blob: 37c4b0d888daa6de1bff3deebe1e65b959aeeb6e [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <emmintrin.h> // SSE2
#include "./aom_dsp_rtcd.h"
#include "./av1_rtcd.h"
#include "aom_dsp/txfm_common.h"
#include "aom_dsp/x86/fwd_txfm_sse2.h"
#include "aom_dsp/x86/synonyms.h"
#include "aom_dsp/x86/txfm_common_sse2.h"
#include "aom_ports/mem.h"
static INLINE void load_buffer_4x4(const int16_t *input, __m128i *in,
int stride, int flipud, int fliplr) {
const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
__m128i mask;
if (!flipud) {
in[0] = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
in[1] = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
in[2] = _mm_loadl_epi64((const __m128i *)(input + 2 * stride));
in[3] = _mm_loadl_epi64((const __m128i *)(input + 3 * stride));
} else {
in[0] = _mm_loadl_epi64((const __m128i *)(input + 3 * stride));
in[1] = _mm_loadl_epi64((const __m128i *)(input + 2 * stride));
in[2] = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
in[3] = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
}
if (fliplr) {
in[0] = _mm_shufflelo_epi16(in[0], 0x1b);
in[1] = _mm_shufflelo_epi16(in[1], 0x1b);
in[2] = _mm_shufflelo_epi16(in[2], 0x1b);
in[3] = _mm_shufflelo_epi16(in[3], 0x1b);
}
in[0] = _mm_slli_epi16(in[0], 4);
in[1] = _mm_slli_epi16(in[1], 4);
in[2] = _mm_slli_epi16(in[2], 4);
in[3] = _mm_slli_epi16(in[3], 4);
mask = _mm_cmpeq_epi16(in[0], k__nonzero_bias_a);
in[0] = _mm_add_epi16(in[0], mask);
in[0] = _mm_add_epi16(in[0], k__nonzero_bias_b);
}
static INLINE void write_buffer_4x4(tran_low_t *output, __m128i *res) {
const __m128i kOne = _mm_set1_epi16(1);
__m128i in01 = _mm_unpacklo_epi64(res[0], res[1]);
__m128i in23 = _mm_unpacklo_epi64(res[2], res[3]);
__m128i out01 = _mm_add_epi16(in01, kOne);
__m128i out23 = _mm_add_epi16(in23, kOne);
out01 = _mm_srai_epi16(out01, 2);
out23 = _mm_srai_epi16(out23, 2);
store_output(&out01, (output + 0 * 8));
store_output(&out23, (output + 1 * 8));
}
static INLINE void transpose_4x4(__m128i *res) {
// Combine and transpose
// 00 01 02 03 20 21 22 23
// 10 11 12 13 30 31 32 33
const __m128i tr0_0 = _mm_unpacklo_epi16(res[0], res[1]);
const __m128i tr0_1 = _mm_unpackhi_epi16(res[0], res[1]);
// 00 10 01 11 02 12 03 13
// 20 30 21 31 22 32 23 33
res[0] = _mm_unpacklo_epi32(tr0_0, tr0_1);
res[2] = _mm_unpackhi_epi32(tr0_0, tr0_1);
// 00 10 20 30 01 11 21 31
// 02 12 22 32 03 13 23 33
// only use the first 4 16-bit integers
res[1] = _mm_unpackhi_epi64(res[0], res[0]);
res[3] = _mm_unpackhi_epi64(res[2], res[2]);
}
static void fdct4_sse2(__m128i *in) {
const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
__m128i u[4], v[4];
u[0] = _mm_unpacklo_epi16(in[0], in[1]);
u[1] = _mm_unpacklo_epi16(in[3], in[2]);
v[0] = _mm_add_epi16(u[0], u[1]);
v[1] = _mm_sub_epi16(u[0], u[1]);
u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16); // 0
u[1] = _mm_madd_epi16(v[0], k__cospi_p16_m16); // 2
u[2] = _mm_madd_epi16(v[1], k__cospi_p08_p24); // 1
u[3] = _mm_madd_epi16(v[1], k__cospi_p24_m08); // 3
v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
in[0] = _mm_packs_epi32(u[0], u[1]);
in[1] = _mm_packs_epi32(u[2], u[3]);
transpose_4x4(in);
}
static void fadst4_sse2(__m128i *in) {
const __m128i k__sinpi_p01_p02 = pair_set_epi16(sinpi_1_9, sinpi_2_9);
const __m128i k__sinpi_p04_m01 = pair_set_epi16(sinpi_4_9, -sinpi_1_9);
const __m128i k__sinpi_p03_p04 = pair_set_epi16(sinpi_3_9, sinpi_4_9);
const __m128i k__sinpi_m03_p02 = pair_set_epi16(-sinpi_3_9, sinpi_2_9);
const __m128i k__sinpi_p03_p03 = _mm_set1_epi16((int16_t)sinpi_3_9);
const __m128i kZero = _mm_set1_epi16(0);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
__m128i u[8], v[8];
__m128i in7 = _mm_add_epi16(in[0], in[1]);
u[0] = _mm_unpacklo_epi16(in[0], in[1]);
u[1] = _mm_unpacklo_epi16(in[2], in[3]);
u[2] = _mm_unpacklo_epi16(in7, kZero);
u[3] = _mm_unpacklo_epi16(in[2], kZero);
u[4] = _mm_unpacklo_epi16(in[3], kZero);
v[0] = _mm_madd_epi16(u[0], k__sinpi_p01_p02); // s0 + s2
v[1] = _mm_madd_epi16(u[1], k__sinpi_p03_p04); // s4 + s5
v[2] = _mm_madd_epi16(u[2], k__sinpi_p03_p03); // x1
v[3] = _mm_madd_epi16(u[0], k__sinpi_p04_m01); // s1 - s3
v[4] = _mm_madd_epi16(u[1], k__sinpi_m03_p02); // -s4 + s6
v[5] = _mm_madd_epi16(u[3], k__sinpi_p03_p03); // s4
v[6] = _mm_madd_epi16(u[4], k__sinpi_p03_p03);
u[0] = _mm_add_epi32(v[0], v[1]);
u[1] = _mm_sub_epi32(v[2], v[6]);
u[2] = _mm_add_epi32(v[3], v[4]);
u[3] = _mm_sub_epi32(u[2], u[0]);
u[4] = _mm_slli_epi32(v[5], 2);
u[5] = _mm_sub_epi32(u[4], v[5]);
u[6] = _mm_add_epi32(u[3], u[5]);
v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
v[3] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
in[0] = _mm_packs_epi32(u[0], u[2]);
in[1] = _mm_packs_epi32(u[1], u[3]);
transpose_4x4(in);
}
#if CONFIG_EXT_TX
static void fidtx4_sse2(__m128i *in) {
const __m128i k__zero_epi16 = _mm_set1_epi16((int16_t)0);
const __m128i k__sqrt2_epi16 = _mm_set1_epi16((int16_t)Sqrt2);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
__m128i v0, v1, v2, v3;
__m128i u0, u1, u2, u3;
v0 = _mm_unpacklo_epi16(in[0], k__zero_epi16);
v1 = _mm_unpacklo_epi16(in[1], k__zero_epi16);
v2 = _mm_unpacklo_epi16(in[2], k__zero_epi16);
v3 = _mm_unpacklo_epi16(in[3], k__zero_epi16);
u0 = _mm_madd_epi16(v0, k__sqrt2_epi16);
u1 = _mm_madd_epi16(v1, k__sqrt2_epi16);
u2 = _mm_madd_epi16(v2, k__sqrt2_epi16);
u3 = _mm_madd_epi16(v3, k__sqrt2_epi16);
v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
in[0] = _mm_packs_epi32(u0, u2);
in[1] = _mm_packs_epi32(u1, u3);
transpose_4x4(in);
}
#endif // CONFIG_EXT_TX
void av1_fht4x4_sse2(const int16_t *input, tran_low_t *output, int stride,
int tx_type) {
__m128i in[4];
switch (tx_type) {
case DCT_DCT: aom_fdct4x4_sse2(input, output, stride); break;
case ADST_DCT:
load_buffer_4x4(input, in, stride, 0, 0);
fadst4_sse2(in);
fdct4_sse2(in);
write_buffer_4x4(output, in);
break;
case DCT_ADST:
load_buffer_4x4(input, in, stride, 0, 0);
fdct4_sse2(in);
fadst4_sse2(in);
write_buffer_4x4(output, in);
break;
case ADST_ADST:
load_buffer_4x4(input, in, stride, 0, 0);
fadst4_sse2(in);
fadst4_sse2(in);
write_buffer_4x4(output, in);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
load_buffer_4x4(input, in, stride, 1, 0);
fadst4_sse2(in);
fdct4_sse2(in);
write_buffer_4x4(output, in);
break;
case DCT_FLIPADST:
load_buffer_4x4(input, in, stride, 0, 1);
fdct4_sse2(in);
fadst4_sse2(in);
write_buffer_4x4(output, in);
break;
case FLIPADST_FLIPADST:
load_buffer_4x4(input, in, stride, 1, 1);
fadst4_sse2(in);
fadst4_sse2(in);
write_buffer_4x4(output, in);
break;
case ADST_FLIPADST:
load_buffer_4x4(input, in, stride, 0, 1);
fadst4_sse2(in);
fadst4_sse2(in);
write_buffer_4x4(output, in);
break;
case FLIPADST_ADST:
load_buffer_4x4(input, in, stride, 1, 0);
fadst4_sse2(in);
fadst4_sse2(in);
write_buffer_4x4(output, in);
break;
case IDTX:
load_buffer_4x4(input, in, stride, 0, 0);
fidtx4_sse2(in);
fidtx4_sse2(in);
write_buffer_4x4(output, in);
break;
case V_DCT:
load_buffer_4x4(input, in, stride, 0, 0);
fdct4_sse2(in);
fidtx4_sse2(in);
write_buffer_4x4(output, in);
break;
case H_DCT:
load_buffer_4x4(input, in, stride, 0, 0);
fidtx4_sse2(in);
fdct4_sse2(in);
write_buffer_4x4(output, in);
break;
case V_ADST:
load_buffer_4x4(input, in, stride, 0, 0);
fadst4_sse2(in);
fidtx4_sse2(in);
write_buffer_4x4(output, in);
break;
case H_ADST:
load_buffer_4x4(input, in, stride, 0, 0);
fidtx4_sse2(in);
fadst4_sse2(in);
write_buffer_4x4(output, in);
break;
case V_FLIPADST:
load_buffer_4x4(input, in, stride, 1, 0);
fadst4_sse2(in);
fidtx4_sse2(in);
write_buffer_4x4(output, in);
break;
case H_FLIPADST:
load_buffer_4x4(input, in, stride, 0, 1);
fidtx4_sse2(in);
fadst4_sse2(in);
write_buffer_4x4(output, in);
break;
#endif // CONFIG_EXT_TX
default: assert(0);
}
}
void av1_fdct8x8_quant_sse2(const int16_t *input, int stride,
int16_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, int16_t *qcoeff_ptr,
int16_t *dqcoeff_ptr, const int16_t *dequant_ptr,
uint16_t *eob_ptr, const int16_t *scan_ptr,
const int16_t *iscan_ptr) {
__m128i zero;
int pass;
// Constants
// When we use them, in one case, they are all the same. In all others
// it's a pair of them that we need to repeat four times. This is done
// by constructing the 32 bit constant corresponding to that pair.
const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
// Load input
__m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
__m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
__m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
__m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
__m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
__m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
__m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
__m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
__m128i *in[8];
int index = 0;
(void)scan_ptr;
(void)zbin_ptr;
(void)quant_shift_ptr;
(void)coeff_ptr;
// Pre-condition input (shift by two)
in0 = _mm_slli_epi16(in0, 2);
in1 = _mm_slli_epi16(in1, 2);
in2 = _mm_slli_epi16(in2, 2);
in3 = _mm_slli_epi16(in3, 2);
in4 = _mm_slli_epi16(in4, 2);
in5 = _mm_slli_epi16(in5, 2);
in6 = _mm_slli_epi16(in6, 2);
in7 = _mm_slli_epi16(in7, 2);
in[0] = &in0;
in[1] = &in1;
in[2] = &in2;
in[3] = &in3;
in[4] = &in4;
in[5] = &in5;
in[6] = &in6;
in[7] = &in7;
// We do two passes, first the columns, then the rows. The results of the
// first pass are transposed so that the same column code can be reused. The
// results of the second pass are also transposed so that the rows (processed
// as columns) are put back in row positions.
for (pass = 0; pass < 2; pass++) {
// To store results of each pass before the transpose.
__m128i res0, res1, res2, res3, res4, res5, res6, res7;
// Add/subtract
const __m128i q0 = _mm_add_epi16(in0, in7);
const __m128i q1 = _mm_add_epi16(in1, in6);
const __m128i q2 = _mm_add_epi16(in2, in5);
const __m128i q3 = _mm_add_epi16(in3, in4);
const __m128i q4 = _mm_sub_epi16(in3, in4);
const __m128i q5 = _mm_sub_epi16(in2, in5);
const __m128i q6 = _mm_sub_epi16(in1, in6);
const __m128i q7 = _mm_sub_epi16(in0, in7);
// Work on first four results
{
// Add/subtract
const __m128i r0 = _mm_add_epi16(q0, q3);
const __m128i r1 = _mm_add_epi16(q1, q2);
const __m128i r2 = _mm_sub_epi16(q1, q2);
const __m128i r3 = _mm_sub_epi16(q0, q3);
// Interleave to do the multiply by constants which gets us into 32bits
const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
// Combine
res0 = _mm_packs_epi32(w0, w1);
res4 = _mm_packs_epi32(w2, w3);
res2 = _mm_packs_epi32(w4, w5);
res6 = _mm_packs_epi32(w6, w7);
}
// Work on next four results
{
// Interleave to do the multiply by constants which gets us into 32bits
const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
// dct_const_round_shift
const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
// Combine
const __m128i r0 = _mm_packs_epi32(s0, s1);
const __m128i r1 = _mm_packs_epi32(s2, s3);
// Add/subtract
const __m128i x0 = _mm_add_epi16(q4, r0);
const __m128i x1 = _mm_sub_epi16(q4, r0);
const __m128i x2 = _mm_sub_epi16(q7, r1);
const __m128i x3 = _mm_add_epi16(q7, r1);
// Interleave to do the multiply by constants which gets us into 32bits
const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
// Combine
res1 = _mm_packs_epi32(w0, w1);
res7 = _mm_packs_epi32(w2, w3);
res5 = _mm_packs_epi32(w4, w5);
res3 = _mm_packs_epi32(w6, w7);
}
// Transpose the 8x8.
