blob: f36752a0bbdf63468a860d82b2854b437cbcae0c [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <tmmintrin.h>
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/aom_filter.h"
#include "aom_dsp/x86/convolve.h"
#include "aom_dsp/x86/convolve_sse2.h"
#include "aom_dsp/x86/convolve_ssse3.h"
#include "aom_dsp/x86/mem_sse2.h"
#include "aom_dsp/x86/transpose_sse2.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/emmintrin_compat.h"
// filters only for the 4_h8 convolution
DECLARE_ALIGNED(16, static const uint8_t, filt1_4_h8[16]) = { 0, 1, 1, 2, 2, 3,
3, 4, 2, 3, 3, 4,
4, 5, 5, 6 };
DECLARE_ALIGNED(16, static const uint8_t, filt2_4_h8[16]) = { 4, 5, 5, 6, 6, 7,
7, 8, 6, 7, 7, 8,
8, 9, 9, 10 };
// filters for 8_h8 and 16_h8
DECLARE_ALIGNED(16, static const uint8_t,
filt1_global[16]) = { 0, 1, 1, 2, 2, 3, 3, 4,
4, 5, 5, 6, 6, 7, 7, 8 };
DECLARE_ALIGNED(16, static const uint8_t,
filt2_global[16]) = { 2, 3, 3, 4, 4, 5, 5, 6,
6, 7, 7, 8, 8, 9, 9, 10 };
DECLARE_ALIGNED(16, static const uint8_t,
filt3_global[16]) = { 4, 5, 5, 6, 6, 7, 7, 8,
8, 9, 9, 10, 10, 11, 11, 12 };
DECLARE_ALIGNED(16, static const uint8_t,
filt4_global[16]) = { 6, 7, 7, 8, 8, 9, 9, 10,
10, 11, 11, 12, 12, 13, 13, 14 };
DECLARE_ALIGNED(32, static const uint8_t, filt_h4[]) = {
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 0, 1, 1,
2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 2, 3, 3, 4, 4, 5,
5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,
10, 11, 11, 12, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
12, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 6, 7,
7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14
};
DECLARE_ALIGNED(32, static const uint8_t, filtd4[]) = {
2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8,
2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8,
};
// These are reused by the avx2 intrinsics.
filter8_1dfunction aom_filter_block1d8_v8_intrin_ssse3;
filter8_1dfunction aom_filter_block1d8_h8_intrin_ssse3;
filter8_1dfunction aom_filter_block1d4_h8_intrin_ssse3;
static void aom_filter_block1d4_h4_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m128i addFilterReg32, filt1Reg, firstFilters, srcReg32b1, srcRegFilt32b1_1;
unsigned int i;
src_ptr -= 3;
addFilterReg32 = _mm_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi32(0x5040302u));
filt1Reg = _mm_load_si128((__m128i const *)(filtd4));
for (i = output_height; i > 0; i -= 1) {
// load the 2 strides of source
srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr);
// filter the source buffer
srcRegFilt32b1_1 = _mm_shuffle_epi8(srcReg32b1, filt1Reg);
// multiply 4 adjacent elements with the filter and add the result
srcRegFilt32b1_1 = _mm_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
srcRegFilt32b1_1 = _mm_hadds_epi16(srcRegFilt32b1_1, _mm_setzero_si128());
// shift by 6 bit each 16 bit
srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve result
srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128());
src_ptr += src_pixels_per_line;
*((uint32_t *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt32b1_1);
output_ptr += output_pitch;
}
}
static void aom_filter_block1d4_v4_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m128i addFilterReg32;
__m128i srcReg2, srcReg3, srcReg23, srcReg4, srcReg34, srcReg5, srcReg45,
srcReg6, srcReg56;
__m128i srcReg23_34_lo, srcReg45_56_lo;
__m128i srcReg2345_3456_lo, srcReg2345_3456_hi;
__m128i resReglo, resReghi;
__m128i firstFilters;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
addFilterReg32 = _mm_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the
// same data in both lanes of 128 bit register.
