blob: 751e9b7d33b224508ae3251c26ea86b4657f15ba [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
static const SEG_LVL_FEATURES seg_lvl_lf_lut[MAX_MB_PLANE][2] = {
{ SEG_LVL_ALT_LF_Y_V, SEG_LVL_ALT_LF_Y_H },
{ SEG_LVL_ALT_LF_U, SEG_LVL_ALT_LF_U },
{ SEG_LVL_ALT_LF_V, SEG_LVL_ALT_LF_V }
};
static const int delta_lf_id_lut[MAX_MB_PLANE][2] = {
{ 0, 1 }, { 2, 2 }, { 3, 3 }
};
typedef enum EDGE_DIR { VERT_EDGE = 0, HORZ_EDGE = 1, NUM_EDGE_DIRS } EDGE_DIR;
// 64 bit masks for left transform size. Each 1 represents a position where
// we should apply a loop filter across the left border of an 8x8 block
// boundary.
//
// In the case of TX_16X16-> ( in low order byte first we end up with
// a mask that looks like this
//
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
//
// A loopfilter should be applied to every other 8x8 horizontally.
static const uint64_t left_64x64_txform_mask[TX_SIZES] = {
0xffffffffffffffffULL, // TX_4X4
0xffffffffffffffffULL, // TX_8x8
0x5555555555555555ULL, // TX_16x16
0x1111111111111111ULL, // TX_32x32
0x0101010101010101ULL, // TX_64x64
};
// 64 bit masks for above transform size. Each 1 represents a position where
// we should apply a loop filter across the top border of an 8x8 block
// boundary.
//
// In the case of TX_32x32 -> ( in low order byte first we end up with
// a mask that looks like this
//
// 11111111
// 00000000
// 00000000
// 00000000
// 11111111
// 00000000
// 00000000
// 00000000
//
// A loopfilter should be applied to every other 4 the row vertically.
static const uint64_t above_64x64_txform_mask[TX_SIZES] = {
0xffffffffffffffffULL, // TX_4X4
0xffffffffffffffffULL, // TX_8x8
0x00ff00ff00ff00ffULL, // TX_16x16
0x000000ff000000ffULL, // TX_32x32
0x00000000000000ffULL, // TX_64x64
};
// 64 bit masks for prediction sizes (left). Each 1 represents a position
// where left border of an 8x8 block. These are aligned to the right most
// appropriate bit, and then shifted into place.
//
// In the case of TX_16x32 -> ( low order byte first ) we end up with
// a mask that looks like this :
//
// 10000000
// 10000000
// 10000000
// 10000000
// 00000000
// 00000000
// 00000000
// 00000000
static const uint64_t left_prediction_mask[BLOCK_SIZES_ALL] = {
0x0000000000000001ULL, // BLOCK_4X4,
0x0000000000000001ULL, // BLOCK_4X8,
0x0000000000000001ULL, // BLOCK_8X4,
0x0000000000000001ULL, // BLOCK_8X8,
0x0000000000000101ULL, // BLOCK_8X16,
0x0000000000000001ULL, // BLOCK_16X8,
0x0000000000000101ULL, // BLOCK_16X16,
0x0000000001010101ULL, // BLOCK_16X32,
0x0000000000000101ULL, // BLOCK_32X16,
0x0000000001010101ULL, // BLOCK_32X32,
0x0101010101010101ULL, // BLOCK_32X64,
0x0000000001010101ULL, // BLOCK_64X32,
0x0101010101010101ULL, // BLOCK_64X64,
0x0000000000000101ULL, // BLOCK_4X16,
0x0000000000000001ULL, // BLOCK_16X4,
0x0000000001010101ULL, // BLOCK_8X32,
0x0000000000000001ULL, // BLOCK_32X8,
0x0101010101010101ULL, // BLOCK_16X64,
0x0000000000000101ULL, // BLOCK_64X16
};
// 64 bit mask to shift and set for each prediction size.
static const uint64_t above_prediction_mask[BLOCK_SIZES_ALL] = {
0x0000000000000001ULL, // BLOCK_4X4
0x0000000000000001ULL, // BLOCK_4X8
0x0000000000000001ULL, // BLOCK_8X4
0x0000000000000001ULL, // BLOCK_8X8
0x0000000000000001ULL, // BLOCK_8X16,
0x0000000000000003ULL, // BLOCK_16X8
0x0000000000000003ULL, // BLOCK_16X16
0x0000000000000003ULL, // BLOCK_16X32,
0x000000000000000fULL, // BLOCK_32X16,
0x000000000000000fULL, // BLOCK_32X32,
0x000000000000000fULL, // BLOCK_32X64,
0x00000000000000ffULL, // BLOCK_64X32,
0x00000000000000ffULL, // BLOCK_64X64,
0x0000000000000001ULL, // BLOCK_4X16,
0x0000000000000003ULL, // BLOCK_16X4,
0x0000000000000001ULL, // BLOCK_8X32,
0x000000000000000fULL, // BLOCK_32X8,
0x0000000000000003ULL, // BLOCK_16X64,
0x00000000000000ffULL, // BLOCK_64X16
};
// 64 bit mask to shift and set for each prediction size. A bit is set for
// each 8x8 block that would be in the top left most block of the given block
// size in the 64x64 block.
static const uint64_t size_mask[BLOCK_SIZES_ALL] = {
0x0000000000000001ULL, // BLOCK_4X4
0x0000000000000001ULL, // BLOCK_4X8
0x0000000000000001ULL, // BLOCK_8X4
0x0000000000000001ULL, // BLOCK_8X8
0x0000000000000101ULL, // BLOCK_8X16,
0x0000000000000003ULL, // BLOCK_16X8
0x0000000000000303ULL, // BLOCK_16X16
0x0000000003030303ULL, // BLOCK_16X32,
0x0000000000000f0fULL, // BLOCK_32X16,
0x000000000f0f0f0fULL, // BLOCK_32X32,
0x0f0f0f0f0f0f0f0fULL, // BLOCK_32X64,
0x00000000ffffffffULL, // BLOCK_64X32,
0xffffffffffffffffULL, // BLOCK_64X64,
0x0000000000000101ULL, // BLOCK_4X16,
0x0000000000000003ULL, // BLOCK_16X4,
0x0000000001010101ULL, // BLOCK_8X32,
0x000000000000000fULL, // BLOCK_32X8,
0x0303030303030303ULL, // BLOCK_16X64,
0x000000000000ffffULL, // BLOCK_64X16
};
// These are used for masking the left and above 32x32 borders.
static const uint64_t left_border = 0x1111111111111111ULL;
static const uint64_t above_border = 0x000000ff000000ffULL;
// 16 bit masks for uv transform sizes.
static const uint16_t left_64x64_txform_mask_uv[TX_SIZES] = {
0xffff, // TX_4X4
0xffff, // TX_8x8
0x5555, // TX_16x16
0x1111, // TX_32x32
0x0101, // TX_64x64, never used
};
static const uint16_t above_64x64_txform_mask_uv[TX_SIZES] = {
0xffff, // TX_4X4
0xffff, // TX_8x8
0x0f0f, // TX_16x16
0x000f, // TX_32x32
0x0003, // TX_64x64, never used
};
// 16 bit left mask to shift and set for each uv prediction size.
static const uint16_t left_prediction_mask_uv[BLOCK_SIZES_ALL] = {
0x0001, // BLOCK_4X4,
0x0001, // BLOCK_4X8,
0x0001, // BLOCK_8X4,
0x0001, // BLOCK_8X8,
0x0001, // BLOCK_8X16,
0x0001, // BLOCK_16X8,
0x0001, // BLOCK_16X16,
0x0011, // BLOCK_16X32,
0x0001, // BLOCK_32X16,
0x0011, // BLOCK_32X32,
0x1111, // BLOCK_32X64
0x0011, // BLOCK_64X32,
0x1111, // BLOCK_64X64,
0x0001, // BLOCK_4X16,
0x0001, // BLOCK_16X4,
0x0011, // BLOCK_8X32,
0x0001, // BLOCK_32X8,
0x1111, // BLOCK_16X64,
0x0001, // BLOCK_64X16,
};
// 16 bit above mask to shift and set for uv each prediction size.
static const uint16_t above_prediction_mask_uv[BLOCK_SIZES_ALL] = {
0x0001, // BLOCK_4X4
0x0001, // BLOCK_4X8
0x0001, // BLOCK_8X4
0x0001, // BLOCK_8X8
0x0001, // BLOCK_8X16,
0x0001, // BLOCK_16X8
0x0001, // BLOCK_16X16
0x0001, // BLOCK_16X32,
0x0003, // BLOCK_32X16,
0x0003, // BLOCK_32X32,
0x0003, // BLOCK_32X64,
0x000f, // BLOCK_64X32,
0x000f, // BLOCK_64X64,
0x0001, // BLOCK_4X16,
0x0001, // BLOCK_16X4,
0x0001, // BLOCK_8X32,
0x0003, // BLOCK_32X8,
0x0001, // BLOCK_16X64,
0x000f, // BLOCK_64X16
};
// 64 bit mask to shift and set for each uv prediction size
static const uint16_t size_mask_uv[BLOCK_SIZES_ALL] = {
0x0001, // BLOCK_4X4
0x0001, // BLOCK_4X8
0x0001, // BLOCK_8X4
0x0001, // BLOCK_8X8
0x0001, // BLOCK_8X16,
0x0001, // BLOCK_16X8
0x0001, // BLOCK_16X16
0x0011, // BLOCK_16X32,
0x0003, // BLOCK_32X16,
0x0033, // BLOCK_32X32,
0x3333, // BLOCK_32X64,
0x00ff, // BLOCK_64X32,
0xffff, // BLOCK_64X64,
0x0001, // BLOCK_4X16,
0x0001, // BLOCK_16X4,
0x0011, // BLOCK_8X32,
0x0003, // BLOCK_32X8,
0x1111, // BLOCK_16X64,
0x000f, // BLOCK_64X16
};
static const uint16_t left_border_uv = 0x1111;
static const uint16_t above_border_uv = 0x000f;
static const int mode_lf_lut[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES
1, 1, 0, 1, // INTER_MODES (GLOBALMV == 0)
1, 1, 1, 1, 1, 1, 0, 1 // INTER_COMPOUND_MODES (GLOBAL_GLOBALMV == 0)
};
#if LOOP_FILTER_BITMASK
// 256 bit masks (64x64 / 4x4) for left transform size for Y plane.
