| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/aom_once.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/system_state.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/onyxc_int.h" |
| #include "av1/common/cfl.h" |
| |
| enum { |
| NEED_LEFT = 1 << 1, |
| NEED_ABOVE = 1 << 2, |
| NEED_ABOVERIGHT = 1 << 3, |
| NEED_ABOVELEFT = 1 << 4, |
| NEED_BOTTOMLEFT = 1 << 5, |
| }; |
| |
| #define INTRA_EDGE_FILT 3 |
| #define INTRA_EDGE_TAPS 5 |
| #define MAX_UPSAMPLE_SZ 16 |
| |
| static const uint8_t extend_modes[INTRA_MODES] = { |
| NEED_ABOVE | NEED_LEFT, // DC |
| NEED_ABOVE, // V |
| NEED_LEFT, // H |
| NEED_ABOVE | NEED_ABOVERIGHT, // D45 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D135 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D113 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D157 |
| NEED_LEFT | NEED_BOTTOMLEFT, // D203 |
| NEED_ABOVE | NEED_ABOVERIGHT, // D67 |
| NEED_LEFT | NEED_ABOVE, // SMOOTH |
| NEED_LEFT | NEED_ABOVE, // SMOOTH_V |
| NEED_LEFT | NEED_ABOVE, // SMOOTH_H |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // PAETH |
| }; |
| |
| // Tables to store if the top-right reference pixels are available. The flags |
| // are represented with bits, packed into 8-bit integers. E.g., for the 32x32 |
| // blocks in a 128x128 superblock, the index of the "o" block is 10 (in raster |
| // order), so its flag is stored at the 3rd bit of the 2nd entry in the table, |
| // i.e. (table[10 / 8] >> (10 % 8)) & 1. |
| // . . . . |
| // . . . . |
| // . . o . |
| // . . . . |
| static uint8_t has_tr_4x4[128] = { |
| 255, 255, 255, 255, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 255, 255, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| 127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85, |
| }; |
| static uint8_t has_tr_4x8[64] = { |
| 255, 255, 255, 255, 119, 119, 119, 119, 127, 127, 127, 127, 119, |
| 119, 119, 119, 255, 127, 255, 127, 119, 119, 119, 119, 127, 127, |
| 127, 127, 119, 119, 119, 119, 255, 255, 255, 127, 119, 119, 119, |
| 119, 127, 127, 127, 127, 119, 119, 119, 119, 255, 127, 255, 127, |
| 119, 119, 119, 119, 127, 127, 127, 127, 119, 119, 119, 119, |
| }; |
| static uint8_t has_tr_8x4[64] = { |
| 255, 255, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0, |
| 127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0, |
| 255, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0, |
| 127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0, |
| }; |
| static uint8_t has_tr_8x8[32] = { |
| 255, 255, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85, |
| 255, 127, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85, |
| }; |
| static uint8_t has_tr_8x16[16] = { |
| 255, 255, 119, 119, 127, 127, 119, 119, |
| 255, 127, 119, 119, 127, 127, 119, 119, |
| }; |
| static uint8_t has_tr_16x8[16] = { |
| 255, 0, 85, 0, 119, 0, 85, 0, 127, 0, 85, 0, 119, 0, 85, 0, |
| }; |
| static uint8_t has_tr_16x16[8] = { |
| 255, 85, 119, 85, 127, 85, 119, 85, |
| }; |
| static uint8_t has_tr_16x32[4] = { 255, 119, 127, 119 }; |
| static uint8_t has_tr_32x16[4] = { 15, 5, 7, 5 }; |
| static uint8_t has_tr_32x32[2] = { 95, 87 }; |
| static uint8_t has_tr_32x64[1] = { 127 }; |
| static uint8_t has_tr_64x32[1] = { 19 }; |
| static uint8_t has_tr_64x64[1] = { 7 }; |
| static uint8_t has_tr_64x128[1] = { 3 }; |
| static uint8_t has_tr_128x64[1] = { 1 }; |
| static uint8_t has_tr_128x128[1] = { 1 }; |
| static uint8_t has_tr_4x16[32] = { |
| 255, 255, 255, 255, 127, 127, 127, 127, 255, 127, 255, |
| 127, 127, 127, 127, 127, 255, 255, 255, 127, 127, 127, |
| 127, 127, 255, 127, 255, 127, 127, 127, 127, 127, |
| }; |
| static uint8_t has_tr_16x4[32] = { |
| 255, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0, |
| 127, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0, |
| }; |
| static uint8_t has_tr_8x32[8] = { |
| 255, 255, 127, 127, 255, 127, 127, 127, |
| }; |
| static uint8_t has_tr_32x8[8] = { |
| 15, 0, 5, 0, 7, 0, 5, 0, |
| }; |
| static uint8_t has_tr_16x64[2] = { 255, 127 }; |
| static uint8_t has_tr_64x16[2] = { 3, 1 }; |
| |
| static const uint8_t *const has_tr_tables[BLOCK_SIZES_ALL] = { |
| // 4X4 |
| has_tr_4x4, |
| // 4X8, 8X4, 8X8 |
| has_tr_4x8, has_tr_8x4, has_tr_8x8, |
| // 8X16, 16X8, 16X16 |
| has_tr_8x16, has_tr_16x8, has_tr_16x16, |
| // 16X32, 32X16, 32X32 |
| has_tr_16x32, has_tr_32x16, has_tr_32x32, |
| // 32X64, 64X32, 64X64 |
| has_tr_32x64, has_tr_64x32, has_tr_64x64, |
| // 64x128, 128x64, 128x128 |
| has_tr_64x128, has_tr_128x64, has_tr_128x128, |
| // 4x16, 16x4, 8x32 |
| has_tr_4x16, has_tr_16x4, has_tr_8x32, |
| // 32x8, 16x64, 64x16 |
| has_tr_32x8, has_tr_16x64, has_tr_64x16 |
| }; |
| |
| static uint8_t has_tr_vert_8x8[32] = { |
| 255, 255, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0, |
| 255, 127, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0, |
| }; |
| static uint8_t has_tr_vert_16x16[8] = { |
| 255, 0, 119, 0, 127, 0, 119, 0, |
| }; |
| static uint8_t has_tr_vert_32x32[2] = { 15, 7 }; |
| static uint8_t has_tr_vert_64x64[1] = { 3 }; |
| |
| // The _vert_* tables are like the ordinary tables above, but describe the |
| // order we visit square blocks when doing a PARTITION_VERT_A or |
| // PARTITION_VERT_B. This is the same order as normal except for on the last |
| // split where we go vertically (TL, BL, TR, BR). We treat the rectangular block |
| // as a pair of squares, which means that these tables work correctly for both |
| // mixed vertical partition types. |
| // |
| // There are tables for each of the square sizes. Vertical rectangles (like |
| // BLOCK_16X32) use their respective "non-vert" table |
| static const uint8_t *const has_tr_vert_tables[BLOCK_SIZES] = { |
| // 4X4 |
| NULL, |
| // 4X8, 8X4, 8X8 |
| has_tr_4x8, NULL, has_tr_vert_8x8, |
| // 8X16, 16X8, 16X16 |
| has_tr_8x16, NULL, has_tr_vert_16x16, |
| // 16X32, 32X16, 32X32 |
| has_tr_16x32, NULL, has_tr_vert_32x32, |
| // 32X64, 64X32, 64X64 |
| has_tr_32x64, NULL, has_tr_vert_64x64, |
| // 64x128, 128x64, 128x128 |
| has_tr_64x128, NULL, has_tr_128x128 |
| }; |
| |
| static const uint8_t *get_has_tr_table(PARTITION_TYPE partition, |
| BLOCK_SIZE bsize) { |
| const uint8_t *ret = NULL; |
| // If this is a mixed vertical partition, look up bsize in orders_vert. |
| if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) { |
| assert(bsize < BLOCK_SIZES); |
| ret = has_tr_vert_tables[bsize]; |
| } else { |
| ret = has_tr_tables[bsize]; |
| } |
| assert(ret); |
| return ret; |
| } |
| |
| static int has_top_right(const AV1_COMMON *cm, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, int top_available, int right_available, |
| PARTITION_TYPE partition, TX_SIZE txsz, int row_off, |
| int col_off, int ss_x, int ss_y) { |
| if (!top_available || !right_available) return 0; |
| |
| const int bw_unit = block_size_wide[bsize] >> tx_size_wide_log2[0]; |
| const int plane_bw_unit = AOMMAX(bw_unit >> ss_x, 1); |
| const int top_right_count_unit = tx_size_wide_unit[txsz]; |
| |
| if (row_off > 0) { // Just need to check if enough pixels on the right. |
| if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64]) { |