{
// 00 01 02 03 04 05 06 07
// 10 11 12 13 14 15 16 17
// 20 21 22 23 24 25 26 27
// 30 31 32 33 34 35 36 37
// 40 41 42 43 44 45 46 47
// 50 51 52 53 54 55 56 57
// 60 61 62 63 64 65 66 67
// 70 71 72 73 74 75 76 77
const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
// 00 10 01 11 02 12 03 13
// 20 30 21 31 22 32 23 33
// 04 14 05 15 06 16 07 17
// 24 34 25 35 26 36 27 37
// 40 50 41 51 42 52 43 53
// 60 70 61 71 62 72 63 73
// 54 54 55 55 56 56 57 57
// 64 74 65 75 66 76 67 77
const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
// 00 10 20 30 01 11 21 31
// 40 50 60 70 41 51 61 71
// 02 12 22 32 03 13 23 33
// 42 52 62 72 43 53 63 73
// 04 14 24 34 05 15 21 36
// 44 54 64 74 45 55 61 76
// 06 16 26 36 07 17 27 37
// 46 56 66 76 47 57 67 77
in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
// 00 10 20 30 40 50 60 70
// 01 11 21 31 41 51 61 71
// 02 12 22 32 42 52 62 72
// 03 13 23 33 43 53 63 73
// 04 14 24 34 44 54 64 74
// 05 15 25 35 45 55 65 75
// 06 16 26 36 46 56 66 76
// 07 17 27 37 47 57 67 77
}
}
// Post-condition output and store it
{
// Post-condition (division by two)
// division of two 16 bits signed numbers using shifts
// n / 2 = (n - (n >> 15)) >> 1
const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
in0 = _mm_sub_epi16(in0, sign_in0);
in1 = _mm_sub_epi16(in1, sign_in1);
in2 = _mm_sub_epi16(in2, sign_in2);
in3 = _mm_sub_epi16(in3, sign_in3);
in4 = _mm_sub_epi16(in4, sign_in4);
in5 = _mm_sub_epi16(in5, sign_in5);
in6 = _mm_sub_epi16(in6, sign_in6);
in7 = _mm_sub_epi16(in7, sign_in7);
in0 = _mm_srai_epi16(in0, 1);
in1 = _mm_srai_epi16(in1, 1);
in2 = _mm_srai_epi16(in2, 1);
in3 = _mm_srai_epi16(in3, 1);
in4 = _mm_srai_epi16(in4, 1);
in5 = _mm_srai_epi16(in5, 1);
in6 = _mm_srai_epi16(in6, 1);
in7 = _mm_srai_epi16(in7, 1);
}
iscan_ptr += n_coeffs;
qcoeff_ptr += n_coeffs;
dqcoeff_ptr += n_coeffs;
n_coeffs = -n_coeffs;
zero = _mm_setzero_si128();
if (!skip_block) {
__m128i eob;
__m128i round, quant, dequant;
{
__m128i coeff0, coeff1;
// Setup global values
{
round = _mm_load_si128((const __m128i *)round_ptr);
quant = _mm_load_si128((const __m128i *)quant_ptr);
dequant = _mm_load_si128((const __m128i *)dequant_ptr);
}
{
__m128i coeff0_sign, coeff1_sign;
__m128i qcoeff0, qcoeff1;
__m128i qtmp0, qtmp1;
// Do DC and first 15 AC
coeff0 = *in[0];
coeff1 = *in[1];
// Poor man's sign extract
coeff0_sign = _mm_srai_epi16(coeff0, 15);
coeff1_sign = _mm_srai_epi16(coeff1, 15);
qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
qcoeff0 = _mm_adds_epi16(qcoeff0, round);
round = _mm_unpackhi_epi64(round, round);
qcoeff1 = _mm_adds_epi16(qcoeff1, round);
qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
quant = _mm_unpackhi_epi64(quant, quant);
qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
// Reinsert signs
qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
_mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs), qcoeff0);
_mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
dequant = _mm_unpackhi_epi64(dequant, dequant);
coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
_mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs), coeff0);
_mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
}
{
// Scan for eob
__m128i zero_coeff0, zero_coeff1;
__m128i nzero_coeff0, nzero_coeff1;
__m128i iscan0, iscan1;
__m128i eob1;
zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs));
iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1);
// Add one to convert from indices to counts
iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
eob = _mm_and_si128(iscan0, nzero_coeff0);
eob1 = _mm_and_si128(iscan1, nzero_coeff1);
eob = _mm_max_epi16(eob, eob1);
}
n_coeffs += 8 * 2;
}
// AC only loop
index = 2;
while (n_coeffs < 0) {
__m128i coeff0, coeff1;
{
__m128i coeff0_sign, coeff1_sign;
__m128i qcoeff0, qcoeff1;
__m128i qtmp0, qtmp1;
assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1);
coeff0 = *in[index];
coeff1 = *in[index + 1];
// Poor man's sign extract
coeff0_sign = _mm_srai_epi16(coeff0, 15);
coeff1_sign = _mm_srai_epi16(coeff1, 15);
qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
qcoeff0 = _mm_adds_epi16(qcoeff0, round);
qcoeff1 = _mm_adds_epi16(qcoeff1, round);
qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
// Reinsert signs
qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
_mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs), qcoeff0);
_mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
_mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs), coeff0);
_mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
}
{
// Scan for eob
__m128i zero_coeff0, zero_coeff1;
__m128i nzero_coeff0, nzero_coeff1;
__m128i iscan0, iscan1;
__m128i eob0, eob1;
zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs));
iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1);
// Add one to convert from indices to counts
iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
eob0 = _mm_and_si128(iscan0, nzero_coeff0);
eob1 = _mm_and_si128(iscan1, nzero_coeff1);
eob0 = _mm_max_epi16(eob0, eob1);
eob = _mm_max_epi16(eob, eob0);
}
n_coeffs += 8 * 2;
index += 2;
}
// Accumulate EOB
{
__m128i eob_shuffled;
eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
eob = _mm_max_epi16(eob, eob_shuffled);
eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
eob = _mm_max_epi16(eob, eob_shuffled);
eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
eob = _mm_max_epi16(eob, eob_shuffled);
*eob_ptr = _mm_extract_epi16(eob, 1);
}
} else {
do {
_mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs) + 1, zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs) + 1, zero);
n_coeffs += 8 * 2;
} while (n_coeffs < 0);
*eob_ptr = 0;
}
}
// load 8x8 array
static INLINE void load_buffer_8x8(const int16_t *input, __m128i *in,
int stride, int flipud, int fliplr) {
if (!flipud) {
in[0] = _mm_load_si128((const __m128i *)(input + 0 * stride));
in[1] = _mm_load_si128((const __m128i *)(input + 1 * stride));
in[2] = _mm_load_si128((const __m128i *)(input + 2 * stride));
in[3] = _mm_load_si128((const __m128i *)(input + 3 * stride));
in[4] = _mm_load_si128((const __m128i *)(input + 4 * stride));
in[5] = _mm_load_si128((const __m128i *)(input + 5 * stride));
in[6] = _mm_load_si128((const __m128i *)(input + 6 * stride));
in[7] = _mm_load_si128((const __m128i *)(input + 7 * stride));
} else {
in[0] = _mm_load_si128((const __m128i *)(input + 7 * stride));
in[1] = _mm_load_si128((const __m128i *)(input + 6 * stride));
in[2] = _mm_load_si128((const __m128i *)(input + 5 * stride));
in[3] = _mm_load_si128((const __m128i *)(input + 4 * stride));
in[4] = _mm_load_si128((const __m128i *)(input + 3 * stride));
in[5] = _mm_load_si128((const __m128i *)(input + 2 * stride));
in[6] = _mm_load_si128((const __m128i *)(input + 1 * stride));
in[7] = _mm_load_si128((const __m128i *)(input + 0 * stride));
}
if (fliplr) {
in[0] = mm_reverse_epi16(in[0]);
in[1] = mm_reverse_epi16(in[1]);
in[2] = mm_reverse_epi16(in[2]);
in[3] = mm_reverse_epi16(in[3]);
in[4] = mm_reverse_epi16(in[4]);
in[5] = mm_reverse_epi16(in[5]);
in[6] = mm_reverse_epi16(in[6]);
in[7] = mm_reverse_epi16(in[7]);
}
in[0] = _mm_slli_epi16(in[0], 2);
in[1] = _mm_slli_epi16(in[1], 2);
in[2] = _mm_slli_epi16(in[2], 2);
in[3] = _mm_slli_epi16(in[3], 2);
in[4] = _mm_slli_epi16(in[4], 2);
in[5] = _mm_slli_epi16(in[5], 2);
in[6] = _mm_slli_epi16(in[6], 2);
in[7] = _mm_slli_epi16(in[7], 2);
}
// right shift and rounding
static INLINE void right_shift_8x8(__m128i *res, const int bit) {
__m128i sign0 = _mm_srai_epi16(res[0], 15);
__m128i sign1 = _mm_srai_epi16(res[1], 15);
__m128i sign2 = _mm_srai_epi16(res[2], 15);
__m128i sign3 = _mm_srai_epi16(res[3], 15);
__m128i sign4 = _mm_srai_epi16(res[4], 15);
__m128i sign5 = _mm_srai_epi16(res[5], 15);
__m128i sign6 = _mm_srai_epi16(res[6], 15);
__m128i sign7 = _mm_srai_epi16(res[7], 15);
if (bit == 2) {
const __m128i const_rounding = _mm_set1_epi16(1);
res[0] = _mm_adds_epi16(res[0], const_rounding);
res[1] = _mm_adds_epi16(res[1], const_rounding);
res[2] = _mm_adds_epi16(res[2], const_rounding);
res[3] = _mm_adds_epi16(res[3], const_rounding);
res[4] = _mm_adds_epi16(res[4], const_rounding);
res[5] = _mm_adds_epi16(res[5], const_rounding);
res[6] = _mm_adds_epi16(res[6], const_rounding);
res[7] = _mm_adds_epi16(res[7], const_rounding);
}
res[0] = _mm_sub_epi16(res[0], sign0);
res[1] = _mm_sub_epi16(res[1], sign1);
res[2] = _mm_sub_epi16(res[2], sign2);
res[3] = _mm_sub_epi16(res[3], sign3);
res[4] = _mm_sub_epi16(res[4], sign4);
res[5] = _mm_sub_epi16(res[5], sign5);
res[6] = _mm_sub_epi16(res[6], sign6);
res[7] = _mm_sub_epi16(res[7], sign7);
if (bit == 1) {
res[0] = _mm_srai_epi16(res[0], 1);
res[1] = _mm_srai_epi16(res[1], 1);
res[2] = _mm_srai_epi16(res[2], 1);
res[3] = _mm_srai_epi16(res[3], 1);
res[4] = _mm_srai_epi16(res[4], 1);
res[5] = _mm_srai_epi16(res[5], 1);
res[6] = _mm_srai_epi16(res[6], 1);
res[7] = _mm_srai_epi16(res[7], 1);
} else {
res[0] = _mm_srai_epi16(res[0], 2);
res[1] = _mm_srai_epi16(res[1], 2);
res[2] = _mm_srai_epi16(res[2], 2);
res[3] = _mm_srai_epi16(res[3], 2);
res[4] = _mm_srai_epi16(res[4], 2);
res[5] = _mm_srai_epi16(res[5], 2);
res[6] = _mm_srai_epi16(res[6], 2);
res[7] = _mm_srai_epi16(res[7], 2);
}
}
// write 8x8 array
static INLINE void write_buffer_8x8(tran_low_t *output, __m128i *res,
int stride) {
store_output(&res[0], (output + 0 * stride));
store_output(&res[1], (output + 1 * stride));
store_output(&res[2], (output + 2 * stride));
store_output(&res[3], (output + 3 * stride));
store_output(&res[4], (output + 4 * stride));
store_output(&res[5], (output + 5 * stride));
store_output(&res[6], (output + 6 * stride));
store_output(&res[7], (output + 7 * stride));
}
// perform in-place transpose
static INLINE void array_transpose_8x8(__m128i *in, __m128i *res) {
const __m128i tr0_0 = _mm_unpacklo_epi16(in[0], in[1]);
const __m128i tr0_1 = _mm_unpacklo_epi16(in[2], in[3]);
const __m128i tr0_2 = _mm_unpackhi_epi16(in[0], in[1]);
const __m128i tr0_3 = _mm_unpackhi_epi16(in[2], in[3]);
const __m128i tr0_4 = _mm_unpacklo_epi16(in[4], in[5]);
const __m128i tr0_5 = _mm_unpacklo_epi16(in[6], in[7]);
const __m128i tr0_6 = _mm_unpackhi_epi16(in[4], in[5]);
const __m128i tr0_7 = _mm_unpackhi_epi16(in[6], in[7]);
// 00 10 01 11 02 12 03 13
// 20 30 21 31 22 32 23 33
// 04 14 05 15 06 16 07 17
// 24 34 25 35 26 36 27 37
// 40 50 41 51 42 52 43 53
// 60 70 61 71 62 72 63 73
// 44 54 45 55 46 56 47 57
// 64 74 65 75 66 76 67 77
const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_4, tr0_5);
const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_4, tr0_5);
const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_2, tr0_3);
const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_2, tr0_3);
const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
// 00 10 20 30 01 11 21 31
// 40 50 60 70 41 51 61 71
// 02 12 22 32 03 13 23 33
// 42 52 62 72 43 53 63 73
// 04 14 24 34 05 15 25 35
// 44 54 64 74 45 55 65 75
// 06 16 26 36 07 17 27 37
// 46 56 66 76 47 57 67 77
res[0] = _mm_unpacklo_epi64(tr1_0, tr1_1);
res[1] = _mm_unpackhi_epi64(tr1_0, tr1_1);
res[2] = _mm_unpacklo_epi64(tr1_2, tr1_3);
res[3] = _mm_unpackhi_epi64(tr1_2, tr1_3);
res[4] = _mm_unpacklo_epi64(tr1_4, tr1_5);
res[5] = _mm_unpackhi_epi64(tr1_4, tr1_5);
res[6] = _mm_unpacklo_epi64(tr1_6, tr1_7);
res[7] = _mm_unpackhi_epi64(tr1_6, tr1_7);
// 00 10 20 30 40 50 60 70
// 01 11 21 31 41 51 61 71
// 02 12 22 32 42 52 62 72
// 03 13 23 33 43 53 63 73
// 04 14 24 34 44 54 64 74
// 05 15 25 35 45 55 65 75
// 06 16 26 36 46 56 66 76
// 07 17 27 37 47 57 67 77
}
static void fdct8_sse2(__m128i *in) {
// constants
const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
__m128i u0, u1, u2, u3, u4, u5, u6, u7;
__m128i v0, v1, v2, v3, v4, v5, v6, v7;
__m128i s0, s1, s2, s3, s4, s5, s6, s7;
// stage 1
s0 = _mm_add_epi16(in[0], in[7]);
s1 = _mm_add_epi16(in[1], in[6]);
s2 = _mm_add_epi16(in[2], in[5]);
s3 = _mm_add_epi16(in[3], in[4]);
s4 = _mm_sub_epi16(in[3], in[4]);
s5 = _mm_sub_epi16(in[2], in[5]);
s6 = _mm_sub_epi16(in[1], in[6]);
s7 = _mm_sub_epi16(in[0], in[7]);
u0 = _mm_add_epi16(s0, s3);
u1 = _mm_add_epi16(s1, s2);
u2 = _mm_sub_epi16(s1, s2);
u3 = _mm_sub_epi16(s0, s3);
// interleave and perform butterfly multiplication/addition
v0 = _mm_unpacklo_epi16(u0, u1);
v1 = _mm_unpackhi_epi16(u0, u1);
v2 = _mm_unpacklo_epi16(u2, u3);
v3 = _mm_unpackhi_epi16(u2, u3);
