| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "./av1_rtcd.h" |
| #include "./aom_config.h" |
| #include "./aom_dsp_rtcd.h" |
| |
| #include "aom_dsp/bitwriter.h" |
| #include "aom_dsp/quantize.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| |
| #include "av1/common/idct.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/scan.h" |
| |
| #include "av1/encoder/av1_quantize.h" |
| #include "av1/encoder/encodemb.h" |
| #if CONFIG_LV_MAP |
| #include "av1/encoder/encodetxb.h" |
| #endif |
| #include "av1/encoder/hybrid_fwd_txfm.h" |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/tokenize.h" |
| |
| #if CONFIG_PVQ |
| #include "av1/encoder/encint.h" |
| #include "av1/common/partition.h" |
| #include "av1/encoder/pvq_encoder.h" |
| #endif |
| |
| #if CONFIG_CFL |
| #include "av1/common/cfl.h" |
| #endif |
| |
| // Check if one needs to use c version subtraction. |
| static int check_subtract_block_size(int w, int h) { return w < 4 || h < 4; } |
| |
| static void subtract_block(const MACROBLOCKD *xd, int rows, int cols, |
| int16_t *diff, ptrdiff_t diff_stride, |
| const uint8_t *src8, ptrdiff_t src_stride, |
| const uint8_t *pred8, ptrdiff_t pred_stride) { |
| #if !CONFIG_HIGHBITDEPTH |
| (void)xd; |
| #endif |
| |
| if (check_subtract_block_size(rows, cols)) { |
| #if CONFIG_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| aom_highbd_subtract_block_c(rows, cols, diff, diff_stride, src8, |
| src_stride, pred8, pred_stride, xd->bd); |
| return; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| aom_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8, |
| pred_stride); |
| |
| return; |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, |
| pred8, pred_stride, xd->bd); |
| return; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, |
| pred_stride); |
| } |
| |
| void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, |
| int blk_col, int blk_row, TX_SIZE tx_size) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; |
| const int diff_stride = block_size_wide[plane_bsize]; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| const int tx1d_width = tx_size_wide[tx_size]; |
| const int tx1d_height = tx_size_high[tx_size]; |
| uint8_t *dst = |
| &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; |
| uint8_t *src = |
| &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; |
| int16_t *src_diff = |
| &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; |
| subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src, |
| src_stride, dst, dst_stride); |
| } |
| |
| void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { |
| struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride); |
| } |
| |
| // These numbers are empirically obtained. |
| static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = { |
| #if CONFIG_EC_ADAPT |
| { 10, 7 }, { 8, 5 }, |
| #else |
| { 10, 6 }, { 8, 6 }, |
| #endif |
| }; |
| |
| #define UPDATE_RD_COST() \ |
| { \ |
| rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); \ |
| rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); \ |
| } |
| |
| static INLINE unsigned int get_token_bit_costs( |
| unsigned int token_costs[2][COEFF_CONTEXTS][ENTROPY_TOKENS], int skip_eob, |
| int ctx, int token) { |
| (void)skip_eob; |
| return token_costs[token == ZERO_TOKEN || token == EOB_TOKEN][ctx][token]; |
| } |
| |
| #if !CONFIG_LV_MAP |
| |
| typedef struct av1_token_state_greedy { |
| int16_t token; |
| tran_low_t qc; |
| tran_low_t dqc; |
| } av1_token_state_greedy; |
| |
| static int optimize_b_greedy(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, |
| int block, TX_SIZE tx_size, int ctx) { |
| MACROBLOCKD *const xd = &mb->e_mbd; |
| struct macroblock_plane *const p = &mb->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ref = is_inter_block(&xd->mi[0]->mbmi); |
| av1_token_state_greedy tokens[MAX_TX_SQUARE + 1][2]; |
| uint8_t token_cache[MAX_TX_SQUARE]; |
| const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| const int eob = p->eobs[block]; |
| const PLANE_TYPE plane_type = pd->plane_type; |
| const int16_t *const dequant_ptr = pd->dequant; |
| const uint8_t *const band_translate = get_band_translate(tx_size); |
| TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); |
| const SCAN_ORDER *const scan_order = |
| get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi)); |
| const int16_t *const scan = scan_order->scan; |
| const int16_t *const nb = scan_order->neighbors; |
| int dqv; |
| const int shift = av1_get_tx_scale(tx_size); |
| #if CONFIG_AOM_QM |
| int seg_id = xd->mi[0]->mbmi.segment_id; |
| const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!ref][tx_size]; |
| #endif |
| #if CONFIG_NEW_QUANT |
| int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type); |
| const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq]; |
| #endif // CONFIG_NEW_QUANT |
| int sz = 0; |
| const int64_t rddiv = mb->rddiv; |
| int64_t rd_cost0, rd_cost1; |
| int16_t t0, t1; |
| int i, final_eob; |
| const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd); |
| unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = |
| mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref]; |
| const int default_eob = tx_size_2d[tx_size]; |
| |
| assert(mb->qindex > 0); |
| |
| assert((!plane_type && !plane) || (plane_type && plane)); |
| assert(eob <= default_eob); |
| |
| int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1; |
| |
| int64_t rate0, rate1; |
| for (i = 0; i < eob; i++) { |
| const int rc = scan[i]; |
| int x = qcoeff[rc]; |
| t0 = av1_get_token(x); |
| |
| tokens[i][0].qc = x; |
| tokens[i][0].token = t0; |
| tokens[i][0].dqc = dqcoeff[rc]; |
| |
| token_cache[rc] = av1_pt_energy_class[t0]; |
| } |
| tokens[eob][0].token = EOB_TOKEN; |
| tokens[eob][0].qc = 0; |
| tokens[eob][0].dqc = 0; |
| tokens[eob][1] = tokens[eob][0]; |
| |
| unsigned int(*token_costs_ptr)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = |
| token_costs; |
| |
| final_eob = 0; |
| |
| int64_t eob_cost0, eob_cost1; |
| |
| const int ctx0 = ctx; |
| /* Record the r-d cost */ |
| int64_t accu_rate = 0; |
| int64_t accu_error = 0; |
| |
| rate0 = get_token_bit_costs(*(token_costs_ptr + band_translate[0]), 0, ctx0, |
| EOB_TOKEN); |
| int64_t best_block_rd_cost = RDCOST(rdmult, rddiv, rate0, accu_error); |
| |
| // int64_t best_block_rd_cost_all0 = best_block_rd_cost; |
| |
| int x_prev = 1; |
| |
| for (i = 0; i < eob; i++) { |
| const int rc = scan[i]; |
| int x = qcoeff[rc]; |
| sz = -(x < 0); |
| |
| int band_cur = band_translate[i]; |
| int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i); |
| int token_tree_sel_cur = (x_prev == 0); |
| |
| if (x == 0) { |
| // no need to search when x == 0 |
| rate0 = |
| get_token_bit_costs(*(token_costs_ptr + band_cur), token_tree_sel_cur, |
| ctx_cur, tokens[i][0].token); |
| accu_rate += rate0; |
| x_prev = 0; |
| // accu_error does not change when x==0 |
| } else { |
| /* Computing distortion |
| */ |
| // compute the distortion for the first candidate |
| // and the distortion for quantizing to 0. |
| int dx0 = abs(coeff[rc]) * (1 << shift); |
| #if CONFIG_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| dx0 >>= xd->bd - 8; |