| // Special case: For 128x128 blocks, the transform unit whose |
| // top-right corner is at the center of the block does in fact have |
| // pixels available at its top-right corner. |
| if (row_off == mi_size_high[BLOCK_64X64] >> ss_y && |
| col_off + top_right_count_unit == mi_size_wide[BLOCK_64X64] >> ss_x) { |
| return 1; |
| } |
| const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x; |
| const int col_off_64 = col_off % plane_bw_unit_64; |
| return col_off_64 + top_right_count_unit < plane_bw_unit_64; |
| } |
| return col_off + top_right_count_unit < plane_bw_unit; |
| } else { |
| // All top-right pixels are in the block above, which is already available. |
| if (col_off + top_right_count_unit < plane_bw_unit) return 1; |
| |
| const int bw_in_mi_log2 = mi_size_wide_log2[bsize]; |
| const int bh_in_mi_log2 = mi_size_high_log2[bsize]; |
| const int sb_mi_size = mi_size_high[cm->seq_params.sb_size]; |
| const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2; |
| const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2; |
| |
| // Top row of superblock: so top-right pixels are in the top and/or |
| // top-right superblocks, both of which are already available. |
| if (blk_row_in_sb == 0) return 1; |
| |
| // Rightmost column of superblock (and not the top row): so top-right pixels |
| // fall in the right superblock, which is not available yet. |
| if (((blk_col_in_sb + 1) << bw_in_mi_log2) >= sb_mi_size) { |
| return 0; |
| } |
| |
| // General case (neither top row nor rightmost column): check if the |
| // top-right block is coded before the current block. |
| const int this_blk_index = |
| ((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) + |
| blk_col_in_sb + 0; |
| const int idx1 = this_blk_index / 8; |
| const int idx2 = this_blk_index % 8; |
| const uint8_t *has_tr_table = get_has_tr_table(partition, bsize); |
| return (has_tr_table[idx1] >> idx2) & 1; |
| } |
| } |
| |
| // Similar to the has_tr_* tables, but store if the bottom-left reference |
| // pixels are available. |
| static uint8_t has_bl_4x4[128] = { |
| 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 1, 1, 1, 84, 85, 85, |
| 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 0, 1, 0, 84, 85, 85, 85, 16, 17, |
| 17, 17, 84, 85, 85, 85, 0, 1, 1, 1, 84, 85, 85, 85, 16, 17, 17, 17, 84, |
| 85, 85, 85, 0, 0, 0, 0, 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, |
| 0, 1, 1, 1, 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 0, 1, |
| 0, 84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 1, 1, 1, 84, 85, |
| 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0, 0, 0, 0, |
| }; |
| static uint8_t has_bl_4x8[64] = { |
| 16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0, |
| 16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0, |
| 16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0, |
| 16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0, |
| }; |
| static uint8_t has_bl_8x4[64] = { |
| 254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1, |
| 254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0, |
| 254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1, |
| 254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0, |
| }; |
| static uint8_t has_bl_8x8[32] = { |
| 84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0, |
| 84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0, |
| }; |
| static uint8_t has_bl_8x16[16] = { |
| 16, 17, 0, 1, 16, 17, 0, 0, 16, 17, 0, 1, 16, 17, 0, 0, |
| }; |
| static uint8_t has_bl_16x8[16] = { |
| 254, 84, 254, 16, 254, 84, 254, 0, 254, 84, 254, 16, 254, 84, 254, 0, |
| }; |
| static uint8_t has_bl_16x16[8] = { |
| 84, 16, 84, 0, 84, 16, 84, 0, |
| }; |
| static uint8_t has_bl_16x32[4] = { 16, 0, 16, 0 }; |
| static uint8_t has_bl_32x16[4] = { 78, 14, 78, 14 }; |
| static uint8_t has_bl_32x32[2] = { 4, 4 }; |
| static uint8_t has_bl_32x64[1] = { 0 }; |
| static uint8_t has_bl_64x32[1] = { 34 }; |
| static uint8_t has_bl_64x64[1] = { 0 }; |
| static uint8_t has_bl_64x128[1] = { 0 }; |
| static uint8_t has_bl_128x64[1] = { 0 }; |
| static uint8_t has_bl_128x128[1] = { 0 }; |
| static uint8_t has_bl_4x16[32] = { |
| 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, |
| 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, |
| }; |
| static uint8_t has_bl_16x4[32] = { |
| 254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0, |
| 254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0, |
| }; |
| static uint8_t has_bl_8x32[8] = { |
| 0, 1, 0, 0, 0, 1, 0, 0, |
| }; |
| static uint8_t has_bl_32x8[8] = { |
| 238, 78, 238, 14, 238, 78, 238, 14, |
| }; |
| static uint8_t has_bl_16x64[2] = { 0, 0 }; |
| static uint8_t has_bl_64x16[2] = { 42, 42 }; |
| |
| static const uint8_t *const has_bl_tables[BLOCK_SIZES_ALL] = { |
| // 4X4 |
| has_bl_4x4, |
| // 4X8, 8X4, 8X8 |
| has_bl_4x8, has_bl_8x4, has_bl_8x8, |
| // 8X16, 16X8, 16X16 |
| has_bl_8x16, has_bl_16x8, has_bl_16x16, |
| // 16X32, 32X16, 32X32 |
| has_bl_16x32, has_bl_32x16, has_bl_32x32, |
| // 32X64, 64X32, 64X64 |
| has_bl_32x64, has_bl_64x32, has_bl_64x64, |
| // 64x128, 128x64, 128x128 |
| has_bl_64x128, has_bl_128x64, has_bl_128x128, |
| // 4x16, 16x4, 8x32 |
| has_bl_4x16, has_bl_16x4, has_bl_8x32, |
| // 32x8, 16x64, 64x16 |
| has_bl_32x8, has_bl_16x64, has_bl_64x16 |
| }; |
| |
| static uint8_t has_bl_vert_8x8[32] = { |
| 254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0, |
| 254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0, |
| }; |
| static uint8_t has_bl_vert_16x16[8] = { |
| 254, 16, 254, 0, 254, 16, 254, 0, |
| }; |
| static uint8_t has_bl_vert_32x32[2] = { 14, 14 }; |
| static uint8_t has_bl_vert_64x64[1] = { 2 }; |
| |
| // The _vert_* tables are like the ordinary tables above, but describe the |
| // order we visit square blocks when doing a PARTITION_VERT_A or |
| // PARTITION_VERT_B. This is the same order as normal except for on the last |
| // split where we go vertically (TL, BL, TR, BR). We treat the rectangular block |
| // as a pair of squares, which means that these tables work correctly for both |
| // mixed vertical partition types. |
| // |
| // There are tables for each of the square sizes. Vertical rectangles (like |
| // BLOCK_16X32) use their respective "non-vert" table |
| static const uint8_t *const has_bl_vert_tables[BLOCK_SIZES] = { |
| // 4X4 |
| NULL, |
| // 4X8, 8X4, 8X8 |
| has_bl_4x8, NULL, has_bl_vert_8x8, |
| // 8X16, 16X8, 16X16 |
| has_bl_8x16, NULL, has_bl_vert_16x16, |
| // 16X32, 32X16, 32X32 |
| has_bl_16x32, NULL, has_bl_vert_32x32, |
| // 32X64, 64X32, 64X64 |
| has_bl_32x64, NULL, has_bl_vert_64x64, |
| // 64x128, 128x64, 128x128 |
| has_bl_64x128, NULL, has_bl_128x128 |
| }; |
| |
| static const uint8_t *get_has_bl_table(PARTITION_TYPE partition, |
| BLOCK_SIZE bsize) { |
| const uint8_t *ret = NULL; |
| // If this is a mixed vertical partition, look up bsize in orders_vert. |
| if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) { |
| assert(bsize < BLOCK_SIZES); |
| ret = has_bl_vert_tables[bsize]; |
| } else { |
| ret = has_bl_tables[bsize]; |
| } |
| assert(ret); |
| return ret; |
| } |
| |
