| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/encoder/context_tree.h" |
| #include "av1/encoder/encoder.h" |
| |
| static const BLOCK_SIZE square[MAX_SB_SIZE_LOG2 - 1] = { |
| #if CONFIG_CB4X4 |
| BLOCK_4X4, |
| #endif |
| BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64, |
| #if CONFIG_EXT_PARTITION |
| BLOCK_128X128, |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| |
| static void alloc_mode_context(AV1_COMMON *cm, int num_4x4_blk, |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_TYPE partition, |
| #endif |
| PICK_MODE_CONTEXT *ctx) { |
| const int num_blk = (num_4x4_blk < 4 ? 4 : num_4x4_blk); |
| const int num_pix = num_blk * tx_size_2d[0]; |
| int i; |
| #if CONFIG_CB4X4 && CONFIG_VAR_TX |
| ctx->num_4x4_blk = num_blk / 4; |
| #else |
| ctx->num_4x4_blk = num_blk; |
| #endif |
| |
| #if CONFIG_EXT_PARTITION_TYPES |
| ctx->partition = partition; |
| #endif |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| #if CONFIG_VAR_TX |
| CHECK_MEM_ERROR(cm, ctx->blk_skip[i], aom_calloc(num_blk, sizeof(uint8_t))); |
| #endif |
| CHECK_MEM_ERROR(cm, ctx->coeff[i], |
| aom_memalign(32, num_pix * sizeof(*ctx->coeff[i]))); |
| CHECK_MEM_ERROR(cm, ctx->qcoeff[i], |
| aom_memalign(32, num_pix * sizeof(*ctx->qcoeff[i]))); |
| CHECK_MEM_ERROR(cm, ctx->dqcoeff[i], |
| aom_memalign(32, num_pix * sizeof(*ctx->dqcoeff[i]))); |
| CHECK_MEM_ERROR(cm, ctx->eobs[i], |
| aom_memalign(32, num_blk * sizeof(*ctx->eobs[i]))); |
| #if CONFIG_LV_MAP |
| CHECK_MEM_ERROR( |
| cm, ctx->txb_entropy_ctx[i], |
| aom_memalign(32, num_blk * sizeof(*ctx->txb_entropy_ctx[i]))); |
| #endif |
| |
| #if CONFIG_PVQ |
| CHECK_MEM_ERROR(cm, ctx->pvq_ref_coeff[i], |
| aom_memalign(32, num_pix * sizeof(*ctx->pvq_ref_coeff[i]))); |
| #endif |
| } |
| |
| #if CONFIG_PALETTE |
| if (cm->allow_screen_content_tools) { |
| for (i = 0; i < 2; ++i) { |
| CHECK_MEM_ERROR( |
| cm, ctx->color_index_map[i], |
| aom_memalign(32, num_pix * sizeof(*ctx->color_index_map[i]))); |
| } |
| } |
| #endif // CONFIG_PALETTE |
| } |
| |
| static void free_mode_context(PICK_MODE_CONTEXT *ctx) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| #if CONFIG_VAR_TX |
| aom_free(ctx->blk_skip[i]); |
| ctx->blk_skip[i] = 0; |
| #endif |
| aom_free(ctx->coeff[i]); |
| ctx->coeff[i] = 0; |
| aom_free(ctx->qcoeff[i]); |
| ctx->qcoeff[i] = 0; |
| aom_free(ctx->dqcoeff[i]); |
| ctx->dqcoeff[i] = 0; |
| #if CONFIG_PVQ |
| aom_free(ctx->pvq_ref_coeff[i]); |
| ctx->pvq_ref_coeff[i] = 0; |
| #endif |
| aom_free(ctx->eobs[i]); |
| ctx->eobs[i] = 0; |
| #if CONFIG_LV_MAP |
| aom_free(ctx->txb_entropy_ctx[i]); |
| ctx->txb_entropy_ctx[i] = 0; |
| #endif |
| } |
| |
| #if CONFIG_PALETTE |
| for (i = 0; i < 2; ++i) { |
| aom_free(ctx->color_index_map[i]); |
| ctx->color_index_map[i] = 0; |
| } |
| #endif // CONFIG_PALETTE |
| } |
| |
| static void alloc_tree_contexts(AV1_COMMON *cm, PC_TREE *tree, |
| int num_4x4_blk) { |
| #if CONFIG_EXT_PARTITION_TYPES |
| alloc_mode_context(cm, num_4x4_blk, PARTITION_NONE, &tree->none); |
| alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_HORZ, &tree->horizontal[0]); |
| alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT, &tree->vertical[0]); |
| alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT, &tree->horizontal[1]); |
| alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT, &tree->vertical[1]); |
| |
| alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_HORZ_A, |
| &tree->horizontala[0]); |
| alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_HORZ_A, |
| &tree->horizontala[1]); |
| alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_HORZ_A, |
| &tree->horizontala[2]); |
| alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_HORZ_B, |
| &tree->horizontalb[0]); |
| alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_HORZ_B, |
| &tree->horizontalb[1]); |
| alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_HORZ_B, |
| &tree->horizontalb[2]); |
| alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_VERT_A, |
| &tree->verticala[0]); |
| alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_VERT_A, |
| &tree->verticala[1]); |
| alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT_A, |
| &tree->verticala[2]); |
| alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT_B, |
| &tree->verticalb[0]); |
| alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_VERT_B, |
| &tree->verticalb[1]); |
| alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_VERT_B, |
| &tree->verticalb[2]); |
| #ifdef CONFIG_SUPERTX |
| alloc_mode_context(cm, num_4x4_blk, PARTITION_HORZ, |
| &tree->horizontal_supertx); |
| alloc_mode_context(cm, num_4x4_blk, PARTITION_VERT, &tree->vertical_supertx); |
| alloc_mode_context(cm, num_4x4_blk, PARTITION_SPLIT, &tree->split_supertx); |
| alloc_mode_context(cm, num_4x4_blk, PARTITION_HORZ_A, |
| &tree->horizontala_supertx); |
| alloc_mode_context(cm, num_4x4_blk, PARTITION_HORZ_B, |
| &tree->horizontalb_supertx); |
| alloc_mode_context(cm, num_4x4_blk, PARTITION_VERT_A, |
| &tree->verticala_supertx); |
| alloc_mode_context(cm, num_4x4_blk, PARTITION_VERT_B, |
| &tree->verticalb_supertx); |
| #endif // CONFIG_SUPERTX |
| #else |
| alloc_mode_context(cm, num_4x4_blk, &tree->none); |
| alloc_mode_context(cm, num_4x4_blk / 2, &tree->horizontal[0]); |
| alloc_mode_context(cm, num_4x4_blk / 2, &tree->vertical[0]); |
| #ifdef CONFIG_SUPERTX |
| alloc_mode_context(cm, num_4x4_blk, &tree->horizontal_supertx); |
| alloc_mode_context(cm, num_4x4_blk, &tree->vertical_supertx); |
| alloc_mode_context(cm, num_4x4_blk, &tree->split_supertx); |
| #endif |
| |
| if (num_4x4_blk > 4) { |
| alloc_mode_context(cm, num_4x4_blk / 2, &tree->horizontal[1]); |
| alloc_mode_context(cm, num_4x4_blk / 2, &tree->vertical[1]); |
| } else { |
| memset(&tree->horizontal[1], 0, sizeof(tree->horizontal[1])); |
| memset(&tree->vertical[1], 0, sizeof(tree->vertical[1])); |
| } |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| } |
| |
| static void free_tree_contexts(PC_TREE *tree) { |
| #if CONFIG_EXT_PARTITION_TYPES |
| int i; |
| for (i = 0; i < 3; i++) { |
| free_mode_context(&tree->horizontala[i]); |
| free_mode_context(&tree->horizontalb[i]); |
| free_mode_context(&tree->verticala[i]); |
| free_mode_context(&tree->verticalb[i]); |
| } |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| free_mode_context(&tree->none); |
| free_mode_context(&tree->horizontal[0]); |
| free_mode_context(&tree->horizontal[1]); |
| free_mode_context(&tree->vertical[0]); |
| free_mode_context(&tree->vertical[1]); |
| #ifdef CONFIG_SUPERTX |
| free_mode_context(&tree->horizontal_supertx); |
| free_mode_context(&tree->vertical_supertx); |
| free_mode_context(&tree->split_supertx); |
| #if CONFIG_EXT_PARTITION_TYPES |
| free_mode_context(&tree->horizontala_supertx); |
| free_mode_context(&tree->horizontalb_supertx); |
| free_mode_context(&tree->verticala_supertx); |
| free_mode_context(&tree->verticalb_supertx); |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| #endif // CONFIG_SUPERTX |
| } |
| |
| // This function sets up a tree of contexts such that at each square |
| // partition level. There are contexts for none, horizontal, vertical, and |
| // split. Along with a block_size value and a selected block_size which |
| // represents the state of our search. |
| void av1_setup_pc_tree(AV1_COMMON *cm, ThreadData *td) { |
| int i, j; |
| // TODO(jingning): The pc_tree allocation is redundant. We can take out all |
| // the leaf nodes after cb4x4 mode is enabled. |
| #if CONFIG_CB4X4 |
| #if CONFIG_EXT_PARTITION |
