blob: 65db04640ec2d348f1c72fa100b96d06dee321ab [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include "./av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/bitops.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/tokenize.h"
#define RD_THRESH_POW 1.25
// Factor to weigh the rate for switchable interp filters.
#define SWITCHABLE_INTERP_RATE_FACTOR 1
// The baseline rd thresholds for breaking out of the rd loop for
// certain modes are assumed to be based on 8x8 blocks.
// This table is used to correct for block size.
// The factors here are << 2 (2 = x0.5, 32 = x8 etc).
static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES] = {
#if CONFIG_CB4X4
2, 2, 2,
#endif
2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32,
#if CONFIG_EXT_PARTITION
48, 48, 64
#endif // CONFIG_EXT_PARTITION
};
static void fill_mode_costs(AV1_COMP *cpi) {
const FRAME_CONTEXT *const fc = cpi->common.fc;
int i, j;
for (i = 0; i < INTRA_MODES; ++i)
for (j = 0; j < INTRA_MODES; ++j)
av1_cost_tokens(cpi->y_mode_costs[i][j], av1_kf_y_mode_prob[i][j],
av1_intra_mode_tree);
for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
av1_cost_tokens(cpi->mbmode_cost[i], fc->y_mode_prob[i],
av1_intra_mode_tree);
for (i = 0; i < INTRA_MODES; ++i)
av1_cost_tokens(cpi->intra_uv_mode_cost[i], fc->uv_mode_prob[i],
av1_intra_mode_tree);
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
av1_cost_tokens(cpi->switchable_interp_costs[i],
fc->switchable_interp_prob[i], av1_switchable_interp_tree);
#if CONFIG_PALETTE
for (i = 0; i < PALETTE_BLOCK_SIZES; ++i) {
av1_cost_tokens(cpi->palette_y_size_cost[i],
av1_default_palette_y_size_prob[i], av1_palette_size_tree);
av1_cost_tokens(cpi->palette_uv_size_cost[i],
av1_default_palette_uv_size_prob[i], av1_palette_size_tree);
}
for (i = 0; i < PALETTE_SIZES; ++i) {
for (j = 0; j < PALETTE_COLOR_INDEX_CONTEXTS; ++j) {
av1_cost_tokens(cpi->palette_y_color_cost[i][j],
av1_default_palette_y_color_index_prob[i][j],
av1_palette_color_index_tree[i]);
av1_cost_tokens(cpi->palette_uv_color_cost[i][j],
av1_default_palette_uv_color_index_prob[i][j],
av1_palette_color_index_tree[i]);
}
}
#endif // CONFIG_PALETTE
for (i = 0; i < MAX_TX_DEPTH; ++i)
for (j = 0; j < TX_SIZE_CONTEXTS; ++j)
av1_cost_tokens(cpi->tx_size_cost[i][j], fc->tx_size_probs[i][j],
av1_tx_size_tree[i]);
#if CONFIG_EXT_TX
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
int s;
for (s = 1; s < EXT_TX_SETS_INTER; ++s) {
if (use_inter_ext_tx_for_txsize[s][i]) {
av1_cost_tokens(cpi->inter_tx_type_costs[s][i],
fc->inter_ext_tx_prob[s][i], av1_ext_tx_inter_tree[s]);
}
}
for (s = 1; s < EXT_TX_SETS_INTRA; ++s) {
if (use_intra_ext_tx_for_txsize[s][i]) {
for (j = 0; j < INTRA_MODES; ++j)
av1_cost_tokens(cpi->intra_tx_type_costs[s][i][j],
fc->intra_ext_tx_prob[s][i][j],
av1_ext_tx_intra_tree[s]);
}
}
}
#else
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (j = 0; j < TX_TYPES; ++j)
av1_cost_tokens(cpi->intra_tx_type_costs[i][j],
fc->intra_ext_tx_prob[i][j], av1_ext_tx_tree);
}
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
av1_cost_tokens(cpi->inter_tx_type_costs[i], fc->inter_ext_tx_prob[i],
av1_ext_tx_tree);
}
#endif // CONFIG_EXT_TX
#if CONFIG_EXT_INTRA
#if CONFIG_INTRA_INTERP
for (i = 0; i < INTRA_FILTERS + 1; ++i)
av1_cost_tokens(cpi->intra_filter_cost[i], fc->intra_filter_probs[i],
av1_intra_filter_tree);
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA
#if CONFIG_LOOP_RESTORATION
av1_cost_tokens(cpi->switchable_restore_cost, fc->switchable_restore_prob,
av1_switchable_restore_tree);
#endif // CONFIG_LOOP_RESTORATION
#if CONFIG_GLOBAL_MOTION
av1_cost_tokens(cpi->gmtype_cost, fc->global_motion_types_prob,
av1_global_motion_types_tree);
#endif // CONFIG_GLOBAL_MOTION
}
void av1_fill_token_costs(av1_coeff_cost *c,
av1_coeff_probs_model (*p)[PLANE_TYPES]) {
int i, j, k, l;
TX_SIZE t;
for (t = 0; t < TX_SIZES; ++t)
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
aom_prob probs[ENTROPY_NODES];
av1_model_to_full_probs(p[t][i][j][k][l], probs);
av1_cost_tokens((int *)c[t][i][j][k][0][l], probs, av1_coef_tree);
av1_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs,
av1_coef_tree);
assert(c[t][i][j][k][0][l][EOB_TOKEN] ==
c[t][i][j][k][1][l][EOB_TOKEN]);
}
}
// Values are now correlated to quantizer.
static int sad_per_bit16lut_8[QINDEX_RANGE];
static int sad_per_bit4lut_8[QINDEX_RANGE];
#if CONFIG_HIGHBITDEPTH
static int sad_per_bit16lut_10[QINDEX_RANGE];
static int sad_per_bit4lut_10[QINDEX_RANGE];
static int sad_per_bit16lut_12[QINDEX_RANGE];
static int sad_per_bit4lut_12[QINDEX_RANGE];
#endif
static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range,
aom_bit_depth_t bit_depth) {
int i;
// Initialize the sad lut tables using a formulaic calculation for now.