| static int has_bottom_left(const AV1_COMMON *cm, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, int bottom_available, int left_available, |
| PARTITION_TYPE partition, TX_SIZE txsz, int row_off, |
| int col_off, int ss_x, int ss_y) { |
| if (!bottom_available || !left_available) return 0; |
| |
| // Special case for 128x* blocks, when col_off is half the block width. |
| // This is needed because 128x* superblocks are divided into 64x* blocks in |
| // raster order |
| if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64] && col_off > 0) { |
| const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x; |
| const int col_off_64 = col_off % plane_bw_unit_64; |
| if (col_off_64 == 0) { |
| // We are at the left edge of top-right or bottom-right 64x* block. |
| const int plane_bh_unit_64 = mi_size_high[BLOCK_64X64] >> ss_y; |
| const int row_off_64 = row_off % plane_bh_unit_64; |
| const int plane_bh_unit = |
| AOMMIN(mi_size_high[bsize] >> ss_y, plane_bh_unit_64); |
| // Check if all bottom-left pixels are in the left 64x* block (which is |
| // already coded). |
| return row_off_64 + tx_size_high_unit[txsz] < plane_bh_unit; |
| } |
| } |
| |
| if (col_off > 0) { |
| // Bottom-left pixels are in the bottom-left block, which is not available. |
| return 0; |
| } else { |
| const int bh_unit = block_size_high[bsize] >> tx_size_high_log2[0]; |
| const int plane_bh_unit = AOMMAX(bh_unit >> ss_y, 1); |
| const int bottom_left_count_unit = tx_size_high_unit[txsz]; |
| |
| // All bottom-left pixels are in the left block, which is already available. |
| if (row_off + bottom_left_count_unit < plane_bh_unit) return 1; |
| |
| const int bw_in_mi_log2 = mi_size_wide_log2[bsize]; |
| const int bh_in_mi_log2 = mi_size_high_log2[bsize]; |
| const int sb_mi_size = mi_size_high[cm->seq_params.sb_size]; |
| const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2; |
| const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2; |
| |
| // Leftmost column of superblock: so bottom-left pixels maybe in the left |
| // and/or bottom-left superblocks. But only the left superblock is |
| // available, so check if all required pixels fall in that superblock. |
| if (blk_col_in_sb == 0) { |
| const int blk_start_row_off = blk_row_in_sb |
| << (bh_in_mi_log2 + MI_SIZE_LOG2 - |
| tx_size_wide_log2[0]) >> |
| ss_y; |
| const int row_off_in_sb = blk_start_row_off + row_off; |
| const int sb_height_unit = sb_mi_size >> ss_y; |
| return row_off_in_sb + bottom_left_count_unit < sb_height_unit; |
| } |
| |
| // Bottom row of superblock (and not the leftmost column): so bottom-left |
| // pixels fall in the bottom superblock, which is not available yet. |
| if (((blk_row_in_sb + 1) << bh_in_mi_log2) >= sb_mi_size) return 0; |
| |
| // General case (neither leftmost column nor bottom row): check if the |
| // bottom-left block is coded before the current block. |
| const int this_blk_index = |
| ((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) + |
| blk_col_in_sb + 0; |
| const int idx1 = this_blk_index / 8; |
| const int idx2 = this_blk_index % 8; |
| const uint8_t *has_bl_table = get_has_bl_table(partition, bsize); |
| return (has_bl_table[idx1] >> idx2) & 1; |
| } |
| } |
| |
| typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride, |
| const uint8_t *above, const uint8_t *left); |
| |
| static intra_pred_fn pred[INTRA_MODES][TX_SIZES_ALL]; |
| static intra_pred_fn dc_pred[2][2][TX_SIZES_ALL]; |
| |
| typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *above, const uint16_t *left, |
| int bd); |
| static intra_high_pred_fn pred_high[INTRA_MODES][TX_SIZES_ALL]; |
| static intra_high_pred_fn dc_pred_high[2][2][TX_SIZES_ALL]; |
| |
| static void init_intra_predictors_internal(void) { |
| assert(NELEMENTS(mode_to_angle_map) == INTRA_MODES); |
| |
| #define INIT_RECTANGULAR(p, type) \ |
| p[TX_4X8] = aom_##type##_predictor_4x8; \ |
| p[TX_8X4] = aom_##type##_predictor_8x4; \ |
| p[TX_8X16] = aom_##type##_predictor_8x16; \ |
| p[TX_16X8] = aom_##type##_predictor_16x8; \ |
| p[TX_16X32] = aom_##type##_predictor_16x32; \ |
| p[TX_32X16] = aom_##type##_predictor_32x16; \ |
| p[TX_32X64] = aom_##type##_predictor_32x64; \ |
| p[TX_64X32] = aom_##type##_predictor_64x32; \ |
| p[TX_4X16] = aom_##type##_predictor_4x16; \ |
| p[TX_16X4] = aom_##type##_predictor_16x4; \ |
| p[TX_8X32] = aom_##type##_predictor_8x32; \ |
| p[TX_32X8] = aom_##type##_predictor_32x8; \ |
| p[TX_16X64] = aom_##type##_predictor_16x64; \ |
| p[TX_64X16] = aom_##type##_predictor_64x16; |
| |
| #define INIT_NO_4X4(p, type) \ |
| p[TX_8X8] = aom_##type##_predictor_8x8; \ |
| p[TX_16X16] = aom_##type##_predictor_16x16; \ |
| p[TX_32X32] = aom_##type##_predictor_32x32; \ |
| p[TX_64X64] = aom_##type##_predictor_64x64; \ |
| INIT_RECTANGULAR(p, type) |
| |
| #define INIT_ALL_SIZES(p, type) \ |
| p[TX_4X4] = aom_##type##_predictor_4x4; \ |
| INIT_NO_4X4(p, type) |
| |
| INIT_ALL_SIZES(pred[V_PRED], v); |
| INIT_ALL_SIZES(pred[H_PRED], h); |
| INIT_ALL_SIZES(pred[PAETH_PRED], paeth); |
| INIT_ALL_SIZES(pred[SMOOTH_PRED], smooth); |
| INIT_ALL_SIZES(pred[SMOOTH_V_PRED], smooth_v); |
| INIT_ALL_SIZES(pred[SMOOTH_H_PRED], smooth_h); |
| INIT_ALL_SIZES(dc_pred[0][0], dc_128); |
| INIT_ALL_SIZES(dc_pred[0][1], dc_top); |
| INIT_ALL_SIZES(dc_pred[1][0], dc_left); |
| INIT_ALL_SIZES(dc_pred[1][1], dc); |
| |
| INIT_ALL_SIZES(pred_high[V_PRED], highbd_v); |
| INIT_ALL_SIZES(pred_high[H_PRED], highbd_h); |
| INIT_ALL_SIZES(pred_high[PAETH_PRED], highbd_paeth); |
| INIT_ALL_SIZES(pred_high[SMOOTH_PRED], highbd_smooth); |
| INIT_ALL_SIZES(pred_high[SMOOTH_V_PRED], highbd_smooth_v); |
| INIT_ALL_SIZES(pred_high[SMOOTH_H_PRED], highbd_smooth_h); |
| INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128); |
| INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top); |
| INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left); |
| INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc); |
| #undef intra_pred_allsizes |
| } |
| |
| // Directional prediction, zone 1: 0 < angle < 90 |
| void av1_dr_prediction_z1_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh, |
| const uint8_t *above, const uint8_t *left, |
| int upsample_above, int dx, int dy) { |
| int r, c, x, base, shift, val; |
| |
| (void)left; |
| (void)dy; |
| assert(dy == 1); |
| assert(dx > 0); |
| |
| const int max_base_x = ((bw + bh) - 1) << upsample_above; |
| const int frac_bits = 6 - upsample_above; |
| const int base_inc = 1 << upsample_above; |
| x = dx; |
| for (r = 0; r < bh; ++r, dst += stride, x += dx) { |
| base = x >> frac_bits; |
| shift = ((x << upsample_above) & 0x3F) >> 1; |
| |
| if (base >= max_base_x) { |
| for (int i = r; i < bh; ++i) { |
| memset(dst, above[max_base_x], bw * sizeof(dst[0])); |
| dst += stride; |
| } |
| return; |
| } |
| |
| for (c = 0; c < bw; ++c, base += base_inc) { |
| if (base < max_base_x) { |
| val = above[base] * (32 - shift) + above[base + 1] * shift; |
| dst[c] = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| dst[c] = above[max_base_x]; |
| } |
| } |
| } |
| } |
| |
| // Directional prediction, zone 2: 90 < angle < 180 |
| void av1_dr_prediction_z2_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh, |
