signed_primitive_refsubexpfin(
r, GM_ROW3HOMO_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[7] >> GM_ROW3HOMO_PREC_DIFF), ACCT_STR) *
GM_ROW3HOMO_DECODE_FACTOR;
case AFFINE:
case ROTZOOM:
params->wmmat[2] = aom_read_signed_primitive_refsubexpfin(
r, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS),
ACCT_STR) *
GM_ALPHA_DECODE_FACTOR +
(1 << WARPEDMODEL_PREC_BITS);
if (type != VERTRAPEZOID)
params->wmmat[3] =
aom_read_signed_primitive_refsubexpfin(
r, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF), ACCT_STR) *
GM_ALPHA_DECODE_FACTOR;
if (type >= AFFINE) {
if (type != HORTRAPEZOID)
params->wmmat[4] =
aom_read_signed_primitive_refsubexpfin(
r, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF), ACCT_STR) *
GM_ALPHA_DECODE_FACTOR;
params->wmmat[5] = aom_read_signed_primitive_refsubexpfin(
r, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS),
ACCT_STR) *
GM_ALPHA_DECODE_FACTOR +
(1 << WARPEDMODEL_PREC_BITS);
} else {
params->wmmat[4] = -params->wmmat[3];
params->wmmat[5] = params->wmmat[2];
}
// fallthrough intended
case TRANSLATION:
trans_bits = (type == TRANSLATION) ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
: GM_ABS_TRANS_BITS;
trans_dec_factor = (type == TRANSLATION)
? GM_TRANS_ONLY_DECODE_FACTOR * (1 << !allow_hp)
: GM_TRANS_DECODE_FACTOR;
trans_prec_diff = (type == TRANSLATION)
? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
: GM_TRANS_PREC_DIFF;
params->wmmat[0] =
aom_read_signed_primitive_refsubexpfin(
r, (1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_params->wmmat[0] >> trans_prec_diff), ACCT_STR) *
trans_dec_factor;
params->wmmat[1] =
aom_read_signed_primitive_refsubexpfin(
r, (1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_params->wmmat[1] >> trans_prec_diff), ACCT_STR) *
trans_dec_factor;
case IDENTITY: break;
default: assert(0);
}
if (params->wmtype <= AFFINE)
if (!get_shear_params(params)) assert(0);
}
static void read_global_motion(AV1_COMMON *cm, aom_reader *r) {
int frame;
for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
read_global_motion_params(
&cm->global_motion[frame], &cm->prev_frame->global_motion[frame],
cm->fc->global_motion_types_prob, r, cm->allow_high_precision_mv);
/*
printf("Dec Ref %d [%d/%d]: %d %d %d %d\n",
frame, cm->current_video_frame, cm->show_frame,
cm->global_motion[frame].wmmat[0],
cm->global_motion[frame].wmmat[1],
cm->global_motion[frame].wmmat[2],
cm->global_motion[frame].wmmat[3]);
*/
}
memcpy(cm->cur_frame->global_motion, cm->global_motion,
TOTAL_REFS_PER_FRAME * sizeof(WarpedMotionParams));
}
#endif // CONFIG_GLOBAL_MOTION
static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data,
size_t partition_size) {
AV1_COMMON *const cm = &pbi->common;
#if CONFIG_SUPERTX
MACROBLOCKD *const xd = &pbi->mb;
#endif
FRAME_CONTEXT *const fc = cm->fc;
aom_reader r;
int k, i;
#if !CONFIG_EC_ADAPT || \
(CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION || CONFIG_EXT_INTER)
int j;
#endif
#if CONFIG_ANS && ANS_MAX_SYMBOLS
r.window_size = 1 << cm->ans_window_size_log2;