| } |
| #endif |
| int64_t d0 = (int64_t)dx0 * dx0; |
| |
| int x_a = x - 2 * sz - 1; |
| int64_t d2, d2_a; |
| |
| int dx; |
| |
| #if CONFIG_AOM_QM |
| int iwt = iqmatrix[rc]; |
| dqv = dequant_ptr[rc != 0]; |
| dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; |
| #else |
| dqv = dequant_ptr[rc != 0]; |
| #endif |
| |
| dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift); |
| #if CONFIG_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| int dx_sign = dx < 0 ? 1 : 0; |
| dx = abs(dx) >> (xd->bd - 8); |
| if (dx_sign) dx = -dx; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| d2 = (int64_t)dx * dx; |
| |
| /* compute the distortion for the second candidate |
| * x_a = x - 2 * sz + 1; |
| */ |
| if (x_a != 0) { |
| #if CONFIG_NEW_QUANT |
| dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) - |
| (coeff[rc] << shift); |
| #if CONFIG_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| dx >>= xd->bd - 8; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| #else // CONFIG_NEW_QUANT |
| #if CONFIG_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz; |
| } else { |
| dx -= (dqv + sz) ^ sz; |
| } |
| #else |
| dx -= (dqv + sz) ^ sz; |
| #endif // CONFIG_HIGHBITDEPTH |
| #endif // CONFIG_NEW_QUANT |
| d2_a = (int64_t)dx * dx; |
| } else { |
| d2_a = d0; |
| } |
| /* Computing rates and r-d cost |
| */ |
| |
| int best_x, best_eob_x; |
| int64_t base_bits, next_bits0, next_bits1; |
| int64_t next_eob_bits0, next_eob_bits1; |
| |
| // rate cost of x |
| base_bits = av1_get_token_cost(x, &t0, cat6_bits); |
| rate0 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur), |
| token_tree_sel_cur, ctx_cur, t0); |
| |
| base_bits = av1_get_token_cost(x_a, &t1, cat6_bits); |
| rate1 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur), |
| token_tree_sel_cur, ctx_cur, t1); |
| |
| next_bits0 = 0; |
| next_bits1 = 0; |
| next_eob_bits0 = 0; |
| next_eob_bits1 = 0; |
| |
| if (i < default_eob - 1) { |
| int ctx_next, token_tree_sel_next; |
| int band_next = band_translate[i + 1]; |
| |
| token_cache[rc] = av1_pt_energy_class[t0]; |
| ctx_next = get_coef_context(nb, token_cache, i + 1); |
| token_tree_sel_next = (x == 0); |
| |
| next_bits0 = get_token_bit_costs(*(token_costs_ptr + band_next), |
| token_tree_sel_next, ctx_next, |
| tokens[i + 1][0].token); |
| next_eob_bits0 = |
| get_token_bit_costs(*(token_costs_ptr + band_next), |
| token_tree_sel_next, ctx_next, EOB_TOKEN); |
| |
| token_cache[rc] = av1_pt_energy_class[t1]; |
| ctx_next = get_coef_context(nb, token_cache, i + 1); |
| token_tree_sel_next = (x_a == 0); |
| |
| next_bits1 = get_token_bit_costs(*(token_costs_ptr + band_next), |
| token_tree_sel_next, ctx_next, |
| tokens[i + 1][0].token); |
| |
| if (x_a != 0) { |
| next_eob_bits1 = |
| get_token_bit_costs(*(token_costs_ptr + band_next), |
| token_tree_sel_next, ctx_next, EOB_TOKEN); |
| } |
| } |
| |
| rd_cost0 = RDCOST(rdmult, rddiv, (rate0 + next_bits0), d2); |
| rd_cost1 = RDCOST(rdmult, rddiv, (rate1 + next_bits1), d2_a); |
| |
| best_x = (rd_cost1 < rd_cost0); |
| |
| eob_cost0 = RDCOST(rdmult, rddiv, (accu_rate + rate0 + next_eob_bits0), |
| (accu_error + d2 - d0)); |
| eob_cost1 = eob_cost0; |
| if (x_a != 0) { |
| eob_cost1 = RDCOST(rdmult, rddiv, (accu_rate + rate1 + next_eob_bits1), |
| (accu_error + d2_a - d0)); |
| best_eob_x = (eob_cost1 < eob_cost0); |
| } else { |
| best_eob_x = 0; |
| } |
| |
| int dqc, dqc_a = 0; |
| |
| dqc = dqcoeff[rc]; |
| if (best_x + best_eob_x) { |
| if (x_a != 0) { |
| #if CONFIG_NEW_QUANT |
| dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv, |
| dequant_val[band_translate[i]]); |
| dqc_a = shift ? ROUND_POWER_OF_TWO(dqc_a, shift) : dqc_a; |
| if (sz) dqc_a = -dqc_a; |
| #else |
| if (x_a < 0) |
| dqc_a = -((-x_a * dqv) >> shift); |
| else |
| dqc_a = (x_a * dqv) >> shift; |
| #endif // CONFIG_NEW_QUANT |
| } else { |
| dqc_a = 0; |
| } // if (x_a != 0) |
| } |
| |
| // record the better quantized value |
| if (best_x) { |
| qcoeff[rc] = x_a; |
| dqcoeff[rc] = dqc_a; |
| |
| accu_rate += rate1; |
| accu_error += d2_a - d0; |
| assert(d2_a <= d0); |
| |
| token_cache[rc] = av1_pt_energy_class[t1]; |
| } else { |
| accu_rate += rate0; |
| accu_error += d2 - d0; |
| assert(d2 <= d0); |
| |
| token_cache[rc] = av1_pt_energy_class[t0]; |
| } |
| |
| x_prev = qcoeff[rc]; |
| |
| // determine whether to move the eob position to i+1 |
| int64_t best_eob_cost_i = eob_cost0; |
| |
| tokens[i][1].token = t0; |
| tokens[i][1].qc = x; |
| tokens[i][1].dqc = dqc; |
| |
| if ((x_a != 0) && (best_eob_x)) { |
| best_eob_cost_i = eob_cost1; |
| |
| tokens[i][1].token = t1; |
| tokens[i][1].qc = x_a; |
| tokens[i][1].dqc = dqc_a; |
| } |
| |
| if (best_eob_cost_i < best_block_rd_cost) { |
| best_block_rd_cost = best_eob_cost_i; |
| final_eob = i + 1; |
| } |
| } // if (x==0) |
| } // for (i) |
| |
| assert(final_eob <= eob); |
| if (final_eob > 0) { |
| assert(tokens[final_eob - 1][1].qc != 0); |
| i = final_eob - 1; |
| int rc = scan[i]; |
| qcoeff[rc] = tokens[i][1].qc; |
| dqcoeff[rc] = tokens[i][1].dqc; |
| } |
| |
| for (i = final_eob; i < eob; i++) { |
| int rc = scan[i]; |
| qcoeff[rc] = 0; |
| dqcoeff[rc] = 0; |
| } |
| |
| mb->plane[plane].eobs[block] = final_eob; |
| return final_eob; |
| } |
| |
| #endif // !CONFIG_LV_MAP |
| |
| int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int block, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| const ENTROPY_CONTEXT *a, const ENTROPY_CONTEXT *l) { |
| MACROBLOCKD *const xd = &mb->e_mbd; |
| struct macroblock_plane *const p = &mb->plane[plane]; |
| const int eob = p->eobs[block]; |
| assert((mb->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0)); |
| if (eob == 0) return eob; |
| if (xd->lossless[xd->mi[0]->mbmi.segment_id]) return eob; |
| #if CONFIG_PVQ |
| (void)cm; |
| (void)tx_size; |
| (void)a; |
| (void)l; |
| return eob; |
| #endif |
| |
| #if !CONFIG_LV_MAP |
| (void)plane_bsize; |
| #if CONFIG_VAR_TX |
| int ctx = get_entropy_context(tx_size, a, l); |
| #else |
| int ctx = combine_entropy_contexts(*a, *l); |
| #endif // CONFIG_VAR_TX |
| return optimize_b_greedy(cm, mb, plane, block, tx_size, ctx); |
| #else // !CONFIG_LV_MAP |
| TXB_CTX txb_ctx; |
| get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); |
| return av1_optimize_txb(cm, mb, plane, block, tx_size, &txb_ctx); |
| #endif // !CONFIG_LV_MAP |
| } |
| |
| #if !CONFIG_PVQ |
| #if CONFIG_HIGHBITDEPTH |
| typedef enum QUANT_FUNC { |
| QUANT_FUNC_LOWBD = 0, |
| QUANT_FUNC_HIGHBD = 1, |
| QUANT_FUNC_TYPES = 2 |
| } QUANT_FUNC; |
| |
| static AV1_QUANT_FACADE |
| quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = { |
| #if !CONFIG_NEW_QUANT |
| { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade }, |
| { av1_quantize_b_facade, av1_highbd_quantize_b_facade }, |
| { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade }, |
| #else // !CONFIG_NEW_QUANT |
| { av1_quantize_fp_nuq_facade, av1_highbd_quantize_fp_nuq_facade }, |
| { av1_quantize_b_nuq_facade, av1_highbd_quantize_b_nuq_facade }, |
| { av1_quantize_dc_nuq_facade, av1_highbd_quantize_dc_nuq_facade }, |
| #endif // !CONFIG_NEW_QUANT |