| const uint8_t *above, const uint8_t *left, |
| int upsample_above, int upsample_left, int dx, |
| int dy) { |
| int r, c, x, y, shift1, shift2, val, base1, base2; |
| |
| assert(dx > 0); |
| assert(dy > 0); |
| |
| const int min_base_x = -(1 << upsample_above); |
| const int frac_bits_x = 6 - upsample_above; |
| const int frac_bits_y = 6 - upsample_left; |
| const int base_inc_x = 1 << upsample_above; |
| x = -dx; |
| for (r = 0; r < bh; ++r, x -= dx, dst += stride) { |
| base1 = x >> frac_bits_x; |
| y = (r << 6) - dy; |
| for (c = 0; c < bw; ++c, base1 += base_inc_x, y -= dy) { |
| if (base1 >= min_base_x) { |
| shift1 = ((x * (1 << upsample_above)) & 0x3F) >> 1; |
| val = above[base1] * (32 - shift1) + above[base1 + 1] * shift1; |
| val = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| base2 = y >> frac_bits_y; |
| assert(base2 >= -(1 << upsample_left)); |
| shift2 = ((y * (1 << upsample_left)) & 0x3F) >> 1; |
| val = left[base2] * (32 - shift2) + left[base2 + 1] * shift2; |
| val = ROUND_POWER_OF_TWO(val, 5); |
| } |
| dst[c] = val; |
| } |
| } |
| } |
| |
| // Directional prediction, zone 3: 180 < angle < 270 |
| void av1_dr_prediction_z3_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh, |
| const uint8_t *above, const uint8_t *left, |
| int upsample_left, int dx, int dy) { |
| int r, c, y, base, shift, val; |
| |
| (void)above; |
| (void)dx; |
| |
| assert(dx == 1); |
| assert(dy > 0); |
| |
| const int max_base_y = (bw + bh - 1) << upsample_left; |
| const int frac_bits = 6 - upsample_left; |
| const int base_inc = 1 << upsample_left; |
| y = dy; |
| for (c = 0; c < bw; ++c, y += dy) { |
| base = y >> frac_bits; |
| shift = ((y << upsample_left) & 0x3F) >> 1; |
| |
| for (r = 0; r < bh; ++r, base += base_inc) { |
| if (base < max_base_y) { |
| val = left[base] * (32 - shift) + left[base + 1] * shift; |
| dst[r * stride + c] = val = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y]; |
| break; |
| } |
| } |
| } |
| } |
| |
| static void dr_predictor(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size, |
| const uint8_t *above, const uint8_t *left, |
| int upsample_above, int upsample_left, int angle) { |
| const int dx = av1_get_dx(angle); |
| const int dy = av1_get_dy(angle); |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| assert(angle > 0 && angle < 270); |
| |
| if (angle > 0 && angle < 90) { |
| av1_dr_prediction_z1(dst, stride, bw, bh, above, left, upsample_above, dx, |
| dy); |
| } else if (angle > 90 && angle < 180) { |
| av1_dr_prediction_z2(dst, stride, bw, bh, above, left, upsample_above, |
| upsample_left, dx, dy); |
| } else if (angle > 180 && angle < 270) { |
| av1_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left, dx, |
| dy); |
| } else if (angle == 90) { |
| pred[V_PRED][tx_size](dst, stride, above, left); |
| } else if (angle == 180) { |
| pred[H_PRED][tx_size](dst, stride, above, left); |
| } |
| } |
| |
| // Directional prediction, zone 1: 0 < angle < 90 |
| void av1_highbd_dr_prediction_z1_c(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int upsample_above, |
| int dx, int dy, int bd) { |
| int r, c, x, base, shift, val; |
| |
| (void)left; |
| (void)dy; |
| (void)bd; |
| assert(dy == 1); |
| assert(dx > 0); |
| |
| const int max_base_x = ((bw + bh) - 1) << upsample_above; |
| const int frac_bits = 6 - upsample_above; |
| const int base_inc = 1 << upsample_above; |
| x = dx; |
| for (r = 0; r < bh; ++r, dst += stride, x += dx) { |
| base = x >> frac_bits; |
| shift = ((x << upsample_above) & 0x3F) >> 1; |
| |
| if (base >= max_base_x) { |
| for (int i = r; i < bh; ++i) { |
| aom_memset16(dst, above[max_base_x], bw); |
| dst += stride; |
| } |
| return; |
| } |
| |
| for (c = 0; c < bw; ++c, base += base_inc) { |
| if (base < max_base_x) { |
| val = above[base] * (32 - shift) + above[base + 1] * shift; |
| dst[c] = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| dst[c] = above[max_base_x]; |
| } |
| } |
| } |
| } |
| |
| // Directional prediction, zone 2: 90 < angle < 180 |
| void av1_highbd_dr_prediction_z2_c(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int upsample_above, |
| int upsample_left, int dx, int dy, int bd) { |
| int r, c, x, y, shift, val, base; |
| |
| (void)bd; |
| assert(dx > 0); |
| assert(dy > 0); |
| |
| const int min_base_x = -(1 << upsample_above); |
| const int frac_bits_x = 6 - upsample_above; |
| const int frac_bits_y = 6 - upsample_left; |
| for (r = 0; r < bh; ++r) { |
| for (c = 0; c < bw; ++c) { |
| y = r + 1; |
| x = (c << 6) - y * dx; |
| base = x >> frac_bits_x; |
| if (base >= min_base_x) { |
| shift = ((x * (1 << upsample_above)) & 0x3F) >> 1; |
| val = above[base] * (32 - shift) + above[base + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| x = c + 1; |
| y = (r << 6) - x * dy; |
| base = y >> frac_bits_y; |
| shift = ((y * (1 << upsample_left)) & 0x3F) >> 1; |
| val = left[base] * (32 - shift) + left[base + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 5); |
| } |
| dst[c] = val; |
| } |
| dst += stride; |
| } |
| } |
| |
| // Directional prediction, zone 3: 180 < angle < 270 |
| void av1_highbd_dr_prediction_z3_c(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int upsample_left, |
| int dx, int dy, int bd) { |
| int r, c, y, base, shift, val; |
| |
| (void)above; |
| (void)dx; |
| (void)bd; |
| assert(dx == 1); |
| assert(dy > 0); |
| |
| const int max_base_y = (bw + bh - 1) << upsample_left; |
| const int frac_bits = 6 - upsample_left; |
| const int base_inc = 1 << upsample_left; |
| y = dy; |
| for (c = 0; c < bw; ++c, y += dy) { |
| base = y >> frac_bits; |
| shift = ((y << upsample_left) & 0x3F) >> 1; |
| |
| for (r = 0; r < bh; ++r, base += base_inc) { |
| if (base < max_base_y) { |
| val = left[base] * (32 - shift) + left[base + 1] * shift; |
| dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5); |
| } else { |
| for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y]; |
| break; |
| } |
| } |
| } |
| } |
| |
| static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride, |
| TX_SIZE tx_size, const uint16_t *above, |
| const uint16_t *left, int upsample_above, |
| int upsample_left, int angle, int bd) { |
| const int dx = av1_get_dx(angle); |
| const int dy = av1_get_dy(angle); |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| assert(angle > 0 && angle < 270); |
| |
| if (angle > 0 && angle < 90) { |
| av1_highbd_dr_prediction_z1(dst, stride, bw, bh, above, left, |
| upsample_above, dx, dy, bd); |
| } else if (angle > 90 && angle < 180) { |
| av1_highbd_dr_prediction_z2(dst, stride, bw, bh, above, left, |
| upsample_above, upsample_left, dx, dy, bd); |
| } else if (angle > 180 && angle < 270) { |
| av1_highbd_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left, |
| dx, dy, bd); |
| } else if (angle == 90) { |
| pred_high[V_PRED][tx_size](dst, stride, above, left, bd); |
| } else if (angle == 180) { |
| pred_high[H_PRED][tx_size](dst, stride, above, left, bd); |
| } |
| } |
| |
| DECLARE_ALIGNED(16, const int8_t, |
| av1_filter_intra_taps[FILTER_INTRA_MODES][8][8]) = { |
| { |
| { -6, 10, 0, 0, 0, 12, 0, 0 }, |