u0 = _mm_madd_epi16(v0, k__cospi_p16_p16);
u1 = _mm_madd_epi16(v1, k__cospi_p16_p16);
u2 = _mm_madd_epi16(v0, k__cospi_p16_m16);
u3 = _mm_madd_epi16(v1, k__cospi_p16_m16);
u4 = _mm_madd_epi16(v2, k__cospi_p24_p08);
u5 = _mm_madd_epi16(v3, k__cospi_p24_p08);
u6 = _mm_madd_epi16(v2, k__cospi_m08_p24);
u7 = _mm_madd_epi16(v3, k__cospi_m08_p24);
// shift and rounding
v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
in[0] = _mm_packs_epi32(u0, u1);
in[2] = _mm_packs_epi32(u4, u5);
in[4] = _mm_packs_epi32(u2, u3);
in[6] = _mm_packs_epi32(u6, u7);
// stage 2
// interleave and perform butterfly multiplication/addition
u0 = _mm_unpacklo_epi16(s6, s5);
u1 = _mm_unpackhi_epi16(s6, s5);
v0 = _mm_madd_epi16(u0, k__cospi_p16_m16);
v1 = _mm_madd_epi16(u1, k__cospi_p16_m16);
v2 = _mm_madd_epi16(u0, k__cospi_p16_p16);
v3 = _mm_madd_epi16(u1, k__cospi_p16_p16);
// shift and rounding
u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
u0 = _mm_packs_epi32(v0, v1);
u1 = _mm_packs_epi32(v2, v3);
// stage 3
s0 = _mm_add_epi16(s4, u0);
s1 = _mm_sub_epi16(s4, u0);
s2 = _mm_sub_epi16(s7, u1);
s3 = _mm_add_epi16(s7, u1);
// stage 4
u0 = _mm_unpacklo_epi16(s0, s3);
u1 = _mm_unpackhi_epi16(s0, s3);
u2 = _mm_unpacklo_epi16(s1, s2);
u3 = _mm_unpackhi_epi16(s1, s2);
v0 = _mm_madd_epi16(u0, k__cospi_p28_p04);
v1 = _mm_madd_epi16(u1, k__cospi_p28_p04);
v2 = _mm_madd_epi16(u2, k__cospi_p12_p20);
v3 = _mm_madd_epi16(u3, k__cospi_p12_p20);
v4 = _mm_madd_epi16(u2, k__cospi_m20_p12);
v5 = _mm_madd_epi16(u3, k__cospi_m20_p12);
v6 = _mm_madd_epi16(u0, k__cospi_m04_p28);
v7 = _mm_madd_epi16(u1, k__cospi_m04_p28);
// shift and rounding
u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING);
u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING);
u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING);
u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING);
v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
v4 = _mm_srai_epi32(u4, DCT_CONST_BITS);
v5 = _mm_srai_epi32(u5, DCT_CONST_BITS);
v6 = _mm_srai_epi32(u6, DCT_CONST_BITS);
v7 = _mm_srai_epi32(u7, DCT_CONST_BITS);
in[1] = _mm_packs_epi32(v0, v1);
in[3] = _mm_packs_epi32(v4, v5);
in[5] = _mm_packs_epi32(v2, v3);
in[7] = _mm_packs_epi32(v6, v7);
// transpose
array_transpose_8x8(in, in);
}
static void fadst8_sse2(__m128i *in) {
// Constants
const __m128i k__cospi_p02_p30 = pair_set_epi16(cospi_2_64, cospi_30_64);
const __m128i k__cospi_p30_m02 = pair_set_epi16(cospi_30_64, -cospi_2_64);
const __m128i k__cospi_p10_p22 = pair_set_epi16(cospi_10_64, cospi_22_64);
const __m128i k__cospi_p22_m10 = pair_set_epi16(cospi_22_64, -cospi_10_64);
const __m128i k__cospi_p18_p14 = pair_set_epi16(cospi_18_64, cospi_14_64);
const __m128i k__cospi_p14_m18 = pair_set_epi16(cospi_14_64, -cospi_18_64);
const __m128i k__cospi_p26_p06 = pair_set_epi16(cospi_26_64, cospi_6_64);
const __m128i k__cospi_p06_m26 = pair_set_epi16(cospi_6_64, -cospi_26_64);
const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
const __m128i k__const_0 = _mm_set1_epi16(0);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
__m128i u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15;
__m128i v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15;
__m128i w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
__m128i s0, s1, s2, s3, s4, s5, s6, s7;
__m128i in0, in1, in2, in3, in4, in5, in6, in7;
// properly aligned for butterfly input
in0 = in[7];
in1 = in[0];
in2 = in[5];
in3 = in[2];
in4 = in[3];
in5 = in[4];
in6 = in[1];
in7 = in[6];
// column transformation
// stage 1
// interleave and multiply/add into 32-bit integer
s0 = _mm_unpacklo_epi16(in0, in1);
s1 = _mm_unpackhi_epi16(in0, in1);
s2 = _mm_unpacklo_epi16(in2, in3);
s3 = _mm_unpackhi_epi16(in2, in3);
s4 = _mm_unpacklo_epi16(in4, in5);
s5 = _mm_unpackhi_epi16(in4, in5);
s6 = _mm_unpacklo_epi16(in6, in7);
s7 = _mm_unpackhi_epi16(in6, in7);
u0 = _mm_madd_epi16(s0, k__cospi_p02_p30);
u1 = _mm_madd_epi16(s1, k__cospi_p02_p30);
u2 = _mm_madd_epi16(s0, k__cospi_p30_m02);
u3 = _mm_madd_epi16(s1, k__cospi_p30_m02);
u4 = _mm_madd_epi16(s2, k__cospi_p10_p22);
u5 = _mm_madd_epi16(s3, k__cospi_p10_p22);
u6 = _mm_madd_epi16(s2, k__cospi_p22_m10);
u7 = _mm_madd_epi16(s3, k__cospi_p22_m10);
u8 = _mm_madd_epi16(s4, k__cospi_p18_p14);
u9 = _mm_madd_epi16(s5, k__cospi_p18_p14);
u10 = _mm_madd_epi16(s4, k__cospi_p14_m18);
u11 = _mm_madd_epi16(s5, k__cospi_p14_m18);
u12 = _mm_madd_epi16(s6, k__cospi_p26_p06);
u13 = _mm_madd_epi16(s7, k__cospi_p26_p06);
u14 = _mm_madd_epi16(s6, k__cospi_p06_m26);
u15 = _mm_madd_epi16(s7, k__cospi_p06_m26);
// addition
w0 = _mm_add_epi32(u0, u8);
w1 = _mm_add_epi32(u1, u9);
w2 = _mm_add_epi32(u2, u10);
w3 = _mm_add_epi32(u3, u11);
w4 = _mm_add_epi32(u4, u12);
w5 = _mm_add_epi32(u5, u13);
w6 = _mm_add_epi32(u6, u14);
w7 = _mm_add_epi32(u7, u15);
w8 = _mm_sub_epi32(u0, u8);
w9 = _mm_sub_epi32(u1, u9);
w10 = _mm_sub_epi32(u2, u10);
w11 = _mm_sub_epi32(u3, u11);
w12 = _mm_sub_epi32(u4, u12);
w13 = _mm_sub_epi32(u5, u13);
w14 = _mm_sub_epi32(u6, u14);
w15 = _mm_sub_epi32(u7, u15);
// shift and rounding
v8 = _mm_add_epi32(w8, k__DCT_CONST_ROUNDING);
v9 = _mm_add_epi32(w9, k__DCT_CONST_ROUNDING);
v10 = _mm_add_epi32(w10, k__DCT_CONST_ROUNDING);
v11 = _mm_add_epi32(w11, k__DCT_CONST_ROUNDING);
v12 = _mm_add_epi32(w12, k__DCT_CONST_ROUNDING);
v13 = _mm_add_epi32(w13, k__DCT_CONST_ROUNDING);
v14 = _mm_add_epi32(w14, k__DCT_CONST_ROUNDING);
v15 = _mm_add_epi32(w15, k__DCT_CONST_ROUNDING);
u8 = _mm_srai_epi32(v8, DCT_CONST_BITS);
u9 = _mm_srai_epi32(v9, DCT_CONST_BITS);
u10 = _mm_srai_epi32(v10, DCT_CONST_BITS);
u11 = _mm_srai_epi32(v11, DCT_CONST_BITS);
u12 = _mm_srai_epi32(v12, DCT_CONST_BITS);
u13 = _mm_srai_epi32(v13, DCT_CONST_BITS);
u14 = _mm_srai_epi32(v14, DCT_CONST_BITS);
u15 = _mm_srai_epi32(v15, DCT_CONST_BITS);
// back to 16-bit and pack 8 integers into __m128i
v0 = _mm_add_epi32(w0, w4);
v1 = _mm_add_epi32(w1, w5);
v2 = _mm_add_epi32(w2, w6);
v3 = _mm_add_epi32(w3, w7);
v4 = _mm_sub_epi32(w0, w4);
v5 = _mm_sub_epi32(w1, w5);
v6 = _mm_sub_epi32(w2, w6);
v7 = _mm_sub_epi32(w3, w7);
w0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
w1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
w2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
w3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
w4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING);
w5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING);
w6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING);
w7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING);
v0 = _mm_srai_epi32(w0, DCT_CONST_BITS);
v1 = _mm_srai_epi32(w1, DCT_CONST_BITS);
v2 = _mm_srai_epi32(w2, DCT_CONST_BITS);
v3 = _mm_srai_epi32(w3, DCT_CONST_BITS);
v4 = _mm_srai_epi32(w4, DCT_CONST_BITS);
v5 = _mm_srai_epi32(w5, DCT_CONST_BITS);
v6 = _mm_srai_epi32(w6, DCT_CONST_BITS);
v7 = _mm_srai_epi32(w7, DCT_CONST_BITS);
in[4] = _mm_packs_epi32(u8, u9);
in[5] = _mm_packs_epi32(u10, u11);
in[6] = _mm_packs_epi32(u12, u13);
in[7] = _mm_packs_epi32(u14, u15);
// stage 2
s0 = _mm_packs_epi32(v0, v1);
s1 = _mm_packs_epi32(v2, v3);
s2 = _mm_packs_epi32(v4, v5);
s3 = _mm_packs_epi32(v6, v7);
u0 = _mm_unpacklo_epi16(in[4], in[5]);
u1 = _mm_unpackhi_epi16(in[4], in[5]);
u2 = _mm_unpacklo_epi16(in[6], in[7]);
u3 = _mm_unpackhi_epi16(in[6], in[7]);
v0 = _mm_madd_epi16(u0, k__cospi_p08_p24);
v1 = _mm_madd_epi16(u1, k__cospi_p08_p24);
v2 = _mm_madd_epi16(u0, k__cospi_p24_m08);
v3 = _mm_madd_epi16(u1, k__cospi_p24_m08);
v4 = _mm_madd_epi16(u2, k__cospi_m24_p08);
v5 = _mm_madd_epi16(u3, k__cospi_m24_p08);
v6 = _mm_madd_epi16(u2, k__cospi_p08_p24);
v7 = _mm_madd_epi16(u3, k__cospi_p08_p24);
w0 = _mm_add_epi32(v0, v4);
w1 = _mm_add_epi32(v1, v5);
w2 = _mm_add_epi32(v2, v6);
w3 = _mm_add_epi32(v3, v7);
w4 = _mm_sub_epi32(v0, v4);
w5 = _mm_sub_epi32(v1, v5);
w6 = _mm_sub_epi32(v2, v6);
w7 = _mm_sub_epi32(v3, v7);
v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING);
v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING);
v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING);
v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING);
v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING);
v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING);
v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING);
v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING);
u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
// back to 16-bit intergers
s4 = _mm_packs_epi32(u0, u1);
s5 = _mm_packs_epi32(u2, u3);
s6 = _mm_packs_epi32(u4, u5);
s7 = _mm_packs_epi32(u6, u7);
// stage 3
u0 = _mm_unpacklo_epi16(s2, s3);
u1 = _mm_unpackhi_epi16(s2, s3);
u2 = _mm_unpacklo_epi16(s6, s7);
u3 = _mm_unpackhi_epi16(s6, s7);
v0 = _mm_madd_epi16(u0, k__cospi_p16_p16);
v1 = _mm_madd_epi16(u1, k__cospi_p16_p16);
v2 = _mm_madd_epi16(u0, k__cospi_p16_m16);
v3 = _mm_madd_epi16(u1, k__cospi_p16_m16);
v4 = _mm_madd_epi16(u2, k__cospi_p16_p16);
v5 = _mm_madd_epi16(u3, k__cospi_p16_p16);
v6 = _mm_madd_epi16(u2, k__cospi_p16_m16);
v7 = _mm_madd_epi16(u3, k__cospi_p16_m16);
u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING);
u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING);
u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING);
u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING);
v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
v4 = _mm_srai_epi32(u4, DCT_CONST_BITS);
v5 = _mm_srai_epi32(u5, DCT_CONST_BITS);
v6 = _mm_srai_epi32(u6, DCT_CONST_BITS);
v7 = _mm_srai_epi32(u7, DCT_CONST_BITS);
s2 = _mm_packs_epi32(v0, v1);
s3 = _mm_packs_epi32(v2, v3);
s6 = _mm_packs_epi32(v4, v5);
s7 = _mm_packs_epi32(v6, v7);
// FIXME(jingning): do subtract using bit inversion?
in[0] = s0;
in[1] = _mm_sub_epi16(k__const_0, s4);
in[2] = s6;
in[3] = _mm_sub_epi16(k__const_0, s2);
in[4] = s3;
in[5] = _mm_sub_epi16(k__const_0, s7);
in[6] = s5;
in[7] = _mm_sub_epi16(k__const_0, s1);
// transpose
array_transpose_8x8(in, in);
}
#if CONFIG_EXT_TX
static void fidtx8_sse2(__m128i *in) {
in[0] = _mm_slli_epi16(in[0], 1);
in[1] = _mm_slli_epi16(in[1], 1);
in[2] = _mm_slli_epi16(in[2], 1);
in[3] = _mm_slli_epi16(in[3], 1);
in[4] = _mm_slli_epi16(in[4], 1);
in[5] = _mm_slli_epi16(in[5], 1);
in[6] = _mm_slli_epi16(in[6], 1);
in[7] = _mm_slli_epi16(in[7], 1);
array_transpose_8x8(in, in);
}
#endif // CONFIG_EXT_TX
void av1_fht8x8_sse2(const int16_t *input, tran_low_t *output, int stride,
int tx_type) {
__m128i in[8];
switch (tx_type) {
case DCT_DCT: aom_fdct8x8_sse2(input, output, stride); break;
case ADST_DCT:
load_buffer_8x8(input, in, stride, 0, 0);
fadst8_sse2(in);
fdct8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case DCT_ADST:
load_buffer_8x8(input, in, stride, 0, 0);
fdct8_sse2(in);
fadst8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case ADST_ADST:
load_buffer_8x8(input, in, stride, 0, 0);
fadst8_sse2(in);
fadst8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
load_buffer_8x8(input, in, stride, 1, 0);
fadst8_sse2(in);
fdct8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case DCT_FLIPADST:
load_buffer_8x8(input, in, stride, 0, 1);
fdct8_sse2(in);
fadst8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case FLIPADST_FLIPADST:
load_buffer_8x8(input, in, stride, 1, 1);
fadst8_sse2(in);
fadst8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case ADST_FLIPADST:
load_buffer_8x8(input, in, stride, 0, 1);
fadst8_sse2(in);
fadst8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case FLIPADST_ADST:
load_buffer_8x8(input, in, stride, 1, 0);
fadst8_sse2(in);
fadst8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case IDTX:
load_buffer_8x8(input, in, stride, 0, 0);
fidtx8_sse2(in);
fidtx8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case V_DCT:
load_buffer_8x8(input, in, stride, 0, 0);
fdct8_sse2(in);
fidtx8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case H_DCT:
load_buffer_8x8(input, in, stride, 0, 0);
fidtx8_sse2(in);
fdct8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case V_ADST:
load_buffer_8x8(input, in, stride, 0, 0);
fadst8_sse2(in);
fidtx8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case H_ADST:
load_buffer_8x8(input, in, stride, 0, 0);
fidtx8_sse2(in);
fadst8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case V_FLIPADST:
load_buffer_8x8(input, in, stride, 1, 0);
fadst8_sse2(in);
fidtx8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case H_FLIPADST:
load_buffer_8x8(input, in, stride, 0, 1);