| { NULL, NULL } |
| }; |
| |
| #else |
| |
| typedef enum QUANT_FUNC { |
| QUANT_FUNC_LOWBD = 0, |
| QUANT_FUNC_TYPES = 1 |
| } QUANT_FUNC; |
| |
| static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES] |
| [QUANT_FUNC_TYPES] = { |
| #if !CONFIG_NEW_QUANT |
| { av1_quantize_fp_facade }, |
| { av1_quantize_b_facade }, |
| { av1_quantize_dc_facade }, |
| #else // !CONFIG_NEW_QUANT |
| { av1_quantize_fp_nuq_facade }, |
| { av1_quantize_b_nuq_facade }, |
| { av1_quantize_dc_nuq_facade }, |
| #endif // !CONFIG_NEW_QUANT |
| { NULL } |
| }; |
| #endif // CONFIG_HIGHBITDEPTH |
| #endif // CONFIG_PVQ |
| |
| void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block, |
| int blk_row, int blk_col, BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, int ctx, |
| AV1_XFORM_QUANT xform_quant_idx) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| #if !(CONFIG_PVQ || CONFIG_DAALA_DIST) |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| #else |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| #endif |
| PLANE_TYPE plane_type = get_plane_type(plane); |
| TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); |
| const int is_inter = is_inter_block(mbmi); |
| const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter); |
| tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| uint16_t *const eob = &p->eobs[block]; |
| const int diff_stride = block_size_wide[plane_bsize]; |
| #if CONFIG_AOM_QM |
| int seg_id = mbmi->segment_id; |
| const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][!is_inter][tx_size]; |
| const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!is_inter][tx_size]; |
| #endif |
| |
| FWD_TXFM_PARAM fwd_txfm_param; |
| |
| #if CONFIG_PVQ || CONFIG_DAALA_DIST |
| uint8_t *dst; |
| int16_t *pred; |
| const int dst_stride = pd->dst.stride; |
| int tx_blk_size; |
| int i, j; |
| #endif |
| |
| #if !CONFIG_PVQ |
| const int tx2d_size = tx_size_2d[tx_size]; |
| QUANT_PARAM qparam; |
| const int16_t *src_diff; |
| |
| src_diff = |
| &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; |
| qparam.log_scale = av1_get_tx_scale(tx_size); |
| #if CONFIG_NEW_QUANT |
| qparam.tx_size = tx_size; |
| qparam.dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type); |
| #endif // CONFIG_NEW_QUANT |
| #if CONFIG_AOM_QM |
| qparam.qmatrix = qmatrix; |
| qparam.iqmatrix = iqmatrix; |
| #endif // CONFIG_AOM_QM |
| #else |
| tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block); |
| int skip = 1; |
| PVQ_INFO *pvq_info = NULL; |
| uint8_t *src; |
| int16_t *src_int16; |
| const int src_stride = p->src.stride; |
| |
| (void)ctx; |
| (void)scan_order; |
| (void)qcoeff; |
| |
| if (x->pvq_coded) { |
| assert(block < MAX_PVQ_BLOCKS_IN_SB); |
| pvq_info = &x->pvq[block][plane]; |
| } |
| src = &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; |
| src_int16 = |
| &p->src_int16[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; |
| |
| // transform block size in pixels |
| tx_blk_size = tx_size_wide[tx_size]; |
| #if CONFIG_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| for (j = 0; j < tx_blk_size; j++) |
| for (i = 0; i < tx_blk_size; i++) |
| src_int16[diff_stride * j + i] = |
| CONVERT_TO_SHORTPTR(src)[src_stride * j + i]; |
| } else { |
| #endif // CONFIG_HIGHBITDEPTH |
| for (j = 0; j < tx_blk_size; j++) |
| for (i = 0; i < tx_blk_size; i++) |
| src_int16[diff_stride * j + i] = src[src_stride * j + i]; |
| #if CONFIG_HIGHBITDEPTH |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| #endif |
| |
| #if CONFIG_PVQ || CONFIG_DAALA_DIST |
| dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; |
| pred = &pd->pred[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; |
| |
| // transform block size in pixels |
| tx_blk_size = tx_size_wide[tx_size]; |
| |
| // copy uint8 orig and predicted block to int16 buffer |
| // in order to use existing VP10 transform functions |
| #if CONFIG_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| for (j = 0; j < tx_blk_size; j++) |
| for (i = 0; i < tx_blk_size; i++) |
| pred[diff_stride * j + i] = |
| CONVERT_TO_SHORTPTR(dst)[dst_stride * j + i]; |
| } else { |
| #endif // CONFIG_HIGHBITDEPTH |
| for (j = 0; j < tx_blk_size; j++) |
| for (i = 0; i < tx_blk_size; i++) |
| pred[diff_stride * j + i] = dst[dst_stride * j + i]; |
| #if CONFIG_HIGHBITDEPTH |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| #endif |
| |
| (void)ctx; |
| |
| fwd_txfm_param.tx_type = tx_type; |
| fwd_txfm_param.tx_size = tx_size; |
| fwd_txfm_param.lossless = xd->lossless[mbmi->segment_id]; |
| |
| #if !CONFIG_PVQ |
| #if CONFIG_HIGHBITDEPTH |
| fwd_txfm_param.bd = xd->bd; |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| av1_highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); |
| if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) { |
| if (LIKELY(!x->skip_block)) { |
| quant_func_list[xform_quant_idx][QUANT_FUNC_HIGHBD]( |
| coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam); |
| } else { |
| av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob); |
| } |
| } |
| #if CONFIG_LV_MAP |
| p->txb_entropy_ctx[block] = |
| (uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob); |
| #endif // CONFIG_LV_MAP |
| return; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| av1_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); |
| if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) { |
| if (LIKELY(!x->skip_block)) { |
| quant_func_list[xform_quant_idx][QUANT_FUNC_LOWBD]( |
| coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam); |
| } else { |
| av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob); |
| } |
| } |
| #if CONFIG_LV_MAP |
| p->txb_entropy_ctx[block] = |
| (uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob); |
| #endif // CONFIG_LV_MAP |
| #else // #if !CONFIG_PVQ |
| (void)xform_quant_idx; |
| #if CONFIG_HIGHBITDEPTH |
| fwd_txfm_param.bd = xd->bd; |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| av1_highbd_fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param); |
| av1_highbd_fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param); |
| } else { |
| #endif |
| av1_fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param); |
| av1_fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param); |
| #if CONFIG_HIGHBITDEPTH |
| } |
| #endif |
| |
| // PVQ for inter mode block |
| if (!x->skip_block) { |
| PVQ_SKIP_TYPE ac_dc_coded = |
| av1_pvq_encode_helper(x, |
| coeff, // target original vector |
| ref_coeff, // reference vector |
| dqcoeff, // de-quantized vector |
| eob, // End of Block marker |
| pd->dequant, // aom's quantizers |
| plane, // image plane |
| tx_size, // block size in log_2 - 2 |
| tx_type, |
| &x->rate, // rate measured |
| x->pvq_speed, |
| pvq_info); // PVQ info for a block |
| skip = ac_dc_coded == PVQ_SKIP; |
| } |
| x->pvq_skip[plane] = skip; |
| |
| if (!skip) mbmi->skip = 0; |
| #endif // #if !CONFIG_PVQ |
| } |
| |
| static void encode_block(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { |
| struct encode_b_args *const args = arg; |
| AV1_COMMON *cm = args->cm; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int ctx; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| uint8_t *dst; |