// We use 4 uint64_t to represent the 256 bit.
// Each 1 represents a position where we should apply a loop filter
// across the left border of an 4x4 block boundary.
//
// In the case of TX_8x8-> ( in low order byte first we end up with
// a mask that looks like this (-- and | are used for better view)
//
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// -----------------
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
//
// A loopfilter should be applied to every other 4x4 horizontally.
// TODO(chengchen): make these tables static
const FilterMaskY left_txform_mask[TX_SIZES] = {
{ { 0xffffffffffffffffULL, // TX_4X4,
0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL } },
{ { 0x5555555555555555ULL, // TX_8X8,
0x5555555555555555ULL, 0x5555555555555555ULL, 0x5555555555555555ULL } },
{ { 0x1111111111111111ULL, // TX_16X16,
0x1111111111111111ULL, 0x1111111111111111ULL, 0x1111111111111111ULL } },
{ { 0x0101010101010101ULL, // TX_32X32,
0x0101010101010101ULL, 0x0101010101010101ULL, 0x0101010101010101ULL } },
{ { 0x0001000100010001ULL, // TX_64X64,
0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL } },
};
// 256 bit masks (64x64 / 4x4) for above transform size for Y plane.
// We use 4 uint64_t to represent the 256 bit.
// Each 1 represents a position where we should apply a loop filter
// across the top border of an 4x4 block boundary.
//
// In the case of TX_8x8-> ( in low order byte first we end up with
// a mask that looks like this
//
// 11111111|11111111
// 00000000|00000000
// 11111111|11111111
// 00000000|00000000
// 11111111|11111111
// 00000000|00000000
// 11111111|11111111
// 00000000|00000000
// -----------------
// 11111111|11111111
// 00000000|00000000
// 11111111|11111111
// 00000000|00000000
// 11111111|11111111
// 00000000|00000000
// 11111111|11111111
// 00000000|00000000
//
// A loopfilter should be applied to every other 4x4 horizontally.
const FilterMaskY above_txform_mask[TX_SIZES] = {
{ { 0xffffffffffffffffULL, // TX_4X4
0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL } },
{ { 0x0000ffff0000ffffULL, // TX_8X8
0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL } },
{ { 0x000000000000ffffULL, // TX_16X16
0x000000000000ffffULL, 0x000000000000ffffULL, 0x000000000000ffffULL } },
{ { 0x000000000000ffffULL, // TX_32X32
0x0000000000000000ULL, 0x000000000000ffffULL, 0x0000000000000000ULL } },
{ { 0x000000000000ffffULL, // TX_64X64
0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
};
// 64 bit mask to shift and set for each prediction size. A bit is set for
// each 4x4 block that would be in the top left most block of the given block
// size in the 64x64 block.
const FilterMaskY size_mask_y[BLOCK_SIZES_ALL] = {
{ { 0x0000000000000001ULL, // BLOCK_4X4
0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x0000000000010001ULL, // BLOCK_4X8
0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x0000000000000003ULL, // BLOCK_8X4
0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x0000000000030003ULL, // BLOCK_8X8
0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x0003000300030003ULL, // BLOCK_8X16
0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x00000000000f000fULL, // BLOCK_16X8
0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x000f000f000f000fULL, // BLOCK_16X16
0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x000f000f000f000fULL, // BLOCK_16X32
0x000f000f000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x00ff00ff00ff00ffULL, // BLOCK_32X16
0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x00ff00ff00ff00ffULL, // BLOCK_32X32
0x00ff00ff00ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x00ff00ff00ff00ffULL, // BLOCK_32X64
0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL } },
{ { 0xffffffffffffffffULL, // BLOCK_64X32
0xffffffffffffffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0xffffffffffffffffULL, // BLOCK_64X64
0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL } },
// Y plane max coding block size is 128x128, but the codec divides it
// into 4 64x64 blocks.
// BLOCK_64X128
{ { 0x0ULL, 0x0ULL, 0x0ULL, 0x0ULL } },
// BLOCK_128X64
{ { 0x0ULL, 0x0ULL, 0x0ULL, 0x0ULL } },
// BLOCK_128X128
{ { 0x0ULL, 0x0ULL, 0x0ULL, 0x0ULL } },
{ { 0x0001000100010001ULL, // BLOCK_4X16
0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x000000000000000fULL, // BLOCK_16X4
0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x0003000300030003ULL, // BLOCK_8X32
0x0003000300030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x0000000000ff00ffULL, // BLOCK_32X8
0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } },
{ { 0x000f000f000f000fULL, // BLOCK_16X64
0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x000f000f000f000fULL } },
{ { 0xffffffffffffffffULL, // BLOCK_64X16
0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL } }
};
// U/V plane max transform size is 32x32 (format 420).
// 64 bit masks (32x32 / 4x4) for left transform size for U/V plane.
// We use one uint64_t to represent the 64 bit.
// Each 1 represents a position where we should apply a loop filter
// across the left border of an 4x4 block boundary.
//
// In the case of TX_8x8-> ( in low order byte first we end up with
// a mask that looks like this
//
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
const FilterMaskUV left_txform_mask_uv[TX_SIZES - 1] = {
0xffffffffffffffffULL, // TX_4X4
0x5555555555555555ULL, // TX_8X8
0x1111111111111111ULL, // TX_16X16
0x0101010101010101ULL, // TX_32X32
};
// 64 bit masks (32x32 / 4x4) for above transform size for U/V plane.
// We use one uint64_t to represent the 64 bit.
// Each 1 represents a position where we should apply a loop filter
// across the top border of an 4x4 block boundary.
//
// In the case of TX_8x8-> ( in low order byte first we end up with
// a mask that looks like this
//
// 11111111
// 00000000
// 11111111
// 00000000
// 11111111
// 00000000
// 11111111
// 00000000
const FilterMaskUV above_txform_mask_uv[TX_SIZES - 1] = {
0xffffffffffffffffULL, // TX_4X4
0x00ff00ff00ff00ffULL, // TX_8X8
0x000000ff000000ffULL, // TX_16X16
0x00000000000000ffULL, // TX_32X32
};
// Y plane max coding block size is 128x128, but the codec divides it
// into 4 64x64 blocks. U/V plane follows the pattern and size is
// halved accordingly (format 420).
const FilterMaskUV size_mask_u_v[BLOCK_SIZES_ALL] = {
0x0000000000000001ULL, // BLOCK_4X4
0x0000000000000101ULL, // BLOCK_4X8
0x0000000000000003ULL, // BLOCK_8X4
0x0000000000000303ULL, // BLOCK_8X8
0x0000000003030303ULL, // BLOCK_8X16,
0x0000000000000f0fULL, // BLOCK_16X8
0x000000000f0f0f0fULL, // BLOCK_16X16
0x0f0f0f0f0f0f0f0fULL, // BLOCK_16X32,
0x00000000ffffffffULL, // BLOCK_32X16,
0xffffffffffffffffULL, // BLOCK_32X32,
0xffffffffffffffffULL, // BLOCK_32X64,
0xffffffffffffffffULL, // BLOCK_64X32,
0xffffffffffffffffULL, // BLOCK_64X64,
0xffffffffffffffffULL, // BLOCK_64X128,
0xffffffffffffffffULL, // BLOCK_128X64,
0xffffffffffffffffULL, // BLOCK_128X128,
0x0000000001010101ULL, // BLOCK_4X16,
0x000000000000000fULL, // BLOCK_16X4,
0x0303030303030303ULL, // BLOCK_8X32,
0x000000000000ffffULL, // BLOCK_32X8,
0x0f0f0f0f0f0f0f0fULL, // BLOCK_16X64,
0x00000000ffffffffULL, // BLOCK_64X16
};
static LoopFilterMask *get_loop_filter_mask(AV1_COMMON *const cm, int mi_row,
int mi_col) {
assert(cm->lf.lfm != NULL);
const int sb_row = mi_row >> MAX_MIB_SIZE_LOG2;
const int sb_col = mi_col >> MAX_MIB_SIZE_LOG2;
return &cm->lf.lfm[sb_row * cm->lf.lfm_stride + sb_col];
}
#endif // LOOP_FILTER_BITMASK
static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
int lvl;
// For each possible value for the loop filter fill out limits
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
// Set loop filter parameters that control sharpness.