| { -5, 2, 10, 0, 0, 9, 0, 0 }, |
| { -3, 1, 1, 10, 0, 7, 0, 0 }, |
| { -3, 1, 1, 2, 10, 5, 0, 0 }, |
| { -4, 6, 0, 0, 0, 2, 12, 0 }, |
| { -3, 2, 6, 0, 0, 2, 9, 0 }, |
| { -3, 2, 2, 6, 0, 2, 7, 0 }, |
| { -3, 1, 2, 2, 6, 3, 5, 0 }, |
| }, |
| { |
| { -10, 16, 0, 0, 0, 10, 0, 0 }, |
| { -6, 0, 16, 0, 0, 6, 0, 0 }, |
| { -4, 0, 0, 16, 0, 4, 0, 0 }, |
| { -2, 0, 0, 0, 16, 2, 0, 0 }, |
| { -10, 16, 0, 0, 0, 0, 10, 0 }, |
| { -6, 0, 16, 0, 0, 0, 6, 0 }, |
| { -4, 0, 0, 16, 0, 0, 4, 0 }, |
| { -2, 0, 0, 0, 16, 0, 2, 0 }, |
| }, |
| { |
| { -8, 8, 0, 0, 0, 16, 0, 0 }, |
| { -8, 0, 8, 0, 0, 16, 0, 0 }, |
| { -8, 0, 0, 8, 0, 16, 0, 0 }, |
| { -8, 0, 0, 0, 8, 16, 0, 0 }, |
| { -4, 4, 0, 0, 0, 0, 16, 0 }, |
| { -4, 0, 4, 0, 0, 0, 16, 0 }, |
| { -4, 0, 0, 4, 0, 0, 16, 0 }, |
| { -4, 0, 0, 0, 4, 0, 16, 0 }, |
| }, |
| { |
| { -2, 8, 0, 0, 0, 10, 0, 0 }, |
| { -1, 3, 8, 0, 0, 6, 0, 0 }, |
| { -1, 2, 3, 8, 0, 4, 0, 0 }, |
| { 0, 1, 2, 3, 8, 2, 0, 0 }, |
| { -1, 4, 0, 0, 0, 3, 10, 0 }, |
| { -1, 3, 4, 0, 0, 4, 6, 0 }, |
| { -1, 2, 3, 4, 0, 4, 4, 0 }, |
| { -1, 2, 2, 3, 4, 3, 3, 0 }, |
| }, |
| { |
| { -12, 14, 0, 0, 0, 14, 0, 0 }, |
| { -10, 0, 14, 0, 0, 12, 0, 0 }, |
| { -9, 0, 0, 14, 0, 11, 0, 0 }, |
| { -8, 0, 0, 0, 14, 10, 0, 0 }, |
| { -10, 12, 0, 0, 0, 0, 14, 0 }, |
| { -9, 1, 12, 0, 0, 0, 12, 0 }, |
| { -8, 0, 0, 12, 0, 1, 11, 0 }, |
| { -7, 0, 0, 1, 12, 1, 9, 0 }, |
| }, |
| }; |
| |
| void av1_filter_intra_predictor_c(uint8_t *dst, ptrdiff_t stride, |
| TX_SIZE tx_size, const uint8_t *above, |
| const uint8_t *left, int mode) { |
| int r, c; |
| uint8_t buffer[33][33]; |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| |
| assert(bw <= 32 && bh <= 32); |
| |
| // The initialization is just for silencing Jenkins static analysis warnings |
| for (r = 0; r < bh + 1; ++r) |
| memset(buffer[r], 0, (bw + 1) * sizeof(buffer[0][0])); |
| |
| for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r]; |
| memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(uint8_t)); |
| |
| for (r = 1; r < bh + 1; r += 2) |
| for (c = 1; c < bw + 1; c += 4) { |
| const uint8_t p0 = buffer[r - 1][c - 1]; |
| const uint8_t p1 = buffer[r - 1][c]; |
| const uint8_t p2 = buffer[r - 1][c + 1]; |
| const uint8_t p3 = buffer[r - 1][c + 2]; |
| const uint8_t p4 = buffer[r - 1][c + 3]; |
| const uint8_t p5 = buffer[r][c - 1]; |
| const uint8_t p6 = buffer[r + 1][c - 1]; |
| for (int k = 0; k < 8; ++k) { |
| int r_offset = k >> 2; |
| int c_offset = k & 0x03; |
| buffer[r + r_offset][c + c_offset] = |
| clip_pixel(ROUND_POWER_OF_TWO_SIGNED( |
| av1_filter_intra_taps[mode][k][0] * p0 + |
| av1_filter_intra_taps[mode][k][1] * p1 + |
| av1_filter_intra_taps[mode][k][2] * p2 + |
| av1_filter_intra_taps[mode][k][3] * p3 + |
| av1_filter_intra_taps[mode][k][4] * p4 + |
| av1_filter_intra_taps[mode][k][5] * p5 + |
| av1_filter_intra_taps[mode][k][6] * p6, |
| FILTER_INTRA_SCALE_BITS)); |
| } |
| } |
| |
| for (r = 0; r < bh; ++r) { |
| memcpy(dst, &buffer[r + 1][1], bw * sizeof(uint8_t)); |
| dst += stride; |
| } |
| } |
| |
| static void highbd_filter_intra_predictor(uint16_t *dst, ptrdiff_t stride, |
| TX_SIZE tx_size, |
| const uint16_t *above, |
| const uint16_t *left, int mode, |
| int bd) { |
| int r, c; |
| uint16_t buffer[33][33]; |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| |
| assert(bw <= 32 && bh <= 32); |
| |
| // The initialization is just for silencing Jenkins static analysis warnings |
| for (r = 0; r < bh + 1; ++r) |
| memset(buffer[r], 0, (bw + 1) * sizeof(buffer[0][0])); |
| |
| for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r]; |
| memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(buffer[0][0])); |
| |
| for (r = 1; r < bh + 1; r += 2) |
| for (c = 1; c < bw + 1; c += 4) { |
| const uint16_t p0 = buffer[r - 1][c - 1]; |
| const uint16_t p1 = buffer[r - 1][c]; |
| const uint16_t p2 = buffer[r - 1][c + 1]; |
| const uint16_t p3 = buffer[r - 1][c + 2]; |
| const uint16_t p4 = buffer[r - 1][c + 3]; |
| const uint16_t p5 = buffer[r][c - 1]; |
| const uint16_t p6 = buffer[r + 1][c - 1]; |
| for (int k = 0; k < 8; ++k) { |
| int r_offset = k >> 2; |
| int c_offset = k & 0x03; |
| buffer[r + r_offset][c + c_offset] = |
| clip_pixel_highbd(ROUND_POWER_OF_TWO_SIGNED( |
| av1_filter_intra_taps[mode][k][0] * p0 + |
| av1_filter_intra_taps[mode][k][1] * p1 + |
| av1_filter_intra_taps[mode][k][2] * p2 + |
| av1_filter_intra_taps[mode][k][3] * p3 + |
| av1_filter_intra_taps[mode][k][4] * p4 + |
| av1_filter_intra_taps[mode][k][5] * p5 + |
| av1_filter_intra_taps[mode][k][6] * p6, |
| FILTER_INTRA_SCALE_BITS), |
| bd); |
| } |
| } |
| |
| for (r = 0; r < bh; ++r) { |
| memcpy(dst, &buffer[r + 1][1], bw * sizeof(dst[0])); |
| dst += stride; |
| } |
| } |
| |
| static int is_smooth(const MB_MODE_INFO *mbmi, int plane) { |
| if (plane == 0) { |
| const PREDICTION_MODE mode = mbmi->mode; |
| return (mode == SMOOTH_PRED || mode == SMOOTH_V_PRED || |
| mode == SMOOTH_H_PRED); |
| } else { |
| // uv_mode is not set for inter blocks, so need to explicitly |
| // detect that case. |
| if (is_inter_block(mbmi)) return 0; |
| |
| const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; |
| return (uv_mode == UV_SMOOTH_PRED || uv_mode == UV_SMOOTH_V_PRED || |
| uv_mode == UV_SMOOTH_H_PRED); |
| } |
| } |
| |
| static int get_filt_type(const MACROBLOCKD *xd, int plane) { |
| int ab_sm, le_sm; |
| |
| if (plane == 0) { |
| const MB_MODE_INFO *ab = xd->above_mbmi; |
| const MB_MODE_INFO *le = xd->left_mbmi; |
| ab_sm = ab ? is_smooth(ab, plane) : 0; |
| le_sm = le ? is_smooth(le, plane) : 0; |
| } else { |
| const MB_MODE_INFO *ab = xd->chroma_above_mbmi; |
| const MB_MODE_INFO *le = xd->chroma_left_mbmi; |
| ab_sm = ab ? is_smooth(ab, plane) : 0; |
| le_sm = le ? is_smooth(le, plane) : 0; |
| } |
| |
| return (ab_sm || le_sm) ? 1 : 0; |
| } |
| |
| static int intra_edge_filter_strength(int bs0, int bs1, int delta, int type) { |
| const int d = abs(delta); |
| int strength = 0; |
| |
| const int blk_wh = bs0 + bs1; |
| if (type == 0) { |
| if (blk_wh <= 8) { |
| if (d >= 56) strength = 1; |
| } else if (blk_wh <= 12) { |
| if (d >= 40) strength = 1; |
| } else if (blk_wh <= 16) { |
| if (d >= 40) strength = 1; |
| } else if (blk_wh <= 24) { |
| if (d >= 8) strength = 1; |
| if (d >= 16) strength = 2; |
| if (d >= 32) strength = 3; |
| } else if (blk_wh <= 32) { |
| if (d >= 1) strength = 1; |
| if (d >= 4) strength = 2; |
| if (d >= 32) strength = 3; |
| } else { |
| if (d >= 1) strength = 3; |
| } |
| } else { |
| if (blk_wh <= 8) { |
| if (d >= 40) strength = 1; |
| if (d >= 64) strength = 2; |
| } else if (blk_wh <= 16) { |
| if (d >= 20) strength = 1; |
| if (d >= 48) strength = 2; |
| } else if (blk_wh <= 24) { |
| if (d >= 4) strength = 3; |
| } else { |
| if (d >= 1) strength = 3; |
| } |
| } |
| return strength; |
| } |
| |
| void av1_filter_intra_edge_c(uint8_t *p, int sz, int strength) { |
| if (!strength) return; |
| |
| const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { |
| { 0, 4, 8, 4, 0 }, { 0, 5, 6, 5, 0 }, { 2, 4, 4, 4, 2 } |
| }; |
| const int filt = strength - 1; |
| uint8_t edge[129]; |
| |
| memcpy(edge, p, sz * sizeof(*p)); |