// This is to make it easier to resolve the impact of experimental changes
// to the quantizer tables.
for (i = 0; i < range; i++) {
const double q = av1_convert_qindex_to_q(i, bit_depth);
bit16lut[i] = (int)(0.0418 * q + 2.4107);
bit4lut[i] = (int)(0.063 * q + 2.742);
}
}
void av1_init_me_luts(void) {
init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE,
AOM_BITS_8);
#if CONFIG_HIGHBITDEPTH
init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE,
AOM_BITS_10);
init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE,
AOM_BITS_12);
#endif
}
static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12,
8, 8, 4, 4, 2, 2, 1, 0 };
static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = {
128, 144, 128, 128, 144,
#if CONFIG_EXT_REFS
// TODO(zoeliu): To adjust further following factor values.
128, 128, 128
// TODO(weitinglin): We should investigate if the values should be the same
// as the value used by OVERLAY frame
,
144
#endif // CONFIG_EXT_REFS
};
int av1_compute_rd_mult(const AV1_COMP *cpi, int qindex) {
const int64_t q = av1_dc_quant(qindex, 0, cpi->common.bit_depth);
#if CONFIG_HIGHBITDEPTH
int64_t rdmult = 0;
switch (cpi->common.bit_depth) {
case AOM_BITS_8: rdmult = 88 * q * q / 24; break;
case AOM_BITS_10: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 4); break;
case AOM_BITS_12: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 8); break;
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1;
}
#else
int64_t rdmult = 88 * q * q / 24;
#endif // CONFIG_HIGHBITDEPTH
if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index];
const int boost_index = AOMMIN(15, (cpi->rc.gfu_boost / 100));
rdmult = (rdmult * rd_frame_type_factor[frame_type]) >> 7;
rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7);
}
if (rdmult < 1) rdmult = 1;
return (int)rdmult;
}
static int compute_rd_thresh_factor(int qindex, aom_bit_depth_t bit_depth) {
double q;
#if CONFIG_HIGHBITDEPTH
switch (bit_depth) {
case AOM_BITS_8: q = av1_dc_quant(qindex, 0, AOM_BITS_8) / 4.0; break;
case AOM_BITS_10: q = av1_dc_quant(qindex, 0, AOM_BITS_10) / 16.0; break;
case AOM_BITS_12: q = av1_dc_quant(qindex, 0, AOM_BITS_12) / 64.0; break;
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1;
}
#else
(void)bit_depth;
q = av1_dc_quant(qindex, 0, AOM_BITS_8) / 4.0;
#endif // CONFIG_HIGHBITDEPTH
// TODO(debargha): Adjust the function below.
return AOMMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
}
void av1_initialize_me_consts(const AV1_COMP *cpi, MACROBLOCK *x, int qindex) {
#if CONFIG_HIGHBITDEPTH
switch (cpi->common.bit_depth) {
case AOM_BITS_8:
x->sadperbit16 = sad_per_bit16lut_8[qindex];
x->sadperbit4 = sad_per_bit4lut_8[qindex];
break;
case AOM_BITS_10:
x->sadperbit16 = sad_per_bit16lut_10[qindex];
x->sadperbit4 = sad_per_bit4lut_10[qindex];
break;
case AOM_BITS_12:
x->sadperbit16 = sad_per_bit16lut_12[qindex];
x->sadperbit4 = sad_per_bit4lut_12[qindex];
break;
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
}
#else
(void)cpi;
x->sadperbit16 = sad_per_bit16lut_8[qindex];
x->sadperbit4 = sad_per_bit4lut_8[qindex];
#endif // CONFIG_HIGHBITDEPTH
}
static void set_block_thresholds(const AV1_COMMON *cm, RD_OPT *rd) {
int i, bsize, segment_id;
for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) {
const int qindex =
clamp(av1_get_qindex(&cm->seg, segment_id, cm->base_qindex) +
cm->y_dc_delta_q,
0, MAXQ);
const int q = compute_rd_thresh_factor(qindex, cm->bit_depth);
for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) {
// Threshold here seems unnecessarily harsh but fine given actual
// range of values used for cpi->sf.thresh_mult[].
