blob: 89263ce89e0c8f8a1b4eaae96c262d5305916635 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "av1/common/entropy.h"
#include "av1/common/scan.h"
#include "aom/aom_codec.h"
#include "aom/aom_integer.h"
#include "aom_ports/mem.h"
#include "aom_ports/msvc.h" // for round()
using libaom_test::ACMRandom;
namespace {
const int kNumCoeffs = 256;
const double C1 = 0.995184726672197;
const double C2 = 0.98078528040323;
const double C3 = 0.956940335732209;
const double C4 = 0.923879532511287;
const double C5 = 0.881921264348355;
const double C6 = 0.831469612302545;
const double C7 = 0.773010453362737;
const double C8 = 0.707106781186548;
const double C9 = 0.634393284163646;
const double C10 = 0.555570233019602;
const double C11 = 0.471396736825998;
const double C12 = 0.38268343236509;
const double C13 = 0.290284677254462;
const double C14 = 0.195090322016128;
const double C15 = 0.098017140329561;
void butterfly_16x16_dct_1d(double input[16], double output[16]) {
double step[16];
double intermediate[16];
double temp1, temp2;
// step 1
step[0] = input[0] + input[15];
step[1] = input[1] + input[14];
step[2] = input[2] + input[13];
step[3] = input[3] + input[12];
step[4] = input[4] + input[11];
step[5] = input[5] + input[10];
step[6] = input[6] + input[9];
step[7] = input[7] + input[8];
step[8] = input[7] - input[8];
step[9] = input[6] - input[9];
step[10] = input[5] - input[10];
step[11] = input[4] - input[11];
step[12] = input[3] - input[12];
step[13] = input[2] - input[13];
step[14] = input[1] - input[14];
step[15] = input[0] - input[15];
// step 2
output[0] = step[0] + step[7];
output[1] = step[1] + step[6];
output[2] = step[2] + step[5];
output[3] = step[3] + step[4];
output[4] = step[3] - step[4];
output[5] = step[2] - step[5];
output[6] = step[1] - step[6];
output[7] = step[0] - step[7];
temp1 = step[8] * C7;
temp2 = step[15] * C9;
output[8] = temp1 + temp2;
temp1 = step[9] * C11;
temp2 = step[14] * C5;
output[9] = temp1 - temp2;
temp1 = step[10] * C3;
temp2 = step[13] * C13;
output[10] = temp1 + temp2;
temp1 = step[11] * C15;
temp2 = step[12] * C1;
output[11] = temp1 - temp2;
temp1 = step[11] * C1;
temp2 = step[12] * C15;
output[12] = temp2 + temp1;
temp1 = step[10] * C13;
temp2 = step[13] * C3;
output[13] = temp2 - temp1;
temp1 = step[9] * C5;
temp2 = step[14] * C11;
output[14] = temp2 + temp1;
temp1 = step[8] * C9;
temp2 = step[15] * C7;
output[15] = temp2 - temp1;
// step 3
step[0] = output[0] + output[3];
step[1] = output[1] + output[2];
step[2] = output[1] - output[2];
step[3] = output[0] - output[3];
temp1 = output[4] * C14;
temp2 = output[7] * C2;
step[4] = temp1 + temp2;
temp1 = output[5] * C10;
temp2 = output[6] * C6;
step[5] = temp1 + temp2;
temp1 = output[5] * C6;
temp2 = output[6] * C10;
step[6] = temp2 - temp1;
temp1 = output[4] * C2;
temp2 = output[7] * C14;
step[7] = temp2 - temp1;
step[8] = output[8] + output[11];
step[9] = output[9] + output[10];
step[10] = output[9] - output[10];
step[11] = output[8] - output[11];
step[12] = output[12] + output[15];
step[13] = output[13] + output[14];
step[14] = output[13] - output[14];
step[15] = output[12] - output[15];
// step 4
output[0] = (step[0] + step[1]);
output[8] = (step[0] - step[1]);
temp1 = step[2] * C12;
temp2 = step[3] * C4;
temp1 = temp1 + temp2;
output[4] = 2 * (temp1 * C8);
temp1 = step[2] * C4;
temp2 = step[3] * C12;
temp1 = temp2 - temp1;
output[12] = 2 * (temp1 * C8);
output[2] = 2 * ((step[4] + step[5]) * C8);
output[14] = 2 * ((step[7] - step[6]) * C8);
temp1 = step[4] - step[5];
temp2 = step[6] + step[7];
output[6] = (temp1 + temp2);
output[10] = (temp1 - temp2);
intermediate[8] = step[8] + step[14];
intermediate[9] = step[9] + step[15];
temp1 = intermediate[8] * C12;
temp2 = intermediate[9] * C4;
temp1 = temp1 - temp2;
output[3] = 2 * (temp1 * C8);
temp1 = intermediate[8] * C4;
temp2 = intermediate[9] * C12;
temp1 = temp2 + temp1;
output[13] = 2 * (temp1 * C8);
output[9] = 2 * ((step[10] + step[11]) * C8);
intermediate[11] = step[10] - step[11];
intermediate[12] = step[12] + step[13];
intermediate[13] = step[12] - step[13];
intermediate[14] = step[8] - step[14];
intermediate[15] = step[9] - step[15];