fidtx8_sse2(in);
fadst8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
#endif // CONFIG_EXT_TX
default: assert(0);
}
}
static INLINE void load_buffer_16x16(const int16_t *input, __m128i *in0,
__m128i *in1, int stride, int flipud,
int fliplr) {
// Load 4 8x8 blocks
const int16_t *topL = input;
const int16_t *topR = input + 8;
const int16_t *botL = input + 8 * stride;
const int16_t *botR = input + 8 * stride + 8;
const int16_t *tmp;
if (flipud) {
// Swap left columns
tmp = topL;
topL = botL;
botL = tmp;
// Swap right columns
tmp = topR;
topR = botR;
botR = tmp;
}
if (fliplr) {
// Swap top rows
tmp = topL;
topL = topR;
topR = tmp;
// Swap bottom rows
tmp = botL;
botL = botR;
botR = tmp;
}
// load first 8 columns
load_buffer_8x8(topL, in0, stride, flipud, fliplr);
load_buffer_8x8(botL, in0 + 8, stride, flipud, fliplr);
// load second 8 columns
load_buffer_8x8(topR, in1, stride, flipud, fliplr);
load_buffer_8x8(botR, in1 + 8, stride, flipud, fliplr);
}
static INLINE void write_buffer_16x16(tran_low_t *output, __m128i *in0,
__m128i *in1, int stride) {
// write first 8 columns
write_buffer_8x8(output, in0, stride);
write_buffer_8x8(output + 8 * stride, in0 + 8, stride);
// write second 8 columns
output += 8;
write_buffer_8x8(output, in1, stride);
write_buffer_8x8(output + 8 * stride, in1 + 8, stride);
}
static INLINE void array_transpose_16x16(__m128i *res0, __m128i *res1) {
__m128i tbuf[8];
array_transpose_8x8(res0, res0);
array_transpose_8x8(res1, tbuf);
array_transpose_8x8(res0 + 8, res1);
array_transpose_8x8(res1 + 8, res1 + 8);
res0[8] = tbuf[0];
res0[9] = tbuf[1];
res0[10] = tbuf[2];
res0[11] = tbuf[3];
res0[12] = tbuf[4];
res0[13] = tbuf[5];
res0[14] = tbuf[6];
res0[15] = tbuf[7];
}
static INLINE void right_shift_16x16(__m128i *res0, __m128i *res1) {
// perform rounding operations
right_shift_8x8(res0, 2);
right_shift_8x8(res0 + 8, 2);
right_shift_8x8(res1, 2);
right_shift_8x8(res1 + 8, 2);
}
static void fdct16_8col(__m128i *in) {
// perform 16x16 1-D DCT for 8 columns
__m128i i[8], s[8], p[8], t[8], u[16], v[16];
const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64);
const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
const __m128i k__cospi_m24_m08 = pair_set_epi16(-cospi_24_64, -cospi_8_64);
const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
// stage 1
i[0] = _mm_add_epi16(in[0], in[15]);
i[1] = _mm_add_epi16(in[1], in[14]);
i[2] = _mm_add_epi16(in[2], in[13]);
i[3] = _mm_add_epi16(in[3], in[12]);
i[4] = _mm_add_epi16(in[4], in[11]);
i[5] = _mm_add_epi16(in[5], in[10]);
i[6] = _mm_add_epi16(in[6], in[9]);
i[7] = _mm_add_epi16(in[7], in[8]);
s[0] = _mm_sub_epi16(in[7], in[8]);
s[1] = _mm_sub_epi16(in[6], in[9]);
s[2] = _mm_sub_epi16(in[5], in[10]);
s[3] = _mm_sub_epi16(in[4], in[11]);
s[4] = _mm_sub_epi16(in[3], in[12]);
s[5] = _mm_sub_epi16(in[2], in[13]);
s[6] = _mm_sub_epi16(in[1], in[14]);
s[7] = _mm_sub_epi16(in[0], in[15]);
p[0] = _mm_add_epi16(i[0], i[7]);
p[1] = _mm_add_epi16(i[1], i[6]);
p[2] = _mm_add_epi16(i[2], i[5]);
p[3] = _mm_add_epi16(i[3], i[4]);
p[4] = _mm_sub_epi16(i[3], i[4]);
p[5] = _mm_sub_epi16(i[2], i[5]);
p[6] = _mm_sub_epi16(i[1], i[6]);
p[7] = _mm_sub_epi16(i[0], i[7]);
u[0] = _mm_add_epi16(p[0], p[3]);
u[1] = _mm_add_epi16(p[1], p[2]);
u[2] = _mm_sub_epi16(p[1], p[2]);
u[3] = _mm_sub_epi16(p[0], p[3]);
v[0] = _mm_unpacklo_epi16(u[0], u[1]);
v[1] = _mm_unpackhi_epi16(u[0], u[1]);
v[2] = _mm_unpacklo_epi16(u[2], u[3]);
v[3] = _mm_unpackhi_epi16(u[2], u[3]);
u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16);
u[1] = _mm_madd_epi16(v[1], k__cospi_p16_p16);
u[2] = _mm_madd_epi16(v[0], k__cospi_p16_m16);
u[3] = _mm_madd_epi16(v[1], k__cospi_p16_m16);
u[4] = _mm_madd_epi16(v[2], k__cospi_p24_p08);
u[5] = _mm_madd_epi16(v[3], k__cospi_p24_p08);
u[6] = _mm_madd_epi16(v[2], k__cospi_m08_p24);
u[7] = _mm_madd_epi16(v[3], k__cospi_m08_p24);
v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
in[0] = _mm_packs_epi32(u[0], u[1]);
in[4] = _mm_packs_epi32(u[4], u[5]);
in[8] = _mm_packs_epi32(u[2], u[3]);
in[12] = _mm_packs_epi32(u[6], u[7]);
u[0] = _mm_unpacklo_epi16(p[5], p[6]);
u[1] = _mm_unpackhi_epi16(p[5], p[6]);
v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16);
v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16);
v[2] = _mm_madd_epi16(u[0], k__cospi_p16_p16);
v[3] = _mm_madd_epi16(u[1], k__cospi_p16_p16);
u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
u[0] = _mm_packs_epi32(v[0], v[1]);
u[1] = _mm_packs_epi32(v[2], v[3]);
t[0] = _mm_add_epi16(p[4], u[0]);
t[1] = _mm_sub_epi16(p[4], u[0]);
t[2] = _mm_sub_epi16(p[7], u[1]);
t[3] = _mm_add_epi16(p[7], u[1]);
u[0] = _mm_unpacklo_epi16(t[0], t[3]);
u[1] = _mm_unpackhi_epi16(t[0], t[3]);
u[2] = _mm_unpacklo_epi16(t[1], t[2]);
u[3] = _mm_unpackhi_epi16(t[1], t[2]);
v[0] = _mm_madd_epi16(u[0], k__cospi_p28_p04);
v[1] = _mm_madd_epi16(u[1], k__cospi_p28_p04);
v[2] = _mm_madd_epi16(u[2], k__cospi_p12_p20);
v[3] = _mm_madd_epi16(u[3], k__cospi_p12_p20);
v[4] = _mm_madd_epi16(u[2], k__cospi_m20_p12);
v[5] = _mm_madd_epi16(u[3], k__cospi_m20_p12);
v[6] = _mm_madd_epi16(u[0], k__cospi_m04_p28);
v[7] = _mm_madd_epi16(u[1], k__cospi_m04_p28);
u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
in[2] = _mm_packs_epi32(v[0], v[1]);
in[6] = _mm_packs_epi32(v[4], v[5]);
in[10] = _mm_packs_epi32(v[2], v[3]);
in[14] = _mm_packs_epi32(v[6], v[7]);
// stage 2
u[0] = _mm_unpacklo_epi16(s[2], s[5]);
u[1] = _mm_unpackhi_epi16(s[2], s[5]);
u[2] = _mm_unpacklo_epi16(s[3], s[4]);
u[3] = _mm_unpackhi_epi16(s[3], s[4]);
v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16);
v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16);
v[2] = _mm_madd_epi16(u[2], k__cospi_m16_p16);
v[3] = _mm_madd_epi16(u[3], k__cospi_m16_p16);
v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16);
v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16);
v[6] = _mm_madd_epi16(u[0], k__cospi_p16_p16);
v[7] = _mm_madd_epi16(u[1], k__cospi_p16_p16);
u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
t[2] = _mm_packs_epi32(v[0], v[1]);
t[3] = _mm_packs_epi32(v[2], v[3]);
t[4] = _mm_packs_epi32(v[4], v[5]);
t[5] = _mm_packs_epi32(v[6], v[7]);
// stage 3
p[0] = _mm_add_epi16(s[0], t[3]);
p[1] = _mm_add_epi16(s[1], t[2]);
p[2] = _mm_sub_epi16(s[1], t[2]);
p[3] = _mm_sub_epi16(s[0], t[3]);
p[4] = _mm_sub_epi16(s[7], t[4]);
p[5] = _mm_sub_epi16(s[6], t[5]);
p[6] = _mm_add_epi16(s[6], t[5]);
p[7] = _mm_add_epi16(s[7], t[4]);
// stage 4
u[0] = _mm_unpacklo_epi16(p[1], p[6]);
u[1] = _mm_unpackhi_epi16(p[1], p[6]);
u[2] = _mm_unpacklo_epi16(p[2], p[5]);
u[3] = _mm_unpackhi_epi16(p[2], p[5]);
v[0] = _mm_madd_epi16(u[0], k__cospi_m08_p24);
v[1] = _mm_madd_epi16(u[1], k__cospi_m08_p24);
v[2] = _mm_madd_epi16(u[2], k__cospi_m24_m08);
v[3] = _mm_madd_epi16(u[3], k__cospi_m24_m08);
v[4] = _mm_madd_epi16(u[2], k__cospi_m08_p24);
v[5] = _mm_madd_epi16(u[3], k__cospi_m08_p24);
v[6] = _mm_madd_epi16(u[0], k__cospi_p24_p08);
v[7] = _mm_madd_epi16(u[1], k__cospi_p24_p08);
u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
t[1] = _mm_packs_epi32(v[0], v[1]);
t[2] = _mm_packs_epi32(v[2], v[3]);
t[5] = _mm_packs_epi32(v[4], v[5]);
t[6] = _mm_packs_epi32(v[6], v[7]);
// stage 5
s[0] = _mm_add_epi16(p[0], t[1]);
s[1] = _mm_sub_epi16(p[0], t[1]);
s[2] = _mm_sub_epi16(p[3], t[2]);
s[3] = _mm_add_epi16(p[3], t[2]);
s[4] = _mm_add_epi16(p[4], t[5]);
s[5] = _mm_sub_epi16(p[4], t[5]);
s[6] = _mm_sub_epi16(p[7], t[6]);
s[7] = _mm_add_epi16(p[7], t[6]);
// stage 6
u[0] = _mm_unpacklo_epi16(s[0], s[7]);
u[1] = _mm_unpackhi_epi16(s[0], s[7]);
u[2] = _mm_unpacklo_epi16(s[1], s[6]);
u[3] = _mm_unpackhi_epi16(s[1], s[6]);
u[4] = _mm_unpacklo_epi16(s[2], s[5]);
u[5] = _mm_unpackhi_epi16(s[2], s[5]);
u[6] = _mm_unpacklo_epi16(s[3], s[4]);
u[7] = _mm_unpackhi_epi16(s[3], s[4]);
v[0] = _mm_madd_epi16(u[0], k__cospi_p30_p02);
v[1] = _mm_madd_epi16(u[1], k__cospi_p30_p02);
v[2] = _mm_madd_epi16(u[2], k__cospi_p14_p18);
v[3] = _mm_madd_epi16(u[3], k__cospi_p14_p18);
v[4] = _mm_madd_epi16(u[4], k__cospi_p22_p10);
v[5] = _mm_madd_epi16(u[5], k__cospi_p22_p10);
v[6] = _mm_madd_epi16(u[6], k__cospi_p06_p26);
v[7] = _mm_madd_epi16(u[7], k__cospi_p06_p26);
v[8] = _mm_madd_epi16(u[6], k__cospi_m26_p06);
v[9] = _mm_madd_epi16(u[7], k__cospi_m26_p06);
v[10] = _mm_madd_epi16(u[4], k__cospi_m10_p22);
v[11] = _mm_madd_epi16(u[5], k__cospi_m10_p22);
v[12] = _mm_madd_epi16(u[2], k__cospi_m18_p14);
v[13] = _mm_madd_epi16(u[3], k__cospi_m18_p14);
v[14] = _mm_madd_epi16(u[0], k__cospi_m02_p30);
v[15] = _mm_madd_epi16(u[1], k__cospi_m02_p30);
u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING);
u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING);
u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING);
u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING);
u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING);
u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING);
u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING);
u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
in[1] = _mm_packs_epi32(v[0], v[1]);
in[9] = _mm_packs_epi32(v[2], v[3]);
in[5] = _mm_packs_epi32(v[4], v[5]);
in[13] = _mm_packs_epi32(v[6], v[7]);
in[3] = _mm_packs_epi32(v[8], v[9]);
in[11] = _mm_packs_epi32(v[10], v[11]);
in[7] = _mm_packs_epi32(v[12], v[13]);
in[15] = _mm_packs_epi32(v[14], v[15]);
}
static void fadst16_8col(__m128i *in) {
// perform 16x16 1-D ADST for 8 columns
__m128i s[16], x[16], u[32], v[32];
const __m128i k__cospi_p01_p31 = pair_set_epi16(cospi_1_64, cospi_31_64);
const __m128i k__cospi_p31_m01 = pair_set_epi16(cospi_31_64, -cospi_1_64);
const __m128i k__cospi_p05_p27 = pair_set_epi16(cospi_5_64, cospi_27_64);
const __m128i k__cospi_p27_m05 = pair_set_epi16(cospi_27_64, -cospi_5_64);
const __m128i k__cospi_p09_p23 = pair_set_epi16(cospi_9_64, cospi_23_64);
const __m128i k__cospi_p23_m09 = pair_set_epi16(cospi_23_64, -cospi_9_64);
const __m128i k__cospi_p13_p19 = pair_set_epi16(cospi_13_64, cospi_19_64);
const __m128i k__cospi_p19_m13 = pair_set_epi16(cospi_19_64, -cospi_13_64);
const __m128i k__cospi_p17_p15 = pair_set_epi16(cospi_17_64, cospi_15_64);
const __m128i k__cospi_p15_m17 = pair_set_epi16(cospi_15_64, -cospi_17_64);
const __m128i k__cospi_p21_p11 = pair_set_epi16(cospi_21_64, cospi_11_64);
const __m128i k__cospi_p11_m21 = pair_set_epi16(cospi_11_64, -cospi_21_64);
const __m128i k__cospi_p25_p07 = pair_set_epi16(cospi_25_64, cospi_7_64);
const __m128i k__cospi_p07_m25 = pair_set_epi16(cospi_7_64, -cospi_25_64);
const __m128i k__cospi_p29_p03 = pair_set_epi16(cospi_29_64, cospi_3_64);
const __m128i k__cospi_p03_m29 = pair_set_epi16(cospi_3_64, -cospi_29_64);
const __m128i k__cospi_p04_p28 = pair_set_epi16(cospi_4_64, cospi_28_64);
const __m128i k__cospi_p28_m04 = pair_set_epi16(cospi_28_64, -cospi_4_64);
const __m128i k__cospi_p20_p12 = pair_set_epi16(cospi_20_64, cospi_12_64);
const __m128i k__cospi_p12_m20 = pair_set_epi16(cospi_12_64, -cospi_20_64);
const __m128i k__cospi_m28_p04 = pair_set_epi16(-cospi_28_64, cospi_4_64);
const __m128i k__cospi_m12_p20 = pair_set_epi16(-cospi_12_64, cospi_20_64);
const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64);
const __m128i k__cospi_m16_m16 = _mm_set1_epi16((int16_t)-cospi_16_64);
const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
const __m128i kZero = _mm_set1_epi16(0);
u[0] = _mm_unpacklo_epi16(in[15], in[0]);
u[1] = _mm_unpackhi_epi16(in[15], in[0]);
u[2] = _mm_unpacklo_epi16(in[13], in[2]);
u[3] = _mm_unpackhi_epi16(in[13], in[2]);
u[4] = _mm_unpacklo_epi16(in[11], in[4]);
u[5] = _mm_unpackhi_epi16(in[11], in[4]);
u[6] = _mm_unpacklo_epi16(in[9], in[6]);
u[7] = _mm_unpackhi_epi16(in[9], in[6]);
u[8] = _mm_unpacklo_epi16(in[7], in[8]);
u[9] = _mm_unpackhi_epi16(in[7], in[8]);
u[10] = _mm_unpacklo_epi16(in[5], in[10]);
u[11] = _mm_unpackhi_epi16(in[5], in[10]);
u[12] = _mm_unpacklo_epi16(in[3], in[12]);
u[13] = _mm_unpackhi_epi16(in[3], in[12]);
u[14] = _mm_unpacklo_epi16(in[1], in[14]);
u[15] = _mm_unpackhi_epi16(in[1], in[14]);
v[0] = _mm_madd_epi16(u[0], k__cospi_p01_p31);
v[1] = _mm_madd_epi16(u[1], k__cospi_p01_p31);
v[2] = _mm_madd_epi16(u[0], k__cospi_p31_m01);
v[3] = _mm_madd_epi16(u[1], k__cospi_p31_m01);
v[4] = _mm_madd_epi16(u[2], k__cospi_p05_p27);
v[5] = _mm_madd_epi16(u[3], k__cospi_p05_p27);
v[6] = _mm_madd_epi16(u[2], k__cospi_p27_m05);
v[7] = _mm_madd_epi16(u[3], k__cospi_p27_m05);