| const int tree_nodes_inc = 1024; |
| #else |
| const int tree_nodes_inc = 256; |
| #endif // CONFIG_EXT_PARTITION |
| const int leaf_factor = 4; |
| #else |
| const int tree_nodes_inc = 0; |
| const int leaf_factor = 1; |
| #endif |
| #if CONFIG_EXT_PARTITION |
| const int leaf_nodes = 256 * leaf_factor; |
| const int tree_nodes = tree_nodes_inc + 256 + 64 + 16 + 4 + 1; |
| #else |
| const int leaf_nodes = 64 * leaf_factor; |
| const int tree_nodes = tree_nodes_inc + 64 + 16 + 4 + 1; |
| #endif // CONFIG_EXT_PARTITION |
| int pc_tree_index = 0; |
| PC_TREE *this_pc; |
| PICK_MODE_CONTEXT *this_leaf; |
| int square_index = 1; |
| int nodes; |
| |
| aom_free(td->leaf_tree); |
| CHECK_MEM_ERROR(cm, td->leaf_tree, |
| aom_calloc(leaf_nodes, sizeof(*td->leaf_tree))); |
| aom_free(td->pc_tree); |
| CHECK_MEM_ERROR(cm, td->pc_tree, |
| aom_calloc(tree_nodes, sizeof(*td->pc_tree))); |
| |
| this_pc = &td->pc_tree[0]; |
| this_leaf = &td->leaf_tree[0]; |
| |
| // 4x4 blocks smaller than 8x8 but in the same 8x8 block share the same |
| // context so we only need to allocate 1 for each 8x8 block. |
| for (i = 0; i < leaf_nodes; ++i) { |
| #if CONFIG_EXT_PARTITION_TYPES |
| alloc_mode_context(cm, 4, PARTITION_NONE, &td->leaf_tree[i]); |
| #else |
| alloc_mode_context(cm, 16, &td->leaf_tree[i]); |
| #endif |
| } |
| |
| // Sets up all the leaf nodes in the tree. |
| for (pc_tree_index = 0; pc_tree_index < leaf_nodes; ++pc_tree_index) { |
| PC_TREE *const tree = &td->pc_tree[pc_tree_index]; |
| tree->block_size = square[0]; |
| #if CONFIG_CB4X4 |
| alloc_tree_contexts(cm, tree, 16); |
| #else |
| alloc_tree_contexts(cm, tree, 4); |
| #endif |
| tree->leaf_split[0] = this_leaf++; |
| for (j = 1; j < 4; j++) tree->leaf_split[j] = tree->leaf_split[0]; |
| } |
| |
| // Each node has 4 leaf nodes, fill each block_size level of the tree |
| // from leafs to the root. |
| for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) { |
| for (i = 0; i < nodes; ++i) { |
| PC_TREE *const tree = &td->pc_tree[pc_tree_index]; |
| #if CONFIG_CB4X4 |
| alloc_tree_contexts(cm, tree, 16 << (2 * square_index)); |
| #else |
| alloc_tree_contexts(cm, tree, 4 << (2 * square_index)); |
| #endif |
| tree->block_size = square[square_index]; |
| for (j = 0; j < 4; j++) tree->split[j] = this_pc++; |
| ++pc_tree_index; |
| } |
| ++square_index; |
| } |
| |
| // Set up the root node for the largest superblock size |
| i = MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2; |
| td->pc_root[i] = &td->pc_tree[tree_nodes - 1]; |
| td->pc_root[i]->none.best_mode_index = 2; |
| // Set up the root nodes for the rest of the possible superblock sizes |
| while (--i >= 0) { |
| td->pc_root[i] = td->pc_root[i + 1]->split[0]; |
| td->pc_root[i]->none.best_mode_index = 2; |
| } |
| } |
| |
| void av1_free_pc_tree(ThreadData *td) { |
| #if CONFIG_CB4X4 |
| #if CONFIG_EXT_PARTITION |
| const int tree_nodes_inc = 1024; |
| #else |
| const int tree_nodes_inc = 256; |
| #endif // CONFIG_EXT_PARTITION |
| const int leaf_factor = 4; |
| #else |
| const int tree_nodes_inc = 0; |
| const int leaf_factor = 1; |
| #endif |
| |
| #if CONFIG_EXT_PARTITION |
| const int leaf_nodes = 256 * leaf_factor; |
| const int tree_nodes = tree_nodes_inc + 256 + 64 + 16 + 4 + 1; |
| #else |
| const int leaf_nodes = 64 * leaf_factor; |
| const int tree_nodes = tree_nodes_inc + 64 + 16 + 4 + 1; |
| #endif // CONFIG_EXT_PARTITION |
| int i; |
| |
| // Set up all 4x4 mode contexts |
| for (i = 0; i < leaf_nodes; ++i) free_mode_context(&td->leaf_tree[i]); |
| |
| // Sets up all the leaf nodes in the tree. |
| for (i = 0; i < tree_nodes; ++i) free_tree_contexts(&td->pc_tree[i]); |
| |
| aom_free(td->pc_tree); |
| td->pc_tree = NULL; |
| aom_free(td->leaf_tree); |
| td->leaf_tree = NULL; |
| } |