| #if !CONFIG_PVQ |
| ENTROPY_CONTEXT *a, *l; |
| #endif |
| #if CONFIG_VAR_TX |
| int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| #endif |
| dst = &pd->dst |
| .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; |
| |
| #if !CONFIG_PVQ |
| a = &args->ta[blk_col]; |
| l = &args->tl[blk_row]; |
| #if CONFIG_VAR_TX |
| ctx = get_entropy_context(tx_size, a, l); |
| #else |
| ctx = combine_entropy_contexts(*a, *l); |
| #endif |
| #else |
| ctx = 0; |
| #endif // CONFIG_PVQ |
| |
| #if CONFIG_VAR_TX |
| // Assert not magic number (uninitialized). |
| assert(x->blk_skip[plane][blk_row * bw + blk_col] != 234); |
| |
| if (x->blk_skip[plane][blk_row * bw + blk_col] == 0) { |
| #else |
| { |
| #endif |
| av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| ctx, AV1_XFORM_QUANT_FP); |
| } |
| #if CONFIG_VAR_TX |
| else { |
| p->eobs[block] = 0; |
| } |
| #endif |
| |
| #if !CONFIG_PVQ |
| av1_optimize_b(cm, x, plane, block, plane_bsize, tx_size, a, l); |
| |
| av1_set_txb_context(x, plane, block, tx_size, a, l); |
| |
| if (p->eobs[block]) *(args->skip) = 0; |
| |
| if (p->eobs[block] == 0) return; |
| #else |
| (void)ctx; |
| if (!x->pvq_skip[plane]) *(args->skip) = 0; |
| |
| if (x->pvq_skip[plane]) return; |
| #endif |
| TX_TYPE tx_type = get_tx_type(pd->plane_type, xd, block, tx_size); |
| av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst, |
| pd->dst.stride, p->eobs[block]); |
| } |
| |
| #if CONFIG_VAR_TX |
| static void encode_block_inter(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg) { |
| struct encode_b_args *const args = arg; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int tx_row = blk_row >> (1 - pd->subsampling_y); |
| const int tx_col = blk_col >> (1 - pd->subsampling_x); |
| TX_SIZE plane_tx_size; |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| plane_tx_size = |
| plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0] |
| : mbmi->inter_tx_size[tx_row][tx_col]; |
| |
| if (tx_size == plane_tx_size) { |
| encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg); |
| } else { |
| assert(tx_size < TX_SIZES_ALL); |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| assert(sub_txs < tx_size); |
| // This is the square transform block partition entry point. |
| int bsl = tx_size_wide_unit[sub_txs]; |
| int i; |
| assert(bsl > 0); |
| |
| for (i = 0; i < 4; ++i) { |
| const int offsetr = blk_row + ((i >> 1) * bsl); |
| const int offsetc = blk_col + ((i & 0x01) * bsl); |
| int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs]; |
| |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| |
| encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs, |
| arg); |
| block += step; |
| } |
| } |
| } |
| #endif |
| |
| typedef struct encode_block_pass1_args { |
| AV1_COMMON *cm; |
| MACROBLOCK *x; |
| } encode_block_pass1_args; |
| |
| static void encode_block_pass1(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg) { |
| encode_block_pass1_args *args = (encode_block_pass1_args *)arg; |
| AV1_COMMON *cm = args->cm; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| uint8_t *dst; |
| int ctx = 0; |
| dst = &pd->dst |
| .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; |
| |
| av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| ctx, AV1_XFORM_QUANT_B); |
| #if !CONFIG_PVQ |
| if (p->eobs[block] > 0) { |
| #else |
| if (!x->pvq_skip[plane]) { |
| { |
| int tx_blk_size; |
| int i, j; |
| // transform block size in pixels |
| tx_blk_size = tx_size_wide[tx_size]; |
| |
| // Since av1 does not have separate function which does inverse transform |
| // but av1_inv_txfm_add_*x*() also does addition of predicted image to |
| // inverse transformed image, |
| // pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros |
| #if CONFIG_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| for (j = 0; j < tx_blk_size; j++) |
| for (i = 0; i < tx_blk_size; i++) |
| CONVERT_TO_SHORTPTR(dst)[j * pd->dst.stride + i] = 0; |
| } else { |
| #endif // CONFIG_HIGHBITDEPTH |
| for (j = 0; j < tx_blk_size; j++) |
| for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0; |
| #if CONFIG_HIGHBITDEPTH |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| } |
| #endif // !CONFIG_PVQ |
| #if CONFIG_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { |
| av1_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block], |
| xd->bd); |
| } else { |
| av1_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block], |
| xd->bd); |
| } |
| return; |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { |
| av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); |
| } else { |
| av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); |
| } |
| } |
| } |
| |
| void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { |
| encode_block_pass1_args args = { cm, x }; |
| av1_subtract_plane(x, bsize, 0); |
| av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, |
| encode_block_pass1, &args); |
| } |
| |
| void av1_encode_sb(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, |
| int mi_col) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct optimize_ctx ctx; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 }; |
| int plane; |
| |
| mbmi->skip = 1; |
| |
| if (x->skip) return; |
| |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| #if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2 |
| const int subsampling_x = xd->plane[plane].subsampling_x; |
| const int subsampling_y = xd->plane[plane].subsampling_y; |
| |
| if (!is_chroma_reference(mi_row, mi_col, bsize, subsampling_x, |
| subsampling_y)) |
| continue; |
| |
| bsize = scale_chroma_bsize(bsize, subsampling_x, subsampling_y); |
| #else |
| (void)mi_row; |
| (void)mi_col; |
| #endif |
| |
| #if CONFIG_VAR_TX |
| // TODO(jingning): Clean this up. |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); |
| const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(mbmi, plane_bsize); |
| const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; |
| const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0]; |
| const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0]; |
| int idx, idy; |
| int block = 0; |
| int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; |
| av1_get_entropy_contexts(bsize, 0, pd, ctx.ta[plane], ctx.tl[plane]); |
| #else |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const TX_SIZE tx_size = get_tx_size(plane, xd); |
| av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); |
| #endif |
| |
| #if !CONFIG_PVQ |
| av1_subtract_plane(x, bsize, plane); |
| #endif |
| arg.ta = ctx.ta[plane]; |
| arg.tl = ctx.tl[plane]; |
| |
| #if CONFIG_VAR_TX |
| for (idy = 0; idy < mi_height; idy += bh) { |
| for (idx = 0; idx < mi_width; idx += bw) { |
| encode_block_inter(plane, block, idy, idx, plane_bsize, max_tx_size, |
| &arg); |
| block += step; |
| } |
| } |
| #else |
| av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, |
| &arg); |
| #endif |
| } |
| } |
| |
| #if CONFIG_SUPERTX |
| void av1_encode_sb_supertx(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct optimize_ctx ctx; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 }; |