| for (int i = 1; i < sz; i++) { |
| int s = 0; |
| for (int j = 0; j < INTRA_EDGE_TAPS; j++) { |
| int k = i - 2 + j; |
| k = (k < 0) ? 0 : k; |
| k = (k > sz - 1) ? sz - 1 : k; |
| s += edge[k] * kernel[filt][j]; |
| } |
| s = (s + 8) >> 4; |
| p[i] = s; |
| } |
| } |
| |
| static void filter_intra_edge_corner(uint8_t *p_above, uint8_t *p_left) { |
| const int kernel[3] = { 5, 6, 5 }; |
| |
| int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) + |
| (p_above[0] * kernel[2]); |
| s = (s + 8) >> 4; |
| p_above[-1] = s; |
| p_left[-1] = s; |
| } |
| |
| void av1_filter_intra_edge_high_c(uint16_t *p, int sz, int strength) { |
| if (!strength) return; |
| |
| const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { |
| { 0, 4, 8, 4, 0 }, { 0, 5, 6, 5, 0 }, { 2, 4, 4, 4, 2 } |
| }; |
| const int filt = strength - 1; |
| uint16_t edge[129]; |
| |
| memcpy(edge, p, sz * sizeof(*p)); |
| for (int i = 1; i < sz; i++) { |
| int s = 0; |
| for (int j = 0; j < INTRA_EDGE_TAPS; j++) { |
| int k = i - 2 + j; |
| k = (k < 0) ? 0 : k; |
| k = (k > sz - 1) ? sz - 1 : k; |
| s += edge[k] * kernel[filt][j]; |
| } |
| s = (s + 8) >> 4; |
| p[i] = s; |
| } |
| } |
| |
| static void filter_intra_edge_corner_high(uint16_t *p_above, uint16_t *p_left) { |
| const int kernel[3] = { 5, 6, 5 }; |
| |
| int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) + |
| (p_above[0] * kernel[2]); |
| s = (s + 8) >> 4; |
| p_above[-1] = s; |
| p_left[-1] = s; |
| } |
| |
| void av1_upsample_intra_edge_c(uint8_t *p, int sz) { |
| // interpolate half-sample positions |
| assert(sz <= MAX_UPSAMPLE_SZ); |
| |
| uint8_t in[MAX_UPSAMPLE_SZ + 3]; |
| // copy p[-1..(sz-1)] and extend first and last samples |
| in[0] = p[-1]; |
| in[1] = p[-1]; |
| for (int i = 0; i < sz; i++) { |
| in[i + 2] = p[i]; |
| } |
| in[sz + 2] = p[sz - 1]; |
| |
| // interpolate half-sample edge positions |
| p[-2] = in[0]; |
| for (int i = 0; i < sz; i++) { |
| int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3]; |
| s = clip_pixel((s + 8) >> 4); |
| p[2 * i - 1] = s; |
| p[2 * i] = in[i + 2]; |
| } |
| } |
| |
| void av1_upsample_intra_edge_high_c(uint16_t *p, int sz, int bd) { |
| // interpolate half-sample positions |
| assert(sz <= MAX_UPSAMPLE_SZ); |
| |
| uint16_t in[MAX_UPSAMPLE_SZ + 3]; |
| // copy p[-1..(sz-1)] and extend first and last samples |
| in[0] = p[-1]; |
| in[1] = p[-1]; |
| for (int i = 0; i < sz; i++) { |
| in[i + 2] = p[i]; |
| } |
| in[sz + 2] = p[sz - 1]; |
| |
| // interpolate half-sample edge positions |
| p[-2] = in[0]; |
| for (int i = 0; i < sz; i++) { |
| int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3]; |
| s = (s + 8) >> 4; |
| s = clip_pixel_highbd(s, bd); |
| p[2 * i - 1] = s; |
| p[2 * i] = in[i + 2]; |
| } |
| } |
| |
| static void build_intra_predictors_high( |
| const MACROBLOCKD *xd, const uint8_t *ref8, int ref_stride, uint8_t *dst8, |
| int dst_stride, PREDICTION_MODE mode, int angle_delta, |
| FILTER_INTRA_MODE filter_intra_mode, TX_SIZE tx_size, |
| int disable_edge_filter, int n_top_px, int n_topright_px, int n_left_px, |
| int n_bottomleft_px, int plane) { |
| int i; |
| uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); |
| uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); |
| DECLARE_ALIGNED(16, uint16_t, left_data[MAX_TX_SIZE * 2 + 32]); |
| DECLARE_ALIGNED(16, uint16_t, above_data[MAX_TX_SIZE * 2 + 32]); |
| uint16_t *const above_row = above_data + 16; |
| uint16_t *const left_col = left_data + 16; |
| const int txwpx = tx_size_wide[tx_size]; |
| const int txhpx = tx_size_high[tx_size]; |
| int need_left = extend_modes[mode] & NEED_LEFT; |
| int need_above = extend_modes[mode] & NEED_ABOVE; |
| int need_above_left = extend_modes[mode] & NEED_ABOVELEFT; |
| const uint16_t *above_ref = ref - ref_stride; |
| const uint16_t *left_ref = ref - 1; |
| int p_angle = 0; |
| const int is_dr_mode = av1_is_directional_mode(mode); |
| const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES; |
| int base = 128 << (xd->bd - 8); |
| |
| // The default values if ref pixels are not available: |
| // base-1 base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1 |
| // base+1 A B .. Y Z |
| // base+1 C D .. W X |
| // base+1 E F .. U V |
| // base+1 G H .. S T T T T T |
| |
| if (is_dr_mode) { |
| p_angle = mode_to_angle_map[mode] + angle_delta; |
| if (p_angle <= 90) |
| need_above = 1, need_left = 0, need_above_left = 1; |
| else if (p_angle < 180) |
| need_above = 1, need_left = 1, need_above_left = 1; |
| else |
| need_above = 0, need_left = 1, need_above_left = 1; |
| } |
| if (use_filter_intra) need_left = need_above = need_above_left = 1; |
| |
| assert(n_top_px >= 0); |
| assert(n_topright_px >= 0); |
| assert(n_left_px >= 0); |
| assert(n_bottomleft_px >= 0); |
| |
| if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) { |
| int val; |
| if (need_left) { |
| val = (n_top_px > 0) ? above_ref[0] : base + 1; |
| } else { |
| val = (n_left_px > 0) ? left_ref[0] : base - 1; |
| } |
| for (i = 0; i < txhpx; ++i) { |
| aom_memset16(dst, val, txwpx); |
| dst += dst_stride; |
| } |
| return; |
| } |
| |
| // NEED_LEFT |
| if (need_left) { |
| int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); |
| if (use_filter_intra) need_bottom = 0; |
| if (is_dr_mode) need_bottom = p_angle > 180; |
| const int num_left_pixels_needed = txhpx + (need_bottom ? txwpx : 0); |
| i = 0; |
| if (n_left_px > 0) { |
| for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride]; |
| if (need_bottom && n_bottomleft_px > 0) { |
| assert(i == txhpx); |
| for (; i < txhpx + n_bottomleft_px; i++) |
| left_col[i] = left_ref[i * ref_stride]; |
| } |
| if (i < num_left_pixels_needed) |
| aom_memset16(&left_col[i], left_col[i - 1], num_left_pixels_needed - i); |
| } else { |
| if (n_top_px > 0) { |
| aom_memset16(left_col, above_ref[0], num_left_pixels_needed); |
| } else { |
| aom_memset16(left_col, base + 1, num_left_pixels_needed); |
| } |
| } |
| } |
| |
| // NEED_ABOVE |
| if (need_above) { |
| int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); |
| if (use_filter_intra) need_right = 0; |
| if (is_dr_mode) need_right = p_angle < 90; |
| const int num_top_pixels_needed = txwpx + (need_right ? txhpx : 0); |
| if (n_top_px > 0) { |
| memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0])); |
| i = n_top_px; |
| if (need_right && n_topright_px > 0) { |
| assert(n_top_px == txwpx); |
| memcpy(above_row + txwpx, above_ref + txwpx, |
| n_topright_px * sizeof(above_ref[0])); |
| i += n_topright_px; |
| } |
| if (i < num_top_pixels_needed) |
| aom_memset16(&above_row[i], above_row[i - 1], |
| num_top_pixels_needed - i); |
| } else { |
| if (n_left_px > 0) { |
| aom_memset16(above_row, left_ref[0], num_top_pixels_needed); |
| } else { |
| aom_memset16(above_row, base - 1, num_top_pixels_needed); |
| } |
| } |
| } |
| |
| if (need_above_left) { |
| if (n_top_px > 0 && n_left_px > 0) { |
| above_row[-1] = above_ref[-1]; |
| } else if (n_top_px > 0) { |
| above_row[-1] = above_ref[0]; |
| } else if (n_left_px > 0) { |
| above_row[-1] = left_ref[0]; |
| } else { |
| above_row[-1] = base; |
| } |
| left_col[-1] = above_row[-1]; |