output[15] = (intermediate[11] + intermediate[12]);
output[1] = -(intermediate[11] - intermediate[12]);
output[7] = 2 * (intermediate[13] * C8);
temp1 = intermediate[14] * C12;
temp2 = intermediate[15] * C4;
temp1 = temp1 - temp2;
output[11] = -2 * (temp1 * C8);
temp1 = intermediate[14] * C4;
temp2 = intermediate[15] * C12;
temp1 = temp2 + temp1;
output[5] = 2 * (temp1 * C8);
}
void reference_16x16_dct_2d(int16_t input[256], double output[256]) {
// First transform columns
for (int i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (int j = 0; j < 16; ++j) temp_in[j] = input[j * 16 + i];
butterfly_16x16_dct_1d(temp_in, temp_out);
for (int j = 0; j < 16; ++j) output[j * 16 + i] = temp_out[j];
}
// Then transform rows
for (int i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (int j = 0; j < 16; ++j) temp_in[j] = output[j + i * 16];
butterfly_16x16_dct_1d(temp_in, temp_out);
// Scale by some magic number
for (int j = 0; j < 16; ++j) output[j + i * 16] = temp_out[j] / 2;
}
}
typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride);
typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride);
typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride,
int tx_type);
typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride,
int tx_type);
typedef std::tr1::tuple<FdctFunc, IdctFunc, int, aom_bit_depth_t> Dct16x16Param;
typedef std::tr1::tuple<FhtFunc, IhtFunc, int, aom_bit_depth_t> Ht16x16Param;
typedef std::tr1::tuple<IdctFunc, IdctFunc, int, aom_bit_depth_t>
Idct16x16Param;
void fdct16x16_ref(const int16_t *in, tran_low_t *out, int stride,
int /*tx_type*/) {
aom_fdct16x16_c(in, out, stride);
}
void idct16x16_ref(const tran_low_t *in, uint8_t *dest, int stride,
int /*tx_type*/) {
aom_idct16x16_256_add_c(in, dest, stride);
}
void fht16x16_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) {
av1_fht16x16_c(in, out, stride, tx_type);
}
void iht16x16_ref(const tran_low_t *in, uint8_t *dest, int stride,
int tx_type) {
av1_iht16x16_256_add_c(in, dest, stride, tx_type);
}
#if CONFIG_HIGHBITDEPTH
void iht16x16_10(const tran_low_t *in, uint8_t *out, int stride, int tx_type) {
av1_highbd_iht16x16_256_add_c(in, out, stride, tx_type, 10);
}
void iht16x16_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) {
av1_highbd_iht16x16_256_add_c(in, out, stride, tx_type, 12);
}
#endif // CONFIG_HIGHBITDEPTH
class Trans16x16TestBase {
public:
virtual ~Trans16x16TestBase() {}
protected:
virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0;
virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0;
void RunAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
uint32_t max_error = 0;
int64_t total_error = 0;
const int count_test_block = 10000;
for (int i = 0; i < count_test_block; ++i) {
DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
#endif
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j) {
if (bit_depth_ == AOM_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
#if CONFIG_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
test_input_block[j] = src16[j] - dst16[j];
#endif
}
}
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_temp_block, pitch_));
if (bit_depth_ == AOM_BITS_8) {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_));
#if CONFIG_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_));
#endif
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_HIGHBITDEPTH
const int32_t diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const int32_t diff = dst[j] - src[j];
#endif
const uint32_t error = diff * diff;
if (max_error < error) max_error = error;
total_error += error;
}
}
EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error)
<< "Error: 16x16 FHT/IHT has an individual round trip error > 1";
EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error)
<< "Error: 16x16 FHT/IHT has average round trip error > 1 per block";
}
void RunCoeffCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j)
input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_);
fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_);
ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_));
// The minimum quant value is 4.