| int plane; |
| |
| mbmi->skip = 1; |
| if (x->skip) return; |
| |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| #if CONFIG_VAR_TX |
| const TX_SIZE tx_size = TX_4X4; |
| #else |
| const TX_SIZE tx_size = get_tx_size(plane, xd); |
| #endif |
| av1_subtract_plane(x, bsize, plane); |
| av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); |
| arg.ta = ctx.ta[plane]; |
| arg.tl = ctx.tl[plane]; |
| av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, |
| &arg); |
| } |
| } |
| #endif // CONFIG_SUPERTX |
| |
| #if !CONFIG_PVQ |
| void av1_set_txb_context(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size, |
| ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { |
| (void)tx_size; |
| struct macroblock_plane *p = &x->plane[plane]; |
| |
| #if !CONFIG_LV_MAP |
| *a = *l = p->eobs[block] > 0; |
| #else // !CONFIG_LV_MAP |
| *a = *l = p->txb_entropy_ctx[block]; |
| #endif // !CONFIG_LV_MAP |
| |
| #if CONFIG_VAR_TX || CONFIG_LV_MAP |
| int i; |
| for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) a[i] = a[0]; |
| |
| for (i = 0; i < tx_size_high_unit[tx_size]; ++i) l[i] = l[0]; |
| #endif |
| } |
| #endif |
| |
| static void encode_block_intra_and_set_context(int plane, int block, |
| int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, void *arg) { |
| av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| arg); |
| #if !CONFIG_PVQ |
| struct encode_b_args *const args = arg; |
| MACROBLOCK *x = args->x; |
| ENTROPY_CONTEXT *a = &args->ta[blk_col]; |
| ENTROPY_CONTEXT *l = &args->tl[blk_row]; |
| av1_set_txb_context(x, plane, block, tx_size, a, l); |
| #endif |
| } |
| |
| #if CONFIG_DPCM_INTRA |
| static int get_eob(const tran_low_t *qcoeff, intptr_t n_coeffs, |
| const int16_t *scan) { |
| int eob = -1; |
| for (int i = (int)n_coeffs - 1; i >= 0; i--) { |
| const int rc = scan[i]; |
| if (qcoeff[rc]) { |
| eob = i; |
| break; |
| } |
| } |
| return eob + 1; |
| } |
| |
| static void quantize_scaler(int coeff, int16_t zbin, int16_t round_value, |
| int16_t quant, int16_t quant_shift, int16_t dequant, |
| int log_scale, tran_low_t *const qcoeff, |
| tran_low_t *const dqcoeff) { |
| zbin = ROUND_POWER_OF_TWO(zbin, log_scale); |
| round_value = ROUND_POWER_OF_TWO(round_value, log_scale); |
| const int coeff_sign = (coeff >> 31); |
| const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; |
| if (abs_coeff >= zbin) { |
| int tmp = clamp(abs_coeff + round_value, INT16_MIN, INT16_MAX); |
| tmp = ((((tmp * quant) >> 16) + tmp) * quant_shift) >> (16 - log_scale); |
| *qcoeff = (tmp ^ coeff_sign) - coeff_sign; |
| *dqcoeff = (*qcoeff * dequant) / (1 << log_scale); |
| } |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| typedef void (*hbd_dpcm_fwd_tx_func)(const int16_t *input, int stride, |
| TX_TYPE_1D tx_type, tran_low_t *output, |
| int dir); |
| |
| static hbd_dpcm_fwd_tx_func get_hbd_dpcm_fwd_tx_func(int tx_length) { |
| switch (tx_length) { |
| case 4: return av1_hbd_dpcm_ft4_c; |
| case 8: return av1_hbd_dpcm_ft8_c; |
| case 16: return av1_hbd_dpcm_ft16_c; |
| case 32: |
| return av1_hbd_dpcm_ft32_c; |
| // TODO(huisu): add support for TX_64X64. |
| default: assert(0); return NULL; |
| } |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| |
| typedef void (*dpcm_fwd_tx_func)(const int16_t *input, int stride, |
| TX_TYPE_1D tx_type, tran_low_t *output); |
| |
| static dpcm_fwd_tx_func get_dpcm_fwd_tx_func(int tx_length) { |
| switch (tx_length) { |
| case 4: return av1_dpcm_ft4_c; |
| case 8: return av1_dpcm_ft8_c; |
| case 16: return av1_dpcm_ft16_c; |
| case 32: |
| return av1_dpcm_ft32_c; |
| // TODO(huisu): add support for TX_64X64. |
| default: assert(0); return NULL; |
| } |
| } |
| |
| static void process_block_dpcm_vert(TX_SIZE tx_size, TX_TYPE_1D tx_type_1d, |
| struct macroblockd_plane *const pd, |
| struct macroblock_plane *const p, |
| uint8_t *src, int src_stride, uint8_t *dst, |
| int dst_stride, int16_t *src_diff, |
| int diff_stride, tran_low_t *coeff, |
| tran_low_t *qcoeff, tran_low_t *dqcoeff) { |
| const int tx1d_width = tx_size_wide[tx_size]; |
| dpcm_fwd_tx_func forward_tx = get_dpcm_fwd_tx_func(tx1d_width); |
| dpcm_inv_txfm_add_func inverse_tx = |
| av1_get_dpcm_inv_txfm_add_func(tx1d_width); |
| const int tx1d_height = tx_size_high[tx_size]; |
| const int log_scale = av1_get_tx_scale(tx_size); |
| int q_idx = 0; |
| for (int r = 0; r < tx1d_height; ++r) { |
| // Update prediction. |
| if (r > 0) memcpy(dst, dst - dst_stride, tx1d_width * sizeof(dst[0])); |
| // Subtraction. |
| for (int c = 0; c < tx1d_width; ++c) src_diff[c] = src[c] - dst[c]; |
| // Forward transform. |
| forward_tx(src_diff, 1, tx_type_1d, coeff); |
| // Quantization. |
| for (int c = 0; c < tx1d_width; ++c) { |
| quantize_scaler(coeff[c], p->zbin[q_idx], p->round[q_idx], |
| p->quant[q_idx], p->quant_shift[q_idx], |
| pd->dequant[q_idx], log_scale, &qcoeff[c], &dqcoeff[c]); |
| q_idx = 1; |
| } |
| // Inverse transform. |
| inverse_tx(dqcoeff, 1, tx_type_1d, dst); |
| // Move to the next row. |
| coeff += tx1d_width; |
| qcoeff += tx1d_width; |
| dqcoeff += tx1d_width; |
| src_diff += diff_stride; |
| dst += dst_stride; |
| src += src_stride; |
| } |
| } |
| |
| static void process_block_dpcm_horz(TX_SIZE tx_size, TX_TYPE_1D tx_type_1d, |
| struct macroblockd_plane *const pd, |
| struct macroblock_plane *const p, |
| uint8_t *src, int src_stride, uint8_t *dst, |
| int dst_stride, int16_t *src_diff, |
| int diff_stride, tran_low_t *coeff, |
| tran_low_t *qcoeff, tran_low_t *dqcoeff) { |
| const int tx1d_height = tx_size_high[tx_size]; |
| dpcm_fwd_tx_func forward_tx = get_dpcm_fwd_tx_func(tx1d_height); |
| dpcm_inv_txfm_add_func inverse_tx = |
| av1_get_dpcm_inv_txfm_add_func(tx1d_height); |
| const int tx1d_width = tx_size_wide[tx_size]; |
| const int log_scale = av1_get_tx_scale(tx_size); |
| int q_idx = 0; |
| for (int c = 0; c < tx1d_width; ++c) { |
| for (int r = 0; r < tx1d_height; ++r) { |
| // Update prediction. |
| if (c > 0) dst[r * dst_stride] = dst[r * dst_stride - 1]; |
| // Subtraction. |
| src_diff[r * diff_stride] = src[r * src_stride] - dst[r * dst_stride]; |
| } |
| // Forward transform. |
| tran_low_t tx_buff[64]; |
| forward_tx(src_diff, diff_stride, tx_type_1d, tx_buff); |
| for (int r = 0; r < tx1d_height; ++r) coeff[r * tx1d_width] = tx_buff[r]; |
| // Quantization. |
| for (int r = 0; r < tx1d_height; ++r) { |
| quantize_scaler(coeff[r * tx1d_width], p->zbin[q_idx], p->round[q_idx], |
| p->quant[q_idx], p->quant_shift[q_idx], |
| pd->dequant[q_idx], log_scale, &qcoeff[r * tx1d_width], |
| &dqcoeff[r * tx1d_width]); |
| q_idx = 1; |
| } |
| // Inverse transform. |
| for (int r = 0; r < tx1d_height; ++r) tx_buff[r] = dqcoeff[r * tx1d_width]; |
| inverse_tx(tx_buff, dst_stride, tx_type_1d, dst); |
| // Move to the next column. |
| ++coeff, ++qcoeff, ++dqcoeff, ++src_diff, ++dst, ++src; |
| } |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| static void hbd_process_block_dpcm_vert( |
| TX_SIZE tx_size, TX_TYPE_1D tx_type_1d, int bd, |
| struct macroblockd_plane *const pd, struct macroblock_plane *const p, |
| uint8_t *src8, int src_stride, uint8_t *dst8, int dst_stride, |