#endif
if (aom_reader_init(&r, data, partition_size, pbi->decrypt_cb,
pbi->decrypt_state))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
#if CONFIG_LOOP_RESTORATION
if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
av1_alloc_restoration_buffers(cm);
decode_restoration(cm, &r);
}
#endif
#if !CONFIG_EC_ADAPT
if (cm->tx_mode == TX_MODE_SELECT) read_tx_size_probs(fc, &r);
#endif
#if CONFIG_EXT_TX && CONFIG_RECT_TX && CONFIG_RECT_TX_EXT
if (cm->tx_mode == TX_MODE_SELECT)
av1_diff_update_prob(&r, &fc->quarter_tx_size_prob, ACCT_STR);
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX && CONFIG_RECT_TX_EXT
#if CONFIG_LV_MAP
av1_read_txb_probs(fc, cm->tx_mode, &r);
#else // CONFIG_LV_MAP
#if !CONFIG_PVQ
#if !CONFIG_EC_ADAPT
read_coef_probs(fc, cm->tx_mode, &r);
#endif // !CONFIG_EC_ADAPT
#endif // !CONFIG_PVQ
#endif // CONFIG_LV_MAP
#if CONFIG_VAR_TX
for (k = 0; k < TXFM_PARTITION_CONTEXTS; ++k)
av1_diff_update_prob(&r, &fc->txfm_partition_prob[k], ACCT_STR);
#endif // CONFIG_VAR_TX
for (k = 0; k < SKIP_CONTEXTS; ++k)
av1_diff_update_prob(&r, &fc->skip_probs[k], ACCT_STR);
#if CONFIG_DELTA_Q && !CONFIG_EC_ADAPT
#if CONFIG_EXT_DELTA_Q
if (cm->delta_q_present_flag) {
for (k = 0; k < DELTA_Q_PROBS; ++k)
av1_diff_update_prob(&r, &fc->delta_q_prob[k], ACCT_STR);
}
if (cm->delta_lf_present_flag) {
for (k = 0; k < DELTA_LF_PROBS; ++k)
av1_diff_update_prob(&r, &fc->delta_lf_prob[k], ACCT_STR);
}
#else
for (k = 0; k < DELTA_Q_PROBS; ++k)
av1_diff_update_prob(&r, &fc->delta_q_prob[k], ACCT_STR);
#endif
#endif
#if !CONFIG_EC_ADAPT
if (cm->seg.enabled && cm->seg.update_map) {
if (cm->seg.temporal_update) {
for (k = 0; k < PREDICTION_PROBS; k++)
av1_diff_update_prob(&r, &cm->fc->seg.pred_probs[k], ACCT_STR);
}
for (k = 0; k < MAX_SEGMENTS - 1; k++)
av1_diff_update_prob(&r, &cm->fc->seg.tree_probs[k], ACCT_STR);
}
for (j = 0; j < INTRA_MODES; j++) {
for (i = 0; i < INTRA_MODES - 1; ++i)
av1_diff_update_prob(&r, &fc->uv_mode_prob[j][i], ACCT_STR);
}
#if CONFIG_EXT_PARTITION_TYPES
for (j = 0; j < PARTITION_PLOFFSET; ++j)
for (i = 0; i < PARTITION_TYPES - 1; ++i)
av1_diff_update_prob(&r, &fc->partition_prob[j][i], ACCT_STR);
for (; j < PARTITION_CONTEXTS_PRIMARY; ++j)
for (i = 0; i < EXT_PARTITION_TYPES - 1; ++i)
av1_diff_update_prob(&r, &fc->partition_prob[j][i], ACCT_STR);
#else
for (j = 0; j < PARTITION_CONTEXTS_PRIMARY; ++j)
for (i = 0; i < PARTITION_TYPES - 1; ++i)
av1_diff_update_prob(&r, &fc->partition_prob[j][i], ACCT_STR);
#endif // CONFIG_EXT_PARTITION_TYPES
#if CONFIG_UNPOISON_PARTITION_CTX
for (; j < PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES; ++j)
av1_diff_update_prob(&r, &fc->partition_prob[j][PARTITION_VERT], ACCT_STR);
for (; j < PARTITION_CONTEXTS_PRIMARY + 2 * PARTITION_BLOCK_SIZES; ++j)
av1_diff_update_prob(&r, &fc->partition_prob[j][PARTITION_HORZ], ACCT_STR);
#endif // CONFIG_UNPOISON_PARTITION_CTX
#if CONFIG_EXT_INTRA && CONFIG_INTRA_INTERP
for (i = 0; i < INTRA_FILTERS + 1; ++i)
for (j = 0; j < INTRA_FILTERS - 1; ++j)