for (int j = 0; j < kNumCoeffs; ++j)
EXPECT_EQ(output_block[j], output_ref_block[j]);
}
}
void RunMemCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j) {
input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_;
}
if (i == 0) {
for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_;
} else if (i == 1) {
for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_;
}
fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_);
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(input_extreme_block, output_block, pitch_));
// The minimum quant value is 4.
for (int j = 0; j < kNumCoeffs; ++j) {
EXPECT_EQ(output_block[j], output_ref_block[j]);
EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j]))
<< "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
}
}
}
void RunQuantCheck(int dc_thred, int ac_thred) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 100000;
DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]);
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]);
#endif
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j) {
input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_;
}
if (i == 0)
for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_;
if (i == 1)
for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_;
fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_);
// clear reconstructed pixel buffers
memset(dst, 0, kNumCoeffs * sizeof(uint8_t));
memset(ref, 0, kNumCoeffs * sizeof(uint8_t));
#if CONFIG_HIGHBITDEPTH
memset(dst16, 0, kNumCoeffs * sizeof(uint16_t));
memset(ref16, 0, kNumCoeffs * sizeof(uint16_t));
#endif
// quantization with maximum allowed step sizes
output_ref_block[0] = (output_ref_block[0] / dc_thred) * dc_thred;
for (int j = 1; j < kNumCoeffs; ++j)
output_ref_block[j] = (output_ref_block[j] / ac_thred) * ac_thred;
if (bit_depth_ == AOM_BITS_8) {
inv_txfm_ref(output_ref_block, ref, pitch_, tx_type_);
ASM_REGISTER_STATE_CHECK(RunInvTxfm(output_ref_block, dst, pitch_));
#if CONFIG_HIGHBITDEPTH
} else {
inv_txfm_ref(output_ref_block, CONVERT_TO_BYTEPTR(ref16), pitch_,
tx_type_);
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(output_ref_block, CONVERT_TO_BYTEPTR(dst16), pitch_));
#endif
}
if (bit_depth_ == AOM_BITS_8) {
for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref[j], dst[j]);
#if CONFIG_HIGHBITDEPTH
} else {
for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref16[j], dst16[j]);
#endif
}
}
}
void RunInvAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
#endif // CONFIG_HIGHBITDEPTH
for (int i = 0; i < count_test_block; ++i) {
double out_r[kNumCoeffs];
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
if (bit_depth_ == AOM_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
in[j] = src[j] - dst[j];
#if CONFIG_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
in[j] = src16[j] - dst16[j];
#endif // CONFIG_HIGHBITDEPTH
}
}
reference_16x16_dct_2d(in, out_r);
for (int j = 0; j < kNumCoeffs; ++j)
coeff[j] = static_cast<tran_low_t>(round(out_r[j]));
if (bit_depth_ == AOM_BITS_8) {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, 16));
#if CONFIG_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), 16));
#endif // CONFIG_HIGHBITDEPTH
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_HIGHBITDEPTH
const int diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const int diff = dst[j] - src[j];
#endif // CONFIG_HIGHBITDEPTH
const uint32_t error = diff * diff;
EXPECT_GE(1u, error) << "Error: 16x16 IDCT has error " << error
<< " at index " << j;
}
}
}