int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
if (sharpness_lvl > 0) {
if (block_inside_limit > (9 - sharpness_lvl))
block_inside_limit = (9 - sharpness_lvl);
}
if (block_inside_limit < 1) block_inside_limit = 1;
memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH);
memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
SIMD_WIDTH);
}
}
static uint8_t get_filter_level(const AV1_COMMON *cm,
const loop_filter_info_n *lfi_n,
const int dir_idx, int plane,
const MB_MODE_INFO *mbmi) {
const int segment_id = mbmi->segment_id;
if (cm->delta_lf_present_flag) {
int delta_lf;
if (cm->delta_lf_multi) {
const int delta_lf_idx = delta_lf_id_lut[plane][dir_idx];
delta_lf = mbmi->curr_delta_lf[delta_lf_idx];
} else {
delta_lf = mbmi->current_delta_lf_from_base;
}
int base_level;
if (plane == 0)
base_level = cm->lf.filter_level[dir_idx];
else if (plane == 1)
base_level = cm->lf.filter_level_u;
else
base_level = cm->lf.filter_level_v;
int lvl_seg = clamp(delta_lf + base_level, 0, MAX_LOOP_FILTER);
assert(plane >= 0 && plane <= 2);
const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir_idx];
if (segfeature_active(&cm->seg, segment_id, seg_lf_feature_id)) {
const int data = get_segdata(&cm->seg, segment_id, seg_lf_feature_id);
lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER);
}
if (cm->lf.mode_ref_delta_enabled) {
const int scale = 1 << (lvl_seg >> 5);
lvl_seg += cm->lf.ref_deltas[mbmi->ref_frame[0]] * scale;
if (mbmi->ref_frame[0] > INTRA_FRAME)
lvl_seg += cm->lf.mode_deltas[mode_lf_lut[mbmi->mode]] * scale;
lvl_seg = clamp(lvl_seg, 0, MAX_LOOP_FILTER);
}
return lvl_seg;
} else {
return lfi_n->lvl[plane][segment_id][dir_idx][mbmi->ref_frame[0]]
[mode_lf_lut[mbmi->mode]];
}
}
void av1_loop_filter_init(AV1_COMMON *cm) {
assert(MB_MODE_COUNT == NELEMENTS(mode_lf_lut));
loop_filter_info_n *lfi = &cm->lf_info;
struct loopfilter *lf = &cm->lf;
int lvl;
lf->combine_vert_horz_lf = 1;
// init limits for given sharpness
update_sharpness(lfi, lf->sharpness_level);
// init hev threshold const vectors
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++)
memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH);
}
// Update the loop filter for the current frame.
// This should be called before loop_filter_rows(),
// av1_loop_filter_frame() calls this function directly.
static void loop_filter_frame_init(AV1_COMMON *cm, int plane_start,
int plane_end) {
int filt_lvl[MAX_MB_PLANE], filt_lvl_r[MAX_MB_PLANE];
int plane;
int seg_id;
// n_shift is the multiplier for lf_deltas
// the multiplier is 1 for when filter_lvl is between 0 and 31;
// 2 when filter_lvl is between 32 and 63
loop_filter_info_n *const lfi = &cm->lf_info;
struct loopfilter *const lf = &cm->lf;
const struct segmentation *const seg = &cm->seg;
// update sharpness limits
update_sharpness(lfi, lf->sharpness_level);
filt_lvl[0] = cm->lf.filter_level[0];
filt_lvl[1] = cm->lf.filter_level_u;
filt_lvl[2] = cm->lf.filter_level_v;
filt_lvl_r[0] = cm->lf.filter_level[1];
filt_lvl_r[1] = cm->lf.filter_level_u;
filt_lvl_r[2] = cm->lf.filter_level_v;
for (plane = plane_start; plane < plane_end; plane++) {
if (plane == 0 && !filt_lvl[0] && !filt_lvl_r[0])
break;
else if (plane == 1 && !filt_lvl[1])
continue;
else if (plane == 2 && !filt_lvl[2])
continue;
for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
for (int dir = 0; dir < 2; ++dir) {
int lvl_seg = (dir == 0) ? filt_lvl[plane] : filt_lvl_r[plane];
assert(plane >= 0 && plane <= 2);
const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir];
if (segfeature_active(seg, seg_id, seg_lf_feature_id)) {
const int data = get_segdata(&cm->seg, seg_id, seg_lf_feature_id);
lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER);
}
if (!lf->mode_ref_delta_enabled) {
// we could get rid of this if we assume that deltas are set to
// zero when not in use; encoder always uses deltas
memset(lfi->lvl[plane][seg_id][dir], lvl_seg,
sizeof(lfi->lvl[plane][seg_id][dir]));
} else {
int ref, mode;
const int scale = 1 << (lvl_seg >> 5);
const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
lfi->lvl[plane][seg_id][dir][INTRA_FRAME][0] =
clamp(intra_lvl, 0, MAX_LOOP_FILTER);
for (ref = LAST_FRAME; ref < REF_FRAMES; ++ref) {
for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale +
lf->mode_deltas[mode] * scale;
lfi->lvl[plane][seg_id][dir][ref][mode] =
clamp(inter_lvl, 0, MAX_LOOP_FILTER);
}
}
}
}
}
}
#if LOOP_FILTER_BITMASK
memset(lf->neighbor_sb_lpf_info.tx_size_y_above, TX_64X64,
sizeof(TX_SIZE) * MI_SIZE_64X64);
memset(lf->neighbor_sb_lpf_info.tx_size_y_left, TX_64X64,
sizeof(TX_SIZE) * MI_SIZE_64X64);
memset(lf->neighbor_sb_lpf_info.tx_size_uv_above, TX_64X64,
sizeof(TX_SIZE) * MI_SIZE_64X64);
memset(lf->neighbor_sb_lpf_info.tx_size_uv_left, TX_64X64,
sizeof(TX_SIZE) * MI_SIZE_64X64);
memset(lf->neighbor_sb_lpf_info.y_level_above, 0,
sizeof(uint8_t) * MI_SIZE_64X64);
memset(lf->neighbor_sb_lpf_info.y_level_left, 0,
sizeof(uint8_t) * MI_SIZE_64X64);
memset(lf->neighbor_sb_lpf_info.u_level_above, 0,
sizeof(uint8_t) * MI_SIZE_64X64);
memset(lf->neighbor_sb_lpf_info.u_level_left, 0,
sizeof(uint8_t) * MI_SIZE_64X64);
memset(lf->neighbor_sb_lpf_info.v_level_above, 0,
sizeof(uint8_t) * MI_SIZE_64X64);
memset(lf->neighbor_sb_lpf_info.v_level_left, 0,
sizeof(uint8_t) * MI_SIZE_64X64);
memset(lf->neighbor_sb_lpf_info.skip, 0, sizeof(uint8_t) * MI_SIZE_64X64);
#endif // LOOP_FILTER_BITMASK
}
#if LOOP_FILTER_BITMASK
// A 64x64 tx block requires 256 bits to represent each 4x4 tx block.
// Every 4 rows is represented by one uint64_t mask. Hence,
// there are 4 uint64_t bitmask[4] to represent the 64x64 block.
//
// Given a location by (idx, idy), This function returns the index
// 0, 1, 2, 3 to select which bitmask[] to use.
// Then the pointer y_shift contains the shift value in the bit mask.
// Function returns y_shift; y_index contains the index.
//
// For example, idy is the offset of pixels,
// (idy >> MI_SIZE_LOG2) converts to 4x4 unit.
// ((idy >> MI_SIZE_LOG2) / 4) returns which uint64_t.
// After locating which uint64_t, (idy >> MI_SIZE_LOG2) % 4 is the
// row offset, and each row has 16 = 1 << stride_log2 4x4 units.
// Therefore, shift = (row << stride_log2) + (idx >> MI_SIZE_LOG2);
static int get_y_index_shift(int idx, int idy, int *y_index) {
// idy_unit = idy >> MI_SIZE_LOG2;
// idx_unit = idx >> MI_SIZE_LOG2;
// *y_index = idy_unit >> 2;
// rows = idy_unit % 4;
// stride_log2 = 4;
// shift = (rows << stride_log2) + idx_unit;
*y_index = idy >> 4;
return ((idy & 12) << 2) | (idx >> 2);
}
// Largest tx size of U/V plane is 32x32.
// We need one uint64_t bitmask to present all 4x4 tx block.
// ss_x, ss_y: subsampling. for 420 format, ss_x = 1, ss_y = 1.
// Each row has 8 = (1 << stride_log2) 4x4 units.
static int get_uv_index_shift(int idx, int idy) {
// stride_log2 = 3;
// idy_unit = (idy >> (MI_SIZE_LOG2 + ss_y));
// idx_unit = (idx >> (MI_SIZE_LOG2 + ss_x));
// shift = (idy_unit << stride_log2) + idx_unit;
return (idy & ~7) | (idx >> 3);
}
static void check_mask_y(const FilterMaskY *lfm) {
#ifndef NDEBUG
int i;
for (i = 0; i < 4; ++i) {
assert(!(lfm[TX_4X4].bits[i] & lfm[TX_8X8].bits[i]));
assert(!(lfm[TX_4X4].bits[i] & lfm[TX_16X16].bits[i]));
assert(!(lfm[TX_4X4].bits[i] & lfm[TX_32X32].bits[i]));
assert(!(lfm[TX_4X4].bits[i] & lfm[TX_64X64].bits[i]));
assert(!(lfm[TX_8X8].bits[i] & lfm[TX_16X16].bits[i]));
assert(!(lfm[TX_8X8].bits[i] & lfm[TX_32X32].bits[i]));
assert(!(lfm[TX_8X8].bits[i] & lfm[TX_64X64].bits[i]));
assert(!(lfm[TX_16X16].bits[i] & lfm[TX_32X32].bits[i]));
assert(!(lfm[TX_16X16].bits[i] & lfm[TX_64X64].bits[i]));
assert(!(lfm[TX_32X32].bits[i] & lfm[TX_64X64].bits[i]));
}
#else
(void)lfm;
#endif
}
static void check_mask_uv(const FilterMaskUV *lfm) {
#ifndef NDEBUG
int i;
for (i = 0; i < 4; ++i) {
assert(!(lfm[TX_4X4] & lfm[TX_8X8]));
assert(!(lfm[TX_4X4] & lfm[TX_16X16]));
assert(!(lfm[TX_4X4] & lfm[TX_32X32]));
assert(!(lfm[TX_8X8] & lfm[TX_16X16]));
assert(!(lfm[TX_8X8] & lfm[TX_32X32]));
assert(!(lfm[TX_16X16] & lfm[TX_32X32]));
}
#else
(void)lfm;
#endif
}
static void check_loop_filter_masks(const LoopFilterMask *lfm) {
for (int i = 0; i < LOOP_FILTER_MASK_NUM; ++i) {
// Assert if we try to apply 2 different loop filters at the same position.