| int16_t *src_diff, int diff_stride, tran_low_t *coeff, tran_low_t *qcoeff, |
| tran_low_t *dqcoeff) { |
| const int tx1d_width = tx_size_wide[tx_size]; |
| hbd_dpcm_fwd_tx_func forward_tx = get_hbd_dpcm_fwd_tx_func(tx1d_width); |
| hbd_dpcm_inv_txfm_add_func inverse_tx = |
| av1_get_hbd_dpcm_inv_txfm_add_func(tx1d_width); |
| uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); |
| const int tx1d_height = tx_size_high[tx_size]; |
| const int log_scale = av1_get_tx_scale(tx_size); |
| int q_idx = 0; |
| for (int r = 0; r < tx1d_height; ++r) { |
| // Update prediction. |
| if (r > 0) memcpy(dst, dst - dst_stride, tx1d_width * sizeof(dst[0])); |
| // Subtraction. |
| for (int c = 0; c < tx1d_width; ++c) src_diff[c] = src[c] - dst[c]; |
| // Forward transform. |
| forward_tx(src_diff, 1, tx_type_1d, coeff, 1); |
| // Quantization. |
| for (int c = 0; c < tx1d_width; ++c) { |
| quantize_scaler(coeff[c], p->zbin[q_idx], p->round[q_idx], |
| p->quant[q_idx], p->quant_shift[q_idx], |
| pd->dequant[q_idx], log_scale, &qcoeff[c], &dqcoeff[c]); |
| q_idx = 1; |
| } |
| // Inverse transform. |
| inverse_tx(dqcoeff, 1, tx_type_1d, bd, dst, 1); |
| // Move to the next row. |
| coeff += tx1d_width; |
| qcoeff += tx1d_width; |
| dqcoeff += tx1d_width; |
| src_diff += diff_stride; |
| dst += dst_stride; |
| src += src_stride; |
| } |
| } |
| |
| static void hbd_process_block_dpcm_horz( |
| TX_SIZE tx_size, TX_TYPE_1D tx_type_1d, int bd, |
| struct macroblockd_plane *const pd, struct macroblock_plane *const p, |
| uint8_t *src8, int src_stride, uint8_t *dst8, int dst_stride, |
| int16_t *src_diff, int diff_stride, tran_low_t *coeff, tran_low_t *qcoeff, |
| tran_low_t *dqcoeff) { |
| const int tx1d_height = tx_size_high[tx_size]; |
| hbd_dpcm_fwd_tx_func forward_tx = get_hbd_dpcm_fwd_tx_func(tx1d_height); |
| hbd_dpcm_inv_txfm_add_func inverse_tx = |
| av1_get_hbd_dpcm_inv_txfm_add_func(tx1d_height); |
| uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); |
| const int tx1d_width = tx_size_wide[tx_size]; |
| const int log_scale = av1_get_tx_scale(tx_size); |
| int q_idx = 0; |
| for (int c = 0; c < tx1d_width; ++c) { |
| for (int r = 0; r < tx1d_height; ++r) { |
| // Update prediction. |
| if (c > 0) dst[r * dst_stride] = dst[r * dst_stride - 1]; |
| // Subtraction. |
| src_diff[r * diff_stride] = src[r * src_stride] - dst[r * dst_stride]; |
| } |
| // Forward transform. |
| tran_low_t tx_buff[64]; |
| forward_tx(src_diff, diff_stride, tx_type_1d, tx_buff, 0); |
| for (int r = 0; r < tx1d_height; ++r) coeff[r * tx1d_width] = tx_buff[r]; |
| // Quantization. |
| for (int r = 0; r < tx1d_height; ++r) { |
| quantize_scaler(coeff[r * tx1d_width], p->zbin[q_idx], p->round[q_idx], |
| p->quant[q_idx], p->quant_shift[q_idx], |
| pd->dequant[q_idx], log_scale, &qcoeff[r * tx1d_width], |
| &dqcoeff[r * tx1d_width]); |
| q_idx = 1; |
| } |
| // Inverse transform. |
| for (int r = 0; r < tx1d_height; ++r) tx_buff[r] = dqcoeff[r * tx1d_width]; |
| inverse_tx(tx_buff, dst_stride, tx_type_1d, bd, dst, 0); |
| // Move to the next column. |
| ++coeff, ++qcoeff, ++dqcoeff, ++src_diff, ++dst, ++src; |
| } |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| |
| void av1_encode_block_intra_dpcm(const AV1_COMMON *cm, MACROBLOCK *x, |
| PREDICTION_MODE mode, int plane, int block, |
| int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| TX_TYPE tx_type, ENTROPY_CONTEXT *ta, |
| ENTROPY_CONTEXT *tl, int8_t *skip) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| const int diff_stride = block_size_wide[plane_bsize]; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| const int tx1d_width = tx_size_wide[tx_size]; |
| const int tx1d_height = tx_size_high[tx_size]; |
| const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, 0); |
| tran_low_t *coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); |
| uint8_t *dst = |
| &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; |
| uint8_t *src = |
| &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; |
| int16_t *src_diff = |
| &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; |
| uint16_t *eob = &p->eobs[block]; |
| *eob = 0; |
| memset(qcoeff, 0, tx1d_height * tx1d_width * sizeof(*qcoeff)); |
| memset(dqcoeff, 0, tx1d_height * tx1d_width * sizeof(*dqcoeff)); |
| |
| if (LIKELY(!x->skip_block)) { |
| TX_TYPE_1D tx_type_1d = DCT_1D; |
| switch (tx_type) { |
| case IDTX: tx_type_1d = IDTX_1D; break; |
| case V_DCT: |
| assert(mode == H_PRED); |
| tx_type_1d = DCT_1D; |
| break; |
| case H_DCT: |
| assert(mode == V_PRED); |
| tx_type_1d = DCT_1D; |
| break; |
| default: assert(0); |
| } |
| switch (mode) { |
| case V_PRED: |
| #if CONFIG_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| hbd_process_block_dpcm_vert(tx_size, tx_type_1d, xd->bd, pd, p, src, |
| src_stride, dst, dst_stride, src_diff, |
| diff_stride, coeff, qcoeff, dqcoeff); |
| } else { |
| #endif // CONFIG_HIGHBITDEPTH |
| process_block_dpcm_vert(tx_size, tx_type_1d, pd, p, src, src_stride, |
| dst, dst_stride, src_diff, diff_stride, coeff, |
| qcoeff, dqcoeff); |
| #if CONFIG_HIGHBITDEPTH |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| break; |
| case H_PRED: |
| #if CONFIG_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| hbd_process_block_dpcm_horz(tx_size, tx_type_1d, xd->bd, pd, p, src, |
| src_stride, dst, dst_stride, src_diff, |
| diff_stride, coeff, qcoeff, dqcoeff); |
| } else { |
| #endif // CONFIG_HIGHBITDEPTH |
| process_block_dpcm_horz(tx_size, tx_type_1d, pd, p, src, src_stride, |
| dst, dst_stride, src_diff, diff_stride, coeff, |
| qcoeff, dqcoeff); |
| #if CONFIG_HIGHBITDEPTH |
| } |
| #endif // CONFIG_HIGHBITDEPTH |
| break; |
| default: assert(0); |
| } |
| *eob = get_eob(qcoeff, tx1d_height * tx1d_width, scan_order->scan); |
| } |
| |
| ta[blk_col] = tl[blk_row] = *eob > 0; |
| if (*eob) *skip = 0; |
| } |
| #endif // CONFIG_DPCM_INTRA |
| |
| void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg) { |
| struct encode_b_args *const args = arg; |
| AV1_COMMON *cm = args->cm; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| PLANE_TYPE plane_type = get_plane_type(plane); |
| const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); |
| uint16_t *eob = &p->eobs[block]; |
| const int dst_stride = pd->dst.stride; |
| uint8_t *dst = |
| &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; |
| #if CONFIG_CFL |
| |
| #if CONFIG_EC_ADAPT |
| FRAME_CONTEXT *const ec_ctx = xd->tile_ctx; |
| #else |
| FRAME_CONTEXT *const ec_ctx = cm->fc; |
| #endif // CONFIG_EC_ADAPT |
| |
| av1_predict_intra_block_encoder_facade(x, ec_ctx, plane, block, blk_col, |
| blk_row, tx_size, plane_bsize); |
| #else |
| av1_predict_intra_block_facade(xd, plane, block, blk_col, blk_row, tx_size); |
| #endif |
| |
| #if CONFIG_DPCM_INTRA |
| const int block_raster_idx = av1_block_index_to_raster_order(tx_size, block); |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const PREDICTION_MODE mode = |
| (plane == 0) ? get_y_mode(xd->mi[0], block_raster_idx) : mbmi->uv_mode; |
| if (av1_use_dpcm_intra(plane, mode, tx_type, mbmi)) { |
| av1_encode_block_intra_dpcm(cm, x, mode, plane, block, blk_row, blk_col, |
