| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AOM_DSP_ANSWRITER_H_ |
| #define AOM_DSP_ANSWRITER_H_ |
| // An implementation of Asymmetric Numeral Systems |
| // http://arxiv.org/abs/1311.2540v2 |
| // Implements encoding of: |
| // * rABS (range Asymmetric Binary Systems), a boolean coder |
| // * rANS (range Asymmetric Numeral Systems), a multi-symbol coder |
| |
| #include <assert.h> |
| #include "./aom_config.h" |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/ans.h" |
| #include "aom_dsp/prob.h" |
| #include "aom_ports/mem_ops.h" |
| #include "av1/common/odintrin.h" |
| |
| #if RANS_PRECISION <= OD_DIVU_DMAX |
| #define ANS_DIVREM(quotient, remainder, dividend, divisor) \ |
| do { \ |
| quotient = OD_DIVU_SMALL((dividend), (divisor)); \ |
| remainder = (dividend) - (quotient) * (divisor); \ |
| } while (0) |
| #else |
| #define ANS_DIVREM(quotient, remainder, dividend, divisor) \ |
| do { \ |
| quotient = (dividend) / (divisor); \ |
| remainder = (dividend) % (divisor); \ |
| } while (0) |
| #endif |
| |
| #define ANS_DIV8(dividend, divisor) OD_DIVU_SMALL((dividend), (divisor)) |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif // __cplusplus |
| |
| struct AnsCoder { |
| uint8_t *buf; |
| int buf_offset; |
| uint32_t state; |
| }; |
| |
| static INLINE void ans_write_init(struct AnsCoder *const ans, |
| uint8_t *const buf) { |
| ans->buf = buf; |
| ans->buf_offset = 0; |
| ans->state = L_BASE; |
| } |
| |
| static INLINE int ans_write_end(struct AnsCoder *const ans) { |
| uint32_t state; |
| int ans_size; |
| assert(ans->state >= L_BASE); |
| assert(ans->state < L_BASE * IO_BASE); |
| state = ans->state - L_BASE; |
| if (state < (1u << 15)) { |
| mem_put_le16(ans->buf + ans->buf_offset, (0x00u << 15) + state); |
| ans_size = ans->buf_offset + 2; |
| #if ANS_REVERSE |
| #if L_BASE * IO_BASE > (1 << 23) |
| } else if (state < (1u << 22)) { |
| mem_put_le24(ans->buf + ans->buf_offset, (0x02u << 22) + state); |
| ans_size = ans->buf_offset + 3; |
| } else if (state < (1u << 30)) { |
| mem_put_le32(ans->buf + ans->buf_offset, (0x03u << 30) + state); |
| ans_size = ans->buf_offset + 4; |
| #else |
| } else if (state < (1u << 23)) { |
| mem_put_le24(ans->buf + ans->buf_offset, (0x01u << 23) + state); |
| ans_size = ans->buf_offset + 3; |
| #endif |
| #else |
| } else if (state < (1u << 22)) { |
| mem_put_le24(ans->buf + ans->buf_offset, (0x02u << 22) + state); |
| ans_size = ans->buf_offset + 3; |
| } else if (state < (1u << 29)) { |
| mem_put_le32(ans->buf + ans->buf_offset, (0x07u << 29) + state); |
| ans_size = ans->buf_offset + 4; |
| #endif |
| } else { |
| assert(0 && "State is too large to be serialized"); |
| return ans->buf_offset; |
| } |
| #if ANS_REVERSE |
| { |
| int i; |
| uint8_t tmp; |
| for (i = 0; i < (ans_size >> 1); i++) { |
| tmp = ans->buf[i]; |
| ans->buf[i] = ans->buf[ans_size - 1 - i]; |
| ans->buf[ans_size - 1 - i] = tmp; |
| } |
| ans->buf += ans_size; |
| ans->buf_offset = 0; |
| ans->state = L_BASE; |
| } |
| #endif |
| return ans_size; |
| } |
| |
| // Write one boolean using rABS where p0 is the probability of the value being |
| // zero. |
| static INLINE void rabs_write(struct AnsCoder *ans, int value, AnsP8 p0) { |
| const AnsP8 p = ANS_P8_PRECISION - p0; |
| const unsigned l_s = value ? p : p0; |
| unsigned state = ans->state; |
| while (state >= L_BASE / ANS_P8_PRECISION * IO_BASE * l_s) { |
| ans->buf[ans->buf_offset++] = state % IO_BASE; |
| state /= IO_BASE; |
| } |
| const unsigned quotient = ANS_DIV8(state, l_s); |
| const unsigned remainder = state - quotient * l_s; |
| ans->state = quotient * ANS_P8_PRECISION + remainder + (value ? p0 : 0); |
| } |
| |
| // Encode one symbol using rANS. |
| // cum_prob: The cumulative probability before this symbol (the offset of |
| // the symbol in the symbol cycle) |
| // prob: The probability of this symbol (l_s from the paper) |
| // RANS_PRECISION takes the place of m from the paper. |
| static INLINE void rans_write(struct AnsCoder *ans, aom_cdf_prob cum_prob, |
| aom_cdf_prob prob) { |
| unsigned quotient, remainder; |
| while (ans->state >= L_BASE / RANS_PRECISION * IO_BASE * prob) { |
| ans->buf[ans->buf_offset++] = ans->state % IO_BASE; |
| ans->state /= IO_BASE; |
| } |
| ANS_DIVREM(quotient, remainder, ans->state, prob); |
| ans->state = quotient * RANS_PRECISION + remainder + cum_prob; |
| } |
| |
| #undef ANS_DIV8 |
| #undef ANS_DIVREM |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif // __cplusplus |
| #endif // AOM_DSP_ANSWRITER_H_ |