filtersReg = _mm_srai_epi16(filtersReg, 1);
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi32(0x5040302u));
// multiple the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
srcReg23 = _mm_unpacklo_epi32(srcReg2, srcReg3);
srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4));
// have consecutive loads on the same 256 register
srcReg34 = _mm_unpacklo_epi32(srcReg3, srcReg4);
srcReg23_34_lo = _mm_unpacklo_epi8(srcReg23, srcReg34);
for (i = output_height; i > 1; i -= 2) {
srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5));
srcReg45 = _mm_unpacklo_epi32(srcReg4, srcReg5);
srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6));
srcReg56 = _mm_unpacklo_epi32(srcReg5, srcReg6);
// merge every two consecutive registers
srcReg45_56_lo = _mm_unpacklo_epi8(srcReg45, srcReg56);
srcReg2345_3456_lo = _mm_unpacklo_epi16(srcReg23_34_lo, srcReg45_56_lo);
srcReg2345_3456_hi = _mm_unpackhi_epi16(srcReg23_34_lo, srcReg45_56_lo);
// multiply 2 adjacent elements with the filter and add the result
resReglo = _mm_maddubs_epi16(srcReg2345_3456_lo, firstFilters);
resReghi = _mm_maddubs_epi16(srcReg2345_3456_hi, firstFilters);
resReglo = _mm_hadds_epi16(resReglo, _mm_setzero_si128());
resReghi = _mm_hadds_epi16(resReghi, _mm_setzero_si128());
// shift by 6 bit each 16 bit
resReglo = _mm_adds_epi16(resReglo, addFilterReg32);
resReghi = _mm_adds_epi16(resReghi, addFilterReg32);
resReglo = _mm_srai_epi16(resReglo, 6);
resReghi = _mm_srai_epi16(resReghi, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
resReglo = _mm_packus_epi16(resReglo, resReglo);
resReghi = _mm_packus_epi16(resReghi, resReghi);
src_ptr += src_stride;
*((uint32_t *)(output_ptr)) = _mm_cvtsi128_si32(resReglo);
*((uint32_t *)(output_ptr + out_pitch)) = _mm_cvtsi128_si32(resReghi);
output_ptr += dst_stride;
// save part of the registers for next strides
srcReg23_34_lo = srcReg45_56_lo;
srcReg4 = srcReg6;
}
}
void aom_filter_block1d4_h8_intrin_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i firstFilters, secondFilters, shuffle1, shuffle2;
__m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
__m128i addFilterReg64, filtersReg, srcReg, minReg;
unsigned int i;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the first 16 bits in the filter into the first lane
firstFilters = _mm_shufflelo_epi16(filtersReg, 0);
// duplicate only the third 16 bit in the filter into the first lane
secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu);
// duplicate only the seconds 16 bits in the filter into the second lane
// firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3
firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u);
// duplicate only the forth 16 bits in the filter into the second lane
// secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7
secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu);
// loading the local filters
shuffle1 = _mm_load_si128((__m128i const *)filt1_4_h8);
shuffle2 = _mm_load_si128((__m128i const *)filt2_4_h8);
for (i = 0; i < output_height; i++) {
srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
// filter the source buffer
srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1);
srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
// extract the higher half of the lane
srcRegFilt3 = _mm_srli_si128(srcRegFilt1, 8);
srcRegFilt4 = _mm_srli_si128(srcRegFilt2, 8);
minReg = _mm_min_epi16(srcRegFilt3, srcRegFilt2);
// add and saturate all the results together
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
srcRegFilt3 = _mm_max_epi16(srcRegFilt3, srcRegFilt2);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);
// shift by 7 bit each 16 bits
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
// shrink to 8 bit each 16 bits
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
src_ptr += src_pixels_per_line;
// save only 4 bytes
*((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1);
output_ptr += output_pitch;
}
}
static void aom_filter_block1d8_h4_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m128i addFilterReg32, filt2Reg, filt3Reg;
__m128i secondFilters, thirdFilters;
__m128i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3;
__m128i srcReg32b1;
unsigned int i;
src_ptr -= 3;
addFilterReg32 = _mm_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
filt2Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32));
filt3Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32 * 2));
for (i = output_height; i > 0; i -= 1) {
srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr);
// filter the source buffer
srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b1, filt2Reg);
srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b1, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters);
srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters);
srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);
// shift by 6 bit each 16 bit
srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6);
// shrink to 8 bit each 16 bits
srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128());
src_ptr += src_pixels_per_line;
_mm_storel_epi64((__m128i *)output_ptr, srcRegFilt32b1_1);
output_ptr += output_pitch;
}
}
static void aom_filter_block1d8_v4_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6;
__m128i srcReg23, srcReg34, srcReg45, srcReg56;
__m128i resReg23, resReg34, resReg45, resReg56;
__m128i resReg23_45, resReg34_56;
__m128i addFilterReg32, secondFilters, thirdFilters;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
addFilterReg32 = _mm_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the
// same data in both lanes of 128 bit register.