| plane_bsize, tx_size, tx_type, args->ta, |
| args->tl, args->skip); |
| return; |
| } |
| #endif // CONFIG_DPCM_INTRA |
| |
| av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); |
| |
| const ENTROPY_CONTEXT *a = &args->ta[blk_col]; |
| const ENTROPY_CONTEXT *l = &args->tl[blk_row]; |
| int ctx = combine_entropy_contexts(*a, *l); |
| if (args->enable_optimize_b) { |
| av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| ctx, AV1_XFORM_QUANT_FP); |
| av1_optimize_b(cm, x, plane, block, plane_bsize, tx_size, a, l); |
| } else { |
| av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| ctx, AV1_XFORM_QUANT_B); |
| } |
| |
| #if CONFIG_PVQ |
| // *(args->skip) == mbmi->skip |
| if (!x->pvq_skip[plane]) *(args->skip) = 0; |
| |
| if (x->pvq_skip[plane]) return; |
| #endif // CONFIG_PVQ |
| av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst, dst_stride, |
| *eob); |
| #if !CONFIG_PVQ |
| if (*eob) *(args->skip) = 0; |
| #else |
| // Note : *(args->skip) == mbmi->skip |
| #endif |
| #if CONFIG_CFL |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| if (plane == AOM_PLANE_Y && x->cfl_store_y) { |
| cfl_store(xd->cfl, dst, dst_stride, blk_row, blk_col, tx_size); |
| } |
| |
| if (mbmi->uv_mode == DC_PRED) { |
| // TODO(ltrudeau) find a cleaner way to detect last transform block |
| if (plane == AOM_PLANE_U) { |
| xd->cfl->num_tx_blk[CFL_PRED_U] = |
| (blk_row == 0 && blk_col == 0) ? 1 |
| : xd->cfl->num_tx_blk[CFL_PRED_U] + 1; |
| } |
| |
| if (plane == AOM_PLANE_V) { |
| xd->cfl->num_tx_blk[CFL_PRED_V] = |
| (blk_row == 0 && blk_col == 0) ? 1 |
| : xd->cfl->num_tx_blk[CFL_PRED_V] + 1; |
| |
| if (mbmi->skip && |
| xd->cfl->num_tx_blk[CFL_PRED_U] == xd->cfl->num_tx_blk[CFL_PRED_V]) { |
| assert(plane_bsize != BLOCK_INVALID); |
| const int block_width = block_size_wide[plane_bsize]; |
| const int block_height = block_size_high[plane_bsize]; |
| |
| // if SKIP is chosen at the block level, and ind != 0, we must change |
| // the prediction |
| if (mbmi->cfl_alpha_idx != 0) { |
| const struct macroblockd_plane *const pd_cb = &xd->plane[AOM_PLANE_U]; |
| uint8_t *const dst_cb = pd_cb->dst.buf; |
| const int dst_stride_cb = pd_cb->dst.stride; |
| uint8_t *const dst_cr = pd->dst.buf; |
| const int dst_stride_cr = pd->dst.stride; |
| for (int j = 0; j < block_height; j++) { |
| for (int i = 0; i < block_width; i++) { |
| dst_cb[dst_stride_cb * j + i] = |
| (uint8_t)(xd->cfl->dc_pred[CFL_PRED_U] + 0.5); |
| dst_cr[dst_stride_cr * j + i] = |
| (uint8_t)(xd->cfl->dc_pred[CFL_PRED_V] + 0.5); |
| } |
| } |
| mbmi->cfl_alpha_idx = 0; |
| mbmi->cfl_alpha_signs[CFL_PRED_U] = CFL_SIGN_POS; |
| mbmi->cfl_alpha_signs[CFL_PRED_V] = CFL_SIGN_POS; |
| } |
| } |
| } |
| } |
| #endif |
| } |
| |
| #if CONFIG_CFL |
| static int cfl_alpha_dist(const uint8_t *y_pix, int y_stride, double y_avg, |
| const uint8_t *src, int src_stride, int blk_width, |
| int blk_height, double dc_pred, double alpha, |
| int *dist_neg_out) { |
| const double dc_pred_bias = dc_pred + 0.5; |
| int dist = 0; |
| int diff; |
| |
| if (alpha == 0.0) { |
| const int dc_pred_i = (int)dc_pred_bias; |
| for (int j = 0; j < blk_height; j++) { |
| for (int i = 0; i < blk_width; i++) { |
| diff = src[i] - dc_pred_i; |
| dist += diff * diff; |
| } |
| src += src_stride; |
| } |
| |
| if (dist_neg_out) *dist_neg_out = dist; |
| |
| return dist; |
| } |
| |
| int dist_neg = 0; |
| for (int j = 0; j < blk_height; j++) { |
| for (int i = 0; i < blk_width; i++) { |
| const double scaled_luma = alpha * (y_pix[i] - y_avg); |
| const int uv = src[i]; |
| diff = uv - (int)(scaled_luma + dc_pred_bias); |
| dist += diff * diff; |
| diff = uv + (int)(scaled_luma - dc_pred_bias); |
| dist_neg += diff * diff; |
| } |
| y_pix += y_stride; |
| src += src_stride; |
| } |
| |
| if (dist_neg_out) *dist_neg_out = dist_neg; |
| |
| return dist; |
| } |
| |
| static int cfl_compute_alpha_ind(MACROBLOCK *const x, const CFL_CTX *const cfl, |
| BLOCK_SIZE bsize, |
| CFL_SIGN_TYPE signs_out[CFL_SIGNS]) { |
| const struct macroblock_plane *const p_u = &x->plane[AOM_PLANE_U]; |
| const struct macroblock_plane *const p_v = &x->plane[AOM_PLANE_V]; |
| const uint8_t *const src_u = p_u->src.buf; |
| const uint8_t *const src_v = p_v->src.buf; |
| const int src_stride_u = p_u->src.stride; |
| const int src_stride_v = p_v->src.stride; |
| const int block_width = block_size_wide[bsize]; |
| const int block_height = block_size_high[bsize]; |
| const double dc_pred_u = cfl->dc_pred[CFL_PRED_U]; |
| const double dc_pred_v = cfl->dc_pred[CFL_PRED_V]; |
| |
| // Temporary pixel buffer used to store the CfL prediction when we compute the |
| // alpha index. |
| uint8_t tmp_pix[MAX_SB_SQUARE]; |
| // Load CfL Prediction over the entire block |
| const double y_avg = |
| cfl_load(cfl, tmp_pix, MAX_SB_SIZE, 0, 0, block_width, block_height); |
| |
| int sse[CFL_PRED_PLANES][CFL_MAGS_SIZE]; |
| sse[CFL_PRED_U][0] = |
| cfl_alpha_dist(tmp_pix, MAX_SB_SIZE, y_avg, src_u, src_stride_u, |
| block_width, block_height, dc_pred_u, 0, NULL); |
| sse[CFL_PRED_V][0] = |
| cfl_alpha_dist(tmp_pix, MAX_SB_SIZE, y_avg, src_v, src_stride_v, |
| block_width, block_height, dc_pred_v, 0, NULL); |
| for (int m = 1; m < CFL_MAGS_SIZE; m += 2) { |
| assert(cfl_alpha_mags[m + 1] == -cfl_alpha_mags[m]); |
| sse[CFL_PRED_U][m] = cfl_alpha_dist( |
| tmp_pix, MAX_SB_SIZE, y_avg, src_u, src_stride_u, block_width, |
| block_height, dc_pred_u, cfl_alpha_mags[m], &sse[CFL_PRED_U][m + 1]); |
| sse[CFL_PRED_V][m] = cfl_alpha_dist( |
| tmp_pix, MAX_SB_SIZE, y_avg, src_v, src_stride_v, block_width, |
| block_height, dc_pred_v, cfl_alpha_mags[m], &sse[CFL_PRED_V][m + 1]); |
| } |
| |
| int dist; |
| int64_t cost; |
| int64_t best_cost; |
| |
| // Compute least squares parameter of the entire block |
| // IMPORTANT: We assume that the first code is 0,0 |
| int ind = 0; |
| signs_out[CFL_PRED_U] = CFL_SIGN_POS; |
| signs_out[CFL_PRED_V] = CFL_SIGN_POS; |
| |
| dist = sse[CFL_PRED_U][0] + sse[CFL_PRED_V][0]; |
| dist *= 16; |
| best_cost = RDCOST(x->rdmult, x->rddiv, cfl->costs[0], dist); |
| |
| for (int c = 1; c < CFL_ALPHABET_SIZE; c++) { |
| const int idx_u = cfl_alpha_codes[c][CFL_PRED_U]; |
| const int idx_v = cfl_alpha_codes[c][CFL_PRED_V]; |
| for (CFL_SIGN_TYPE sign_u = idx_u == 0; sign_u < CFL_SIGNS; sign_u++) { |
| for (CFL_SIGN_TYPE sign_v = idx_v == 0; sign_v < CFL_SIGNS; sign_v++) { |
| dist = sse[CFL_PRED_U][idx_u + (sign_u == CFL_SIGN_NEG)] + |
| sse[CFL_PRED_V][idx_v + (sign_v == CFL_SIGN_NEG)]; |
| dist *= 16; |
| cost = RDCOST(x->rdmult, x->rddiv, cfl->costs[c], dist); |
| if (cost < best_cost) { |
| best_cost = cost; |
| ind = c; |
| signs_out[CFL_PRED_U] = sign_u; |
| signs_out[CFL_PRED_V] = sign_v; |
| } |
| } |
| } |
| } |
| |
| return ind; |
| } |
| |
| static inline void cfl_update_costs(CFL_CTX *cfl, FRAME_CONTEXT *ec_ctx) { |
| assert(ec_ctx->cfl_alpha_cdf[CFL_ALPHABET_SIZE - 1] == |
| AOM_ICDF(CDF_PROB_TOP)); |
| const int prob_den = CDF_PROB_TOP; |
| |
| int prob_num = AOM_ICDF(ec_ctx->cfl_alpha_cdf[0]); |
| cfl->costs[0] = av1_cost_zero(get_prob(prob_num, prob_den)); |
| |
| for (int c = 1; c < CFL_ALPHABET_SIZE; c++) { |