const int t = q * rd_thresh_block_size_factor[bsize];
const int thresh_max = INT_MAX / t;
#if CONFIG_CB4X4
for (i = 0; i < MAX_MODES; ++i)
rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max
? rd->thresh_mult[i] * t / 4
: INT_MAX;
#else
if (bsize >= BLOCK_8X8) {
for (i = 0; i < MAX_MODES; ++i)
rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max
? rd->thresh_mult[i] * t / 4
: INT_MAX;
} else {
for (i = 0; i < MAX_REFS; ++i)
rd->threshes[segment_id][bsize][i] =
rd->thresh_mult_sub8x8[i] < thresh_max
? rd->thresh_mult_sub8x8[i] * t / 4
: INT_MAX;
}
#endif
}
}
}
void av1_set_mvcost(MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, int ref,
int ref_mv_idx) {
MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext;
int8_t rf_type = av1_ref_frame_type(x->e_mbd.mi[0]->mbmi.ref_frame);
int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type],
mbmi_ext->ref_mv_stack[rf_type], ref, ref_mv_idx);
(void)ref_frame;
x->mvcost = x->mv_cost_stack[nmv_ctx];
x->nmvjointcost = x->nmv_vec_cost[nmv_ctx];
x->mvsadcost = x->mvcost;
x->nmvjointsadcost = x->nmvjointcost;
}
void av1_initialize_rd_consts(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
RD_OPT *const rd = &cpi->rd;
int i;
int nmv_ctx;
aom_clear_system_state();
rd->RDDIV = RDDIV_BITS; // In bits (to multiply D by 128).
rd->RDMULT = av1_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q);
set_error_per_bit(x, rd->RDMULT);
set_block_thresholds(cm, rd);
for (nmv_ctx = 0; nmv_ctx < NMV_CONTEXTS; ++nmv_ctx) {
av1_build_nmv_cost_table(
x->nmv_vec_cost[nmv_ctx],
cm->allow_high_precision_mv ? x->nmvcost_hp[nmv_ctx]
: x->nmvcost[nmv_ctx],
&cm->fc->nmvc[nmv_ctx], cm->allow_high_precision_mv);
}
x->mvcost = x->mv_cost_stack[0];
x->nmvjointcost = x->nmv_vec_cost[0];
x->mvsadcost = x->mvcost;
x->nmvjointsadcost = x->nmvjointcost;
if (cpi->oxcf.pass != 1) {
av1_fill_token_costs(x->token_costs, cm->fc->coef_probs);
if (cpi->sf.partition_search_type != VAR_BASED_PARTITION ||
cm->frame_type == KEY_FRAME) {
#if CONFIG_EXT_PARTITION_TYPES
for (i = 0; i < PARTITION_PLOFFSET; ++i)
av1_cost_tokens(cpi->partition_cost[i], cm->fc->partition_prob[i],
av1_partition_tree);
for (; i < PARTITION_CONTEXTS_PRIMARY; ++i)
av1_cost_tokens(cpi->partition_cost[i], cm->fc->partition_prob[i],
av1_ext_partition_tree);
#else
for (i = 0; i < PARTITION_CONTEXTS_PRIMARY; ++i)
av1_cost_tokens(cpi->partition_cost[i], cm->fc->partition_prob[i],
av1_partition_tree);
#endif // CONFIG_EXT_PARTITION_TYPES
#if CONFIG_UNPOISON_PARTITION_CTX
for (; i < PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES; ++i) {
aom_prob p = cm->fc->partition_prob[i][PARTITION_VERT];
assert(p > 0);
cpi->partition_cost[i][PARTITION_NONE] = INT_MAX;
cpi->partition_cost[i][PARTITION_HORZ] = INT_MAX;
cpi->partition_cost[i][PARTITION_VERT] = av1_cost_bit(p, 0);
cpi->partition_cost[i][PARTITION_SPLIT] = av1_cost_bit(p, 1);
}
for (; i < PARTITION_CONTEXTS_PRIMARY + 2 * PARTITION_BLOCK_SIZES; ++i) {
aom_prob p = cm->fc->partition_prob[i][PARTITION_HORZ];
assert(p > 0);
cpi->partition_cost[i][PARTITION_NONE] = INT_MAX;
cpi->partition_cost[i][PARTITION_HORZ] = av1_cost_bit(p, 0);
cpi->partition_cost[i][PARTITION_VERT] = INT_MAX;
cpi->partition_cost[i][PARTITION_SPLIT] = av1_cost_bit(p, 1);
}
cpi->partition_cost[PARTITION_CONTEXTS][PARTITION_NONE] = INT_MAX;
cpi->partition_cost[PARTITION_CONTEXTS][PARTITION_HORZ] = INT_MAX;
cpi->partition_cost[PARTITION_CONTEXTS][PARTITION_VERT] = INT_MAX;
cpi->partition_cost[PARTITION_CONTEXTS][PARTITION_SPLIT] = 0;
#endif // CONFIG_UNPOISON_PARTITION_CTX
}
fill_mode_costs(cpi);
if (!frame_is_intra_only(cm)) {
for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) {
cpi->newmv_mode_cost[i][0] = av1_cost_bit(cm->fc->newmv_prob[i], 0);
cpi->newmv_mode_cost[i][1] = av1_cost_bit(cm->fc->newmv_prob[i], 1);
}
for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i) {
cpi->zeromv_mode_cost[i][0] = av1_cost_bit(cm->fc->zeromv_prob[i], 0);
cpi->zeromv_mode_cost[i][1] = av1_cost_bit(cm->fc->zeromv_prob[i], 1);
}
for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) {
cpi->refmv_mode_cost[i][0] = av1_cost_bit(cm->fc->refmv_prob[i], 0);
cpi->refmv_mode_cost[i][1] = av1_cost_bit(cm->fc->refmv_prob[i], 1);
}
for (i = 0; i < DRL_MODE_CONTEXTS; ++i) {
cpi->drl_mode_cost0[i][0] = av1_cost_bit(cm->fc->drl_prob[i], 0);
cpi->drl_mode_cost0[i][1] = av1_cost_bit(cm->fc->drl_prob[i], 1);
}
#if CONFIG_EXT_INTER
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
av1_cost_tokens((int *)cpi->inter_compound_mode_cost[i],
cm->fc->inter_compound_mode_probs[i],
av1_inter_compound_mode_tree);
#if CONFIG_INTERINTRA
for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
av1_cost_tokens((int *)cpi->interintra_mode_cost[i],
cm->fc->interintra_mode_prob[i],
av1_interintra_mode_tree);
#endif // CONFIG_INTERINTRA
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
for (i = BLOCK_8X8; i < BLOCK_SIZES; i++) {
av1_cost_tokens((int *)cpi->motion_mode_cost[i],
cm->fc->motion_mode_prob[i], av1_motion_mode_tree);
}
#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
for (i = BLOCK_8X8; i < BLOCK_SIZES; i++) {
cpi->motion_mode_cost1[i][0] = av1_cost_bit(cm->fc->obmc_prob[i], 0);
cpi->motion_mode_cost1[i][1] = av1_cost_bit(cm->fc->obmc_prob[i], 1);
}
#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
}
}
}
static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) {
// NOTE: The tables below must be of the same size.