v[8] = _mm_madd_epi16(u[4], k__cospi_p09_p23);
v[9] = _mm_madd_epi16(u[5], k__cospi_p09_p23);
v[10] = _mm_madd_epi16(u[4], k__cospi_p23_m09);
v[11] = _mm_madd_epi16(u[5], k__cospi_p23_m09);
v[12] = _mm_madd_epi16(u[6], k__cospi_p13_p19);
v[13] = _mm_madd_epi16(u[7], k__cospi_p13_p19);
v[14] = _mm_madd_epi16(u[6], k__cospi_p19_m13);
v[15] = _mm_madd_epi16(u[7], k__cospi_p19_m13);
v[16] = _mm_madd_epi16(u[8], k__cospi_p17_p15);
v[17] = _mm_madd_epi16(u[9], k__cospi_p17_p15);
v[18] = _mm_madd_epi16(u[8], k__cospi_p15_m17);
v[19] = _mm_madd_epi16(u[9], k__cospi_p15_m17);
v[20] = _mm_madd_epi16(u[10], k__cospi_p21_p11);
v[21] = _mm_madd_epi16(u[11], k__cospi_p21_p11);
v[22] = _mm_madd_epi16(u[10], k__cospi_p11_m21);
v[23] = _mm_madd_epi16(u[11], k__cospi_p11_m21);
v[24] = _mm_madd_epi16(u[12], k__cospi_p25_p07);
v[25] = _mm_madd_epi16(u[13], k__cospi_p25_p07);
v[26] = _mm_madd_epi16(u[12], k__cospi_p07_m25);
v[27] = _mm_madd_epi16(u[13], k__cospi_p07_m25);
v[28] = _mm_madd_epi16(u[14], k__cospi_p29_p03);
v[29] = _mm_madd_epi16(u[15], k__cospi_p29_p03);
v[30] = _mm_madd_epi16(u[14], k__cospi_p03_m29);
v[31] = _mm_madd_epi16(u[15], k__cospi_p03_m29);
u[0] = _mm_add_epi32(v[0], v[16]);
u[1] = _mm_add_epi32(v[1], v[17]);
u[2] = _mm_add_epi32(v[2], v[18]);
u[3] = _mm_add_epi32(v[3], v[19]);
u[4] = _mm_add_epi32(v[4], v[20]);
u[5] = _mm_add_epi32(v[5], v[21]);
u[6] = _mm_add_epi32(v[6], v[22]);
u[7] = _mm_add_epi32(v[7], v[23]);
u[8] = _mm_add_epi32(v[8], v[24]);
u[9] = _mm_add_epi32(v[9], v[25]);
u[10] = _mm_add_epi32(v[10], v[26]);
u[11] = _mm_add_epi32(v[11], v[27]);
u[12] = _mm_add_epi32(v[12], v[28]);
u[13] = _mm_add_epi32(v[13], v[29]);
u[14] = _mm_add_epi32(v[14], v[30]);
u[15] = _mm_add_epi32(v[15], v[31]);
u[16] = _mm_sub_epi32(v[0], v[16]);
u[17] = _mm_sub_epi32(v[1], v[17]);
u[18] = _mm_sub_epi32(v[2], v[18]);
u[19] = _mm_sub_epi32(v[3], v[19]);
u[20] = _mm_sub_epi32(v[4], v[20]);
u[21] = _mm_sub_epi32(v[5], v[21]);
u[22] = _mm_sub_epi32(v[6], v[22]);
u[23] = _mm_sub_epi32(v[7], v[23]);
u[24] = _mm_sub_epi32(v[8], v[24]);
u[25] = _mm_sub_epi32(v[9], v[25]);
u[26] = _mm_sub_epi32(v[10], v[26]);
u[27] = _mm_sub_epi32(v[11], v[27]);
u[28] = _mm_sub_epi32(v[12], v[28]);
u[29] = _mm_sub_epi32(v[13], v[29]);
u[30] = _mm_sub_epi32(v[14], v[30]);
u[31] = _mm_sub_epi32(v[15], v[31]);
v[16] = _mm_add_epi32(u[16], k__DCT_CONST_ROUNDING);
v[17] = _mm_add_epi32(u[17], k__DCT_CONST_ROUNDING);
v[18] = _mm_add_epi32(u[18], k__DCT_CONST_ROUNDING);
v[19] = _mm_add_epi32(u[19], k__DCT_CONST_ROUNDING);
v[20] = _mm_add_epi32(u[20], k__DCT_CONST_ROUNDING);
v[21] = _mm_add_epi32(u[21], k__DCT_CONST_ROUNDING);
v[22] = _mm_add_epi32(u[22], k__DCT_CONST_ROUNDING);
v[23] = _mm_add_epi32(u[23], k__DCT_CONST_ROUNDING);
v[24] = _mm_add_epi32(u[24], k__DCT_CONST_ROUNDING);
v[25] = _mm_add_epi32(u[25], k__DCT_CONST_ROUNDING);
v[26] = _mm_add_epi32(u[26], k__DCT_CONST_ROUNDING);
v[27] = _mm_add_epi32(u[27], k__DCT_CONST_ROUNDING);
v[28] = _mm_add_epi32(u[28], k__DCT_CONST_ROUNDING);
v[29] = _mm_add_epi32(u[29], k__DCT_CONST_ROUNDING);
v[30] = _mm_add_epi32(u[30], k__DCT_CONST_ROUNDING);
v[31] = _mm_add_epi32(u[31], k__DCT_CONST_ROUNDING);
u[16] = _mm_srai_epi32(v[16], DCT_CONST_BITS);
u[17] = _mm_srai_epi32(v[17], DCT_CONST_BITS);
u[18] = _mm_srai_epi32(v[18], DCT_CONST_BITS);
u[19] = _mm_srai_epi32(v[19], DCT_CONST_BITS);
u[20] = _mm_srai_epi32(v[20], DCT_CONST_BITS);
u[21] = _mm_srai_epi32(v[21], DCT_CONST_BITS);
u[22] = _mm_srai_epi32(v[22], DCT_CONST_BITS);
u[23] = _mm_srai_epi32(v[23], DCT_CONST_BITS);
u[24] = _mm_srai_epi32(v[24], DCT_CONST_BITS);
u[25] = _mm_srai_epi32(v[25], DCT_CONST_BITS);
u[26] = _mm_srai_epi32(v[26], DCT_CONST_BITS);
u[27] = _mm_srai_epi32(v[27], DCT_CONST_BITS);
u[28] = _mm_srai_epi32(v[28], DCT_CONST_BITS);
u[29] = _mm_srai_epi32(v[29], DCT_CONST_BITS);
u[30] = _mm_srai_epi32(v[30], DCT_CONST_BITS);
u[31] = _mm_srai_epi32(v[31], DCT_CONST_BITS);
v[0] = _mm_add_epi32(u[0], u[8]);
v[1] = _mm_add_epi32(u[1], u[9]);
v[2] = _mm_add_epi32(u[2], u[10]);
v[3] = _mm_add_epi32(u[3], u[11]);
v[4] = _mm_add_epi32(u[4], u[12]);
v[5] = _mm_add_epi32(u[5], u[13]);
v[6] = _mm_add_epi32(u[6], u[14]);
v[7] = _mm_add_epi32(u[7], u[15]);
v[16] = _mm_add_epi32(v[0], v[4]);
v[17] = _mm_add_epi32(v[1], v[5]);
v[18] = _mm_add_epi32(v[2], v[6]);
v[19] = _mm_add_epi32(v[3], v[7]);
v[20] = _mm_sub_epi32(v[0], v[4]);
v[21] = _mm_sub_epi32(v[1], v[5]);
v[22] = _mm_sub_epi32(v[2], v[6]);
v[23] = _mm_sub_epi32(v[3], v[7]);
v[16] = _mm_add_epi32(v[16], k__DCT_CONST_ROUNDING);
v[17] = _mm_add_epi32(v[17], k__DCT_CONST_ROUNDING);
v[18] = _mm_add_epi32(v[18], k__DCT_CONST_ROUNDING);
v[19] = _mm_add_epi32(v[19], k__DCT_CONST_ROUNDING);
v[20] = _mm_add_epi32(v[20], k__DCT_CONST_ROUNDING);
v[21] = _mm_add_epi32(v[21], k__DCT_CONST_ROUNDING);
v[22] = _mm_add_epi32(v[22], k__DCT_CONST_ROUNDING);
v[23] = _mm_add_epi32(v[23], k__DCT_CONST_ROUNDING);
v[16] = _mm_srai_epi32(v[16], DCT_CONST_BITS);
v[17] = _mm_srai_epi32(v[17], DCT_CONST_BITS);
v[18] = _mm_srai_epi32(v[18], DCT_CONST_BITS);
v[19] = _mm_srai_epi32(v[19], DCT_CONST_BITS);
v[20] = _mm_srai_epi32(v[20], DCT_CONST_BITS);
v[21] = _mm_srai_epi32(v[21], DCT_CONST_BITS);
v[22] = _mm_srai_epi32(v[22], DCT_CONST_BITS);
v[23] = _mm_srai_epi32(v[23], DCT_CONST_BITS);
s[0] = _mm_packs_epi32(v[16], v[17]);
s[1] = _mm_packs_epi32(v[18], v[19]);
s[2] = _mm_packs_epi32(v[20], v[21]);
s[3] = _mm_packs_epi32(v[22], v[23]);
v[8] = _mm_sub_epi32(u[0], u[8]);
v[9] = _mm_sub_epi32(u[1], u[9]);
v[10] = _mm_sub_epi32(u[2], u[10]);
v[11] = _mm_sub_epi32(u[3], u[11]);
v[12] = _mm_sub_epi32(u[4], u[12]);
v[13] = _mm_sub_epi32(u[5], u[13]);
v[14] = _mm_sub_epi32(u[6], u[14]);
v[15] = _mm_sub_epi32(u[7], u[15]);
v[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING);
v[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING);
v[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING);
v[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING);
v[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING);
v[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING);
v[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING);
v[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING);
v[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS);
v[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS);
v[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
v[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
v[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
v[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
v[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
v[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
s[4] = _mm_packs_epi32(v[8], v[9]);
s[5] = _mm_packs_epi32(v[10], v[11]);
s[6] = _mm_packs_epi32(v[12], v[13]);
s[7] = _mm_packs_epi32(v[14], v[15]);
//
s[8] = _mm_packs_epi32(u[16], u[17]);
s[9] = _mm_packs_epi32(u[18], u[19]);
s[10] = _mm_packs_epi32(u[20], u[21]);
s[11] = _mm_packs_epi32(u[22], u[23]);
s[12] = _mm_packs_epi32(u[24], u[25]);
s[13] = _mm_packs_epi32(u[26], u[27]);
s[14] = _mm_packs_epi32(u[28], u[29]);
s[15] = _mm_packs_epi32(u[30], u[31]);
// stage 2
u[0] = _mm_unpacklo_epi16(s[8], s[9]);
u[1] = _mm_unpackhi_epi16(s[8], s[9]);
u[2] = _mm_unpacklo_epi16(s[10], s[11]);
u[3] = _mm_unpackhi_epi16(s[10], s[11]);
u[4] = _mm_unpacklo_epi16(s[12], s[13]);
u[5] = _mm_unpackhi_epi16(s[12], s[13]);
u[6] = _mm_unpacklo_epi16(s[14], s[15]);
u[7] = _mm_unpackhi_epi16(s[14], s[15]);
v[0] = _mm_madd_epi16(u[0], k__cospi_p04_p28);
v[1] = _mm_madd_epi16(u[1], k__cospi_p04_p28);
v[2] = _mm_madd_epi16(u[0], k__cospi_p28_m04);
v[3] = _mm_madd_epi16(u[1], k__cospi_p28_m04);
v[4] = _mm_madd_epi16(u[2], k__cospi_p20_p12);
v[5] = _mm_madd_epi16(u[3], k__cospi_p20_p12);
v[6] = _mm_madd_epi16(u[2], k__cospi_p12_m20);
v[7] = _mm_madd_epi16(u[3], k__cospi_p12_m20);
v[8] = _mm_madd_epi16(u[4], k__cospi_m28_p04);
v[9] = _mm_madd_epi16(u[5], k__cospi_m28_p04);
v[10] = _mm_madd_epi16(u[4], k__cospi_p04_p28);
v[11] = _mm_madd_epi16(u[5], k__cospi_p04_p28);
v[12] = _mm_madd_epi16(u[6], k__cospi_m12_p20);
v[13] = _mm_madd_epi16(u[7], k__cospi_m12_p20);
v[14] = _mm_madd_epi16(u[6], k__cospi_p20_p12);
v[15] = _mm_madd_epi16(u[7], k__cospi_p20_p12);
u[0] = _mm_add_epi32(v[0], v[8]);
u[1] = _mm_add_epi32(v[1], v[9]);
u[2] = _mm_add_epi32(v[2], v[10]);
u[3] = _mm_add_epi32(v[3], v[11]);
u[4] = _mm_add_epi32(v[4], v[12]);
u[5] = _mm_add_epi32(v[5], v[13]);
u[6] = _mm_add_epi32(v[6], v[14]);
u[7] = _mm_add_epi32(v[7], v[15]);
u[8] = _mm_sub_epi32(v[0], v[8]);
u[9] = _mm_sub_epi32(v[1], v[9]);
u[10] = _mm_sub_epi32(v[2], v[10]);
u[11] = _mm_sub_epi32(v[3], v[11]);
u[12] = _mm_sub_epi32(v[4], v[12]);
u[13] = _mm_sub_epi32(v[5], v[13]);
u[14] = _mm_sub_epi32(v[6], v[14]);
u[15] = _mm_sub_epi32(v[7], v[15]);
v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS);
u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS);
u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
v[8] = _mm_add_epi32(u[0], u[4]);
v[9] = _mm_add_epi32(u[1], u[5]);
v[10] = _mm_add_epi32(u[2], u[6]);
v[11] = _mm_add_epi32(u[3], u[7]);
v[12] = _mm_sub_epi32(u[0], u[4]);
v[13] = _mm_sub_epi32(u[1], u[5]);
v[14] = _mm_sub_epi32(u[2], u[6]);
v[15] = _mm_sub_epi32(u[3], u[7]);
v[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING);
v[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING);
v[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING);
v[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING);
v[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING);
v[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING);
v[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING);
v[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING);
v[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS);
v[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS);
v[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
v[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
v[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
v[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
v[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
v[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
s[8] = _mm_packs_epi32(v[8], v[9]);
s[9] = _mm_packs_epi32(v[10], v[11]);
s[10] = _mm_packs_epi32(v[12], v[13]);
s[11] = _mm_packs_epi32(v[14], v[15]);
x[12] = _mm_packs_epi32(u[8], u[9]);
x[13] = _mm_packs_epi32(u[10], u[11]);
x[14] = _mm_packs_epi32(u[12], u[13]);
x[15] = _mm_packs_epi32(u[14], u[15]);
// stage 3
u[0] = _mm_unpacklo_epi16(s[4], s[5]);
u[1] = _mm_unpackhi_epi16(s[4], s[5]);
u[2] = _mm_unpacklo_epi16(s[6], s[7]);
u[3] = _mm_unpackhi_epi16(s[6], s[7]);
u[4] = _mm_unpacklo_epi16(x[12], x[13]);
u[5] = _mm_unpackhi_epi16(x[12], x[13]);
u[6] = _mm_unpacklo_epi16(x[14], x[15]);
u[7] = _mm_unpackhi_epi16(x[14], x[15]);
v[0] = _mm_madd_epi16(u[0], k__cospi_p08_p24);
v[1] = _mm_madd_epi16(u[1], k__cospi_p08_p24);
v[2] = _mm_madd_epi16(u[0], k__cospi_p24_m08);
v[3] = _mm_madd_epi16(u[1], k__cospi_p24_m08);
v[4] = _mm_madd_epi16(u[2], k__cospi_m24_p08);
v[5] = _mm_madd_epi16(u[3], k__cospi_m24_p08);
v[6] = _mm_madd_epi16(u[2], k__cospi_p08_p24);
v[7] = _mm_madd_epi16(u[3], k__cospi_p08_p24);
v[8] = _mm_madd_epi16(u[4], k__cospi_p08_p24);
v[9] = _mm_madd_epi16(u[5], k__cospi_p08_p24);
v[10] = _mm_madd_epi16(u[4], k__cospi_p24_m08);
v[11] = _mm_madd_epi16(u[5], k__cospi_p24_m08);
v[12] = _mm_madd_epi16(u[6], k__cospi_m24_p08);
v[13] = _mm_madd_epi16(u[7], k__cospi_m24_p08);
v[14] = _mm_madd_epi16(u[6], k__cospi_p08_p24);
v[15] = _mm_madd_epi16(u[7], k__cospi_p08_p24);
u[0] = _mm_add_epi32(v[0], v[4]);
u[1] = _mm_add_epi32(v[1], v[5]);
u[2] = _mm_add_epi32(v[2], v[6]);
u[3] = _mm_add_epi32(v[3], v[7]);
u[4] = _mm_sub_epi32(v[0], v[4]);
u[5] = _mm_sub_epi32(v[1], v[5]);
u[6] = _mm_sub_epi32(v[2], v[6]);
u[7] = _mm_sub_epi32(v[3], v[7]);
u[8] = _mm_add_epi32(v[8], v[12]);
u[9] = _mm_add_epi32(v[9], v[13]);
u[10] = _mm_add_epi32(v[10], v[14]);
u[11] = _mm_add_epi32(v[11], v[15]);
u[12] = _mm_sub_epi32(v[8], v[12]);
u[13] = _mm_sub_epi32(v[9], v[13]);
u[14] = _mm_sub_epi32(v[10], v[14]);
u[15] = _mm_sub_epi32(v[11], v[15]);
u[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
u[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
u[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
u[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
u[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