check_mask_y(lfm->lfm_info[i].left_y);
check_mask_y(lfm->lfm_info[i].above_y);
check_mask_uv(lfm->lfm_info[i].left_u);
check_mask_uv(lfm->lfm_info[i].above_u);
check_mask_uv(lfm->lfm_info[i].left_v);
check_mask_uv(lfm->lfm_info[i].above_v);
}
}
// if superblock size is 128x128, we need to specify which lpf mask info.
int get_mask_idx_inside_sb(AV1_COMMON *const cm, int mi_row, int mi_col) {
if (cm->seq_params.mib_size == MI_SIZE_64X64) return 0;
const int r = (mi_row % cm->seq_params.mib_size) >> 4;
const int c = (mi_col % cm->seq_params.mib_size) >> 4;
return (r << 1) + c;
}
static void setup_masks(AV1_COMMON *const cm, int mi_row, int mi_col, int plane,
int subsampling_x, int subsampling_y, TX_SIZE tx_size,
LoopFilterMask *lfm) {
if (mi_row == 0 && mi_col == 0) return;
const int idx = mi_col << MI_SIZE_LOG2;
const int idy = mi_row << MI_SIZE_LOG2;
MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col;
const MB_MODE_INFO *const mbmi = mi[0];
const int curr_skip = mbmi->skip && is_inter_block(mbmi);
int y_index = 0;
const int shift = plane ? get_uv_index_shift(idx, idy)
: get_y_index_shift(idx, idy, &y_index);
const int mask_idx = get_mask_idx_inside_sb(cm, mi_row, mi_col);
LoopFilterMaskInfo *const lfm_info = &lfm->lfm_info[mask_idx];
// decide whether current vertical/horizontal edge needs loop filtering
EDGE_DIR dir;
for (dir = VERT_EDGE; dir <= HORZ_EDGE; ++dir) {
const int row_or_col = dir == VERT_EDGE ? mi_col : mi_row;
if (row_or_col == 0) continue; // do not filter frame boundary
MB_MODE_INFO **mi_prev =
(dir == VERT_EDGE) ? mi - (tx_size_wide_unit[tx_size] << subsampling_x)
: mi - ((tx_size_high_unit[tx_size] * cm->mi_stride)
<< subsampling_y);
const MB_MODE_INFO *const mbmi_prev = mi_prev[0];
const uint8_t level = get_filter_level(cm, &cm->lf_info, dir, plane, mbmi);
const uint8_t level_prev =
get_filter_level(cm, &cm->lf_info, dir, plane, mbmi_prev);
const int prev_skip = mbmi_prev->skip && is_inter_block(mbmi_prev);
const BLOCK_SIZE bsize =
ss_size_lookup[mbmi->sb_type][subsampling_x][subsampling_y];
const int prediction_masks = dir == VERT_EDGE ? block_size_wide[bsize] - 1
: block_size_high[bsize] - 1;
const int is_coding_block_border = !(row_or_col & prediction_masks);
const int is_edge = (level || level_prev) &&
(!curr_skip || !prev_skip || is_coding_block_border);
if (is_edge) {
const TX_SIZE prev_tx_size =
plane ? av1_get_uv_tx_size(mbmi_prev, subsampling_x, subsampling_y)
: mbmi_prev->tx_size;
const TX_SIZE min_tx_size =
(dir == VERT_EDGE)
? AOMMIN(txsize_horz_map[tx_size], txsize_horz_map[prev_tx_size])
: AOMMIN(txsize_vert_map[tx_size], txsize_vert_map[prev_tx_size]);
assert(min_tx_size < TX_SIZES);
// set mask on corresponding bit
if (dir == VERT_EDGE) {
switch (plane) {
case 0:
lfm_info->left_y[min_tx_size].bits[y_index] |= (1 << shift);
break;
case 1: lfm_info->left_u[min_tx_size] |= (1 << shift); break;
case 2: lfm_info->left_v[min_tx_size] |= (1 << shift); break;
default: assert(plane <= 2);
}
} else {
switch (plane) {
case 0:
lfm_info->above_y[min_tx_size].bits[y_index] |= (1 << shift);
break;
case 1: lfm_info->above_u[min_tx_size] |= (1 << shift); break;
case 2: lfm_info->above_v[min_tx_size] |= (1 << shift); break;
default: assert(plane <= 2);
}
}
}
}
}
static void setup_tx_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col,
int blk_row, int blk_col, int plane_bsize,
TX_SIZE tx_size, int plane, int subsampling_x,
int subsampling_y, LoopFilterMask *lfm) {
MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col;
const MB_MODE_INFO *const mbmi = mi[0];
// For Y plane:
// If intra block, tx size is univariant.
// If inter block, tx size follows inter_tx_size.
// For U/V plane: tx_size is always the largest size.
TX_SIZE plane_tx_size;
const int is_inter = is_inter_block(mbmi);
if (is_inter) {
plane_tx_size = plane
? av1_get_uv_tx_size(mbmi, subsampling_x, subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(
plane_bsize, blk_row, blk_col)];
} else {
plane_tx_size = plane
? av1_get_uv_tx_size(mbmi, subsampling_x, subsampling_y)
: mbmi->tx_size;
}
if (plane) assert(plane_tx_size == tx_size);
if (plane_tx_size == tx_size) {
setup_masks(cm, mi_row, mi_col, plane, subsampling_x, subsampling_y,
tx_size, lfm);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[is_inter][tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
const int offsetr = blk_row + row;
const int offsetc = blk_col + col;
if (mi_row + offsetr >= cm->mi_rows || mi_col + offsetc >= cm->mi_cols)
continue;
setup_tx_block_mask(cm, mi_row, mi_col, offsetr, offsetc, plane_bsize,
sub_txs, plane, subsampling_x, subsampling_y, lfm);
}
}
}
}
static void setup_fix_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col,
int block_width, int block_height, int plane,
int subsampling_x, int subsampling_y,
LoopFilterMask *lfm) {
MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col;
const MB_MODE_INFO *const mbmi = mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
const BLOCK_SIZE bsizec =
scale_chroma_bsize(bsize, subsampling_x, subsampling_y);
const BLOCK_SIZE plane_bsize =
ss_size_lookup[bsizec][subsampling_x][subsampling_y];
TX_SIZE max_txsize = get_max_rect_tx_size(plane_bsize);
// The decoder is designed so that it can process 64x64 luma pixels at a
// time. If this is a chroma plane with subsampling and bsize corresponds to
// a subsampled BLOCK_128X128 then the lookup above will give TX_64X64. That
// mustn't be used for the subsampled plane (because it would be bigger than
// a 64x64 luma block) so we round down to TX_32X32.
if ((subsampling_x || subsampling_y) &&
txsize_sqr_up_map[max_txsize] == TX_64X64) {
if (max_txsize == TX_16X64)
max_txsize = TX_16X32;
else if (max_txsize == TX_64X16)
max_txsize = TX_32X16;
else
max_txsize = TX_32X32;
}
const BLOCK_SIZE txb_size = txsize_to_bsize[max_txsize];
const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0];
const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0];
const BLOCK_SIZE max_unit_bsize =
ss_size_lookup[BLOCK_64X64][subsampling_x][subsampling_y];
int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0];
int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0];
mu_blocks_wide = AOMMIN(block_width, mu_blocks_wide);
mu_blocks_high = AOMMIN(block_height, mu_blocks_high);
// Largest tx_size is 64x64, while superblock size can be 128x128.