| } |
| |
| if (use_filter_intra) { |
| highbd_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col, |
| filter_intra_mode, xd->bd); |
| return; |
| } |
| |
| if (is_dr_mode) { |
| int upsample_above = 0; |
| int upsample_left = 0; |
| if (!disable_edge_filter) { |
| const int need_right = p_angle < 90; |
| const int need_bottom = p_angle > 180; |
| const int filt_type = get_filt_type(xd, plane); |
| if (p_angle != 90 && p_angle != 180) { |
| const int ab_le = need_above_left ? 1 : 0; |
| if (need_above && need_left && (txwpx + txhpx >= 24)) { |
| filter_intra_edge_corner_high(above_row, left_col); |
| } |
| if (need_above && n_top_px > 0) { |
| const int strength = |
| intra_edge_filter_strength(txwpx, txhpx, p_angle - 90, filt_type); |
| const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0); |
| av1_filter_intra_edge_high(above_row - ab_le, n_px, strength); |
| } |
| if (need_left && n_left_px > 0) { |
| const int strength = intra_edge_filter_strength( |
| txhpx, txwpx, p_angle - 180, filt_type); |
| const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0); |
| av1_filter_intra_edge_high(left_col - ab_le, n_px, strength); |
| } |
| } |
| upsample_above = |
| av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90, filt_type); |
| if (need_above && upsample_above) { |
| const int n_px = txwpx + (need_right ? txhpx : 0); |
| av1_upsample_intra_edge_high(above_row, n_px, xd->bd); |
| } |
| upsample_left = |
| av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180, filt_type); |
| if (need_left && upsample_left) { |
| const int n_px = txhpx + (need_bottom ? txwpx : 0); |
| av1_upsample_intra_edge_high(left_col, n_px, xd->bd); |
| } |
| } |
| highbd_dr_predictor(dst, dst_stride, tx_size, above_row, left_col, |
| upsample_above, upsample_left, p_angle, xd->bd); |
| return; |
| } |
| |
| // predict |
| if (mode == DC_PRED) { |
| dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size]( |
| dst, dst_stride, above_row, left_col, xd->bd); |
| } else { |
| pred_high[mode][tx_size](dst, dst_stride, above_row, left_col, xd->bd); |
| } |
| } |
| |
| static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref, |
| int ref_stride, uint8_t *dst, int dst_stride, |
| PREDICTION_MODE mode, int angle_delta, |
| FILTER_INTRA_MODE filter_intra_mode, |
| TX_SIZE tx_size, int disable_edge_filter, |
| int n_top_px, int n_topright_px, |
| int n_left_px, int n_bottomleft_px, |
| int plane) { |
| int i; |
| const uint8_t *above_ref = ref - ref_stride; |
| const uint8_t *left_ref = ref - 1; |
| DECLARE_ALIGNED(16, uint8_t, left_data[MAX_TX_SIZE * 2 + 32]); |
| DECLARE_ALIGNED(16, uint8_t, above_data[MAX_TX_SIZE * 2 + 32]); |
| uint8_t *const above_row = above_data + 16; |
| uint8_t *const left_col = left_data + 16; |
| const int txwpx = tx_size_wide[tx_size]; |
| const int txhpx = tx_size_high[tx_size]; |
| int need_left = extend_modes[mode] & NEED_LEFT; |
| int need_above = extend_modes[mode] & NEED_ABOVE; |
| int need_above_left = extend_modes[mode] & NEED_ABOVELEFT; |
| int p_angle = 0; |
| const int is_dr_mode = av1_is_directional_mode(mode); |
| const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES; |
| |
| // The default values if ref pixels are not available: |
| // 127 127 127 .. 127 127 127 127 127 127 |
| // 129 A B .. Y Z |
| // 129 C D .. W X |
| // 129 E F .. U V |
| // 129 G H .. S T T T T T |
| // .. |
| |
| if (is_dr_mode) { |
| p_angle = mode_to_angle_map[mode] + angle_delta; |
| if (p_angle <= 90) |
| need_above = 1, need_left = 0, need_above_left = 1; |
| else if (p_angle < 180) |
| need_above = 1, need_left = 1, need_above_left = 1; |
| else |
| need_above = 0, need_left = 1, need_above_left = 1; |
| } |
| if (use_filter_intra) need_left = need_above = need_above_left = 1; |
| |
| assert(n_top_px >= 0); |
| assert(n_topright_px >= 0); |
| assert(n_left_px >= 0); |
| assert(n_bottomleft_px >= 0); |
| |
| if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) { |
| int val; |
| if (need_left) { |
| val = (n_top_px > 0) ? above_ref[0] : 129; |
| } else { |
| val = (n_left_px > 0) ? left_ref[0] : 127; |
| } |
| for (i = 0; i < txhpx; ++i) { |
| memset(dst, val, txwpx); |
| dst += dst_stride; |
| } |
| return; |
| } |
| |
| // NEED_LEFT |
| if (need_left) { |
| int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); |
| if (use_filter_intra) need_bottom = 0; |
| if (is_dr_mode) need_bottom = p_angle > 180; |
| const int num_left_pixels_needed = txhpx + (need_bottom ? txwpx : 0); |
| i = 0; |
| if (n_left_px > 0) { |
| for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride]; |
| if (need_bottom && n_bottomleft_px > 0) { |
| assert(i == txhpx); |
| for (; i < txhpx + n_bottomleft_px; i++) |
| left_col[i] = left_ref[i * ref_stride]; |
| } |
| if (i < num_left_pixels_needed) |
| memset(&left_col[i], left_col[i - 1], num_left_pixels_needed - i); |
| } else { |
| if (n_top_px > 0) { |
| memset(left_col, above_ref[0], num_left_pixels_needed); |
| } else { |
| memset(left_col, 129, num_left_pixels_needed); |
| } |
| } |
| } |
| |
| // NEED_ABOVE |
| if (need_above) { |
| int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); |
| if (use_filter_intra) need_right = 0; |
| if (is_dr_mode) need_right = p_angle < 90; |
| const int num_top_pixels_needed = txwpx + (need_right ? txhpx : 0); |
| if (n_top_px > 0) { |
| memcpy(above_row, above_ref, n_top_px); |
| i = n_top_px; |
| if (need_right && n_topright_px > 0) { |
| assert(n_top_px == txwpx); |
| memcpy(above_row + txwpx, above_ref + txwpx, n_topright_px); |
| i += n_topright_px; |
| } |
| if (i < num_top_pixels_needed) |
| memset(&above_row[i], above_row[i - 1], num_top_pixels_needed - i); |
| } else { |
| if (n_left_px > 0) { |
| memset(above_row, left_ref[0], num_top_pixels_needed); |
| } else { |
| memset(above_row, 127, num_top_pixels_needed); |
| } |
| } |
| } |
| |
| if (need_above_left) { |
| if (n_top_px > 0 && n_left_px > 0) { |
| above_row[-1] = above_ref[-1]; |
| } else if (n_top_px > 0) { |
| above_row[-1] = above_ref[0]; |
| } else if (n_left_px > 0) { |
| above_row[-1] = left_ref[0]; |
| } else { |
| above_row[-1] = 128; |
| } |
| left_col[-1] = above_row[-1]; |
| } |
| |
| if (use_filter_intra) { |
| av1_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col, |
| filter_intra_mode); |
| return; |
| } |
| |
| if (is_dr_mode) { |
| int upsample_above = 0; |
| int upsample_left = 0; |
| if (!disable_edge_filter) { |
| const int need_right = p_angle < 90; |
| const int need_bottom = p_angle > 180; |
| const int filt_type = get_filt_type(xd, plane); |
| if (p_angle != 90 && p_angle != 180) { |
| const int ab_le = need_above_left ? 1 : 0; |
| if (need_above && need_left && (txwpx + txhpx >= 24)) { |
| filter_intra_edge_corner(above_row, left_col); |
| } |
| if (need_above && n_top_px > 0) { |
| const int strength = |
| intra_edge_filter_strength(txwpx, txhpx, p_angle - 90, filt_type); |
| const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0); |
| av1_filter_intra_edge(above_row - ab_le, n_px, strength); |
| } |
| if (need_left && n_left_px > 0) { |
| const int strength = intra_edge_filter_strength( |
| txhpx, txwpx, p_angle - 180, filt_type); |