u[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
u[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
u[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
u[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
u[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
u[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
u[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
u[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
s[4] = _mm_packs_epi32(v[0], v[1]);
s[5] = _mm_packs_epi32(v[2], v[3]);
s[6] = _mm_packs_epi32(v[4], v[5]);
s[7] = _mm_packs_epi32(v[6], v[7]);
s[12] = _mm_packs_epi32(v[8], v[9]);
s[13] = _mm_packs_epi32(v[10], v[11]);
s[14] = _mm_packs_epi32(v[12], v[13]);
s[15] = _mm_packs_epi32(v[14], v[15]);
// stage 4
u[0] = _mm_unpacklo_epi16(s[2], s[3]);
u[1] = _mm_unpackhi_epi16(s[2], s[3]);
u[2] = _mm_unpacklo_epi16(s[6], s[7]);
u[3] = _mm_unpackhi_epi16(s[6], s[7]);
u[4] = _mm_unpacklo_epi16(s[10], s[11]);
u[5] = _mm_unpackhi_epi16(s[10], s[11]);
u[6] = _mm_unpacklo_epi16(s[14], s[15]);
u[7] = _mm_unpackhi_epi16(s[14], s[15]);
v[0] = _mm_madd_epi16(u[0], k__cospi_m16_m16);
v[1] = _mm_madd_epi16(u[1], k__cospi_m16_m16);
v[2] = _mm_madd_epi16(u[0], k__cospi_p16_m16);
v[3] = _mm_madd_epi16(u[1], k__cospi_p16_m16);
v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16);
v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16);
v[6] = _mm_madd_epi16(u[2], k__cospi_m16_p16);
v[7] = _mm_madd_epi16(u[3], k__cospi_m16_p16);
v[8] = _mm_madd_epi16(u[4], k__cospi_p16_p16);
v[9] = _mm_madd_epi16(u[5], k__cospi_p16_p16);
v[10] = _mm_madd_epi16(u[4], k__cospi_m16_p16);
v[11] = _mm_madd_epi16(u[5], k__cospi_m16_p16);
v[12] = _mm_madd_epi16(u[6], k__cospi_m16_m16);
v[13] = _mm_madd_epi16(u[7], k__cospi_m16_m16);
v[14] = _mm_madd_epi16(u[6], k__cospi_p16_m16);
v[15] = _mm_madd_epi16(u[7], k__cospi_p16_m16);
u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING);
u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING);
u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING);
u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING);
u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING);
u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING);
u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING);
u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
in[0] = s[0];
in[1] = _mm_sub_epi16(kZero, s[8]);
in[2] = s[12];
in[3] = _mm_sub_epi16(kZero, s[4]);
in[4] = _mm_packs_epi32(v[4], v[5]);
in[5] = _mm_packs_epi32(v[12], v[13]);
in[6] = _mm_packs_epi32(v[8], v[9]);
in[7] = _mm_packs_epi32(v[0], v[1]);
in[8] = _mm_packs_epi32(v[2], v[3]);
in[9] = _mm_packs_epi32(v[10], v[11]);
in[10] = _mm_packs_epi32(v[14], v[15]);
in[11] = _mm_packs_epi32(v[6], v[7]);
in[12] = s[5];
in[13] = _mm_sub_epi16(kZero, s[13]);
in[14] = s[9];
in[15] = _mm_sub_epi16(kZero, s[1]);
}
static void fdct16_sse2(__m128i *in0, __m128i *in1) {
fdct16_8col(in0);
fdct16_8col(in1);
array_transpose_16x16(in0, in1);
}
static void fadst16_sse2(__m128i *in0, __m128i *in1) {
fadst16_8col(in0);
fadst16_8col(in1);
array_transpose_16x16(in0, in1);
}
#if CONFIG_EXT_TX
static void fidtx16_sse2(__m128i *in0, __m128i *in1) {
idtx16_8col(in0);
idtx16_8col(in1);
array_transpose_16x16(in0, in1);
}
#endif // CONFIG_EXT_TX
void av1_fht16x16_sse2(const int16_t *input, tran_low_t *output, int stride,
int tx_type) {
__m128i in0[16], in1[16];
switch (tx_type) {
case DCT_DCT:
load_buffer_16x16(input, in0, in1, stride, 0, 0);
fdct16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fdct16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case ADST_DCT:
load_buffer_16x16(input, in0, in1, stride, 0, 0);
fadst16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fdct16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case DCT_ADST:
load_buffer_16x16(input, in0, in1, stride, 0, 0);
fdct16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fadst16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case ADST_ADST:
load_buffer_16x16(input, in0, in1, stride, 0, 0);
fadst16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fadst16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
load_buffer_16x16(input, in0, in1, stride, 1, 0);
fadst16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fdct16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case DCT_FLIPADST:
load_buffer_16x16(input, in0, in1, stride, 0, 1);
fdct16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fadst16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case FLIPADST_FLIPADST:
load_buffer_16x16(input, in0, in1, stride, 1, 1);
fadst16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fadst16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case ADST_FLIPADST:
load_buffer_16x16(input, in0, in1, stride, 0, 1);
fadst16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fadst16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case FLIPADST_ADST:
load_buffer_16x16(input, in0, in1, stride, 1, 0);
fadst16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fadst16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case IDTX:
load_buffer_16x16(input, in0, in1, stride, 0, 0);
fidtx16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fidtx16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case V_DCT:
load_buffer_16x16(input, in0, in1, stride, 0, 0);
fdct16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fidtx16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case H_DCT:
load_buffer_16x16(input, in0, in1, stride, 0, 0);
fidtx16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fdct16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case V_ADST:
load_buffer_16x16(input, in0, in1, stride, 0, 0);
fadst16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fidtx16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case H_ADST:
load_buffer_16x16(input, in0, in1, stride, 0, 0);
fidtx16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fadst16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case V_FLIPADST:
load_buffer_16x16(input, in0, in1, stride, 1, 0);
fadst16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fidtx16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case H_FLIPADST:
load_buffer_16x16(input, in0, in1, stride, 0, 1);
fidtx16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fadst16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
#endif // CONFIG_EXT_TX
default: assert(0); break;
}
}
static INLINE void prepare_4x8_row_first(__m128i *in) {
in[0] = _mm_unpacklo_epi64(in[0], in[2]);
in[1] = _mm_unpacklo_epi64(in[1], in[3]);
transpose_4x4(in);
in[4] = _mm_unpacklo_epi64(in[4], in[6]);
in[5] = _mm_unpacklo_epi64(in[5], in[7]);
transpose_4x4(in + 4);
}
// Load input into the left-hand half of in (ie, into lanes 0..3 of
// each element of in). The right hand half (lanes 4..7) should be
// treated as being filled with "don't care" values.
static INLINE void load_buffer_4x8(const int16_t *input, __m128i *in,
int stride, int flipud, int fliplr) {
const int shift = 2;
if (!flipud) {
in[0] = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
in[1] = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
in[2] = _mm_loadl_epi64((const __m128i *)(input + 2 * stride));
in[3] = _mm_loadl_epi64((const __m128i *)(input + 3 * stride));
in[4] = _mm_loadl_epi64((const __m128i *)(input + 4 * stride));
in[5] = _mm_loadl_epi64((const __m128i *)(input + 5 * stride));
in[6] = _mm_loadl_epi64((const __m128i *)(input + 6 * stride));
in[7] = _mm_loadl_epi64((const __m128i *)(input + 7 * stride));
} else {
in[0] = _mm_loadl_epi64((const __m128i *)(input + 7 * stride));
in[1] = _mm_loadl_epi64((const __m128i *)(input + 6 * stride));
in[2] = _mm_loadl_epi64((const __m128i *)(input + 5 * stride));
in[3] = _mm_loadl_epi64((const __m128i *)(input + 4 * stride));
in[4] = _mm_loadl_epi64((const __m128i *)(input + 3 * stride));
in[5] = _mm_loadl_epi64((const __m128i *)(input + 2 * stride));
in[6] = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
in[7] = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
}
if (fliplr) {
in[0] = _mm_shufflelo_epi16(in[0], 0x1b);
in[1] = _mm_shufflelo_epi16(in[1], 0x1b);
in[2] = _mm_shufflelo_epi16(in[2], 0x1b);
in[3] = _mm_shufflelo_epi16(in[3], 0x1b);
in[4] = _mm_shufflelo_epi16(in[4], 0x1b);
in[5] = _mm_shufflelo_epi16(in[5], 0x1b);
in[6] = _mm_shufflelo_epi16(in[6], 0x1b);
in[7] = _mm_shufflelo_epi16(in[7], 0x1b);
}
in[0] = _mm_slli_epi16(in[0], shift);
in[1] = _mm_slli_epi16(in[1], shift);
in[2] = _mm_slli_epi16(in[2], shift);
in[3] = _mm_slli_epi16(in[3], shift);
in[4] = _mm_slli_epi16(in[4], shift);
in[5] = _mm_slli_epi16(in[5], shift);
in[6] = _mm_slli_epi16(in[6], shift);
in[7] = _mm_slli_epi16(in[7], shift);
scale_sqrt2_8x4(in);
scale_sqrt2_8x4(in + 4);
prepare_4x8_row_first(in);
}
static INLINE void write_buffer_4x8(tran_low_t *output, __m128i *res) {
__m128i in01, in23, in45, in67, sign01, sign23, sign45, sign67;
const int shift = 1;
// revert the 8x8 txfm's transpose
array_transpose_8x8(res, res);
in01 = _mm_unpacklo_epi64(res[0], res[1]);
in23 = _mm_unpacklo_epi64(res[2], res[3]);
in45 = _mm_unpacklo_epi64(res[4], res[5]);
in67 = _mm_unpacklo_epi64(res[6], res[7]);
sign01 = _mm_srai_epi16(in01, 15);
sign23 = _mm_srai_epi16(in23, 15);
sign45 = _mm_srai_epi16(in45, 15);
sign67 = _mm_srai_epi16(in67, 15);
in01 = _mm_sub_epi16(in01, sign01);
in23 = _mm_sub_epi16(in23, sign23);
in45 = _mm_sub_epi16(in45, sign45);
in67 = _mm_sub_epi16(in67, sign67);
in01 = _mm_srai_epi16(in01, shift);
in23 = _mm_srai_epi16(in23, shift);
in45 = _mm_srai_epi16(in45, shift);
in67 = _mm_srai_epi16(in67, shift);
store_output(&in01, (output + 0 * 8));
store_output(&in23, (output + 1 * 8));
store_output(&in45, (output + 2 * 8));
store_output(&in67, (output + 3 * 8));
}
void av1_fht4x8_sse2(const int16_t *input, tran_low_t *output, int stride,
int tx_type) {
__m128i in[8];
switch (tx_type) {
case DCT_DCT:
load_buffer_4x8(input, in, stride, 0, 0);
fdct4_sse2(in);
fdct4_sse2(in + 4);
fdct8_sse2(in);
break;
case ADST_DCT:
load_buffer_4x8(input, in, stride, 0, 0);
fdct4_sse2(in);
fdct4_sse2(in + 4);
fadst8_sse2(in);
break;
case DCT_ADST:
load_buffer_4x8(input, in, stride, 0, 0);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fdct8_sse2(in);
break;
case ADST_ADST:
load_buffer_4x8(input, in, stride, 0, 0);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fadst8_sse2(in);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
load_buffer_4x8(input, in, stride, 1, 0);
fdct4_sse2(in);
fdct4_sse2(in + 4);
fadst8_sse2(in);
break;
case DCT_FLIPADST:
load_buffer_4x8(input, in, stride, 0, 1);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fdct8_sse2(in);
break;
case FLIPADST_FLIPADST:
load_buffer_4x8(input, in, stride, 1, 1);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fadst8_sse2(in);
break;
case ADST_FLIPADST:
load_buffer_4x8(input, in, stride, 0, 1);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fadst8_sse2(in);
break;
case FLIPADST_ADST:
load_buffer_4x8(input, in, stride, 1, 0);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fadst8_sse2(in);
break;
case IDTX:
load_buffer_4x8(input, in, stride, 0, 0);
fidtx4_sse2(in);
fidtx4_sse2(in + 4);
fidtx8_sse2(in);
break;
case V_DCT:
load_buffer_4x8(input, in, stride, 0, 0);
fidtx4_sse2(in);
fidtx4_sse2(in + 4);
fdct8_sse2(in);
break;
case H_DCT:
load_buffer_4x8(input, in, stride, 0, 0);
fdct4_sse2(in);
fdct4_sse2(in + 4);
fidtx8_sse2(in);
break;
case V_ADST:
load_buffer_4x8(input, in, stride, 0, 0);
fidtx4_sse2(in);
fidtx4_sse2(in + 4);
fadst8_sse2(in);
break;
case H_ADST:
load_buffer_4x8(input, in, stride, 0, 0);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fidtx8_sse2(in);
break;
case V_FLIPADST:
load_buffer_4x8(input, in, stride, 1, 0);
fidtx4_sse2(in);
fidtx4_sse2(in + 4);
fadst8_sse2(in);
break;
case H_FLIPADST:
load_buffer_4x8(input, in, stride, 0, 1);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fidtx8_sse2(in);
break;
#endif
default: assert(0); break;
}
write_buffer_4x8(output, in);
}
// Load input into the left-hand half of in (ie, into lanes 0..3 of
// each element of in). The right hand half (lanes 4..7) should be
// treated as being filled with "don't care" values.
// The input is split horizontally into two 4x4
// chunks 'l' and 'r'. Then 'l' is stored in the top-left 4x4
// block of 'in' and 'r' is stored in the bottom-left block.
// This is to allow us to reuse 4x4 transforms.