// Here we ensure that setup_tx_block_mask process at most a 64x64 block.
for (int idy = 0; idy < block_height; idy += mu_blocks_high) {
for (int idx = 0; idx < block_width; idx += mu_blocks_wide) {
const int unit_height = AOMMIN(mu_blocks_high + idy, block_height);
const int unit_width = AOMMIN(mu_blocks_wide + idx, block_width);
for (int blk_row = idy; blk_row < unit_height; blk_row += bh) {
for (int blk_col = idx; blk_col < unit_width; blk_col += bw) {
setup_tx_block_mask(cm, mi_row, mi_col, blk_row, blk_col, plane_bsize,
max_txsize, plane, subsampling_x, subsampling_y,
lfm);
}
}
}
}
}
static void setup_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col,
BLOCK_SIZE bsize, int plane, int subsampling_x,
int subsampling_y, LoopFilterMask *lfm) {
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
const int hbs = mi_size_wide[bsize] / 2;
const int quarter_step = mi_size_wide[bsize] / 4;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
int i;
switch (partition) {
case PARTITION_NONE:
setup_fix_block_mask(cm, mi_row, mi_col, bw, bh, plane, subsampling_x,
subsampling_y, lfm);
break;
case PARTITION_HORZ:
setup_fix_block_mask(cm, mi_row, mi_col, bw, bh >> 1, plane,
subsampling_x, subsampling_y, lfm);
if (mi_row + hbs < cm->mi_rows)
setup_fix_block_mask(cm, mi_row + hbs, mi_col, bw, bh >> 1, plane,
subsampling_x, subsampling_y, lfm);
break;
case PARTITION_VERT:
setup_fix_block_mask(cm, mi_row, mi_col, bw >> 1, bh, plane,
subsampling_x, subsampling_y, lfm);
if (mi_col + hbs < cm->mi_cols)
setup_fix_block_mask(cm, mi_row, mi_col + hbs, bw >> 1, bh, plane,
subsampling_x, subsampling_y, lfm);
break;
case PARTITION_SPLIT:
setup_block_mask(cm, mi_row, mi_col, subsize, plane, subsampling_x,
subsampling_y, lfm);
setup_block_mask(cm, mi_row, mi_col + hbs, subsize, plane, subsampling_x,
subsampling_y, lfm);
setup_block_mask(cm, mi_row + hbs, mi_col, subsize, plane, subsampling_x,
subsampling_y, lfm);
setup_block_mask(cm, mi_row + hbs, mi_col + hbs, subsize, plane,
subsampling_x, subsampling_y, lfm);
break;
case PARTITION_HORZ_A:
setup_fix_block_mask(cm, mi_row, mi_col, bw >> 1, bh >> 1, plane,
subsampling_x, subsampling_y, lfm);
setup_fix_block_mask(cm, mi_row, mi_col + hbs, bw >> 1, bh >> 1, plane,
subsampling_x, subsampling_y, lfm);
setup_fix_block_mask(cm, mi_row + hbs, mi_col, bw, bh, plane,
subsampling_x, subsampling_y, lfm);
break;
case PARTITION_HORZ_B:
setup_fix_block_mask(cm, mi_row, mi_col, bw, bh >> 1, plane,
subsampling_x, subsampling_y, lfm);
setup_fix_block_mask(cm, mi_row + hbs, mi_col, bw >> 1, bh >> 1, plane,
subsampling_x, subsampling_y, lfm);
setup_fix_block_mask(cm, mi_row + hbs, mi_col + hbs, bw >> 1, bh >> 1,
plane, subsampling_x, subsampling_y, lfm);
break;
case PARTITION_VERT_A:
setup_fix_block_mask(cm, mi_row, mi_col, bw >> 1, bh >> 1, plane,
subsampling_x, subsampling_y, lfm);
setup_fix_block_mask(cm, mi_row + hbs, mi_col, bw >> 1, bh >> 1, plane,
subsampling_x, subsampling_y, lfm);
setup_fix_block_mask(cm, mi_row, mi_col + hbs, bw >> 1, bh, plane,
subsampling_x, subsampling_y, lfm);
break;
case PARTITION_VERT_B:
setup_fix_block_mask(cm, mi_row, mi_col, bw >> 1, bh, plane,
subsampling_x, subsampling_y, lfm);
setup_fix_block_mask(cm, mi_row, mi_col + hbs, bw >> 1, bh >> 1, plane,
subsampling_x, subsampling_y, lfm);
setup_fix_block_mask(cm, mi_row + hbs, mi_col + hbs, bw >> 1, bh >> 1,
plane, subsampling_x, subsampling_y, lfm);
break;
case PARTITION_HORZ_4:
for (i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= cm->mi_rows) break;
setup_fix_block_mask(cm, this_mi_row, mi_col, bw, bh >> 2, plane,
subsampling_x, subsampling_y, lfm);
}
break;
case PARTITION_VERT_4:
for (i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= cm->mi_cols) break;
setup_fix_block_mask(cm, mi_row, this_mi_col, bw >> 2, bh, plane,
subsampling_x, subsampling_y, lfm);
}
break;
default: assert(0);
}
}
// TODO(chengchen): if lossless, do not need to setup mask. But when
// segments enabled, each segment has different lossless settings.
void av1_setup_bitmask(AV1_COMMON *const cm, int mi_row, int mi_col, int plane,
int subsampling_x, int subsampling_y,
LoopFilterMask *lfm) {
assert(lfm != NULL);
// set up bitmask for each superblock
setup_block_mask(cm, mi_row, mi_col, cm->seq_params.sb_size, plane,
subsampling_x, subsampling_y, lfm);
// check if the mask is valid
check_loop_filter_masks(lfm);
{
// place hoder: for potential special case handling.
// 64x64 (Y) or 32x32 (U/V) boundaries must be filtered.
const int num_64x64 = MAX_MIB_SIZE == MI_SIZE_64X64 ? 1 : 4;
if (plane == 0) {
for (int i = 0; i < num_64x64; ++i) {
for (int j = 0; j < 4; ++j) {
if (mi_col || i & 1)
lfm->lfm_info[i].left_y[TX_64X64].bits[j] |=
left_txform_mask[TX_64X64].bits[j];
if (mi_row || i > 1)
lfm->lfm_info[i].above_y[TX_64X64].bits[j] |=
above_txform_mask[TX_64X64].bits[j];
}
}
} else {
for (int i = 0; i < num_64x64; ++i) {
if (mi_col || i & 1) {
lfm->lfm_info[i].left_u[TX_32X32] |= left_txform_mask_uv[TX_32X32];
lfm->lfm_info[i].left_v[TX_32X32] |= left_txform_mask_uv[TX_32X32];
}
if (mi_row || i > 1) {
lfm->lfm_info[i].above_u[TX_32X32] |= above_txform_mask_uv[TX_32X32];
lfm->lfm_info[i].above_v[TX_32X32] |= above_txform_mask_uv[TX_32X32];
}
}
}
// Let 16x16 hold 32x32 (Y/U/V) and 64x64(Y only).
// Even tx size is greater, we only apply max length filter, which is 16.
for (int i = 0; i < LOOP_FILTER_MASK_NUM; ++i) {
if (plane == 0) {
for (int j = 0; j < 4; ++j) {
lfm->lfm_info[i].left_y[TX_16X16].bits[j] |=
lfm->lfm_info[i].left_y[TX_32X32].bits[j];
lfm->lfm_info[i].left_y[TX_16X16].bits[j] |=
lfm->lfm_info[i].left_y[TX_64X64].bits[j];
lfm->lfm_info[i].above_y[TX_16X16].bits[j] |=
lfm->lfm_info[i].above_y[TX_32X32].bits[j];
lfm->lfm_info[i].above_y[TX_16X16].bits[j] |=
lfm->lfm_info[i].above_y[TX_64X64].bits[j];
}
} else if (plane == 1) {
lfm->lfm_info[i].left_u[TX_16X16] |= lfm->lfm_info[i].left_u[TX_32X32];
lfm->lfm_info[i].above_u[TX_16X16] |=
lfm->lfm_info[i].above_u[TX_32X32];
} else {
lfm->lfm_info[i].left_v[TX_16X16] |= lfm->lfm_info[i].left_v[TX_32X32];
lfm->lfm_info[i].above_v[TX_16X16] |=
lfm->lfm_info[i].above_v[TX_32X32];
}
}
}
}
#endif // LOOP_FILTER_BITMASK
// This function ors into the current lfm structure, where to do loop
// filters for the specific mi we are looking at. It uses information
// including the block_size_type (32x16, 32x32, etc.), the transform size,
// whether there were any coefficients encoded, and the loop filter strength
// block we are currently looking at. Shift is used to position the
// 1's we produce.
// TODO(JBB) Need another function for different resolution color..
static void build_masks(AV1_COMMON *const cm,
const loop_filter_info_n *const lfi_n,
const MB_MODE_INFO *mbmi, const int shift_y,
const int shift_uv, LOOP_FILTER_MASK *lfm) {
const BLOCK_SIZE block_size = mbmi->sb_type;
// TODO(debargha): Check if masks can be setup correctly when
// rectangular transfroms are used with the EXT_TX expt.
const TX_SIZE tx_size_y = txsize_sqr_map[mbmi->tx_size];
const TX_SIZE tx_size_y_left = txsize_horz_map[mbmi->tx_size];
const TX_SIZE tx_size_y_above = txsize_vert_map[mbmi->tx_size];
const TX_SIZE tx_size_uv_actual = av1_get_uv_tx_size(mbmi, 1, 1);
const TX_SIZE tx_size_uv = txsize_sqr_map[tx_size_uv_actual];
const TX_SIZE tx_size_uv_left = txsize_horz_map[tx_size_uv_actual];
const TX_SIZE tx_size_uv_above = txsize_vert_map[tx_size_uv_actual];
const int filter_level = get_filter_level(cm, lfi_n, 0, 0, mbmi);
uint64_t *const left_y = &lfm->left_y[tx_size_y_left];
uint64_t *const above_y = &lfm->above_y[tx_size_y_above];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
uint16_t *const left_uv = &lfm->left_uv[tx_size_uv_left];
uint16_t *const above_uv = &lfm->above_uv[tx_size_uv_above];
uint16_t *const int_4x4_uv = &lfm->left_int_4x4_uv;
int i;
// If filter level is 0 we don't loop filter.
if (!filter_level) {
return;
} else {
const int w = num_8x8_blocks_wide_lookup[block_size];
const int h = num_8x8_blocks_high_lookup[block_size];
const int row = (shift_y >> MAX_MIB_SIZE_LOG2);
const int col = shift_y - (row << MAX_MIB_SIZE_LOG2);
for (i = 0; i < h; i++) memset(&lfm->lfl_y[row + i][col], filter_level, w);
}
// These set 1 in the current block size for the block size edges.