av1_diff_update_prob(&r, &fc->intra_filter_probs[i][j], ACCT_STR);
#endif // CONFIG_EXT_INTRA && CONFIG_INTRA_INTERP
#endif // !CONFIG_EC_ADAPT
if (frame_is_intra_only(cm)) {
av1_copy(cm->kf_y_prob, av1_kf_y_mode_prob);
av1_copy(cm->fc->kf_y_cdf, av1_kf_y_mode_cdf);
#if !CONFIG_EC_ADAPT
for (k = 0; k < INTRA_MODES; k++)
for (j = 0; j < INTRA_MODES; j++)
for (i = 0; i < INTRA_MODES - 1; ++i)
av1_diff_update_prob(&r, &cm->kf_y_prob[k][j][i], ACCT_STR);
#endif
} else {
read_inter_mode_probs(fc, &r);
#if CONFIG_EXT_INTER
read_inter_compound_mode_probs(fc, &r);
#if CONFIG_INTERINTRA
if (cm->reference_mode != COMPOUND_REFERENCE) {
#if CONFIG_INTERINTRA
for (i = 0; i < BLOCK_SIZE_GROUPS; i++) {
if (is_interintra_allowed_bsize_group(i)) {
av1_diff_update_prob(&r, &fc->interintra_prob[i], ACCT_STR);
}
}
for (i = 0; i < BLOCK_SIZE_GROUPS; i++) {
for (j = 0; j < INTERINTRA_MODES - 1; j++)
av1_diff_update_prob(&r, &fc->interintra_mode_prob[i][j], ACCT_STR);
}
#if CONFIG_WEDGE
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed_bsize(i) && is_interintra_wedge_used(i)) {
av1_diff_update_prob(&r, &fc->wedge_interintra_prob[i], ACCT_STR);
}
}
#endif // CONFIG_WEDGE
#endif // CONFIG_INTERINTRA
}
#endif // CONFIG_INTERINTRA
#if CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE
if (cm->reference_mode != SINGLE_REFERENCE) {
for (i = 0; i < BLOCK_SIZES; i++) {
for (j = 0; j < COMPOUND_TYPES - 1; j++) {
av1_diff_update_prob(&r, &fc->compound_type_prob[i][j], ACCT_STR);
}
}
}
#endif // CONFIG_COMPOUND_SEGMENT || CONFIG_WEDGE
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
for (i = BLOCK_8X8; i < BLOCK_SIZES; ++i) {
for (j = 0; j < MOTION_MODES - 1; ++j)
av1_diff_update_prob(&r, &fc->motion_mode_prob[i][j], ACCT_STR);
}
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if !CONFIG_EC_ADAPT
if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r);
#endif
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
av1_diff_update_prob(&r, &fc->intra_inter_prob[i], ACCT_STR);
if (cm->reference_mode != SINGLE_REFERENCE)
setup_compound_reference_mode(cm);
read_frame_reference_mode_probs(cm, &r);
#if !CONFIG_EC_ADAPT
for (j = 0; j < BLOCK_SIZE_GROUPS; j++) {
for (i = 0; i < INTRA_MODES - 1; ++i)
av1_diff_update_prob(&r, &fc->y_mode_prob[j][i], ACCT_STR);
}
#endif
for (i = 0; i < NMV_CONTEXTS; ++i)
read_mv_probs(&fc->nmvc[i], cm->allow_high_precision_mv, &r);
#if !CONFIG_EC_ADAPT
read_ext_tx_probs(fc, &r);
#endif // EC_ADAPT
#if CONFIG_SUPERTX
if (!xd->lossless[0]) read_supertx_probs(fc, &r);
#endif
#if CONFIG_GLOBAL_MOTION
read_global_motion(cm, &r);
#endif
}
#if !CONFIG_EC_ADAPT
av1_coef_head_cdfs(fc);
/* Make tail distribution from head */
av1_coef_pareto_cdfs(fc);
for (i = 0; i < NMV_CONTEXTS; ++i) av1_set_mv_cdfs(&fc->nmvc[i]);
av1_set_mode_cdfs(cm);
#endif // !CONFIG_EC_ADAPT
return aom_reader_has_error(&r);
}
#ifdef NDEBUG
#define debug_check_frame_counts(cm) (void)0
#else // !NDEBUG
// Counts should only be incremented when frame_parallel_decoding_mode and
// error_resilient_mode are disabled.