static INLINE void load_buffer_8x4(const int16_t *input, __m128i *in,
int stride, int flipud, int fliplr) {
const int shift = 2;
if (!flipud) {
in[0] = _mm_loadu_si128((const __m128i *)(input + 0 * stride));
in[1] = _mm_loadu_si128((const __m128i *)(input + 1 * stride));
in[2] = _mm_loadu_si128((const __m128i *)(input + 2 * stride));
in[3] = _mm_loadu_si128((const __m128i *)(input + 3 * stride));
} else {
in[0] = _mm_loadu_si128((const __m128i *)(input + 3 * stride));
in[1] = _mm_loadu_si128((const __m128i *)(input + 2 * stride));
in[2] = _mm_loadu_si128((const __m128i *)(input + 1 * stride));
in[3] = _mm_loadu_si128((const __m128i *)(input + 0 * stride));
}
if (fliplr) {
in[0] = mm_reverse_epi16(in[0]);
in[1] = mm_reverse_epi16(in[1]);
in[2] = mm_reverse_epi16(in[2]);
in[3] = mm_reverse_epi16(in[3]);
}
in[0] = _mm_slli_epi16(in[0], shift);
in[1] = _mm_slli_epi16(in[1], shift);
in[2] = _mm_slli_epi16(in[2], shift);
in[3] = _mm_slli_epi16(in[3], shift);
scale_sqrt2_8x4(in);
in[4] = _mm_shuffle_epi32(in[0], 0xe);
in[5] = _mm_shuffle_epi32(in[1], 0xe);
in[6] = _mm_shuffle_epi32(in[2], 0xe);
in[7] = _mm_shuffle_epi32(in[3], 0xe);
}
static INLINE void write_buffer_8x4(tran_low_t *output, __m128i *res) {
__m128i out0, out1, out2, out3, sign0, sign1, sign2, sign3;
const int shift = 1;
sign0 = _mm_srai_epi16(res[0], 15);
sign1 = _mm_srai_epi16(res[1], 15);
sign2 = _mm_srai_epi16(res[2], 15);
sign3 = _mm_srai_epi16(res[3], 15);
out0 = _mm_sub_epi16(res[0], sign0);
out1 = _mm_sub_epi16(res[1], sign1);
out2 = _mm_sub_epi16(res[2], sign2);
out3 = _mm_sub_epi16(res[3], sign3);
out0 = _mm_srai_epi16(out0, shift);
out1 = _mm_srai_epi16(out1, shift);
out2 = _mm_srai_epi16(out2, shift);
out3 = _mm_srai_epi16(out3, shift);
store_output(&out0, (output + 0 * 8));
store_output(&out1, (output + 1 * 8));
store_output(&out2, (output + 2 * 8));
store_output(&out3, (output + 3 * 8));
}
void av1_fht8x4_sse2(const int16_t *input, tran_low_t *output, int stride,
int tx_type) {
__m128i in[8];
switch (tx_type) {
case DCT_DCT:
load_buffer_8x4(input, in, stride, 0, 0);
fdct4_sse2(in);
fdct4_sse2(in + 4);
fdct8_sse2(in);
break;
case ADST_DCT:
load_buffer_8x4(input, in, stride, 0, 0);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fdct8_sse2(in);
break;
case DCT_ADST:
load_buffer_8x4(input, in, stride, 0, 0);
fdct4_sse2(in);
fdct4_sse2(in + 4);
fadst8_sse2(in);
break;
case ADST_ADST:
load_buffer_8x4(input, in, stride, 0, 0);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fadst8_sse2(in);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
load_buffer_8x4(input, in, stride, 1, 0);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fdct8_sse2(in);
break;
case DCT_FLIPADST:
load_buffer_8x4(input, in, stride, 0, 1);
fdct4_sse2(in);
fdct4_sse2(in + 4);
fadst8_sse2(in);
break;
case FLIPADST_FLIPADST:
load_buffer_8x4(input, in, stride, 1, 1);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fadst8_sse2(in);
break;
case ADST_FLIPADST:
load_buffer_8x4(input, in, stride, 0, 1);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fadst8_sse2(in);
break;
case FLIPADST_ADST:
load_buffer_8x4(input, in, stride, 1, 0);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fadst8_sse2(in);
break;
case IDTX:
load_buffer_8x4(input, in, stride, 0, 0);
fidtx4_sse2(in);
fidtx4_sse2(in + 4);
fidtx8_sse2(in);
break;
case V_DCT:
load_buffer_8x4(input, in, stride, 0, 0);
fdct4_sse2(in);
fdct4_sse2(in + 4);
fidtx8_sse2(in);
break;
case H_DCT:
load_buffer_8x4(input, in, stride, 0, 0);
fidtx4_sse2(in);
fidtx4_sse2(in + 4);
fdct8_sse2(in);
break;
case V_ADST:
load_buffer_8x4(input, in, stride, 0, 0);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fidtx8_sse2(in);
break;
case H_ADST:
load_buffer_8x4(input, in, stride, 0, 0);
fidtx4_sse2(in);
fidtx4_sse2(in + 4);
fadst8_sse2(in);
break;
case V_FLIPADST:
load_buffer_8x4(input, in, stride, 1, 0);
fadst4_sse2(in);
fadst4_sse2(in + 4);
fidtx8_sse2(in);
break;
case H_FLIPADST:
load_buffer_8x4(input, in, stride, 0, 1);
fidtx4_sse2(in);
fidtx4_sse2(in + 4);
fadst8_sse2(in);
break;
#endif
default: assert(0); break;
}
write_buffer_8x4(output, in);
}
static INLINE void load_buffer_8x16(const int16_t *input, __m128i *in,
int stride, int flipud, int fliplr) {
// Load 2 8x8 blocks
const int16_t *t = input;
const int16_t *b = input + 8 * stride;
if (flipud) {
const int16_t *const tmp = t;
t = b;
b = tmp;
}
load_buffer_8x8(t, in, stride, flipud, fliplr);
scale_sqrt2_8x8(in);
load_buffer_8x8(b, in + 8, stride, flipud, fliplr);
scale_sqrt2_8x8(in + 8);
}
static INLINE void round_power_of_two_signed(__m128i *x, int n) {
const __m128i rounding = _mm_set1_epi16((1 << n) >> 1);
const __m128i sign = _mm_srai_epi16(*x, 15);
const __m128i res = _mm_add_epi16(_mm_add_epi16(*x, rounding), sign);
*x = _mm_srai_epi16(res, n);
}
static void row_8x16_rounding(__m128i *in, int bits) {
int i;
for (i = 0; i < 16; i++) {
round_power_of_two_signed(&in[i], bits);
}
}
void av1_fht8x16_sse2(const int16_t *input, tran_low_t *output, int stride,
int tx_type) {
__m128i in[16];
__m128i *const t = in; // Alias to top 8x8 sub block
__m128i *const b = in + 8; // Alias to bottom 8x8 sub block
switch (tx_type) {
case DCT_DCT:
load_buffer_8x16(input, in, stride, 0, 0);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fdct8_sse2(t);
fdct8_sse2(b);
row_8x16_rounding(in, 2);
fdct16_8col(in);
break;
case ADST_DCT:
load_buffer_8x16(input, in, stride, 0, 0);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fdct8_sse2(t);
fdct8_sse2(b);
row_8x16_rounding(in, 2);
fadst16_8col(in);
break;
case DCT_ADST:
load_buffer_8x16(input, in, stride, 0, 0);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fadst8_sse2(t);
fadst8_sse2(b);
row_8x16_rounding(in, 2);
fdct16_8col(in);
break;
case ADST_ADST:
load_buffer_8x16(input, in, stride, 0, 0);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fadst8_sse2(t);
fadst8_sse2(b);
row_8x16_rounding(in, 2);
fadst16_8col(in);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
load_buffer_8x16(input, in, stride, 1, 0);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fdct8_sse2(t);
fdct8_sse2(b);
row_8x16_rounding(in, 2);
fadst16_8col(in);
break;
case DCT_FLIPADST:
load_buffer_8x16(input, in, stride, 0, 1);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fadst8_sse2(t);
fadst8_sse2(b);
row_8x16_rounding(in, 2);
fdct16_8col(in);
break;
case FLIPADST_FLIPADST:
load_buffer_8x16(input, in, stride, 1, 1);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fadst8_sse2(t);
fadst8_sse2(b);
row_8x16_rounding(in, 2);
fadst16_8col(in);
break;
case ADST_FLIPADST:
load_buffer_8x16(input, in, stride, 0, 1);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fadst8_sse2(t);
fadst8_sse2(b);
row_8x16_rounding(in, 2);
fadst16_8col(in);
break;
case FLIPADST_ADST:
load_buffer_8x16(input, in, stride, 1, 0);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fadst8_sse2(t);
fadst8_sse2(b);
row_8x16_rounding(in, 2);
fadst16_8col(in);
break;
case IDTX:
load_buffer_8x16(input, in, stride, 0, 0);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fidtx8_sse2(t);
fidtx8_sse2(b);
row_8x16_rounding(in, 2);
idtx16_8col(in);
break;
case V_DCT:
load_buffer_8x16(input, in, stride, 0, 0);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fidtx8_sse2(t);
fidtx8_sse2(b);
row_8x16_rounding(in, 2);
fdct16_8col(in);
break;
case H_DCT:
load_buffer_8x16(input, in, stride, 0, 0);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fdct8_sse2(t);
fdct8_sse2(b);
row_8x16_rounding(in, 2);
idtx16_8col(in);
break;
case V_ADST:
load_buffer_8x16(input, in, stride, 0, 0);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fidtx8_sse2(t);
fidtx8_sse2(b);
row_8x16_rounding(in, 2);
fadst16_8col(in);
break;
case H_ADST:
load_buffer_8x16(input, in, stride, 0, 0);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fadst8_sse2(t);
fadst8_sse2(b);
row_8x16_rounding(in, 2);
idtx16_8col(in);
break;
case V_FLIPADST:
load_buffer_8x16(input, in, stride, 1, 0);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fidtx8_sse2(t);
fidtx8_sse2(b);
row_8x16_rounding(in, 2);
fadst16_8col(in);
break;
case H_FLIPADST:
load_buffer_8x16(input, in, stride, 0, 1);
array_transpose_8x8(t, t);
array_transpose_8x8(b, b);
fadst8_sse2(t);
fadst8_sse2(b);
row_8x16_rounding(in, 2);
idtx16_8col(in);
break;
#endif
default: assert(0); break;
}
write_buffer_8x8(output, t, 8);
write_buffer_8x8(output + 64, b, 8);
}
static INLINE void load_buffer_16x8(const int16_t *input, __m128i *in,
int stride, int flipud, int fliplr) {
// Load 2 8x8 blocks
const int16_t *l = input;
const int16_t *r = input + 8;
if (fliplr) {
const int16_t *const tmp = l;
l = r;
r = tmp;
}
// load first 8 columns
load_buffer_8x8(l, in, stride, flipud, fliplr);
scale_sqrt2_8x8(in);
load_buffer_8x8(r, in + 8, stride, flipud, fliplr);
scale_sqrt2_8x8(in + 8);
}
#define col_16x8_rounding row_8x16_rounding
void av1_fht16x8_sse2(const int16_t *input, tran_low_t *output, int stride,
int tx_type) {
__m128i in[16];
__m128i *const l = in; // Alias to left 8x8 sub block
__m128i *const r = in + 8; // Alias to right 8x8 sub block, which we store
// in the second half of the array
switch (tx_type) {
case DCT_DCT:
load_buffer_16x8(input, in, stride, 0, 0);
fdct8_sse2(l);
fdct8_sse2(r);
col_16x8_rounding(in, 2);
fdct16_8col(in);
break;
case ADST_DCT:
load_buffer_16x8(input, in, stride, 0, 0);
fadst8_sse2(l);
fadst8_sse2(r);
col_16x8_rounding(in, 2);
fdct16_8col(in);
break;
case DCT_ADST:
load_buffer_16x8(input, in, stride, 0, 0);
fdct8_sse2(l);
fdct8_sse2(r);
col_16x8_rounding(in, 2);
fadst16_8col(in);
break;
case ADST_ADST:
load_buffer_16x8(input, in, stride, 0, 0);
fadst8_sse2(l);
fadst8_sse2(r);
col_16x8_rounding(in, 2);
fadst16_8col(in);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
load_buffer_16x8(input, in, stride, 1, 0);
fadst8_sse2(l);
fadst8_sse2(r);
col_16x8_rounding(in, 2);
fdct16_8col(in);
break;
case DCT_FLIPADST:
load_buffer_16x8(input, in, stride, 0, 1);
fdct8_sse2(l);
fdct8_sse2(r);
col_16x8_rounding(in, 2);
fadst16_8col(in);
break;
case FLIPADST_FLIPADST:
load_buffer_16x8(input, in, stride, 1, 1);
fadst8_sse2(l);
fadst8_sse2(r);
col_16x8_rounding(in, 2);
fadst16_8col(in);
break;
case ADST_FLIPADST:
load_buffer_16x8(input, in, stride, 0, 1);
fadst8_sse2(l);
fadst8_sse2(r);
col_16x8_rounding(in, 2);
fadst16_8col(in);
break;
case FLIPADST_ADST:
load_buffer_16x8(input, in, stride, 1, 0);
fadst8_sse2(l);
fadst8_sse2(r);
col_16x8_rounding(in, 2);
fadst16_8col(in);
break;
case IDTX:
load_buffer_16x8(input, in, stride, 0, 0);
fidtx8_sse2(l);
fidtx8_sse2(r);
col_16x8_rounding(in, 2);
idtx16_8col(in);
break;
case V_DCT:
load_buffer_16x8(input, in, stride, 0, 0);
fdct8_sse2(l);
fdct8_sse2(r);
col_16x8_rounding(in, 2);
idtx16_8col(in);
break;
case H_DCT:
load_buffer_16x8(input, in, stride, 0, 0);
fidtx8_sse2(l);
fidtx8_sse2(r);
col_16x8_rounding(in, 2);
fdct16_8col(in);
break;
case V_ADST:
load_buffer_16x8(input, in, stride, 0, 0);
fadst8_sse2(l);
fadst8_sse2(r);
col_16x8_rounding(in, 2);
idtx16_8col(in);
break;
case H_ADST:
load_buffer_16x8(input, in, stride, 0, 0);
fidtx8_sse2(l);
fidtx8_sse2(r);
col_16x8_rounding(in, 2);
fadst16_8col(in);
break;
case V_FLIPADST:
load_buffer_16x8(input, in, stride, 1, 0);
fadst8_sse2(l);
fadst8_sse2(r);
col_16x8_rounding(in, 2);
idtx16_8col(in);
break;
case H_FLIPADST:
load_buffer_16x8(input, in, stride, 0, 1);
fidtx8_sse2(l);
fidtx8_sse2(r);
col_16x8_rounding(in, 2);
fadst16_8col(in);
break;
#endif
default: assert(0); break;
}
array_transpose_8x8(l, l);
array_transpose_8x8(r, r);
write_buffer_8x8(output, l, 16);
write_buffer_8x8(output + 8, r, 16);
}
// Note: The 16-column 32-element transforms expect their input to be
// split up into a 2x2 grid of 8x16 blocks
static INLINE void fdct32_16col(__m128i *tl, __m128i *tr, __m128i *bl,
__m128i *br) {
fdct32_8col(tl, bl);
fdct32_8col(tr, br);
array_transpose_16x16(tl, tr);
array_transpose_16x16(bl, br);
}
#if CONFIG_EXT_TX
static INLINE void fidtx32_16col(__m128i *tl, __m128i *tr, __m128i *bl,
__m128i *br) {
int i;
for (i = 0; i < 16; ++i) {
tl[i] = _mm_slli_epi16(tl[i], 2);
tr[i] = _mm_slli_epi16(tr[i], 2);
bl[i] = _mm_slli_epi16(bl[i], 2);
br[i] = _mm_slli_epi16(br[i], 2);
}
array_transpose_16x16(tl, tr);
array_transpose_16x16(bl, br);
}
#endif
static INLINE void load_buffer_16x32(const int16_t *input, __m128i *intl,
__m128i *intr, __m128i *inbl,
__m128i *inbr, int stride, int flipud,
int fliplr) {
int i;
if (flipud) {
input = input + 31 * stride;
stride = -stride;
}
for (i = 0; i < 16; ++i) {
intl[i] = _mm_slli_epi16(
_mm_load_si128((const __m128i *)(input + i * stride + 0)), 2);
intr[i] = _mm_slli_epi16(
_mm_load_si128((const __m128i *)(input + i * stride + 8)), 2);
inbl[i] = _mm_slli_epi16(
_mm_load_si128((const __m128i *)(input + (i + 16) * stride + 0)), 2);
inbr[i] = _mm_slli_epi16(
_mm_load_si128((const __m128i *)(input + (i + 16) * stride + 8)), 2);
}
if (fliplr) {
__m128i tmp;
for (i = 0; i < 16; ++i) {
tmp = intl[i];
intl[i] = mm_reverse_epi16(intr[i]);
intr[i] = mm_reverse_epi16(tmp);
tmp = inbl[i];
inbl[i] = mm_reverse_epi16(inbr[i]);
inbr[i] = mm_reverse_epi16(tmp);
}
}
scale_sqrt2_8x16(intl);
scale_sqrt2_8x16(intr);
scale_sqrt2_8x16(inbl);
scale_sqrt2_8x16(inbr);
}
static INLINE void write_buffer_16x32(tran_low_t *output, __m128i *restl,
__m128i *restr, __m128i *resbl,
__m128i *resbr) {
int i;
for (i = 0; i < 16; ++i) {
store_output(&restl[i], output + i * 16 + 0);
store_output(&restr[i], output + i * 16 + 8);
store_output(&resbl[i], output + (i + 16) * 16 + 0);
store_output(&resbr[i], output + (i + 16) * 16 + 8);
}
}
static INLINE void round_signed_8x8(__m128i *in, const int bit) {
const __m128i rounding = _mm_set1_epi16((1 << bit) >> 1);
__m128i sign0 = _mm_srai_epi16(in[0], 15);
__m128i sign1 = _mm_srai_epi16(in[1], 15);
__m128i sign2 = _mm_srai_epi16(in[2], 15);
__m128i sign3 = _mm_srai_epi16(in[3], 15);
__m128i sign4 = _mm_srai_epi16(in[4], 15);
__m128i sign5 = _mm_srai_epi16(in[5], 15);
__m128i sign6 = _mm_srai_epi16(in[6], 15);
__m128i sign7 = _mm_srai_epi16(in[7], 15);
in[0] = _mm_add_epi16(_mm_add_epi16(in[0], rounding), sign0);
in[1] = _mm_add_epi16(_mm_add_epi16(in[1], rounding), sign1);
in[2] = _mm_add_epi16(_mm_add_epi16(in[2], rounding), sign2);
in[3] = _mm_add_epi16(_mm_add_epi16(in[3], rounding), sign3);
in[4] = _mm_add_epi16(_mm_add_epi16(in[4], rounding), sign4);
in[5] = _mm_add_epi16(_mm_add_epi16(in[5], rounding), sign5);
in[6] = _mm_add_epi16(_mm_add_epi16(in[6], rounding), sign6);
in[7] = _mm_add_epi16(_mm_add_epi16(in[7], rounding), sign7);
in[0] = _mm_srai_epi16(in[0], bit);
in[1] = _mm_srai_epi16(in[1], bit);
in[2] = _mm_srai_epi16(in[2], bit);
in[3] = _mm_srai_epi16(in[3], bit);
in[4] = _mm_srai_epi16(in[4], bit);
in[5] = _mm_srai_epi16(in[5], bit);
in[6] = _mm_srai_epi16(in[6], bit);
in[7] = _mm_srai_epi16(in[7], bit);
}
static INLINE void round_signed_16x16(__m128i *in0, __m128i *in1) {
const int bit = 4;
round_signed_8x8(in0, bit);
round_signed_8x8(in0 + 8, bit);
round_signed_8x8(in1, bit);
round_signed_8x8(in1 + 8, bit);
}
// Note:
// suffix "t" indicates the transpose operation comes first
static void fdct16t_sse2(__m128i *in0, __m128i *in1) {
array_transpose_16x16(in0, in1);
fdct16_8col(in0);
fdct16_8col(in1);
}
static void fadst16t_sse2(__m128i *in0, __m128i *in1) {
array_transpose_16x16(in0, in1);
fadst16_8col(in0);
fadst16_8col(in1);
}
static INLINE void fdct32t_16col(__m128i *tl, __m128i *tr, __m128i *bl,
__m128i *br) {
array_transpose_16x16(tl, tr);
array_transpose_16x16(bl, br);
fdct32_8col(tl, bl);
fdct32_8col(tr, br);
}
typedef enum transpose_indicator_ {
transpose,
no_transpose,
} transpose_indicator;
static INLINE void fhalfright32_16col(__m128i *tl, __m128i *tr, __m128i *bl,
__m128i *br, transpose_indicator t) {
__m128i tmpl[16], tmpr[16];
int i;
// Copy the bottom half of the input to temporary storage
for (i = 0; i < 16; ++i) {
tmpl[i] = bl[i];
tmpr[i] = br[i];
}
// Generate the bottom half of the output
for (i = 0; i < 16; ++i) {
bl[i] = _mm_slli_epi16(tl[i], 2);
br[i] = _mm_slli_epi16(tr[i], 2);
}
array_transpose_16x16(bl, br);
// Copy the temporary storage back to the top half of the input
for (i = 0; i < 16; ++i) {
tl[i] = tmpl[i];
tr[i] = tmpr[i];
}
// Generate the top half of the output
scale_sqrt2_8x16(tl);
scale_sqrt2_8x16(tr);
if (t == transpose)
fdct16t_sse2(tl, tr);
else
fdct16_sse2(tl, tr);
}
// Note on data layout, for both this and the 32x16 transforms:
// So that we can reuse the 16-element transforms easily,
// we want to split the input into 8x16 blocks.