// For instance if the block size is 32x16, we'll set:
// above = 1111
// 0000
// and
// left = 1000
// = 1000
// NOTE : In this example the low bit is left most ( 1000 ) is stored as
// 1, not 8...
//
// U and V set things on a 16 bit scale.
//
*above_y |= above_prediction_mask[block_size] << shift_y;
*above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
*left_y |= left_prediction_mask[block_size] << shift_y;
*left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
// If the block has no coefficients and is not intra we skip applying
// the loop filter on block edges.
if (mbmi->skip && is_inter_block(mbmi)) return;
// Here we are adding a mask for the transform size. The transform
// size mask is set to be correct for a 64x64 prediction block size. We
// mask to match the size of the block we are working on and then shift it
// into place..
*above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y_above])
<< shift_y;
*above_uv |=
(size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv_above])
<< shift_uv;
*left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y_left])
<< shift_y;
*left_uv |=
(size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv_left])
<< shift_uv;
// Here we are trying to determine what to do with the internal 4x4 block
// boundaries. These differ from the 4x4 boundaries on the outside edge of
// an 8x8 in that the internal ones can be skipped and don't depend on
// the prediction block size.
if (tx_size_y == TX_4X4)
*int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y;
if (tx_size_uv == TX_4X4)
*int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
}
// This function does the same thing as the one above with the exception that
// it only affects the y masks. It exists because for blocks < 16x16 in size,
// we only update u and v masks on the first block.
static void build_y_mask(AV1_COMMON *const cm,
const loop_filter_info_n *const lfi_n,
const MB_MODE_INFO *mbmi, const int shift_y,
LOOP_FILTER_MASK *lfm) {
const TX_SIZE tx_size_y = txsize_sqr_map[mbmi->tx_size];
const TX_SIZE tx_size_y_left = txsize_horz_map[mbmi->tx_size];
const TX_SIZE tx_size_y_above = txsize_vert_map[mbmi->tx_size];
const BLOCK_SIZE block_size = mbmi->sb_type;
const int filter_level = get_filter_level(cm, lfi_n, 0, 0, mbmi);
uint64_t *const left_y = &lfm->left_y[tx_size_y_left];
uint64_t *const above_y = &lfm->above_y[tx_size_y_above];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
int i;
if (!filter_level) {
return;
} else {
const int w = num_8x8_blocks_wide_lookup[block_size];
const int h = num_8x8_blocks_high_lookup[block_size];
const int row = (shift_y >> MAX_MIB_SIZE_LOG2);
const int col = shift_y - (row << MAX_MIB_SIZE_LOG2);
for (i = 0; i < h; i++) memset(&lfm->lfl_y[row + i][col], filter_level, w);
}
*above_y |= above_prediction_mask[block_size] << shift_y;
*left_y |= left_prediction_mask[block_size] << shift_y;
if (mbmi->skip && is_inter_block(mbmi)) return;
*above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y_above])
<< shift_y;
*left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y_left])
<< shift_y;
if (tx_size_y == TX_4X4)
*int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffffULL) << shift_y;
}
// This function sets up the bit masks for the entire 64x64 region represented
// by mi_row, mi_col.
// TODO(JBB): This function only works for yv12.
void av1_setup_mask(AV1_COMMON *const cm, int mi_row, int mi_col,
MB_MODE_INFO **mi, int mode_info_stride,
LOOP_FILTER_MASK *lfm) {
assert(0 && "Not yet updated");
int idx_32, idx_16, idx_8;
const loop_filter_info_n *const lfi_n = &cm->lf_info;
MB_MODE_INFO **mip = mi;
MB_MODE_INFO **mip2 = mi;
// These are offsets to the next mi in the 64x64 block. It is what gets
// added to the mi ptr as we go through each loop. It helps us to avoid
// setting up special row and column counters for each index. The last step
// brings us out back to the starting position.
const int offset_32[] = { 4, (mode_info_stride << 2) - 4, 4,
-(mode_info_stride << 2) - 4 };
const int offset_16[] = { 2, (mode_info_stride << 1) - 2, 2,
-(mode_info_stride << 1) - 2 };
const int offset[] = { 1, mode_info_stride - 1, 1, -mode_info_stride - 1 };
// Following variables represent shifts to position the current block
// mask over the appropriate block. A shift of 36 to the left will move
// the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
// 4 rows to the appropriate spot.
const int shift_32_y[] = { 0, 4, 32, 36 };
const int shift_16_y[] = { 0, 2, 16, 18 };
const int shift_8_y[] = { 0, 1, 8, 9 };
const int shift_32_uv[] = { 0, 2, 8, 10 };
const int shift_16_uv[] = { 0, 1, 4, 5 };
int i;
const int max_rows = AOMMIN(cm->mi_rows - mi_row, MAX_MIB_SIZE);
const int max_cols = AOMMIN(cm->mi_cols - mi_col, MAX_MIB_SIZE);
av1_zero(*lfm);
assert(mip[0] != NULL);
// TODO(jimbankoski): Try moving most of the following code into decode
// loop and storing lfm in the mbmi structure so that we don't have to go
// through the recursive loop structure multiple times.
switch (mip[0]->sb_type) {
case BLOCK_64X64: build_masks(cm, lfi_n, mip[0], 0, 0, lfm); break;
case BLOCK_64X32:
build_masks(cm, lfi_n, mip[0], 0, 0, lfm);
mip2 = mip + mode_info_stride * 4;
if (4 >= max_rows) break;
build_masks(cm, lfi_n, mip2[0], 32, 8, lfm);
break;
case BLOCK_32X64:
build_masks(cm, lfi_n, mip[0], 0, 0, lfm);
mip2 = mip + 4;
if (4 >= max_cols) break;
build_masks(cm, lfi_n, mip2[0], 4, 2, lfm);
break;
default:
for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
const int shift_y_32 = shift_32_y[idx_32];
const int shift_uv_32 = shift_32_uv[idx_32];
const int mi_32_col_offset = ((idx_32 & 1) << 2);
const int mi_32_row_offset = ((idx_32 >> 1) << 2);
if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
continue;
switch (mip[0]->sb_type) {
case BLOCK_32X32:
build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm);
break;
case BLOCK_32X16:
build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm);
if (mi_32_row_offset + 2 >= max_rows) continue;
mip2 = mip + mode_info_stride * 2;
build_masks(cm, lfi_n, mip2[0], shift_y_32 + 16, shift_uv_32 + 4,
lfm);
break;
case BLOCK_16X32:
build_masks(cm, lfi_n, mip[0], shift_y_32, shift_uv_32, lfm);
if (mi_32_col_offset + 2 >= max_cols) continue;
mip2 = mip + 2;
build_masks(cm, lfi_n, mip2[0], shift_y_32 + 2, shift_uv_32 + 1,
lfm);
break;
default:
for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
const int shift_y_32_16 = shift_y_32 + shift_16_y[idx_16];
const int shift_uv_32_16 = shift_uv_32 + shift_16_uv[idx_16];
const int mi_16_col_offset =
mi_32_col_offset + ((idx_16 & 1) << 1);
const int mi_16_row_offset =
mi_32_row_offset + ((idx_16 >> 1) << 1);
if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
continue;
switch (mip[0]->sb_type) {
case BLOCK_16X16:
build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16,
lfm);
break;
case BLOCK_16X8:
build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16,
lfm);
if (mi_16_row_offset + 1 >= max_rows) continue;
mip2 = mip + mode_info_stride;
build_y_mask(cm, lfi_n, mip2[0], shift_y_32_16 + 8, lfm);
break;
case BLOCK_8X16:
build_masks(cm, lfi_n, mip[0], shift_y_32_16, shift_uv_32_16,
lfm);
if (mi_16_col_offset + 1 >= max_cols) continue;
mip2 = mip + 1;
build_y_mask(cm, lfi_n, mip2[0], shift_y_32_16 + 1, lfm);
break;
default: {
const int shift_y_32_16_8_zero = shift_y_32_16 + shift_8_y[0];
build_masks(cm, lfi_n, mip[0], shift_y_32_16_8_zero,
shift_uv_32_16, lfm);
mip += offset[0];
for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
const int shift_y_32_16_8 =
shift_y_32_16 + shift_8_y[idx_8];
const int mi_8_col_offset =
mi_16_col_offset + ((idx_8 & 1));
const int mi_8_row_offset =
mi_16_row_offset + ((idx_8 >> 1));
if (mi_8_col_offset >= max_cols ||
mi_8_row_offset >= max_rows)
continue;
build_y_mask(cm, lfi_n, mip[0], shift_y_32_16_8, lfm);
}
break;
}
}
}
break;
}
}
break;
}
// The largest loopfilter we have is 16x16 so we use the 16x16 mask
// for 32x32 transforms also.
lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
// We do at least 8 tap filter on every 32x32 even if the transform size
// is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
// remove it from the 4x4.
lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
lfm->left_y[TX_4X4] &= ~left_border;
lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
lfm->above_y[TX_4X4] &= ~above_border;
lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
lfm->left_uv[TX_4X4] &= ~left_border_uv;
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
lfm->above_uv[TX_4X4] &= ~above_border_uv;
// We do some special edge handling.
if (mi_row + MAX_MIB_SIZE > cm->mi_rows) {
const uint64_t rows = cm->mi_rows - mi_row;
// Each pixel inside the border gets a 1,
const uint64_t mask_y = (((uint64_t)1 << (rows << MAX_MIB_SIZE_LOG2)) - 1);
const uint16_t mask_uv =
(((uint16_t)1 << (((rows + 1) >> 1) << (MAX_MIB_SIZE_LOG2 - 1))) - 1);
// Remove values completely outside our border.