static void debug_check_frame_counts(const AV1_COMMON *const cm) {
FRAME_COUNTS zero_counts;
av1_zero(zero_counts);
assert(cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD ||
cm->error_resilient_mode);
assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode,
sizeof(cm->counts.y_mode)));
assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode,
sizeof(cm->counts.uv_mode)));
assert(!memcmp(cm->counts.partition, zero_counts.partition,
sizeof(cm->counts.partition)));
assert(!memcmp(cm->counts.coef, zero_counts.coef, sizeof(cm->counts.coef)));
assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch,
sizeof(cm->counts.eob_branch)));
assert(!memcmp(cm->counts.blockz_count, zero_counts.blockz_count,
sizeof(cm->counts.blockz_count)));
assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp,
sizeof(cm->counts.switchable_interp)));
assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode,
sizeof(cm->counts.inter_mode)));
#if CONFIG_EXT_INTER
assert(!memcmp(cm->counts.inter_compound_mode,
zero_counts.inter_compound_mode,
sizeof(cm->counts.inter_compound_mode)));
#if CONFIG_INTERINTRA
assert(!memcmp(cm->counts.interintra, zero_counts.interintra,
sizeof(cm->counts.interintra)));
#if CONFIG_WEDGE
assert(!memcmp(cm->counts.wedge_interintra, zero_counts.wedge_interintra,
sizeof(cm->counts.wedge_interintra)));
#endif // CONFIG_WEDGE
#endif // CONFIG_INTERINTRA
assert(!memcmp(cm->counts.compound_interinter,
zero_counts.compound_interinter,
sizeof(cm->counts.compound_interinter)));
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
assert(!memcmp(cm->counts.motion_mode, zero_counts.motion_mode,
sizeof(cm->counts.motion_mode)));
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter,
sizeof(cm->counts.intra_inter)));
assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter,
sizeof(cm->counts.comp_inter)));
assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref,
sizeof(cm->counts.single_ref)));
assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref,
sizeof(cm->counts.comp_ref)));
#if CONFIG_EXT_REFS
assert(!memcmp(cm->counts.comp_bwdref, zero_counts.comp_bwdref,
sizeof(cm->counts.comp_bwdref)));
#endif // CONFIG_EXT_REFS
assert(!memcmp(&cm->counts.tx_size, &zero_counts.tx_size,
sizeof(cm->counts.tx_size)));
assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip)));
assert(
!memcmp(&cm->counts.mv[0], &zero_counts.mv[0], sizeof(cm->counts.mv[0])));
assert(
!memcmp(&cm->counts.mv[1], &zero_counts.mv[1], sizeof(cm->counts.mv[0])));
assert(!memcmp(cm->counts.inter_ext_tx, zero_counts.inter_ext_tx,
sizeof(cm->counts.inter_ext_tx)));
assert(!memcmp(cm->counts.intra_ext_tx, zero_counts.intra_ext_tx,
sizeof(cm->counts.intra_ext_tx)));
}
#endif // NDEBUG
static struct aom_read_bit_buffer *init_read_bit_buffer(
AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data,
const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]) {
rb->bit_offset = 0;
rb->error_handler = error_handler;
rb->error_handler_data = &pbi->common;
if (pbi->decrypt_cb) {
const int n = (int)AOMMIN(MAX_AV1_HEADER_SIZE, data_end - data);
pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
rb->bit_buffer = clear_data;
rb->bit_buffer_end = clear_data + n;
} else {
rb->bit_buffer = data;
rb->bit_buffer_end = data_end;
}
return rb;
}
//------------------------------------------------------------------------------
int av1_read_sync_code(struct aom_read_bit_buffer *const rb) {
return aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_0 &&
aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_1 &&
aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_2;
}
void av1_read_frame_size(struct aom_read_bit_buffer *rb, int *width,
int *height) {
*width = aom_rb_read_literal(rb, 16) + 1;
*height = aom_rb_read_literal(rb, 16) + 1;
}
BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) {
int profile = aom_rb_read_bit(rb);
profile |= aom_rb_read_bit(rb) << 1;
if (profile > 2) profile += aom_rb_read_bit(rb);
return (BITSTREAM_PROFILE)profile;
}
#if CONFIG_EC_ADAPT
static void make_update_tile_list_dec(AV1Decoder *pbi, int tile_rows,
int tile_cols, FRAME_CONTEXT *ec_ctxs[]) {
int i;
for (i = 0; i < tile_rows * tile_cols; ++i)
ec_ctxs[i] = &pbi->tile_data[i].tctx;
}
#endif
void av1_decode_frame(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end, const uint8_t **p_data_end) {
AV1_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
struct aom_read_bit_buffer rb;
int context_updated = 0;
uint8_t clear_data[MAX_AV1_HEADER_SIZE];
size_t first_partition_size;
YV12_BUFFER_CONFIG *new_fb;
#if CONFIG_EXT_REFS || CONFIG_TEMPMV_SIGNALING
RefBuffer *last_fb_ref_buf = &cm->frame_refs[LAST_FRAME - LAST_FRAME];
#endif // CONFIG_EXT_REFS || CONFIG_TEMPMV_SIGNALING
#if CONFIG_ADAPT_SCAN
av1_deliver_eob_threshold(cm, xd);
#endif
#if CONFIG_BITSTREAM_DEBUG
bitstream_queue_set_frame_read(cm->current_video_frame * 2 + cm->show_frame);
#endif
first_partition_size = read_uncompressed_header(
pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data));
#if CONFIG_EXT_TILE
// If cm->tile_encoding_mode == TILE_NORMAL, the independent decoding of a
// single tile or a section of a frame is not allowed.