// For 16x32, this means the input is a 2x2 grid of such blocks.
// For 32x16, it means the input is a 4x1 grid.
void av1_fht16x32_sse2(const int16_t *input, tran_low_t *output, int stride,
int tx_type) {
__m128i intl[16], intr[16], inbl[16], inbr[16];
switch (tx_type) {
case DCT_DCT:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 0, 0);
fdct16t_sse2(intl, intr);
fdct16t_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fdct32t_16col(intl, intr, inbl, inbr);
break;
case ADST_DCT:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 0, 0);
fdct16t_sse2(intl, intr);
fdct16t_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fhalfright32_16col(intl, intr, inbl, inbr, transpose);
break;
case DCT_ADST:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 0, 0);
fadst16t_sse2(intl, intr);
fadst16t_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fdct32t_16col(intl, intr, inbl, inbr);
break;
case ADST_ADST:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 0, 0);
fadst16t_sse2(intl, intr);
fadst16t_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fhalfright32_16col(intl, intr, inbl, inbr, transpose);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 1, 0);
fdct16t_sse2(intl, intr);
fdct16t_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fhalfright32_16col(intl, intr, inbl, inbr, transpose);
break;
case DCT_FLIPADST:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 0, 1);
fadst16t_sse2(intl, intr);
fadst16t_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fdct32t_16col(intl, intr, inbl, inbr);
break;
case FLIPADST_FLIPADST:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 1, 1);
fadst16t_sse2(intl, intr);
fadst16t_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fhalfright32_16col(intl, intr, inbl, inbr, transpose);
break;
case ADST_FLIPADST:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 0, 1);
fadst16t_sse2(intl, intr);
fadst16t_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fhalfright32_16col(intl, intr, inbl, inbr, transpose);
break;
case FLIPADST_ADST:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 1, 0);
fadst16t_sse2(intl, intr);
fadst16t_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fhalfright32_16col(intl, intr, inbl, inbr, transpose);
break;
case IDTX:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 0, 0);
fidtx16_sse2(intl, intr);
fidtx16_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fidtx32_16col(intl, intr, inbl, inbr);
break;
case V_DCT:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 0, 0);
fidtx16_sse2(intl, intr);
fidtx16_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fdct32t_16col(intl, intr, inbl, inbr);
break;
case H_DCT:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 0, 0);
fdct16t_sse2(intl, intr);
fdct16t_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fidtx32_16col(intl, intr, inbl, inbr);
break;
case V_ADST:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 0, 0);
fidtx16_sse2(intl, intr);
fidtx16_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fhalfright32_16col(intl, intr, inbl, inbr, transpose);
break;
case H_ADST:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 0, 0);
fadst16t_sse2(intl, intr);
fadst16t_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fidtx32_16col(intl, intr, inbl, inbr);
break;
case V_FLIPADST:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 1, 0);
fidtx16_sse2(intl, intr);
fidtx16_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fhalfright32_16col(intl, intr, inbl, inbr, transpose);
break;
case H_FLIPADST:
load_buffer_16x32(input, intl, intr, inbl, inbr, stride, 0, 1);
fadst16t_sse2(intl, intr);
fadst16t_sse2(inbl, inbr);
round_signed_16x16(intl, intr);
round_signed_16x16(inbl, inbr);
fidtx32_16col(intl, intr, inbl, inbr);
break;
#endif
default: assert(0); break;
}
write_buffer_16x32(output, intl, intr, inbl, inbr);
}
static INLINE void load_buffer_32x16(const int16_t *input, __m128i *in0,
__m128i *in1, __m128i *in2, __m128i *in3,
int stride, int flipud, int fliplr) {
int i;
if (flipud) {
input += 15 * stride;
stride = -stride;
}
for (i = 0; i < 16; ++i) {
in0[i] = _mm_slli_epi16(
_mm_load_si128((const __m128i *)(input + i * stride + 0)), 2);
in1[i] = _mm_slli_epi16(
_mm_load_si128((const __m128i *)(input + i * stride + 8)), 2);
in2[i] = _mm_slli_epi16(
_mm_load_si128((const __m128i *)(input + i * stride + 16)), 2);
in3[i] = _mm_slli_epi16(
_mm_load_si128((const __m128i *)(input + i * stride + 24)), 2);
}
if (fliplr) {
for (i = 0; i < 16; ++i) {
__m128i tmp1 = in0[i];
__m128i tmp2 = in1[i];
in0[i] = mm_reverse_epi16(in3[i]);
in1[i] = mm_reverse_epi16(in2[i]);
in2[i] = mm_reverse_epi16(tmp2);
in3[i] = mm_reverse_epi16(tmp1);
}
}
scale_sqrt2_8x16(in0);
scale_sqrt2_8x16(in1);
scale_sqrt2_8x16(in2);
scale_sqrt2_8x16(in3);
}
static INLINE void write_buffer_32x16(tran_low_t *output, __m128i *res0,
__m128i *res1, __m128i *res2,
__m128i *res3) {
int i;
for (i = 0; i < 16; ++i) {
store_output(&res0[i], output + i * 32 + 0);
store_output(&res1[i], output + i * 32 + 8);
store_output(&res2[i], output + i * 32 + 16);
store_output(&res3[i], output + i * 32 + 24);
}
}
void av1_fht32x16_sse2(const int16_t *input, tran_low_t *output, int stride,
int tx_type) {
__m128i in0[16], in1[16], in2[16], in3[16];
load_buffer_32x16(input, in0, in1, in2, in3, stride, 0, 0);
switch (tx_type) {
case DCT_DCT:
fdct16_sse2(in0, in1);
fdct16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fdct32_16col(in0, in1, in2, in3);
break;
case ADST_DCT:
fadst16_sse2(in0, in1);
fadst16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fdct32_16col(in0, in1, in2, in3);
break;
case DCT_ADST:
fdct16_sse2(in0, in1);
fdct16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fhalfright32_16col(in0, in1, in2, in3, no_transpose);
break;
case ADST_ADST:
fadst16_sse2(in0, in1);
fadst16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fhalfright32_16col(in0, in1, in2, in3, no_transpose);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
load_buffer_32x16(input, in0, in1, in2, in3, stride, 1, 0);
fadst16_sse2(in0, in1);
fadst16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fdct32_16col(in0, in1, in2, in3);
break;
case DCT_FLIPADST:
load_buffer_32x16(input, in0, in1, in2, in3, stride, 0, 1);
fdct16_sse2(in0, in1);
fdct16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fhalfright32_16col(in0, in1, in2, in3, no_transpose);
break;
case FLIPADST_FLIPADST:
load_buffer_32x16(input, in0, in1, in2, in3, stride, 1, 1);
fadst16_sse2(in0, in1);
fadst16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fhalfright32_16col(in0, in1, in2, in3, no_transpose);
break;
case ADST_FLIPADST:
load_buffer_32x16(input, in0, in1, in2, in3, stride, 0, 1);
fadst16_sse2(in0, in1);
fadst16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fhalfright32_16col(in0, in1, in2, in3, no_transpose);
break;
case FLIPADST_ADST:
load_buffer_32x16(input, in0, in1, in2, in3, stride, 1, 0);
fadst16_sse2(in0, in1);
fadst16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fhalfright32_16col(in0, in1, in2, in3, no_transpose);
break;
case IDTX:
load_buffer_32x16(input, in0, in1, in2, in3, stride, 0, 0);
fidtx16_sse2(in0, in1);
fidtx16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fidtx32_16col(in0, in1, in2, in3);
break;
case V_DCT:
load_buffer_32x16(input, in0, in1, in2, in3, stride, 0, 0);
fdct16_sse2(in0, in1);
fdct16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fidtx32_16col(in0, in1, in2, in3);
break;
case H_DCT:
load_buffer_32x16(input, in0, in1, in2, in3, stride, 0, 0);
fidtx16_sse2(in0, in1);
fidtx16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fdct32_16col(in0, in1, in2, in3);
break;
case V_ADST:
load_buffer_32x16(input, in0, in1, in2, in3, stride, 0, 0);
fadst16_sse2(in0, in1);
fadst16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fidtx32_16col(in0, in1, in2, in3);
break;
case H_ADST:
load_buffer_32x16(input, in0, in1, in2, in3, stride, 0, 0);
fidtx16_sse2(in0, in1);
fidtx16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fhalfright32_16col(in0, in1, in2, in3, no_transpose);
break;
case V_FLIPADST:
load_buffer_32x16(input, in0, in1, in2, in3, stride, 1, 0);
fadst16_sse2(in0, in1);
fadst16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fidtx32_16col(in0, in1, in2, in3);
break;
case H_FLIPADST:
load_buffer_32x16(input, in0, in1, in2, in3, stride, 0, 1);
fidtx16_sse2(in0, in1);
fidtx16_sse2(in2, in3);
round_signed_16x16(in0, in1);
round_signed_16x16(in2, in3);
fhalfright32_16col(in0, in1, in2, in3, no_transpose);
break;
#endif
default: assert(0); break;
}
write_buffer_32x16(output, in0, in1, in2, in3);
}
// Note:
// 32x32 hybrid fwd txfm
// 4x2 grids of 8x16 block. Each block is represented by __m128i in[16]
static INLINE void load_buffer_32x32(const int16_t *input,
__m128i *in0 /*in0[32]*/,
__m128i *in1 /*in1[32]*/,
__m128i *in2 /*in2[32]*/,
__m128i *in3 /*in3[32]*/, int stride,
int flipud, int fliplr) {
if (flipud) {
input += 31 * stride;
stride = -stride;
}
int i;
for (i = 0; i < 32; ++i) {
in0[i] = _mm_slli_epi16(
_mm_load_si128((const __m128i *)(input + i * stride + 0)), 2);
in1[i] = _mm_slli_epi16(
_mm_load_si128((const __m128i *)(input + i * stride + 8)), 2);
in2[i] = _mm_slli_epi16(
_mm_load_si128((const __m128i *)(input + i * stride + 16)), 2);
in3[i] = _mm_slli_epi16(
_mm_load_si128((const __m128i *)(input + i * stride + 24)), 2);
}
if (fliplr) {
for (i = 0; i < 32; ++i) {
__m128i tmp1 = in0[i];
__m128i tmp2 = in1[i];
in0[i] = mm_reverse_epi16(in3[i]);
in1[i] = mm_reverse_epi16(in2[i]);
in2[i] = mm_reverse_epi16(tmp2);
in3[i] = mm_reverse_epi16(tmp1);
}
}
}
static INLINE void swap_16x16(__m128i *b0l /*b0l[16]*/,
__m128i *b0r /*b0r[16]*/,
__m128i *b1l /*b1l[16]*/,
__m128i *b1r /*b1r[16]*/) {
int i;
for (i = 0; i < 16; ++i) {
__m128i tmp0 = b1l[i];
__m128i tmp1 = b1r[i];
b1l[i] = b0l[i];
b1r[i] = b0r[i];
b0l[i] = tmp0;
b0r[i] = tmp1;
}
}
static INLINE void fdct32(__m128i *in0, __m128i *in1, __m128i *in2,
__m128i *in3) {
fdct32_8col(in0, &in0[16]);
fdct32_8col(in1, &in1[16]);
fdct32_8col(in2, &in2[16]);
fdct32_8col(in3, &in3[16]);
array_transpose_16x16(in0, in1);
array_transpose_16x16(&in0[16], &in1[16]);
array_transpose_16x16(in2, in3);
array_transpose_16x16(&in2[16], &in3[16]);
swap_16x16(&in0[16], &in1[16], in2, in3);
}
static INLINE void fhalfright32(__m128i *in0, __m128i *in1, __m128i *in2,
__m128i *in3) {
fhalfright32_16col(in0, in1, &in0[16], &in1[16], no_transpose);
fhalfright32_16col(in2, in3, &in2[16], &in3[16], no_transpose);
swap_16x16(&in0[16], &in1[16], in2, in3);
}
#if CONFIG_EXT_TX
static INLINE void fidtx32(__m128i *in0, __m128i *in1, __m128i *in2,
__m128i *in3) {
fidtx32_16col(in0, in1, &in0[16], &in1[16]);
fidtx32_16col(in2, in3, &in2[16], &in3[16]);
swap_16x16(&in0[16], &in1[16], in2, in3);
}
#endif
static INLINE void round_signed_32x32(__m128i *in0, __m128i *in1, __m128i *in2,
__m128i *in3) {
round_signed_16x16(in0, in1);
round_signed_16x16(&in0[16], &in1[16]);
round_signed_16x16(in2, in3);
round_signed_16x16(&in2[16], &in3[16]);
}
static INLINE void write_buffer_32x32(__m128i *in0, __m128i *in1, __m128i *in2,
__m128i *in3, tran_low_t *output) {
int i;
for (i = 0; i < 32; ++i) {
store_output(&in0[i], output + i * 32 + 0);
store_output(&in1[i], output + i * 32 + 8);
store_output(&in2[i], output + i * 32 + 16);
store_output(&in3[i], output + i * 32 + 24);
}
}
void av1_fht32x32_sse2(const int16_t *input, tran_low_t *output, int stride,
int tx_type) {
__m128i in0[32], in1[32], in2[32], in3[32];
load_buffer_32x32(input, in0, in1, in2, in3, stride, 0, 0);
switch (tx_type) {
case DCT_DCT:
fdct32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fdct32(in0, in1, in2, in3);
break;
case ADST_DCT:
fhalfright32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fdct32(in0, in1, in2, in3);
break;
case DCT_ADST:
fdct32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fhalfright32(in0, in1, in2, in3);
break;
case ADST_ADST:
fhalfright32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fhalfright32(in0, in1, in2, in3);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
load_buffer_32x32(input, in0, in1, in2, in3, stride, 1, 0);
fhalfright32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fdct32(in0, in1, in2, in3);
break;
case DCT_FLIPADST:
load_buffer_32x32(input, in0, in1, in2, in3, stride, 0, 1);
fdct32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fhalfright32(in0, in1, in2, in3);
break;
case FLIPADST_FLIPADST:
load_buffer_32x32(input, in0, in1, in2, in3, stride, 1, 1);
fhalfright32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fhalfright32(in0, in1, in2, in3);
break;
case ADST_FLIPADST:
load_buffer_32x32(input, in0, in1, in2, in3, stride, 0, 1);
fhalfright32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fhalfright32(in0, in1, in2, in3);
break;
case FLIPADST_ADST:
load_buffer_32x32(input, in0, in1, in2, in3, stride, 1, 0);
fhalfright32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fhalfright32(in0, in1, in2, in3);
break;
case IDTX:
fidtx32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fidtx32(in0, in1, in2, in3);
break;
case V_DCT:
fdct32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fidtx32(in0, in1, in2, in3);
break;
case H_DCT:
fidtx32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fdct32(in0, in1, in2, in3);
break;
case V_ADST:
fhalfright32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fidtx32(in0, in1, in2, in3);
break;
case H_ADST:
fidtx32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fhalfright32(in0, in1, in2, in3);
break;
case V_FLIPADST:
load_buffer_32x32(input, in0, in1, in2, in3, stride, 1, 0);
fhalfright32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fidtx32(in0, in1, in2, in3);
break;
case H_FLIPADST:
load_buffer_32x32(input, in0, in1, in2, in3, stride, 0, 1);
fidtx32(in0, in1, in2, in3);
round_signed_32x32(in0, in1, in2, in3);
fhalfright32(in0, in1, in2, in3);
break;
#endif
default: assert(0);
}
write_buffer_32x32(in0, in1, in2, in3, output);
}