filtersReg = _mm_srai_epi16(filtersReg, 1);
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the second 16 bits (third and forth byte)
// across 128 bit register
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 128 bit register
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
// multiple the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
srcReg23 = _mm_unpacklo_epi8(srcReg2, srcReg3);
srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4));
// have consecutive loads on the same 256 register
srcReg34 = _mm_unpacklo_epi8(srcReg3, srcReg4);
for (i = output_height; i > 1; i -= 2) {
srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5));
srcReg45 = _mm_unpacklo_epi8(srcReg4, srcReg5);
srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6));
srcReg56 = _mm_unpacklo_epi8(srcReg5, srcReg6);
// multiply 2 adjacent elements with the filter and add the result
resReg23 = _mm_maddubs_epi16(srcReg23, secondFilters);
resReg34 = _mm_maddubs_epi16(srcReg34, secondFilters);
resReg45 = _mm_maddubs_epi16(srcReg45, thirdFilters);
resReg56 = _mm_maddubs_epi16(srcReg56, thirdFilters);
// add and saturate the results together
resReg23_45 = _mm_adds_epi16(resReg23, resReg45);
resReg34_56 = _mm_adds_epi16(resReg34, resReg56);
// shift by 6 bit each 16 bit
resReg23_45 = _mm_adds_epi16(resReg23_45, addFilterReg32);
resReg34_56 = _mm_adds_epi16(resReg34_56, addFilterReg32);
resReg23_45 = _mm_srai_epi16(resReg23_45, 6);
resReg34_56 = _mm_srai_epi16(resReg34_56, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
resReg23_45 = _mm_packus_epi16(resReg23_45, _mm_setzero_si128());
resReg34_56 = _mm_packus_epi16(resReg34_56, _mm_setzero_si128());
src_ptr += src_stride;
_mm_storel_epi64((__m128i *)output_ptr, (resReg23_45));
_mm_storel_epi64((__m128i *)(output_ptr + out_pitch), (resReg34_56));
output_ptr += dst_stride;
// save part of the registers for next strides
srcReg23 = srcReg45;
srcReg34 = srcReg56;
srcReg4 = srcReg6;
}
}
void aom_filter_block1d8_h8_intrin_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i firstFilters, secondFilters, thirdFilters, forthFilters, srcReg;
__m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg;
__m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
__m128i addFilterReg64, filtersReg, minReg;
unsigned int i;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the first 16 bits (first and second byte)
// across 128 bit register
firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
// duplicate only the second 16 bits (third and forth byte)
// across 128 bit register
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 128 bit register
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
// duplicate only the forth 16 bits (seventh and eighth byte)
// across 128 bit register
forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));
filt1Reg = _mm_load_si128((__m128i const *)filt1_global);
filt2Reg = _mm_load_si128((__m128i const *)filt2_global);
filt3Reg = _mm_load_si128((__m128i const *)filt3_global);
filt4Reg = _mm_load_si128((__m128i const *)filt4_global);
for (i = 0; i < output_height; i++) {
srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
// filter the source buffer
srcRegFilt1 = _mm_shuffle_epi8(srcReg, filt1Reg);
srcRegFilt2 = _mm_shuffle_epi8(srcReg, filt2Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
// filter the source buffer
srcRegFilt3 = _mm_shuffle_epi8(srcReg, filt3Reg);
srcRegFilt4 = _mm_shuffle_epi8(srcReg, filt4Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, thirdFilters);
srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, forthFilters);
// add and saturate all the results together
minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);
// shift by 7 bit each 16 bits
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
// shrink to 8 bit each 16 bits
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
src_ptr += src_pixels_per_line;
// save only 8 bytes
_mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1);
output_ptr += output_pitch;
}
}
void aom_filter_block1d8_v8_intrin_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
__m128i addFilterReg64, filtersReg, minReg;
__m128i firstFilters, secondFilters, thirdFilters, forthFilters;
__m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt5;
__m128i srcReg1, srcReg2, srcReg3, srcReg4, srcReg5, srcReg6, srcReg7;
__m128i srcReg8;
unsigned int i;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the first 16 bits in the filter
firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