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= mask_y;
lfm->above_y[i] &= mask_y;
lfm->left_uv[i] &= mask_uv;
lfm->above_uv[i] &= mask_uv;
}
lfm->int_4x4_y &= mask_y;
lfm->above_int_4x4_uv = lfm->left_int_4x4_uv & mask_uv;
// We don't apply a wide loop filter on the last uv block row. If set
// apply the shorter one instead.
if (rows == 1) {
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
lfm->above_uv[TX_16X16] = 0;
}
if (rows == 5) {
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
}
} else {
lfm->above_int_4x4_uv = lfm->left_int_4x4_uv;
}
if (mi_col + MAX_MIB_SIZE > cm->mi_cols) {
const uint64_t columns = cm->mi_cols - mi_col;
// Each pixel inside the border gets a 1, the multiply copies the border
// to where we need it.
const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101ULL;
const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
// Internal edges are not applied on the last column of the image so
// we mask 1 more for the internal edges
const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
// Remove the bits outside the image edge.
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= mask_y;
lfm->above_y[i] &= mask_y;
lfm->left_uv[i] &= mask_uv;
lfm->above_uv[i] &= mask_uv;
}
lfm->int_4x4_y &= mask_y;
lfm->left_int_4x4_uv &= mask_uv_int;
// We don't apply a wide loop filter on the last uv column. If set
// apply the shorter one instead.
if (columns == 1) {
lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
lfm->left_uv[TX_16X16] = 0;
}
if (columns == 5) {
lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
}
}
// We don't apply a loop filter on the first column in the image, mask that
// out.
if (mi_col == 0) {
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= 0xfefefefefefefefeULL;
lfm->left_uv[i] &= 0xeeee;
}
}
// Assert if we try to apply 2 different loop filters at the same position.
assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8]));
assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4]));
assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4]));
assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16]));
assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_8X8]));
assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4]));
assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4]));
assert(!(lfm->left_int_4x4_uv & lfm->left_uv[TX_16X16]));
assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8]));
assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4]));
assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4]));
assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16]));
assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8]));
assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4]));
assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4]));
assert(!(lfm->above_int_4x4_uv & lfm->above_uv[TX_16X16]));
}
typedef struct {
unsigned int m16x16;
unsigned int m8x8;
unsigned int m4x4;
} FilterMasks;
static TX_SIZE get_transform_size(const MACROBLOCKD *const xd,
const MB_MODE_INFO *const mbmi,
const EDGE_DIR edge_dir, const int mi_row,
const int mi_col, const int plane,
const struct macroblockd_plane *plane_ptr) {
assert(mbmi != NULL);
if (xd->lossless[mbmi->segment_id]) return TX_4X4;
TX_SIZE tx_size = (plane == AOM_PLANE_Y)
? mbmi->tx_size
: av1_get_uv_tx_size(mbmi, plane_ptr->subsampling_x,
plane_ptr->subsampling_y);
assert(tx_size < TX_SIZES_ALL);
if ((plane == AOM_PLANE_Y) && is_inter_block(mbmi) && !mbmi->skip) {
const BLOCK_SIZE sb_type = mbmi->sb_type;
const int blk_row = mi_row & (mi_size_high[sb_type] - 1);
const int blk_col = mi_col & (mi_size_wide[sb_type] - 1);
const TX_SIZE mb_tx_size =
mbmi->inter_tx_size[av1_get_txb_size_index(sb_type, blk_row, blk_col)];
assert(mb_tx_size < TX_SIZES_ALL);
tx_size = mb_tx_size;
}
// since in case of chrominance or non-square transorm need to convert
// transform size into transform size in particular direction.
// for vertical edge, filter direction is horizontal, for horizontal
// edge, filter direction is vertical.
tx_size = (VERT_EDGE == edge_dir) ? txsize_horz_map[tx_size]
: txsize_vert_map[tx_size];
return tx_size;
}
typedef struct AV1_DEBLOCKING_PARAMETERS {
// length of the filter applied to the outer edge
uint32_t filter_length;
// deblocking limits
const uint8_t *lim;
const uint8_t *mblim;
const uint8_t *hev_thr;
} AV1_DEBLOCKING_PARAMETERS;
// Return TX_SIZE from get_transform_size(), so it is plane and direction
// awared
static TX_SIZE set_lpf_parameters(
AV1_DEBLOCKING_PARAMETERS *const params, const ptrdiff_t mode_step,
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const EDGE_DIR edge_dir, const uint32_t x, const uint32_t y,
const int plane, const struct macroblockd_plane *const plane_ptr) {
// reset to initial values
params->filter_length = 0;
// no deblocking is required
const uint32_t width = plane_ptr->dst.width;
const uint32_t height = plane_ptr->dst.height;
if ((width <= x) || (height <= y)) {
// just return the smallest transform unit size
return TX_4X4;
}
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
// for sub8x8 block, chroma prediction mode is obtained from the bottom/right
// mi structure of the co-located 8x8 luma block. so for chroma plane, mi_row
// and mi_col should map to the bottom/right mi structure, i.e, both mi_row
// and mi_col should be odd number for chroma plane.
const int mi_row = scale_vert | ((y << scale_vert) >> MI_SIZE_LOG2);
const int mi_col = scale_horz | ((x << scale_horz) >> MI_SIZE_LOG2);
MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col;
const MB_MODE_INFO *mbmi = mi[0];
// If current mbmi is not correctly setup, return an invalid value to stop
// filtering. One example is that if this tile is not coded, then its mbmi
// it not set up.
if (mbmi == NULL) return TX_INVALID;
const TX_SIZE ts =
get_transform_size(xd, mi[0], edge_dir, mi_row, mi_col, plane, plane_ptr);
{
const uint32_t coord = (VERT_EDGE == edge_dir) ? (x) : (y);
const uint32_t transform_masks =
edge_dir == VERT_EDGE ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1;
const int32_t tu_edge = (coord & transform_masks) ? (0) : (1);
if (!tu_edge) return ts;
// prepare outer edge parameters. deblock the edge if it's an edge of a TU
{
const uint32_t curr_level =
get_filter_level(cm, &cm->lf_info, edge_dir, plane, mbmi);
const int curr_skipped = mbmi->skip && is_inter_block(mbmi);
uint32_t level = curr_level;
if (coord) {
{
const MB_MODE_INFO *const mi_prev = *(mi - mode_step);
if (mi_prev == NULL) return TX_INVALID;
const int pv_row =
(VERT_EDGE == edge_dir) ? (mi_row) : (mi_row - (1 << scale_vert));
const int pv_col =
(VERT_EDGE == edge_dir) ? (mi_col - (1 << scale_horz)) : (mi_col);
const TX_SIZE pv_ts = get_transform_size(
xd, mi_prev, edge_dir, pv_row, pv_col, plane, plane_ptr);
const uint32_t pv_lvl =
get_filter_level(cm, &cm->lf_info, edge_dir, plane, mi_prev);
const int pv_skip = mi_prev->skip && is_inter_block(mi_prev);
const BLOCK_SIZE bsize =
ss_size_lookup[mbmi->sb_type][scale_horz][scale_vert];
const int prediction_masks = edge_dir == VERT_EDGE
? block_size_wide[bsize] - 1
: block_size_high[bsize] - 1;
const int32_t pu_edge = !(coord & prediction_masks);
// if the current and the previous blocks are skipped,
// deblock the edge if the edge belongs to a PU's edge only.
if ((curr_level || pv_lvl) &&
(!pv_skip || !curr_skipped || pu_edge)) {
const TX_SIZE min_ts = AOMMIN(ts, pv_ts);
if (TX_4X4 >= min_ts) {
params->filter_length = 4;
} else if (TX_8X8 == min_ts) {
if (plane != 0)
params->filter_length = 6;
else
params->filter_length = 8;
} else {
params->filter_length = 14;
// No wide filtering for chroma plane
if (plane != 0) {
params->filter_length = 6;
}
}
// update the level if the current block is skipped,
// but the previous one is not
level = (curr_level) ? (curr_level) : (pv_lvl);
}
}
}
// prepare common parameters
if (params->filter_length) {
const loop_filter_thresh *const limits = cm->lf_info.lfthr + level;
params->lim = limits->lim;
params->mblim = limits->mblim;
params->hev_thr = limits->hev_thr;
}
}
}
return ts;
}
static void filter_block_plane_vert(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd,
const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row,
const uint32_t mi_col) {
const int row_step = MI_SIZE >> MI_SIZE_LOG2;
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int y_range = (MIN_MIB_SIZE >> scale_vert);
const int x_range = (MIN_MIB_SIZE >> scale_horz);
for (int y = 0; y < y_range; y += row_step) {
uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride;
for (int x = 0; x < x_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will filter the vertical edge aligned with a 8x8 block.