void CompareInvReference(IdctFunc ref_txfm, int thresh) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 10000;
const int eob = 10;
const int16_t *scan = av1_default_scan_orders[TX_16X16].scan;
DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]);
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]);
#endif // CONFIG_HIGHBITDEPTH
for (int i = 0; i < count_test_block; ++i) {
for (int j = 0; j < kNumCoeffs; ++j) {
if (j < eob) {
// Random values less than the threshold, either positive or negative
coeff[scan[j]] = rnd(thresh) * (1 - 2 * (i % 2));
} else {
coeff[scan[j]] = 0;
}
if (bit_depth_ == AOM_BITS_8) {
dst[j] = 0;
ref[j] = 0;
#if CONFIG_HIGHBITDEPTH
} else {
dst16[j] = 0;
ref16[j] = 0;
#endif // CONFIG_HIGHBITDEPTH
}
}
if (bit_depth_ == AOM_BITS_8) {
ref_txfm(coeff, ref, pitch_);
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
} else {
#if CONFIG_HIGHBITDEPTH
ref_txfm(coeff, CONVERT_TO_BYTEPTR(ref16), pitch_);
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_));
#endif // CONFIG_HIGHBITDEPTH
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_HIGHBITDEPTH
const int diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j];
#else
const int diff = dst[j] - ref[j];
#endif // CONFIG_HIGHBITDEPTH
const uint32_t error = diff * diff;
EXPECT_EQ(0u, error) << "Error: 16x16 IDCT Comparison has error "
<< error << " at index " << j;
}
}
}
int pitch_;
int tx_type_;
aom_bit_depth_t bit_depth_;
int mask_;
FhtFunc fwd_txfm_ref;
IhtFunc inv_txfm_ref;
};
class Trans16x16DCT : public Trans16x16TestBase,
public ::testing::TestWithParam<Dct16x16Param> {
public:
virtual ~Trans16x16DCT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
tx_type_ = GET_PARAM(2);
bit_depth_ = GET_PARAM(3);
pitch_ = 16;
fwd_txfm_ref = fdct16x16_ref;
inv_txfm_ref = idct16x16_ref;
mask_ = (1 << bit_depth_) - 1;
inv_txfm_ref = idct16x16_ref;
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {
fwd_txfm_(in, out, stride);
}
void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride);
}
FdctFunc fwd_txfm_;
IdctFunc inv_txfm_;
};
TEST_P(Trans16x16DCT, AccuracyCheck) { RunAccuracyCheck(); }
TEST_P(Trans16x16DCT, CoeffCheck) { RunCoeffCheck(); }
TEST_P(Trans16x16DCT, MemCheck) { RunMemCheck(); }
TEST_P(Trans16x16DCT, QuantCheck) {
// Use maximally allowed quantization step sizes for DC and AC
// coefficients respectively.
RunQuantCheck(1336, 1828);
}
TEST_P(Trans16x16DCT, InvAccuracyCheck) { RunInvAccuracyCheck(); }
class Trans16x16HT : public Trans16x16TestBase,
public ::testing::TestWithParam<Ht16x16Param> {
public:
virtual ~Trans16x16HT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
tx_type_ = GET_PARAM(2);
bit_depth_ = GET_PARAM(3);
pitch_ = 16;
fwd_txfm_ref = fht16x16_ref;
inv_txfm_ref = iht16x16_ref;
mask_ = (1 << bit_depth_) - 1;
#if CONFIG_HIGHBITDEPTH
switch (bit_depth_) {
case AOM_BITS_10: inv_txfm_ref = iht16x16_10; break;
case AOM_BITS_12: inv_txfm_ref = iht16x16_12; break;
default: inv_txfm_ref = iht16x16_ref; break;
}
#else
inv_txfm_ref = iht16x16_ref;
#endif
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {
fwd_txfm_(in, out, stride, tx_type_);
}
void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride, tx_type_);
}
FhtFunc fwd_txfm_;
IhtFunc inv_txfm_;
};
TEST_P(Trans16x16HT, AccuracyCheck) { RunAccuracyCheck(); }
TEST_P(Trans16x16HT, CoeffCheck) { RunCoeffCheck(); }
TEST_P(Trans16x16HT, MemCheck) { RunMemCheck(); }
TEST_P(Trans16x16HT, QuantCheck) {
// The encoder skips any non-DC intra prediction modes,
// when the quantization step size goes beyond 988.