// duplicate only the second 16 bits in the filter
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
// duplicate only the third 16 bits in the filter
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
// duplicate only the forth 16 bits in the filter
forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));
// load the first 7 rows of 8 bytes
srcReg1 = _mm_loadl_epi64((const __m128i *)src_ptr);
srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch));
srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4));
srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5));
srcReg7 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6));
for (i = 0; i < output_height; i++) {
// load the last 8 bytes
srcReg8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7));
// merge the result together
srcRegFilt1 = _mm_unpacklo_epi8(srcReg1, srcReg2);
srcRegFilt3 = _mm_unpacklo_epi8(srcReg3, srcReg4);
// merge the result together
srcRegFilt2 = _mm_unpacklo_epi8(srcReg5, srcReg6);
srcRegFilt5 = _mm_unpacklo_epi8(srcReg7, srcReg8);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters);
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters);
srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, forthFilters);
// add and saturate the results together
minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt5);
srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);
// shift by 7 bit each 16 bit
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
// shrink to 8 bit each 16 bits
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
src_ptr += src_pitch;
// shift down a row
srcReg1 = srcReg2;
srcReg2 = srcReg3;
srcReg3 = srcReg4;
srcReg4 = srcReg5;
srcReg5 = srcReg6;
srcReg6 = srcReg7;
srcReg7 = srcReg8;
// save only 8 bytes convolve result
_mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1);
output_ptr += out_pitch;
}
}
static void aom_filter_block1d16_h4_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m128i addFilterReg32, filt2Reg, filt3Reg;
__m128i secondFilters, thirdFilters;
__m128i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3;
__m128i srcReg32b1, srcReg32b2;
unsigned int i;
src_ptr -= 3;
addFilterReg32 = _mm_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
filt2Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32));
filt3Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32 * 2));
for (i = output_height; i > 0; i -= 1) {
srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr);
// filter the source buffer
srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b1, filt2Reg);
srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b1, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters);
srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters);
srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);
// reading stride of the next 16 bytes
// (part of it was being read by earlier read)
srcReg32b2 = _mm_loadu_si128((const __m128i *)(src_ptr + 8));
// filter the source buffer
srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b2, filt2Reg);
srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b2, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters);
srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters);
// add and saturate the results together
srcRegFilt32b2_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);
// shift by 6 bit each 16 bit
srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
srcRegFilt32b2_1 = _mm_adds_epi16(srcRegFilt32b2_1, addFilterReg32);
srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6);
srcRegFilt32b2_1 = _mm_srai_epi16(srcRegFilt32b2_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve result
srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1);
src_ptr += src_pixels_per_line;
_mm_store_si128((__m128i *)output_ptr, srcRegFilt32b1_1);
output_ptr += output_pitch;
}
}
static void aom_filter_block1d16_v4_ssse3(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6;
__m128i srcReg23_lo, srcReg23_hi, srcReg34_lo, srcReg34_hi;
__m128i srcReg45_lo, srcReg45_hi, srcReg56_lo, srcReg56_hi;
__m128i resReg23_lo, resReg34_lo, resReg45_lo, resReg56_lo;
__m128i resReg23_hi, resReg34_hi, resReg45_hi, resReg56_hi;
__m128i resReg23_45_lo, resReg34_56_lo, resReg23_45_hi, resReg34_56_hi;
__m128i resReg23_45, resReg34_56;
__m128i addFilterReg32, secondFilters, thirdFilters;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
addFilterReg32 = _mm_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the
// same data in both lanes of 128 bit register.