// If 4x4 trasnform is used, it will then filter the internal edge
// aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size =
set_lpf_parameters(&params, ((ptrdiff_t)1 << scale_horz), cm, xd,
VERT_EDGE, curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
switch (params.filter_length) {
// apply 4-tap filtering
case 4:
if (cm->use_highbitdepth)
aom_highbd_lpf_vertical_4(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
cm->bit_depth);
else
aom_lpf_vertical_4(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
assert(plane != 0);
if (cm->use_highbitdepth)
aom_highbd_lpf_vertical_6(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
cm->bit_depth);
else
aom_lpf_vertical_6(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 8-tap filtering
case 8:
if (cm->use_highbitdepth)
aom_highbd_lpf_vertical_8(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
cm->bit_depth);
else
aom_lpf_vertical_8(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 14-tap filtering
case 14:
if (cm->use_highbitdepth)
aom_highbd_lpf_vertical_14(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
cm->bit_depth);
else
aom_lpf_vertical_14(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// no filtering
default: break;
}
// advance the destination pointer
advance_units = tx_size_wide_unit[tx_size];
x += advance_units;
p += advance_units * MI_SIZE;
}
}
}
static void filter_block_plane_horz(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd,
const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row,
const uint32_t mi_col) {
const int col_step = MI_SIZE >> MI_SIZE_LOG2;
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int y_range = (MIN_MIB_SIZE >> scale_vert);
const int x_range = (MIN_MIB_SIZE >> scale_horz);
for (int x = 0; x < x_range; x += col_step) {
uint8_t *p = dst_ptr + x * MI_SIZE;
for (int y = 0; y < y_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will first filter the vertical edge aligned with a 8x8
// block. If 4x4 trasnform is used, it will then filter the internal
// edge aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size =
set_lpf_parameters(&params, (cm->mi_stride << scale_vert), cm, xd,
HORZ_EDGE, curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
switch (params.filter_length) {
// apply 4-tap filtering
case 4:
if (cm->use_highbitdepth)
aom_highbd_lpf_horizontal_4(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, cm->bit_depth);
else
aom_lpf_horizontal_4(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 6-tap filtering
case 6:
assert(plane != 0);
if (cm->use_highbitdepth)
aom_highbd_lpf_horizontal_6(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, cm->bit_depth);
else
aom_lpf_horizontal_6(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 8-tap filtering
case 8:
if (cm->use_highbitdepth)
aom_highbd_lpf_horizontal_8(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, cm->bit_depth);
else
aom_lpf_horizontal_8(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 14-tap filtering
case 14:
if (cm->use_highbitdepth)
aom_highbd_lpf_horizontal_14(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, cm->bit_depth);
else
aom_lpf_horizontal_14(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// no filtering
default: break;
}
// advance the destination pointer
advance_units = tx_size_high_unit[tx_size];
y += advance_units;
p += advance_units * dst_stride * MI_SIZE;
}
}
}
#if LOOP_FILTER_BITMASK
static INLINE enum lf_path get_loop_filter_path(
int plane, struct macroblockd_plane pd[MAX_MB_PLANE]) {
if (pd[plane].subsampling_y == 1 && pd[plane].subsampling_x == 1)
return LF_PATH_420;
else if (pd[plane].subsampling_y == 0 && pd[plane].subsampling_x == 0)
return LF_PATH_444;
else
return LF_PATH_SLOW;
}
static void loop_filter_block_plane_vert(AV1_COMMON *const cm,
struct macroblockd_plane *pd, int pl,
int mi_row, int mi_col,
enum lf_path path,
LoopFilterMask *lf_mask) {
MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col;
switch (path) {
case LF_PATH_420:
av1_filter_block_plane_ss00_ver(cm, pd, pl, mi_row, lf_mask);
break;
case LF_PATH_444:
av1_filter_block_plane_ss11_ver(cm, pd, pl, mi_row, lf_mask);
break;
case LF_PATH_SLOW:
av1_filter_block_plane_non420_ver(cm, pd, mi, mi_row, mi_col, pl);
break;
}
}
static void loop_filter_block_plane_horz(AV1_COMMON *const cm,
struct macroblockd_plane *pd, int pl,
int mi_row, int mi_col,
enum lf_path path,
LoopFilterMask *lf_mask) {
MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col;
switch (path) {
case LF_PATH_420:
av1_filter_block_plane_ss00_hor(cm, pd, pl, mi_row, lf_mask);
break;
case LF_PATH_444:
av1_filter_block_plane_ss11_hor(cm, pd, pl, mi_row, lf_mask);
break;
case LF_PATH_SLOW:
av1_filter_block_plane_non420_hor(cm, pd, mi, mi_row, mi_col, pl);
break;
}
}
#endif // LOOP_FILTER_BITMASK
static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, AV1_COMMON *cm,
MACROBLOCKD *xd, int start, int stop,
int plane_start, int plane_end) {
struct macroblockd_plane *pd = xd->plane;
const int col_start = 0;
const int col_end = cm->mi_cols;
int mi_row, mi_col;
int plane;
for (plane = plane_start; plane < plane_end; plane++) {
if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
break;
else if (plane == 1 && !(cm->lf.filter_level_u))
continue;
else if (plane == 2 && !(cm->lf.filter_level_v))
continue;
#if LOOP_FILTER_BITMASK
enum lf_path path = get_loop_filter_path(plane, pd);
if (cm->lf.combine_vert_horz_lf) {
// filter all vertical and horizontal edges in every super block
for (mi_row = start; mi_row < stop; mi_row += MIN_MIB_SIZE) {
for (mi_col = col_start; mi_col < col_end; mi_col += MIN_MIB_SIZE) {
// filter vertical edges
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row,
mi_col, plane, plane + 1);
LoopFilterMask *lf_mask = get_loop_filter_mask(cm, mi_row, mi_col);
av1_setup_bitmask(cm, mi_row, mi_col, plane, pd[plane].subsampling_x,
pd[plane].subsampling_y, lf_mask);
loop_filter_block_plane_vert(cm, pd, plane, mi_row, mi_col, path,
lf_mask);
// filter horizontal edges
if (mi_col - MIN_MIB_SIZE >= 0) {
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer,
mi_row, mi_col - MIN_MIB_SIZE, plane,
plane + 1);
LoopFilterMask *lf_mask =
get_loop_filter_mask(cm, mi_row, mi_col - MIN_MIB_SIZE);
loop_filter_block_plane_horz(cm, pd, plane, mi_row,
mi_col - MIN_MIB_SIZE, path, lf_mask);
}
}
// filter horizontal edges
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row,
mi_col - MIN_MIB_SIZE, plane, plane + 1);
LoopFilterMask *lf_mask =
get_loop_filter_mask(cm, mi_row, mi_col - MIN_MIB_SIZE);
loop_filter_block_plane_horz(cm, pd, plane, mi_row,
mi_col - MIN_MIB_SIZE, path, lf_mask);
}
} else {
// filter all vertical edges in every super block
for (mi_row = start; mi_row < stop; mi_row += MIN_MIB_SIZE) {
for (mi_col = col_start; mi_col < col_end; mi_col += MIN_MIB_SIZE) {
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row,
mi_col, plane, plane + 1);
LoopFilterMask *lf_mask = get_loop_filter_mask(cm, mi_row, mi_col);
av1_setup_bitmask(cm, mi_row, mi_col, plane, pd[plane].subsampling_x,
pd[plane].subsampling_y, lf_mask);
loop_filter_block_plane_vert(cm, pd, plane, mi_row, mi_col, path,
lf_mask);
}
}
// filter all horizontal edges in every super block
for (mi_row = start; mi_row < stop; mi_row += MIN_MIB_SIZE) {
for (mi_col = col_start; mi_col < col_end; mi_col += MIN_MIB_SIZE) {
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row,
mi_col, plane, plane + 1);
LoopFilterMask *lf_mask = get_loop_filter_mask(cm, mi_row, mi_col);
loop_filter_block_plane_horz(cm, pd, plane, mi_row, mi_col, path,
lf_mask);
}
}
}
#else
if (cm->lf.combine_vert_horz_lf) {
// filter all vertical and horizontal edges in every 64x64 super block
for (mi_row = start; mi_row < stop; mi_row += MIN_MIB_SIZE) {
for (mi_col = col_start; mi_col < col_end; mi_col += MIN_MIB_SIZE) {
// filter vertical edges
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row,
mi_col, plane, plane + 1);
filter_block_plane_vert(cm, xd, plane, &pd[plane], mi_row, mi_col);
// filter horizontal edges
if (mi_col - MIN_MIB_SIZE >= 0) {
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer,
mi_row, mi_col - MIN_MIB_SIZE, plane,
plane + 1);
filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row,
mi_col - MIN_MIB_SIZE);
}
}
// filter horizontal edges
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row,
mi_col - MIN_MIB_SIZE, plane, plane + 1);
filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row,
mi_col - MIN_MIB_SIZE);
}
} else {
// filter all vertical edges in every 64x64 super block
for (mi_row = start; mi_row < stop; mi_row += MIN_MIB_SIZE) {
for (mi_col = col_start; mi_col < col_end; mi_col += MIN_MIB_SIZE) {
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row,
mi_col, plane, plane + 1);
filter_block_plane_vert(cm, xd, plane, &pd[plane], mi_row, mi_col);
}
}
// filter all horizontal edges in every 64x64 super block
for (mi_row = start; mi_row < stop; mi_row += MIN_MIB_SIZE) {
for (mi_col = col_start; mi_col < col_end; mi_col += MIN_MIB_SIZE) {
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row,
mi_col, plane, plane + 1);
filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row, mi_col);
}
}
}
#endif // LOOP_FILTER_BITMASK
}
}
void av1_loop_filter_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
MACROBLOCKD *xd, int plane_start, int plane_end,
int partial_frame) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
start_mi_row = 0;
mi_rows_to_filter = cm->mi_rows;
if (partial_frame && cm->mi_rows > 8) {
start_mi_row = cm->mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
loop_filter_frame_init(cm, plane_start, plane_end);
loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
plane_end);
}