| int sign_bit_cost = (cfl_alpha_codes[c][CFL_PRED_U] != 0) + |
| (cfl_alpha_codes[c][CFL_PRED_V] != 0); |
| prob_num = AOM_ICDF(ec_ctx->cfl_alpha_cdf[c]) - |
| AOM_ICDF(ec_ctx->cfl_alpha_cdf[c - 1]); |
| cfl->costs[c] = av1_cost_zero(get_prob(prob_num, prob_den)) + |
| av1_cost_literal(sign_bit_cost); |
| } |
| } |
| |
| void av1_predict_intra_block_encoder_facade(MACROBLOCK *x, |
| FRAME_CONTEXT *ec_ctx, int plane, |
| int block_idx, int blk_col, |
| int blk_row, TX_SIZE tx_size, |
| BLOCK_SIZE plane_bsize) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| if (plane != AOM_PLANE_Y && mbmi->uv_mode == DC_PRED) { |
| if (blk_col == 0 && blk_row == 0 && plane == AOM_PLANE_U) { |
| CFL_CTX *const cfl = xd->cfl; |
| cfl_update_costs(cfl, ec_ctx); |
| cfl_dc_pred(xd, plane_bsize, tx_size); |
| mbmi->cfl_alpha_idx = |
| cfl_compute_alpha_ind(x, cfl, plane_bsize, mbmi->cfl_alpha_signs); |
| } |
| } |
| av1_predict_intra_block_facade(xd, plane, block_idx, blk_col, blk_row, |
| tx_size); |
| } |
| #endif |
| |
| void av1_encode_intra_block_plane(AV1_COMMON *cm, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int plane, |
| int enable_optimize_b, int mi_row, |
| int mi_col) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE] = { 0 }; |
| ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE] = { 0 }; |
| |
| struct encode_b_args arg = { |
| cm, x, NULL, &xd->mi[0]->mbmi.skip, ta, tl, enable_optimize_b |
| }; |
| |
| #if CONFIG_CB4X4 |
| if (!is_chroma_reference(mi_row, mi_col, bsize, |
| xd->plane[plane].subsampling_x, |
| xd->plane[plane].subsampling_y)) |
| return; |
| #else |
| (void)mi_row; |
| (void)mi_col; |
| #endif |
| |
| if (enable_optimize_b) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const TX_SIZE tx_size = get_tx_size(plane, xd); |
| av1_get_entropy_contexts(bsize, tx_size, pd, ta, tl); |
| } |
| av1_foreach_transformed_block_in_plane( |
| xd, bsize, plane, encode_block_intra_and_set_context, &arg); |
| } |
| |
| #if CONFIG_PVQ |
| PVQ_SKIP_TYPE av1_pvq_encode_helper(MACROBLOCK *x, tran_low_t *const coeff, |
| tran_low_t *ref_coeff, |
| tran_low_t *const dqcoeff, uint16_t *eob, |
| const int16_t *quant, int plane, |
| int tx_size, TX_TYPE tx_type, int *rate, |
| int speed, PVQ_INFO *pvq_info) { |
| const int tx_blk_size = tx_size_wide[tx_size]; |
| daala_enc_ctx *daala_enc = &x->daala_enc; |
| PVQ_SKIP_TYPE ac_dc_coded; |
| int coeff_shift = 3 - av1_get_tx_scale(tx_size); |
| int hbd_downshift = 0; |
| int rounding_mask; |
| int pvq_dc_quant; |
| int use_activity_masking = daala_enc->use_activity_masking; |
| int tell; |
| int has_dc_skip = 1; |
| int i; |
| int off = od_qm_offset(tx_size, plane ? 1 : 0); |
| |
| DECLARE_ALIGNED(16, tran_low_t, coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); |
| DECLARE_ALIGNED(16, tran_low_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); |
| DECLARE_ALIGNED(16, tran_low_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); |
| |
| DECLARE_ALIGNED(16, int32_t, in_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); |
| DECLARE_ALIGNED(16, int32_t, ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); |
| DECLARE_ALIGNED(16, int32_t, out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); |
| |
| hbd_downshift = x->e_mbd.bd - 8; |
| |
| assert(OD_COEFF_SHIFT >= 4); |
| // DC quantizer for PVQ |
| if (use_activity_masking) |
| pvq_dc_quant = |
| OD_MAXI(1, (quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift) * |
| daala_enc->state |
| .pvq_qm_q4[plane][od_qm_get_index(tx_size, 0)] >> |
| 4); |
| else |
| pvq_dc_quant = |
| OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift); |
| |
| *eob = 0; |
| |
| #if !CONFIG_ANS |
| tell = od_ec_enc_tell_frac(&daala_enc->w.ec); |
| #else |
| #error "CONFIG_PVQ currently requires !CONFIG_ANS." |
| #endif |
| |
| // Change coefficient ordering for pvq encoding. |
| od_raster_to_coding_order(coeff_pvq, tx_blk_size, tx_type, coeff, |
| tx_blk_size); |
| od_raster_to_coding_order(ref_coeff_pvq, tx_blk_size, tx_type, ref_coeff, |
| tx_blk_size); |
| |
| // copy int16 inputs to int32 |
| for (i = 0; i < tx_blk_size * tx_blk_size; i++) { |
| ref_int32[i] = |
| AOM_SIGNED_SHL(ref_coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >> |
| hbd_downshift; |
| in_int32[i] = AOM_SIGNED_SHL(coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >> |
| hbd_downshift; |
| } |
| |
| if (abs(in_int32[0] - ref_int32[0]) < pvq_dc_quant * 141 / 256) { /* 0.55 */ |
| out_int32[0] = 0; |
| } else { |
| out_int32[0] = OD_DIV_R0(in_int32[0] - ref_int32[0], pvq_dc_quant); |
| } |
| |
| ac_dc_coded = |
| od_pvq_encode(daala_enc, ref_int32, in_int32, out_int32, |
| OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> |
| hbd_downshift), // scale/quantizer |
| OD_MAXI(1, quant[1] << (OD_COEFF_SHIFT - 3) >> |
| hbd_downshift), // scale/quantizer |
| plane, |
| tx_size, OD_PVQ_BETA[use_activity_masking][plane][tx_size], |
| 0, // is_keyframe, |
| daala_enc->state.qm + off, daala_enc->state.qm_inv + off, |
| speed, // speed |
| pvq_info); |
| |
| // Encode residue of DC coeff, if required. |
| if (!has_dc_skip || out_int32[0]) { |
| generic_encode(&daala_enc->w, &daala_enc->state.adapt->model_dc[plane], |
| abs(out_int32[0]) - has_dc_skip, |
| &daala_enc->state.adapt->ex_dc[plane][tx_size][0], 2); |
| } |
| if (out_int32[0]) { |
| aom_write_bit(&daala_enc->w, out_int32[0] < 0); |
| } |
| |
| // need to save quantized residue of DC coeff |
| // so that final pvq bitstream writing can know whether DC is coded. |
| if (pvq_info) pvq_info->dq_dc_residue = out_int32[0]; |
| |
| out_int32[0] = out_int32[0] * pvq_dc_quant; |
| out_int32[0] += ref_int32[0]; |
| |
| // copy int32 result back to int16 |
| assert(OD_COEFF_SHIFT > coeff_shift); |
| rounding_mask = (1 << (OD_COEFF_SHIFT - coeff_shift - 1)) - 1; |
| for (i = 0; i < tx_blk_size * tx_blk_size; i++) { |
| out_int32[i] = AOM_SIGNED_SHL(out_int32[i], hbd_downshift); |
| dqcoeff_pvq[i] = (out_int32[i] + (out_int32[i] < 0) + rounding_mask) >> |
| (OD_COEFF_SHIFT - coeff_shift); |
| } |
| |
| // Back to original coefficient order |
| od_coding_order_to_raster(dqcoeff, tx_blk_size, tx_type, dqcoeff_pvq, |
| tx_blk_size); |
| |
| *eob = tx_blk_size * tx_blk_size; |
| |
| #if !CONFIG_ANS |
| *rate = (od_ec_enc_tell_frac(&daala_enc->w.ec) - tell) |
| << (AV1_PROB_COST_SHIFT - OD_BITRES); |
| #else |
| #error "CONFIG_PVQ currently requires !CONFIG_ANS." |
| #endif |
| assert(*rate >= 0); |
| |
| return ac_dc_coded; |
| } |
| |
| void av1_store_pvq_enc_info(PVQ_INFO *pvq_info, int *qg, int *theta, int *k, |
| od_coeff *y, int nb_bands, const int *off, |
| int *size, int skip_rest, int skip_dir, |
| int bs) { // block size in log_2 -2 |
| int i; |
| const int tx_blk_size = tx_size_wide[bs]; |
| |
| for (i = 0; i < nb_bands; i++) { |
| pvq_info->qg[i] = qg[i]; |
| pvq_info->theta[i] = theta[i]; |
| pvq_info->k[i] = k[i]; |
| pvq_info->off[i] = off[i]; |
| pvq_info->size[i] = size[i]; |
| } |
| |
| memcpy(pvq_info->y, y, tx_blk_size * tx_blk_size * sizeof(od_coeff)); |
| |
| pvq_info->nb_bands = nb_bands; |
| pvq_info->skip_rest = skip_rest; |
| pvq_info->skip_dir = skip_dir; |
| pvq_info->bs = bs; |
| } |
| #endif |