if (!cm->tile_encoding_mode &&
(pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) {
pbi->dec_tile_row = -1;
pbi->dec_tile_col = -1;
}
#endif // CONFIG_EXT_TILE
#if CONFIG_TILE_GROUPS
pbi->first_partition_size = first_partition_size;
pbi->uncomp_hdr_size = aom_rb_bytes_read(&rb);
#endif
new_fb = get_frame_new_buffer(cm);
xd->cur_buf = new_fb;
#if CONFIG_INTRABC
#if CONFIG_HIGHBITDEPTH
av1_setup_scale_factors_for_frame(
&xd->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height,
xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height,
cm->use_highbitdepth);
#else
av1_setup_scale_factors_for_frame(
&xd->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height,
xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height);
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_INTRABC
#if CONFIG_GLOBAL_MOTION
int i;
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
set_default_warp_params(&cm->global_motion[i]);
set_default_warp_params(&cm->cur_frame->global_motion[i]);
}
xd->global_motion = cm->global_motion;
#endif // CONFIG_GLOBAL_MOTION
if (!first_partition_size) {
// showing a frame directly
*p_data_end = data + aom_rb_bytes_read(&rb);
return;
}
data += aom_rb_bytes_read(&rb);
if (!read_is_valid(data, first_partition_size, data_end))
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt header length");
cm->setup_mi(cm);
#if CONFIG_EXT_REFS || CONFIG_TEMPMV_SIGNALING
// NOTE(zoeliu): As cm->prev_frame can take neither a frame of
// show_exisiting_frame=1, nor can it take a frame not used as
// a reference, it is probable that by the time it is being
// referred to, the frame buffer it originally points to may
// already get expired and have been reassigned to the current
// newly coded frame. Hence, we need to check whether this is
// the case, and if yes, we have 2 choices:
// (1) Simply disable the use of previous frame mvs; or
// (2) Have cm->prev_frame point to one reference frame buffer,
// e.g. LAST_FRAME.
if (!dec_is_ref_frame_buf(pbi, cm->prev_frame)) {
// Reassign the LAST_FRAME buffer to cm->prev_frame.
cm->prev_frame = last_fb_ref_buf->idx != INVALID_IDX
? &cm->buffer_pool->frame_bufs[last_fb_ref_buf->idx]
: NULL;
}
#endif // CONFIG_EXT_REFS || CONFIG_TEMPMV_SIGNALING
#if CONFIG_TEMPMV_SIGNALING
if (cm->use_prev_frame_mvs) {
assert(!cm->error_resilient_mode && cm->prev_frame &&
cm->width == last_fb_ref_buf->buf->y_width &&
cm->height == last_fb_ref_buf->buf->y_height &&
!cm->prev_frame->intra_only);
}
#else
cm->use_prev_frame_mvs = !cm->error_resilient_mode && cm->prev_frame &&
cm->width == cm->prev_frame->buf.y_crop_width &&
cm->height == cm->prev_frame->buf.y_crop_height &&
!cm->last_intra_only && cm->last_show_frame &&
(cm->last_frame_type != KEY_FRAME);
#endif // CONFIG_TEMPMV_SIGNALING
av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
*cm->fc = cm->frame_contexts[cm->frame_context_idx];
cm->pre_fc = &cm->frame_contexts[cm->frame_context_idx];
if (!cm->fc->initialized)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Uninitialized entropy context.");
av1_zero(cm->counts);
xd->corrupted = 0;
new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
if (new_fb->corrupted)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data header is corrupted.");
if (cm->lf.filter_level && !cm->skip_loop_filter) {
av1_loop_filter_frame_init(cm, cm->lf.filter_level);
}
// If encoded in frame parallel mode, frame context is ready after decoding
// the frame header.