RunQuantCheck(429, 729);
}
class InvTrans16x16DCT : public Trans16x16TestBase,
public ::testing::TestWithParam<Idct16x16Param> {
public:
virtual ~InvTrans16x16DCT() {}
virtual void SetUp() {
ref_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
thresh_ = GET_PARAM(2);
bit_depth_ = GET_PARAM(3);
pitch_ = 16;
mask_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t * /*in*/, tran_low_t * /*out*/, int /*stride*/) {}
void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride);
}
IdctFunc ref_txfm_;
IdctFunc inv_txfm_;
int thresh_;
};
TEST_P(InvTrans16x16DCT, CompareReference) {
CompareInvReference(ref_txfm_, thresh_);
}
class PartialTrans16x16Test : public ::testing::TestWithParam<
std::tr1::tuple<FdctFunc, aom_bit_depth_t> > {
public:
virtual ~PartialTrans16x16Test() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
bit_depth_ = GET_PARAM(1);
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
aom_bit_depth_t bit_depth_;
FdctFunc fwd_txfm_;
};
TEST_P(PartialTrans16x16Test, Extremes) {
#if CONFIG_HIGHBITDEPTH
const int16_t maxval =
static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_));
#else
const int16_t maxval = 255;
#endif
const int minval = -maxval;
DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]);
for (int i = 0; i < kNumCoeffs; ++i) input[i] = maxval;
output[0] = 0;
ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 16));
EXPECT_EQ((maxval * kNumCoeffs) >> 1, output[0]);
for (int i = 0; i < kNumCoeffs; ++i) input[i] = minval;
output[0] = 0;
ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 16));
EXPECT_EQ((minval * kNumCoeffs) >> 1, output[0]);
}
TEST_P(PartialTrans16x16Test, Random) {
#if CONFIG_HIGHBITDEPTH
const int16_t maxval =
static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_));
#else
const int16_t maxval = 255;
#endif
DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]);
ACMRandom rnd(ACMRandom::DeterministicSeed());
int sum = 0;
for (int i = 0; i < kNumCoeffs; ++i) {
const int val = (i & 1) ? -rnd(maxval + 1) : rnd(maxval + 1);
input[i] = val;
sum += val;
}
output[0] = 0;
ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 16));
EXPECT_EQ(sum >> 1, output[0]);
}
using std::tr1::make_tuple;
#if CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(C, Trans16x16DCT,
::testing::Values(make_tuple(&aom_fdct16x16_c,
&aom_idct16x16_256_add_c,
0, AOM_BITS_8)));
#else
INSTANTIATE_TEST_CASE_P(C, Trans16x16DCT,
::testing::Values(make_tuple(&aom_fdct16x16_c,
&aom_idct16x16_256_add_c,
0, AOM_BITS_8)));
#endif // CONFIG_HIGHBITDEPTH
#if CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
C, Trans16x16HT,
::testing::Values(
make_tuple(&av1_highbd_fht16x16_c, &iht16x16_10, 0, AOM_BITS_10),
make_tuple(&av1_highbd_fht16x16_c, &iht16x16_10, 1, AOM_BITS_10),
make_tuple(&av1_highbd_fht16x16_c, &iht16x16_10, 2, AOM_BITS_10),
make_tuple(&av1_highbd_fht16x16_c, &iht16x16_10, 3, AOM_BITS_10),
make_tuple(&av1_highbd_fht16x16_c, &iht16x16_12, 0, AOM_BITS_12),
make_tuple(&av1_highbd_fht16x16_c, &iht16x16_12, 1, AOM_BITS_12),
make_tuple(&av1_highbd_fht16x16_c, &iht16x16_12, 2, AOM_BITS_12),
make_tuple(&av1_highbd_fht16x16_c, &iht16x16_12, 3, AOM_BITS_12),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 0, AOM_BITS_8),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 1, AOM_BITS_8),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 2, AOM_BITS_8),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 3, AOM_BITS_8)));
INSTANTIATE_TEST_CASE_P(
C, PartialTrans16x16Test,
::testing::Values(make_tuple(&aom_highbd_fdct16x16_1_c, AOM_BITS_8),