filtersReg = _mm_srai_epi16(filtersReg, 1);
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// duplicate only the second 16 bits (third and forth byte)
// across 128 bit register
secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 128 bit register
thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
// multiple the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2));
srcReg3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3));
srcReg23_lo = _mm_unpacklo_epi8(srcReg2, srcReg3);
srcReg23_hi = _mm_unpackhi_epi8(srcReg2, srcReg3);
srcReg4 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4));
// have consecutive loads on the same 256 register
srcReg34_lo = _mm_unpacklo_epi8(srcReg3, srcReg4);
srcReg34_hi = _mm_unpackhi_epi8(srcReg3, srcReg4);
for (i = output_height; i > 1; i -= 2) {
srcReg5 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5));
srcReg45_lo = _mm_unpacklo_epi8(srcReg4, srcReg5);
srcReg45_hi = _mm_unpackhi_epi8(srcReg4, srcReg5);
srcReg6 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6));
srcReg56_lo = _mm_unpacklo_epi8(srcReg5, srcReg6);
srcReg56_hi = _mm_unpackhi_epi8(srcReg5, srcReg6);
// multiply 2 adjacent elements with the filter and add the result
resReg23_lo = _mm_maddubs_epi16(srcReg23_lo, secondFilters);
resReg34_lo = _mm_maddubs_epi16(srcReg34_lo, secondFilters);
resReg45_lo = _mm_maddubs_epi16(srcReg45_lo, thirdFilters);
resReg56_lo = _mm_maddubs_epi16(srcReg56_lo, thirdFilters);
// add and saturate the results together
resReg23_45_lo = _mm_adds_epi16(resReg23_lo, resReg45_lo);
resReg34_56_lo = _mm_adds_epi16(resReg34_lo, resReg56_lo);
// multiply 2 adjacent elements with the filter and add the result
resReg23_hi = _mm_maddubs_epi16(srcReg23_hi, secondFilters);
resReg34_hi = _mm_maddubs_epi16(srcReg34_hi, secondFilters);
resReg45_hi = _mm_maddubs_epi16(srcReg45_hi, thirdFilters);
resReg56_hi = _mm_maddubs_epi16(srcReg56_hi, thirdFilters);
// add and saturate the results together
resReg23_45_hi = _mm_adds_epi16(resReg23_hi, resReg45_hi);
resReg34_56_hi = _mm_adds_epi16(resReg34_hi, resReg56_hi);
// shift by 6 bit each 16 bit
resReg23_45_lo = _mm_adds_epi16(resReg23_45_lo, addFilterReg32);
resReg34_56_lo = _mm_adds_epi16(resReg34_56_lo, addFilterReg32);
resReg23_45_hi = _mm_adds_epi16(resReg23_45_hi, addFilterReg32);
resReg34_56_hi = _mm_adds_epi16(resReg34_56_hi, addFilterReg32);
resReg23_45_lo = _mm_srai_epi16(resReg23_45_lo, 6);
resReg34_56_lo = _mm_srai_epi16(resReg34_56_lo, 6);
resReg23_45_hi = _mm_srai_epi16(resReg23_45_hi, 6);
resReg34_56_hi = _mm_srai_epi16(resReg34_56_hi, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
resReg23_45 = _mm_packus_epi16(resReg23_45_lo, resReg23_45_hi);
resReg34_56 = _mm_packus_epi16(resReg34_56_lo, resReg34_56_hi);
src_ptr += src_stride;
_mm_store_si128((__m128i *)output_ptr, (resReg23_45));
_mm_store_si128((__m128i *)(output_ptr + out_pitch), (resReg34_56));
output_ptr += dst_stride;
// save part of the registers for next strides
srcReg23_lo = srcReg45_lo;
srcReg34_lo = srcReg56_lo;
srcReg23_hi = srcReg45_hi;
srcReg34_hi = srcReg56_hi;
srcReg4 = srcReg6;
}
}
static INLINE __m128i shuffle_filter_convolve8_8_ssse3(
const __m128i *const s, const int16_t *const filter) {
__m128i f[4];
shuffle_filter_ssse3(filter, f);
return convolve8_8_ssse3(s, f);
}
static void filter_horiz_w8_ssse3(const uint8_t *const src,