if (cm->frame_parallel_decode &&
cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD) {
AVxWorker *const worker = pbi->frame_worker_owner;
FrameWorkerData *const frame_worker_data = worker->data1;
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD) {
context_updated = 1;
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
}
av1_frameworker_lock_stats(worker);
pbi->cur_buf->row = -1;
pbi->cur_buf->col = -1;
frame_worker_data->frame_context_ready = 1;
// Signal the main thread that context is ready.
av1_frameworker_signal_stats(worker);
av1_frameworker_unlock_stats(worker);
}
if (pbi->max_threads > 1 && !CONFIG_CB4X4 &&
#if CONFIG_EXT_TILE
pbi->dec_tile_col < 0 && // Decoding all columns
#endif // CONFIG_EXT_TILE
cm->tile_cols > 1) {
// Multi-threaded tile decoder
*p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
if (!xd->corrupted) {
if (!cm->skip_loop_filter) {
// If multiple threads are used to decode tiles, then we use those
// threads to do parallel loopfiltering.
av1_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, cm->lf.filter_level,
0, 0, pbi->tile_workers, pbi->num_tile_workers,
&pbi->lf_row_sync);
}
} else {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data is corrupted.");
}
} else {
*p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
}
#if CONFIG_CDEF
if (!cm->skip_loop_filter) {
av1_cdef_frame(&pbi->cur_buf->buf, cm, &pbi->mb);
}
#endif // CONFIG_CDEF
#if CONFIG_LOOP_RESTORATION
if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
av1_loop_restoration_frame(new_fb, cm, cm->rst_info, 7, 0, NULL);
}
#endif // CONFIG_LOOP_RESTORATION
if (!xd->corrupted) {
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
#if CONFIG_EC_ADAPT
FRAME_CONTEXT **tile_ctxs = aom_malloc(cm->tile_rows * cm->tile_cols *
sizeof(&pbi->tile_data[0].tctx));
aom_cdf_prob **cdf_ptrs =
aom_malloc(cm->tile_rows * cm->tile_cols *
sizeof(&pbi->tile_data[0].tctx.partition_cdf[0][0]));
make_update_tile_list_dec(pbi, cm->tile_rows, cm->tile_cols, tile_ctxs);
#endif
av1_adapt_coef_probs(cm);
av1_adapt_intra_frame_probs(cm);
#if CONFIG_EC_ADAPT
av1_average_tile_coef_cdfs(pbi->common.fc, tile_ctxs, cdf_ptrs,
cm->tile_rows * cm->tile_cols);
av1_average_tile_intra_cdfs(pbi->common.fc, tile_ctxs, cdf_ptrs,
cm->tile_rows * cm->tile_cols);
#if CONFIG_PVQ
av1_average_tile_pvq_cdfs(pbi->common.fc, tile_ctxs,
cm->tile_rows * cm->tile_cols);
#endif // CONFIG_PVQ
#endif // CONFIG_EC_ADAPT
#if CONFIG_ADAPT_SCAN
av1_adapt_scan_order(cm);
#endif // CONFIG_ADAPT_SCAN
if (!frame_is_intra_only(cm)) {
av1_adapt_inter_frame_probs(cm);
av1_adapt_mv_probs(cm, cm->allow_high_precision_mv);
#if CONFIG_EC_ADAPT
av1_average_tile_inter_cdfs(&pbi->common, pbi->common.fc, tile_ctxs,
cdf_ptrs, cm->tile_rows * cm->tile_cols);
av1_average_tile_mv_cdfs(pbi->common.fc, tile_ctxs, cdf_ptrs,
cm->tile_rows * cm->tile_cols);
#endif
}
#if CONFIG_EC_ADAPT
aom_free(tile_ctxs);
aom_free(cdf_ptrs);
#endif
} else {
debug_check_frame_counts(cm);
}
} else {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data is corrupted.");
}
#if CONFIG_INSPECTION
if (pbi->inspect_cb != NULL) {
(*pbi->inspect_cb)(pbi, pbi->inspect_ctx);
}
#endif
// Non frame parallel update frame context here.
if (!cm->error_resilient_mode && !context_updated)
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
}