// The functions described below are sampled at the four most significant
// bits of x^2 + 8 / 256.
// Normalized rate:
// This table models the rate for a Laplacian source with given variance
// when quantized with a uniform quantizer with given stepsize. The
// closed form expression is:
// Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
// where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
// and H(x) is the binary entropy function.
static const int rate_tab_q10[] = {
65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142,
4044, 3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186,
3133, 3037, 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353,
2290, 2232, 2179, 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651,
1608, 1530, 1460, 1398, 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963,
911, 864, 821, 781, 745, 680, 623, 574, 530, 490, 455, 424,
395, 345, 304, 269, 239, 213, 190, 171, 154, 126, 104, 87,
73, 61, 52, 44, 38, 28, 21, 16, 12, 10, 8, 6,
5, 3, 2, 1, 1, 1, 0, 0,
};
// Normalized distortion:
// This table models the normalized distortion for a Laplacian source
// with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expression is:
// Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
// where x = qpstep / sqrt(variance).
// Note the actual distortion is Dn * variance.
static const int dist_tab_q10[] = {
0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5,
5, 6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17,
18, 21, 24, 26, 29, 31, 34, 36, 39, 44, 49, 54,
59, 64, 69, 73, 78, 88, 97, 106, 115, 124, 133, 142,
151, 167, 184, 200, 215, 231, 245, 260, 274, 301, 327, 351,
375, 397, 418, 439, 458, 495, 528, 559, 587, 613, 637, 659,
680, 717, 749, 777, 801, 823, 842, 859, 874, 899, 919, 936,
949, 960, 969, 977, 983, 994, 1001, 1006, 1010, 1013, 1015, 1017,
1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024,
};
static const int xsq_iq_q10[] = {
0, 4, 8, 12, 16, 20, 24, 28, 32,
40, 48, 56, 64, 72, 80, 88, 96, 112,
128, 144, 160, 176, 192, 208, 224, 256, 288,
320, 352, 384, 416, 448, 480, 544, 608, 672,
736, 800, 864, 928, 992, 1120, 1248, 1376, 1504,
1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296,
3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136,
7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328,
16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736,
36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696,
81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808,
180192, 196576, 212960, 229344, 245728,
};
const int tmp = (xsq_q10 >> 2) + 8;
const int k = get_msb(tmp) - 3;
const int xq = (k << 3) + ((tmp >> k) & 0x7);
const int one_q10 = 1 << 10;
const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k);
const int b_q10 = one_q10 - a_q10;
*r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
*d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
}
void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n_log2,
unsigned int qstep, int *rate,
int64_t *dist) {
// This function models the rate and distortion for a Laplacian
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expressions are in:
// Hang and Chen, "Source Model for transform video coder and its
// application - Part I: Fundamental Theory", IEEE Trans. Circ.
// Sys. for Video Tech., April 1997.