| const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0); |
| av1_filter_intra_edge(left_col - ab_le, n_px, strength); |
| } |
| } |
| upsample_above = |
| av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90, filt_type); |
| if (need_above && upsample_above) { |
| const int n_px = txwpx + (need_right ? txhpx : 0); |
| av1_upsample_intra_edge(above_row, n_px); |
| } |
| upsample_left = |
| av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180, filt_type); |
| if (need_left && upsample_left) { |
| const int n_px = txhpx + (need_bottom ? txwpx : 0); |
| av1_upsample_intra_edge(left_col, n_px); |
| } |
| } |
| dr_predictor(dst, dst_stride, tx_size, above_row, left_col, upsample_above, |
| upsample_left, p_angle); |
| return; |
| } |
| |
| // predict |
| if (mode == DC_PRED) { |
| dc_pred[n_left_px > 0][n_top_px > 0][tx_size](dst, dst_stride, above_row, |
| left_col); |
| } else { |
| pred[mode][tx_size](dst, dst_stride, above_row, left_col); |
| } |
| } |
| |
| void av1_predict_intra_block( |
| const AV1_COMMON *cm, const MACROBLOCKD *xd, int wpx, int hpx, |
| TX_SIZE tx_size, PREDICTION_MODE mode, int angle_delta, int use_palette, |
| FILTER_INTRA_MODE filter_intra_mode, const uint8_t *ref, int ref_stride, |
| uint8_t *dst, int dst_stride, int col_off, int row_off, int plane) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int txwpx = tx_size_wide[tx_size]; |
| const int txhpx = tx_size_high[tx_size]; |
| const int x = col_off << tx_size_wide_log2[0]; |
| const int y = row_off << tx_size_high_log2[0]; |
| |
| if (use_palette) { |
| int r, c; |
| const uint8_t *const map = xd->plane[plane != 0].color_index_map + |
| xd->color_index_map_offset[plane != 0]; |
| const uint16_t *const palette = |
| mbmi->palette_mode_info.palette_colors + plane * PALETTE_MAX_SIZE; |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); |
| for (r = 0; r < txhpx; ++r) { |
| for (c = 0; c < txwpx; ++c) { |
| dst16[r * dst_stride + c] = palette[map[(r + y) * wpx + c + x]]; |
| } |
| } |
| } else { |
| for (r = 0; r < txhpx; ++r) { |
| for (c = 0; c < txwpx; ++c) { |
| dst[r * dst_stride + c] = |
| (uint8_t)palette[map[(r + y) * wpx + c + x]]; |
| } |
| } |
| } |
| return; |
| } |
| |
| BLOCK_SIZE bsize = mbmi->sb_type; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int txw = tx_size_wide_unit[tx_size]; |
| const int txh = tx_size_high_unit[tx_size]; |
| const int have_top = row_off || (pd->subsampling_y ? xd->chroma_up_available |
| : xd->up_available); |
| const int have_left = |
| col_off || |
| (pd->subsampling_x ? xd->chroma_left_available : xd->left_available); |
| const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); |
| const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); |
| const int xr_chr_offset = 0; |
| const int yd_chr_offset = 0; |
| |
| // Distance between the right edge of this prediction block to |
| // the frame right edge |
| const int xr = (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + |
| (wpx - x - txwpx) - xr_chr_offset; |
| // Distance between the bottom edge of this prediction block to |
| // the frame bottom edge |
| const int yd = (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + |
| (hpx - y - txhpx) - yd_chr_offset; |
| const int right_available = |
| mi_col + ((col_off + txw) << pd->subsampling_x) < xd->tile.mi_col_end; |
| const int bottom_available = |
| (yd > 0) && |
| (mi_row + ((row_off + txh) << pd->subsampling_y) < xd->tile.mi_row_end); |
| |
| const PARTITION_TYPE partition = mbmi->partition; |
| |
| // force 4x4 chroma component block size. |
| bsize = scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y); |
| |
| const int have_top_right = has_top_right( |
| cm, bsize, mi_row, mi_col, have_top, right_available, partition, tx_size, |
| row_off, col_off, pd->subsampling_x, pd->subsampling_y); |
| const int have_bottom_left = has_bottom_left( |
| cm, bsize, mi_row, mi_col, bottom_available, have_left, partition, |
| tx_size, row_off, col_off, pd->subsampling_x, pd->subsampling_y); |
| |
| const int disable_edge_filter = !cm->seq_params.enable_intra_edge_filter; |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| build_intra_predictors_high( |
| xd, ref, ref_stride, dst, dst_stride, mode, angle_delta, |
| filter_intra_mode, tx_size, disable_edge_filter, |
| have_top ? AOMMIN(txwpx, xr + txwpx) : 0, |
| have_top_right ? AOMMIN(txwpx, xr) : 0, |
| have_left ? AOMMIN(txhpx, yd + txhpx) : 0, |
| have_bottom_left ? AOMMIN(txhpx, yd) : 0, plane); |
| return; |
| } |
| |
| build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, |
| angle_delta, filter_intra_mode, tx_size, |
| disable_edge_filter, |
| have_top ? AOMMIN(txwpx, xr + txwpx) : 0, |
| have_top_right ? AOMMIN(txwpx, xr) : 0, |
| have_left ? AOMMIN(txhpx, yd + txhpx) : 0, |
| have_bottom_left ? AOMMIN(txhpx, yd) : 0, plane); |
| } |
| |
| void av1_predict_intra_block_facade(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int plane, int blk_col, int blk_row, |
| TX_SIZE tx_size) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int dst_stride = pd->dst.stride; |
| uint8_t *dst = |
| &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; |
| const PREDICTION_MODE mode = |
| (plane == AOM_PLANE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode); |
| const int use_palette = mbmi->palette_mode_info.palette_size[plane != 0] > 0; |
| const FILTER_INTRA_MODE filter_intra_mode = |
| (plane == AOM_PLANE_Y && mbmi->filter_intra_mode_info.use_filter_intra) |
| ? mbmi->filter_intra_mode_info.filter_intra_mode |
| : FILTER_INTRA_MODES; |
| const int angle_delta = mbmi->angle_delta[plane != AOM_PLANE_Y] * ANGLE_STEP; |
| |
| if (plane != AOM_PLANE_Y && mbmi->uv_mode == UV_CFL_PRED) { |
| #if CONFIG_DEBUG |
| assert(is_cfl_allowed(xd)); |
| const BLOCK_SIZE plane_bsize = get_plane_block_size( |
| mbmi->sb_type, pd->subsampling_x, pd->subsampling_y); |
| (void)plane_bsize; |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| if (!xd->lossless[mbmi->segment_id]) { |
| assert(blk_col == 0); |
| assert(blk_row == 0); |
| assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]); |
| assert(block_size_high[plane_bsize] == tx_size_high[tx_size]); |
| } |
| #endif |
| CFL_CTX *const cfl = &xd->cfl; |
| CFL_PRED_TYPE pred_plane = get_cfl_pred_type(plane); |
| if (cfl->dc_pred_is_cached[pred_plane] == 0) { |
| av1_predict_intra_block(cm, xd, pd->width, pd->height, tx_size, mode, |
| angle_delta, use_palette, filter_intra_mode, dst, |
| dst_stride, dst, dst_stride, blk_col, blk_row, |
| plane); |
| if (cfl->use_dc_pred_cache) { |
| cfl_store_dc_pred(xd, dst, pred_plane, tx_size_wide[tx_size]); |
| cfl->dc_pred_is_cached[pred_plane] = 1; |
| } |
| } else { |
| cfl_load_dc_pred(xd, dst, dst_stride, tx_size, pred_plane); |
| } |
| cfl_predict_block(xd, dst, dst_stride, tx_size, plane); |
| return; |
| } |
| av1_predict_intra_block(cm, xd, pd->width, pd->height, tx_size, mode, |
| angle_delta, use_palette, filter_intra_mode, dst, |
| dst_stride, dst, dst_stride, blk_col, blk_row, plane); |
| } |
| |
| void av1_init_intra_predictors(void) { |
| aom_once(init_intra_predictors_internal); |
| } |