const ptrdiff_t src_stride,
uint8_t *const dst,
const int16_t *const x_filter) {
__m128i s[8], ss[4], temp;
load_8bit_8x8(src, src_stride, s);
// 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71
// 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73
// 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75
// 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77
transpose_16bit_4x8(s, ss);
temp = shuffle_filter_convolve8_8_ssse3(ss, x_filter);
// shrink to 8 bit each 16 bits
temp = _mm_packus_epi16(temp, temp);
// save only 8 bytes convolve result
_mm_storel_epi64((__m128i *)dst, temp);
}
static void transpose8x8_to_dst(const uint8_t *const src,
const ptrdiff_t src_stride, uint8_t *const dst,
const ptrdiff_t dst_stride) {
__m128i s[8];
load_8bit_8x8(src, src_stride, s);
transpose_8bit_8x8(s, s);
store_8bit_8x8(s, dst, dst_stride);
}
static void scaledconvolve_horiz_w8(const uint8_t *src,
const ptrdiff_t src_stride, uint8_t *dst,
const ptrdiff_t dst_stride,
const InterpKernel *const x_filters,
const int x0_q4, const int x_step_q4,
const int w, const int h) {
DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
int x, y, z;
src -= SUBPEL_TAPS / 2 - 1;
// This function processes 8x8 areas. The intermediate height is not always
// a multiple of 8, so force it to be a multiple of 8 here.
y = h + (8 - (h & 0x7));
do {
int x_q4 = x0_q4;
for (x = 0; x < w; x += 8) {
// process 8 src_x steps
for (z = 0; z < 8; ++z) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
if (x_q4 & SUBPEL_MASK) {
filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter);
} else {
int i;
for (i = 0; i < 8; ++i) {
temp[z * 8 + i] = src_x[i * src_stride + 3];
}
}
x_q4 += x_step_q4;
}
// transpose the 8x8 filters values back to dst
transpose8x8_to_dst(temp, 8, dst + x, dst_stride);
}
src += src_stride * 8;
dst += dst_stride * 8;
} while (y -= 8);
}
static void filter_horiz_w4_ssse3(const uint8_t *const src,
const ptrdiff_t src_stride,
uint8_t *const dst,
const int16_t *const filter) {
__m128i s[4];
__m128i temp;
load_8bit_8x4(src, src_stride, s);
transpose_16bit_4x4(s, s);
temp = shuffle_filter_convolve8_8_ssse3(s, filter);
// shrink to 8 bit each 16 bits
temp = _mm_packus_epi16(temp, temp);
// save only 4 bytes
*(int *)dst = _mm_cvtsi128_si32(temp);
}
static void transpose4x4_to_dst(const uint8_t *const src,
const ptrdiff_t src_stride, uint8_t *const dst,
const ptrdiff_t dst_stride) {
__m128i s[4];
load_8bit_4x4(src, src_stride, s);
s[0] = transpose_8bit_4x4(s);
s[1] = _mm_srli_si128(s[0], 4);
s[2] = _mm_srli_si128(s[0], 8);
s[3] = _mm_srli_si128(s[0], 12);
store_8bit_4x4(s, dst, dst_stride);
}
static void scaledconvolve_horiz_w4(const uint8_t *src,
const ptrdiff_t src_stride, uint8_t *dst,
const ptrdiff_t dst_stride,
const InterpKernel *const x_filters,
const int x0_q4, const int x_step_q4,
const int w, const int h) {
DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]);
int x, y, z;
src -= SUBPEL_TAPS / 2 - 1;
for (y = 0; y < h; y += 4) {
int x_q4 = x0_q4;
for (x = 0; x < w; x += 4) {
// process 4 src_x steps
for (z = 0; z < 4; ++z) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
if (x_q4 & SUBPEL_MASK) {
filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter);
} else {
int i;
for (i = 0; i < 4; ++i) {
temp[z * 4 + i] = src_x[i * src_stride + 3];
}
}
x_q4 += x_step_q4;
}
// transpose the 4x4 filters values back to dst