if (var == 0) {
*rate = 0;
*dist = 0;
} else {
int d_q10, r_q10;
static const uint32_t MAX_XSQ_Q10 = 245727;
const uint64_t xsq_q10_64 =
(((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var;
const int xsq_q10 = (int)AOMMIN(xsq_q10_64, MAX_XSQ_Q10);
model_rd_norm(xsq_q10, &r_q10, &d_q10);
*rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - AV1_PROB_COST_SHIFT);
*dist = (var * (int64_t)d_q10 + 512) >> 10;
}
}
static void get_entropy_contexts_plane(
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, const struct macroblockd_plane *pd,
ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE],
ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE]) {
const int num_4x4_w = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int num_4x4_h = block_size_high[plane_bsize] >> tx_size_high_log2[0];
const ENTROPY_CONTEXT *const above = pd->above_context;
const ENTROPY_CONTEXT *const left = pd->left_context;
int i;
#if CONFIG_CB4X4
switch (tx_size) {
case TX_2X2:
memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
break;
case TX_4X4:
for (i = 0; i < num_4x4_w; i += 2)
t_above[i] = !!*(const uint16_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 2)
t_left[i] = !!*(const uint16_t *)&left[i];
break;
case TX_8X8:
for (i = 0; i < num_4x4_w; i += 4)
t_above[i] = !!*(const uint32_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 4)
t_left[i] = !!*(const uint32_t *)&left[i];
break;
case TX_16X16:
for (i = 0; i < num_4x4_w; i += 8)
t_above[i] = !!*(const uint64_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 8)
t_left[i] = !!*(const uint64_t *)&left[i];
break;
case TX_32X32:
for (i = 0; i < num_4x4_w; i += 16)
t_above[i] =
!!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8]);
for (i = 0; i < num_4x4_h; i += 16)
t_left[i] =
!!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8]);
break;
#if CONFIG_TX64X64
case TX_64X64:
for (i = 0; i < num_4x4_w; i += 32)
t_above[i] =
!!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8] |
*(const uint64_t *)&above[i + 16] |
*(const uint64_t *)&above[i + 24]);
for (i = 0; i < num_4x4_h; i += 32)
t_left[i] =
!!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8] |
*(const uint64_t *)&left[i + 16] |
*(const uint64_t *)&left[i + 24]);
break;
#endif // CONFIG_TX64X64
case TX_4X8:
for (i = 0; i < num_4x4_w; i += 2)
t_above[i] = !!*(const uint16_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 4)
t_left[i] = !!*(const uint32_t *)&left[i];
break;
case TX_8X4:
for (i = 0; i < num_4x4_w; i += 4)
t_above[i] = !!*(const uint32_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 2)
t_left[i] = !!*(const uint16_t *)&left[i];
break;
case TX_8X16:
for (i = 0; i < num_4x4_w; i += 4)
t_above[i] = !!*(const uint32_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 8)
t_left[i] = !!*(const uint64_t *)&left[i];
break;
case TX_16X8:
for (i = 0; i < num_4x4_w; i += 8)
t_above[i] = !!*(const uint64_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 4)
t_left[i] = !!*(const uint32_t *)&left[i];
break;
case TX_16X32:
for (i = 0; i < num_4x4_w; i += 8)
t_above[i] = !!*(const uint64_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 16)
t_left[i] =
!!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8]);
break;
case TX_32X16:
for (i = 0; i < num_4x4_w; i += 16)
t_above[i] =
!!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8]);
for (i = 0; i < num_4x4_h; i += 8)
t_left[i] = !!*(const uint64_t *)&left[i];
break;
#if CONFIG_EXT_TX && CONFIG_RECT_TX && CONFIG_RECT_TX_EXT
case TX_4X16:
for (i = 0; i < num_4x4_w; i += 2)
t_above[i] = !!*(const uint16_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 8)
t_left[i] = !!*(const uint64_t *)&left[i];
break;
case TX_16X4:
for (i = 0; i < num_4x4_w; i += 8)
t_above[i] = !!*(const uint64_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 2)
t_left[i] = !!*(const uint16_t *)&left[i];
break;
case TX_8X32:
for (i = 0; i < num_4x4_w; i += 4)
t_above[i] = !!*(const uint32_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 16)
t_left[i] =
!!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8]);
break;
case TX_32X8:
for (i = 0; i < num_4x4_w; i += 16)
t_above[i] =
!!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8]);
for (i = 0; i < num_4x4_h; i += 4)
t_left[i] = !!*(const uint32_t *)&left[i];
break;
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX && CONFIG_RECT_TX_EXT
default: assert(0 && "Invalid transform size."); break;
}
return;
#endif
switch (tx_size) {
case TX_4X4:
memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
break;
case TX_8X8:
for (i = 0; i < num_4x4_w; i += 2)
t_above[i] = !!*(const uint16_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 2)
t_left[i] = !!*(const uint16_t *)&left[i];
break;
case TX_16X16:
for (i = 0; i < num_4x4_w; i += 4)
t_above[i] = !!*(const uint32_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 4)
t_left[i] = !!*(const uint32_t *)&left[i];
break;
case TX_32X32:
for (i = 0; i < num_4x4_w; i += 8)
t_above[i] = !!*(const uint64_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 8)
t_left[i] = !!*(const uint64_t *)&left[i];
break;
#if CONFIG_TX64X64
case TX_64X64:
for (i = 0; i < num_4x4_w; i += 16)
t_above[i] =
!!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8]);
for (i = 0; i < num_4x4_h; i += 16)
t_left[i] =
!!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8]);
break;
#endif // CONFIG_TX64X64
case TX_4X8:
memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
for (i = 0; i < num_4x4_h; i += 2)
t_left[i] = !!*(const uint16_t *)&left[i];
break;
case TX_8X4:
for (i = 0; i < num_4x4_w; i += 2)
t_above[i] = !!*(const uint16_t *)&above[i];
memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
break;
case TX_8X16:
for (i = 0; i < num_4x4_w; i += 2)
t_above[i] = !!*(const uint16_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 4)
t_left[i] = !!*(const uint32_t *)&left[i];
break;
case TX_16X8:
for (i = 0; i < num_4x4_w; i += 4)
t_above[i] = !!*(const uint32_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 2)
t_left[i] = !!*(const uint16_t *)&left[i];
break;
case TX_16X32:
for (i = 0; i < num_4x4_w; i += 4)