make_tuple(&aom_highbd_fdct16x16_1_c, AOM_BITS_10),
make_tuple(&aom_highbd_fdct16x16_1_c, AOM_BITS_12)));
#else
INSTANTIATE_TEST_CASE_P(
C, Trans16x16HT,
::testing::Values(
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 0, AOM_BITS_8),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 1, AOM_BITS_8),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 2, AOM_BITS_8),
make_tuple(&av1_fht16x16_c, &av1_iht16x16_256_add_c, 3, AOM_BITS_8)));
INSTANTIATE_TEST_CASE_P(C, PartialTrans16x16Test,
::testing::Values(make_tuple(&aom_fdct16x16_1_c,
AOM_BITS_8)));
#endif // CONFIG_HIGHBITDEPTH
#if HAVE_NEON_ASM && !CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
NEON, Trans16x16DCT,
::testing::Values(make_tuple(&aom_fdct16x16_c, &aom_idct16x16_256_add_neon,
0, AOM_BITS_8)));
#endif
#if HAVE_SSE2 && !CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
SSE2, Trans16x16DCT,
::testing::Values(make_tuple(&aom_fdct16x16_sse2,
&aom_idct16x16_256_add_sse2, 0, AOM_BITS_8)));
INSTANTIATE_TEST_CASE_P(
SSE2, Trans16x16HT,
::testing::Values(make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2,
0, AOM_BITS_8),
make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2,
1, AOM_BITS_8),
make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2,
2, AOM_BITS_8),
make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_sse2,
3, AOM_BITS_8)));
INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans16x16Test,
::testing::Values(make_tuple(&aom_fdct16x16_1_sse2,
AOM_BITS_8)));
#endif // HAVE_SSE2 && !CONFIG_HIGHBITDEPTH
#if HAVE_AVX2 && !CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(AVX2, PartialTrans16x16Test,
::testing::Values(make_tuple(&aom_fdct16x16_1_avx2,
AOM_BITS_8)));
#endif // HAVE_AVX2 && !CONFIG_HIGHBITDEPTH
#if HAVE_SSE2 && CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(SSE2, Trans16x16DCT,
::testing::Values(make_tuple(&aom_fdct16x16_sse2,
&aom_idct16x16_256_add_c,
0, AOM_BITS_8)));
INSTANTIATE_TEST_CASE_P(
SSE2, Trans16x16HT,
::testing::Values(
make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c, 0, AOM_BITS_8),
make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c, 1, AOM_BITS_8),
make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c, 2, AOM_BITS_8),
make_tuple(&av1_fht16x16_sse2, &av1_iht16x16_256_add_c, 3,
AOM_BITS_8)));
// TODO(luoyi):
// For this test case, we should test function: aom_highbd_fdct16x16_1_sse2.
// However this function is not available yet. if we mistakely test
// aom_fdct16x16_1_sse2, it could only pass AOM_BITS_8/AOM_BITS_10 but not
// AOM_BITS_12.
INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans16x16Test,
::testing::Values(make_tuple(&aom_fdct16x16_1_sse2,
AOM_BITS_8)));
#endif // HAVE_SSE2 && CONFIG_HIGHBITDEPTH
#if HAVE_MSA && !CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(MSA, Trans16x16DCT,
::testing::Values(make_tuple(&aom_fdct16x16_msa,
&aom_idct16x16_256_add_msa,
0, AOM_BITS_8)));
#if !CONFIG_EXT_TX
// TODO(yaowu): re-enable this after msa versions are updated to match C.
INSTANTIATE_TEST_CASE_P(
DISABLED_MSA, Trans16x16HT,
::testing::Values(
make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa, 0, AOM_BITS_8),
make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa, 1, AOM_BITS_8),
make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa, 2, AOM_BITS_8),
make_tuple(&av1_fht16x16_msa, &av1_iht16x16_256_add_msa, 3,
AOM_BITS_8)));
#endif // !CONFIG_EXT_TX
INSTANTIATE_TEST_CASE_P(MSA, PartialTrans16x16Test,
::testing::Values(make_tuple(&aom_fdct16x16_1_msa,
AOM_BITS_8)));
#endif // HAVE_MSA && !CONFIG_HIGHBITDEPTH
} // namespace