transpose4x4_to_dst(temp, 4, dst + x, dst_stride);
}
src += src_stride * 4;
dst += dst_stride * 4;
}
}
static __m128i filter_vert_kernel(const __m128i *const s,
const int16_t *const filter) {
__m128i ss[4];
__m128i temp;
// 00 10 01 11 02 12 03 13
ss[0] = _mm_unpacklo_epi8(s[0], s[1]);
// 20 30 21 31 22 32 23 33
ss[1] = _mm_unpacklo_epi8(s[2], s[3]);
// 40 50 41 51 42 52 43 53
ss[2] = _mm_unpacklo_epi8(s[4], s[5]);
// 60 70 61 71 62 72 63 73
ss[3] = _mm_unpacklo_epi8(s[6], s[7]);
temp = shuffle_filter_convolve8_8_ssse3(ss, filter);
// shrink to 8 bit each 16 bits
return _mm_packus_epi16(temp, temp);
}
static void filter_vert_w4_ssse3(const uint8_t *const src,
const ptrdiff_t src_stride, uint8_t *const dst,
const int16_t *const filter) {
__m128i s[8];
__m128i temp;
load_8bit_4x8(src, src_stride, s);
temp = filter_vert_kernel(s, filter);
// save only 4 bytes
*(int *)dst = _mm_cvtsi128_si32(temp);
}
static void scaledconvolve_vert_w4(
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
const int y0_q4, const int y_step_q4, const int w, const int h) {
int y;
int y_q4 = y0_q4;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (y = 0; y < h; ++y) {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
if (y_q4 & SUBPEL_MASK) {
filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
} else {
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
}
y_q4 += y_step_q4;
}
}
static void filter_vert_w8_ssse3(const uint8_t *const src,
const ptrdiff_t src_stride, uint8_t *const dst,
const int16_t *const filter) {
__m128i s[8], temp;
load_8bit_8x8(src, src_stride, s);
temp = filter_vert_kernel(s, filter);
// save only 8 bytes convolve result
_mm_storel_epi64((__m128i *)dst, temp);
}
static void scaledconvolve_vert_w8(
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
const int y0_q4, const int y_step_q4, const int w, const int h) {
int y;
int y_q4 = y0_q4;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (y = 0; y < h; ++y) {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
if (y_q4 & SUBPEL_MASK) {
filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
} else {
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
}
y_q4 += y_step_q4;
}
}
static void filter_vert_w16_ssse3(const uint8_t *src,
const ptrdiff_t src_stride,
uint8_t *const dst,
const int16_t *const filter, const int w) {
int i;
__m128i f[4];
shuffle_filter_ssse3(filter, f);
for (i = 0; i < w; i += 16) {
__m128i s[8], s_lo[4], s_hi[4], temp_lo, temp_hi;
loadu_8bit_16x8(src, src_stride, s);
// merge the result together
s_lo[0] = _mm_unpacklo_epi8(s[0], s[1]);
s_hi[0] = _mm_unpackhi_epi8(s[0], s[1]);
s_lo[1] = _mm_unpacklo_epi8(s[2], s[3]);
s_hi[1] = _mm_unpackhi_epi8(s[2], s[3]);
s_lo[2] = _mm_unpacklo_epi8(s[4], s[5]);
s_hi[2] = _mm_unpackhi_epi8(s[4], s[5]);
s_lo[3] = _mm_unpacklo_epi8(s[6], s[7]);
s_hi[3] = _mm_unpackhi_epi8(s[6], s[7]);
temp_lo = convolve8_8_ssse3(s_lo, f);
temp_hi = convolve8_8_ssse3(s_hi, f);
// shrink to 8 bit each 16 bits, the first lane contain the first convolve
// result and the second lane contain the second convolve result
temp_hi = _mm_packus_epi16(temp_lo, temp_hi);
src += 16;
// save 16 bytes convolve result
_mm_store_si128((__m128i *)&dst[i], temp_hi);
}
}
static void scaledconvolve_vert_w16(
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
const int y0_q4, const int y_step_q4, const int w, const int h) {
int y;