t_above[i] = !!*(const uint32_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 8)
t_left[i] = !!*(const uint64_t *)&left[i];
break;
case TX_32X16:
for (i = 0; i < num_4x4_w; i += 8)
t_above[i] = !!*(const uint64_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 4)
t_left[i] = !!*(const uint32_t *)&left[i];
break;
#if CONFIG_EXT_TX && CONFIG_RECT_TX && CONFIG_RECT_TX_EXT
case TX_4X16:
memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
for (i = 0; i < num_4x4_h; i += 4)
t_left[i] = !!*(const uint32_t *)&left[i];
break;
case TX_16X4:
for (i = 0; i < num_4x4_w; i += 4)
t_above[i] = !!*(const uint32_t *)&above[i];
memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
break;
case TX_8X32:
for (i = 0; i < num_4x4_w; i += 2)
t_above[i] = !!*(const uint16_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 8)
t_left[i] = !!*(const uint64_t *)&left[i];
break;
case TX_32X8:
for (i = 0; i < num_4x4_w; i += 8)
t_above[i] = !!*(const uint64_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 2)
t_left[i] = !!*(const uint16_t *)&left[i];
break;
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX && CONFIG_RECT_TX_EXT
default: assert(0 && "Invalid transform size."); break;
}
}
void av1_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size,
const struct macroblockd_plane *pd,
ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE],
ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE]) {
#if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2
const BLOCK_SIZE plane_bsize =
AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
#else
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
#endif
get_entropy_contexts_plane(plane_bsize, tx_size, pd, t_above, t_left);
}
void av1_mv_pred(const AV1_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer,
int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) {
int i;
int zero_seen = 0;
int best_index = 0;
int best_sad = INT_MAX;
int this_sad = INT_MAX;
int max_mv = 0;
uint8_t *src_y_ptr = x->plane[0].src.buf;
uint8_t *ref_y_ptr;
MV pred_mv[MAX_MV_REF_CANDIDATES + 1];
int num_mv_refs = 0;
pred_mv[num_mv_refs++] = x->mbmi_ext->ref_mvs[ref_frame][0].as_mv;
if (x->mbmi_ext->ref_mvs[ref_frame][0].as_int !=
x->mbmi_ext->ref_mvs[ref_frame][1].as_int) {
pred_mv[num_mv_refs++] = x->mbmi_ext->ref_mvs[ref_frame][1].as_mv;
}
if (cpi->sf.adaptive_motion_search && block_size < x->max_partition_size)
pred_mv[num_mv_refs++] = x->pred_mv[ref_frame];
assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0])));
// Get the sad for each candidate reference mv.
for (i = 0; i < num_mv_refs; ++i) {
const MV *this_mv = &pred_mv[i];
int fp_row, fp_col;
fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3;
fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3;
max_mv = AOMMAX(max_mv, AOMMAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
if (fp_row == 0 && fp_col == 0 && zero_seen) continue;
zero_seen |= (fp_row == 0 && fp_col == 0);
ref_y_ptr = &ref_y_buffer[ref_y_stride * fp_row + fp_col];
// Find sad for current vector.
this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride,
ref_y_ptr, ref_y_stride);
// Note if it is the best so far.
if (this_sad < best_sad) {
best_sad = this_sad;
best_index = i;
}
}
// Note the index of the mv that worked best in the reference list.
x->mv_best_ref_index[ref_frame] = best_index;
x->max_mv_context[ref_frame] = max_mv;
x->pred_mv_sad[ref_frame] = best_sad;
}
void av1_setup_pred_block(const MACROBLOCKD *xd,
struct buf_2d dst[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *scale,
const struct scale_factors *scale_uv) {
int i;
dst[0].buf = src->y_buffer;
dst[0].stride = src->y_stride;
dst[1].buf = src->u_buffer;
dst[2].buf = src->v_buffer;
dst[1].stride = dst[2].stride = src->uv_stride;
for (i = 0; i < MAX_MB_PLANE; ++i) {
setup_pred_plane(dst + i, xd->mi[0]->mbmi.sb_type, dst[i].buf,
i ? src->uv_crop_width : src->y_crop_width,
i ? src->uv_crop_height : src->y_crop_height,
dst[i].stride, mi_row, mi_col, i ? scale_uv : scale,
xd->plane[i].subsampling_x, xd->plane[i].subsampling_y);
}
}
int av1_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block,
int stride) {
const int bw = b_width_log2_lookup[plane_bsize];
const int y = 4 * (raster_block >> bw);
const int x = 4 * (raster_block & ((1 << bw) - 1));
return y * stride + x;
}
int16_t *av1_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block,
int16_t *base) {
const int stride = block_size_wide[plane_bsize];
return base + av1_raster_block_offset(plane_bsize, raster_block, stride);
}
YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const AV1_COMP *cpi,
int ref_frame) {
const AV1_COMMON *const cm = &cpi->common;
const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1];
const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame);
return (scaled_idx != ref_idx && scaled_idx != INVALID_IDX)
? &cm->buffer_pool->frame_bufs[scaled_idx].buf
: NULL;
}
#if CONFIG_DUAL_FILTER
int av1_get_switchable_rate(const AV1_COMP *cpi, const MACROBLOCKD *xd) {
const AV1_COMMON *const cm = &cpi->common;
if (cm->interp_filter == SWITCHABLE) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int inter_filter_cost = 0;
int dir;
for (dir = 0; dir < 2; ++dir) {
if (has_subpel_mv_component(xd->mi[0], xd, dir) ||
(mbmi->ref_frame[1] > INTRA_FRAME &&
has_subpel_mv_component(xd->mi[0], xd, dir + 2))) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
inter_filter_cost +=
cpi->switchable_interp_costs[ctx][mbmi->interp_filter[dir]];
}
}
return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost;
} else {
return 0;
}
}
#else
int av1_get_switchable_rate(const AV1_COMP *cpi, const MACROBLOCKD *xd) {
const AV1_COMMON *const cm = &cpi->common;
if (cm->interp_filter == SWITCHABLE) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const int ctx = av1_get_pred_context_switchable_interp(xd);
return SWITCHABLE_INTERP_RATE_FACTOR *
cpi->switchable_interp_costs[ctx][mbmi->interp_filter];
}
return 0;
}
#endif
void av1_set_rd_speed_thresholds(AV1_COMP *cpi) {
int i;
RD_OPT *const rd = &cpi->rd;
SPEED_FEATURES *const sf = &cpi->sf;
// Set baseline threshold values.
for (i = 0; i < MAX_MODES; ++i) rd->thresh_mult[i] = cpi->oxcf.mode == 0;
if (sf->adaptive_rd_thresh) {
rd->thresh_mult[THR_NEARESTMV] = 300;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_NEARESTL2] = 300;
rd->thresh_mult[THR_NEARESTL3] = 300;
rd->thresh_mult[THR_NEARESTB] = 300;
#endif // CONFIG_EXT_REFS
rd->thresh_mult[THR_NEARESTA] = 300;
rd->thresh_mult[THR_NEARESTG] = 300;
} else {
rd->thresh_mult[THR_NEARESTMV] = 0;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_NEARESTL2] = 0;
rd->thresh_mult[THR_NEARESTL3] = 0;
rd->thresh_mult[THR_NEARESTB] = 0;
#endif // CONFIG_EXT_REFS
rd->thresh_mult[THR_NEARESTA] = 0;
rd->thresh_mult[THR_NEARESTG] = 0;
}
rd->thresh_mult[THR_DC] += 1000;
rd->thresh_mult[THR_NEWMV] += 1000;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_NEWL2] += 1000;
rd->thresh_mult[THR_NEWL3] += 1000;
rd->thresh_mult[THR_NEWB] += 1000;
#endif // CONFIG_EXT_REFS
rd->thresh_mult[THR_NEWA] += 1000;
rd->thresh_mult[THR_NEWG] += 1000;
rd->thresh_mult[THR_NEARMV] += 1000;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_NEARL2] += 1000;
rd->thresh_mult[THR_NEARL3] += 1000;
rd->thresh_mult[THR_NEARB] += 1000;
#endif // CONFIG_EXT_REFS
rd->thresh_mult[THR_NEARA] += 1000;
rd->thresh_mult[THR_NEARG] += 1000;
rd->thresh_mult[THR_ZEROMV] += 2000;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_ZEROL2] += 2000;
rd->thresh_mult[THR_ZEROL3] += 2000;
rd->thresh_mult[THR_ZEROB] += 2000;
#endif // CONFIG_EXT_REFS
rd->thresh_mult[THR_ZEROG] += 2000;
rd->thresh_mult[THR_ZEROA] += 2000;
rd->thresh_mult[THR_TM] += 1000;
#if CONFIG_EXT_INTER
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA] += 1000;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A] += 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A] += 1000;
#endif // CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA] += 1000;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLB] += 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2B] += 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3B] += 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTGB] += 1000;
#endif // CONFIG_EXT_REFS
#else // CONFIG_EXT_INTER
rd->thresh_mult[THR_COMP_NEARESTLA] += 1000;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_NEARESTL2A] += 1000;
rd->thresh_mult[THR_COMP_NEARESTL3A] += 1000;
#endif // CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_NEARESTGA] += 1000;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_NEARESTLB] += 1000;
rd->thresh_mult[THR_COMP_NEARESTL2B] += 1000;
rd->thresh_mult[THR_COMP_NEARESTL3B] += 1000;
rd->thresh_mult[THR_COMP_NEARESTGB] += 1000;
#endif // CONFIG_EXT_REFS
#endif // CONFIG_EXT_INTER
#if CONFIG_EXT_INTER
rd->thresh_mult[THR_COMP_NEAR_NEARLA] += 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWLA] += 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTLA] += 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWLA] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEARLA] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEWLA] += 2000;
rd->thresh_mult[THR_COMP_ZERO_ZEROLA] += 2500;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_NEAR_NEARL2A] += 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL2A] += 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL2A] += 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL2A] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEARL2A] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL2A] += 2000;
rd->thresh_mult[THR_COMP_ZERO_ZEROL2A] += 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARL3A] += 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL3A] += 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL3A] += 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL3A] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEARL3A] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL3A] += 2000;
rd->thresh_mult[THR_COMP_ZERO_ZEROL3A] += 2500;
#endif // CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_NEAR_NEARGA] += 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWGA] += 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTGA] += 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWGA] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEARGA] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEWGA] += 2000;
rd->thresh_mult[THR_COMP_ZERO_ZEROGA] += 2500;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_NEAR_NEARLB] += 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWLB] += 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTLB] += 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWLB] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEARLB] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEWLB] += 2000;
rd->thresh_mult[THR_COMP_ZERO_ZEROLB] += 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARL2B] += 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL2B] += 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL2B] += 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL2B] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEARL2B] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL2B] += 2000;