int y_q4 = y0_q4;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (y = 0; y < h; ++y) {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
if (y_q4 & SUBPEL_MASK) {
filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter,
w);
} else {
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
}
y_q4 += y_step_q4;
}
}
void aom_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const InterpKernel *filter,
int x0_q4, int x_step_q4, int y0_q4, int y_step_q4,
int w, int h) {
// Note: Fixed size intermediate buffer, temp, places limits on parameters.
// 2d filtering proceeds in 2 steps:
// (1) Interpolate horizontally into an intermediate buffer, temp.
// (2) Interpolate temp vertically to derive the sub-pixel result.
// Deriving the maximum number of rows in the temp buffer (135):
// --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
// --Largest block size is 64x64 pixels.
// --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
// original frame (in 1/16th pixel units).
// --Must round-up because block may be located at sub-pixel position.
// --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
// --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
// --Require an additional 8 rows for the horiz_w8 transpose tail.
// When calling in frame scaling function, the smallest scaling factor is x1/4
// ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still
// big enough.
DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]);
const int intermediate_height =
(((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
assert(w <= 64);
assert(h <= 64);
assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32));
assert(x_step_q4 <= 64);
if (w >= 8) {
scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1),
src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
intermediate_height);
} else {
scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1),
src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
intermediate_height);
}
if (w >= 16) {
scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
dst_stride, filter, y0_q4, y_step_q4, w, h);
} else if (w == 8) {
scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
dst_stride, filter, y0_q4, y_step_q4, w, h);
} else {
scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
dst_stride, filter, y0_q4, y_step_q4, w, h);
}
}
filter8_1dfunction aom_filter_block1d16_v8_ssse3;
filter8_1dfunction aom_filter_block1d16_h8_ssse3;
filter8_1dfunction aom_filter_block1d8_v8_ssse3;
filter8_1dfunction aom_filter_block1d8_h8_ssse3;
filter8_1dfunction aom_filter_block1d4_v8_ssse3;
filter8_1dfunction aom_filter_block1d4_h8_ssse3;
filter8_1dfunction aom_filter_block1d16_v2_ssse3;
filter8_1dfunction aom_filter_block1d16_h2_ssse3;
filter8_1dfunction aom_filter_block1d8_v2_ssse3;
filter8_1dfunction aom_filter_block1d8_h2_ssse3;
filter8_1dfunction aom_filter_block1d4_v2_ssse3;
filter8_1dfunction aom_filter_block1d4_h2_ssse3;
// void aom_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const int16_t *filter_x, int x_step_q4,
// const int16_t *filter_y, int y_step_q4,
// int w, int h);
// void aom_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const int16_t *filter_x, int x_step_q4,
// const int16_t *filter_y, int y_step_q4,
// int w, int h);
FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , ssse3);
FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , ssse3);