rd->thresh_mult[THR_COMP_ZERO_ZEROL2B] += 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARL3B] += 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL3B] += 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL3B] += 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL3B] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEARL3B] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL3B] += 2000;
rd->thresh_mult[THR_COMP_ZERO_ZEROL3B] += 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARGB] += 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWGB] += 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTGB] += 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWGB] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEARGB] += 1700;
rd->thresh_mult[THR_COMP_NEW_NEWGB] += 2000;
rd->thresh_mult[THR_COMP_ZERO_ZEROGB] += 2500;
#endif // CONFIG_EXT_REFS
#else // CONFIG_EXT_INTER
rd->thresh_mult[THR_COMP_NEARLA] += 1500;
rd->thresh_mult[THR_COMP_NEWLA] += 2000;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_NEARL2A] += 1500;
rd->thresh_mult[THR_COMP_NEWL2A] += 2000;
rd->thresh_mult[THR_COMP_NEARL3A] += 1500;
rd->thresh_mult[THR_COMP_NEWL3A] += 2000;
#endif // CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_NEARGA] += 1500;
rd->thresh_mult[THR_COMP_NEWGA] += 2000;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_NEARLB] += 1500;
rd->thresh_mult[THR_COMP_NEWLB] += 2000;
rd->thresh_mult[THR_COMP_NEARL2B] += 1500;
rd->thresh_mult[THR_COMP_NEWL2B] += 2000;
rd->thresh_mult[THR_COMP_NEARL3B] += 1500;
rd->thresh_mult[THR_COMP_NEWL3B] += 2000;
rd->thresh_mult[THR_COMP_NEARGB] += 1500;
rd->thresh_mult[THR_COMP_NEWGB] += 2000;
#endif // CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_ZEROLA] += 2500;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_ZEROL2A] += 2500;
rd->thresh_mult[THR_COMP_ZEROL3A] += 2500;
#endif // CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_ZEROGA] += 2500;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_ZEROLB] += 2500;
rd->thresh_mult[THR_COMP_ZEROL2B] += 2500;
rd->thresh_mult[THR_COMP_ZEROL3B] += 2500;
rd->thresh_mult[THR_COMP_ZEROGB] += 2500;
#endif // CONFIG_EXT_REFS
#endif // CONFIG_EXT_INTER
rd->thresh_mult[THR_H_PRED] += 2000;
rd->thresh_mult[THR_V_PRED] += 2000;
rd->thresh_mult[THR_D135_PRED] += 2500;
rd->thresh_mult[THR_D207_PRED] += 2500;
rd->thresh_mult[THR_D153_PRED] += 2500;
rd->thresh_mult[THR_D63_PRED] += 2500;
rd->thresh_mult[THR_D117_PRED] += 2500;
rd->thresh_mult[THR_D45_PRED] += 2500;
#if CONFIG_EXT_INTER
rd->thresh_mult[THR_COMP_INTERINTRA_ZEROL] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTL] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEARL] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEWL] += 2000;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_INTERINTRA_ZEROL2] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTL2] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEARL2] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEWL2] += 2000;
rd->thresh_mult[THR_COMP_INTERINTRA_ZEROL3] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTL3] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEARL3] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEWL3] += 2000;
#endif // CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_INTERINTRA_ZEROG] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTG] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEARG] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEWG] += 2000;
#if CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_INTERINTRA_ZEROB] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTB] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEARB] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEWB] += 2000;
#endif // CONFIG_EXT_REFS
rd->thresh_mult[THR_COMP_INTERINTRA_ZEROA] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTA] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEARA] += 1500;
rd->thresh_mult[THR_COMP_INTERINTRA_NEWA] += 2000;
#endif // CONFIG_EXT_INTER
}
void av1_set_rd_speed_thresholds_sub8x8(AV1_COMP *cpi) {
static const int thresh_mult[MAX_REFS] = {
#if CONFIG_EXT_REFS
2500,
2500,
2500,
2500,
2500,
2500,
4500,
4500,
4500,
4500,
4500,
4500,
4500,
4500,
2500
#else
2500,
2500,
2500,
4500,
4500,
2500
#endif // CONFIG_EXT_REFS
};
RD_OPT *const rd = &cpi->rd;
memcpy(rd->thresh_mult_sub8x8, thresh_mult, sizeof(thresh_mult));
}
void av1_update_rd_thresh_fact(const AV1_COMMON *const cm,
int (*factor_buf)[MAX_MODES], int rd_thresh,
int bsize, int best_mode_index) {
if (rd_thresh > 0) {
#if CONFIG_CB4X4
const int top_mode = MAX_MODES;
#else
const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES;
#endif
int mode;
for (mode = 0; mode < top_mode; ++mode) {
const BLOCK_SIZE min_size = AOMMAX(bsize - 1, BLOCK_4X4);
const BLOCK_SIZE max_size = AOMMIN(bsize + 2, (int)cm->sb_size);
BLOCK_SIZE bs;
for (bs = min_size; bs <= max_size; ++bs) {
int *const fact = &factor_buf[bs][mode];
if (mode == best_mode_index) {
*fact -= (*fact >> 4);
} else {
*fact = AOMMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT);
}
}
}
}
}
int av1_get_intra_cost_penalty(int qindex, int qdelta,
aom_bit_depth_t bit_depth) {
const int q = av1_dc_quant(qindex, qdelta, bit_depth);
#if CONFIG_HIGHBITDEPTH
switch (bit_depth) {
case AOM_BITS_8: return 20 * q;
case AOM_BITS_10: return 5 * q;
case AOM_BITS_12: return ROUND_POWER_OF_TWO(5 * q, 2);
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1;
}
#else
return 20 * q;
#endif // CONFIG_HIGHBITDEPTH
}