| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <vector> |
| |
| #include "test/acm_random.h" |
| #include "test/util.h" |
| #include "test/av1_txfm_test.h" |
| #include "av1/common/av1_txfm.h" |
| #include "./av1_rtcd.h" |
| |
| using libaom_test::ACMRandom; |
| using libaom_test::FwdTxfm2dFunc; |
| using libaom_test::TYPE_TXFM; |
| using libaom_test::bd; |
| using libaom_test::compute_avg_abs_error; |
| using libaom_test::input_base; |
| |
| using std::vector; |
| |
| namespace { |
| // tx_type_, tx_size_, max_error_, max_avg_error_ |
| typedef ::testing::tuple<TX_TYPE, TX_SIZE, double, double> AV1FwdTxfm2dParam; |
| |
| class AV1FwdTxfm2d : public ::testing::TestWithParam<AV1FwdTxfm2dParam> { |
| public: |
| virtual void SetUp() { |
| tx_type_ = GET_PARAM(0); |
| tx_size_ = GET_PARAM(1); |
| max_error_ = GET_PARAM(2); |
| max_avg_error_ = GET_PARAM(3); |
| count_ = 500; |
| TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg; |
| av1_get_fwd_txfm_cfg(tx_type_, tx_size_, &fwd_txfm_flip_cfg); |
| amplify_factor_ = libaom_test::get_amplification_factor(tx_type_, tx_size_); |
| tx_width_ = tx_size_wide[fwd_txfm_flip_cfg.tx_size]; |
| tx_height_ = tx_size_high[fwd_txfm_flip_cfg.tx_size]; |
| ud_flip_ = fwd_txfm_flip_cfg.ud_flip; |
| lr_flip_ = fwd_txfm_flip_cfg.lr_flip; |
| |
| fwd_txfm_ = libaom_test::fwd_txfm_func_ls[tx_size_]; |
| txfm2d_size_ = tx_width_ * tx_height_; |
| input_ = reinterpret_cast<int16_t *>( |
| aom_memalign(16, sizeof(input_[0]) * txfm2d_size_)); |
| output_ = reinterpret_cast<int32_t *>( |
| aom_memalign(16, sizeof(output_[0]) * txfm2d_size_)); |
| ref_input_ = reinterpret_cast<double *>( |
| aom_memalign(16, sizeof(ref_input_[0]) * txfm2d_size_)); |
| ref_output_ = reinterpret_cast<double *>( |
| aom_memalign(16, sizeof(ref_output_[0]) * txfm2d_size_)); |
| } |
| |
| void RunFwdAccuracyCheck() { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| double avg_abs_error = 0; |
| for (int ci = 0; ci < count_; ci++) { |
| for (int ni = 0; ni < txfm2d_size_; ++ni) { |
| input_[ni] = rnd.Rand16() % input_base; |
| ref_input_[ni] = static_cast<double>(input_[ni]); |
| output_[ni] = 0; |
| ref_output_[ni] = 0; |
| } |
| |
| fwd_txfm_(input_, output_, tx_width_, tx_type_, bd); |
| |
| if (lr_flip_ && ud_flip_) { |
| libaom_test::fliplrud(ref_input_, tx_width_, tx_height_, tx_width_); |
| } else if (lr_flip_) { |
| libaom_test::fliplr(ref_input_, tx_width_, tx_height_, tx_width_); |
| } else if (ud_flip_) { |
| libaom_test::flipud(ref_input_, tx_width_, tx_height_, tx_width_); |
| } |
| |
| libaom_test::reference_hybrid_2d(ref_input_, ref_output_, tx_type_, |
| tx_size_); |
| |
| double actual_max_error = 0; |
| for (int ni = 0; ni < txfm2d_size_; ++ni) { |
| ref_output_[ni] = round(ref_output_[ni]); |
| const double this_error = |
| fabs(output_[ni] - ref_output_[ni]) / amplify_factor_; |
| actual_max_error = AOMMAX(actual_max_error, this_error); |
| } |
| EXPECT_GE(max_error_, actual_max_error) |
| << "tx_size = " << tx_size_ << ", tx_type = " << tx_type_; |
| if (actual_max_error > max_error_) { // exit early. |
| break; |
| } |
| |
| avg_abs_error += compute_avg_abs_error<int32_t, double>( |
| output_, ref_output_, txfm2d_size_); |
| } |
| |
| avg_abs_error /= amplify_factor_; |
| avg_abs_error /= count_; |
| EXPECT_GE(max_avg_error_, avg_abs_error) |
| << "tx_size = " << tx_size_ << ", tx_type = " << tx_type_; |
| } |
| |
| virtual void TearDown() { |
| aom_free(input_); |
| aom_free(output_); |
| aom_free(ref_input_); |
| aom_free(ref_output_); |
| } |
| |
| private: |
| double max_error_; |
| double max_avg_error_; |
| int count_; |
| double amplify_factor_; |
| TX_TYPE tx_type_; |
| TX_SIZE tx_size_; |
| int tx_width_; |
| int tx_height_; |
| int txfm2d_size_; |
| FwdTxfm2dFunc fwd_txfm_; |
| int16_t *input_; |
| int32_t *output_; |
| double *ref_input_; |
| double *ref_output_; |
| int ud_flip_; // flip upside down |
| int lr_flip_; // flip left to right |
| }; |
| |
| vector<AV1FwdTxfm2dParam> GetTxfm2dParamList() { |
| vector<AV1FwdTxfm2dParam> param_list; |
| for (int t = 0; t < TX_TYPES; ++t) { |
| const TX_TYPE tx_type = static_cast<TX_TYPE>(t); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_4X4, 3, 0.5)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_8X8, 5, 0.5)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X16, 11, 1.2)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_32X32, 70, 6.1)); |
| if (tx_type == DCT_DCT) { // Other types not supported by these tx sizes. |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_64X64, 64, 3.4)); |
| } |
| |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_4X8, 3.9, 0.57)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_8X4, 4.3, 0.68)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_8X16, 12, 0.92)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X8, 12, 1.1)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X32, 32, 4.1)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_32X16, 46, 6)); |
| |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_4X16, 5, 0.6)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X4, 6, 0.9)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_8X32, 21, 1.2)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_32X8, 13, 1.7)); |
| |
| if (tx_type == DCT_DCT) { // Other types not supported by these tx sizes. |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_32X64, 136, 3.5)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_64X32, 136, 5.7)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X64, 30, 2.0)); |
| param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_64X16, 36, 4.7)); |
| } |
| } |
| return param_list; |
| } |
| |
| INSTANTIATE_TEST_CASE_P(C, AV1FwdTxfm2d, |
| ::testing::ValuesIn(GetTxfm2dParamList())); |
| |
| TEST_P(AV1FwdTxfm2d, RunFwdAccuracyCheck) { RunFwdAccuracyCheck(); } |
| |
| TEST(AV1FwdTxfm2d, CfgTest) { |
| for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) { |
| int bd = libaom_test::bd_arr[bd_idx]; |
| int8_t low_range = libaom_test::low_range_arr[bd_idx]; |
| int8_t high_range = libaom_test::high_range_arr[bd_idx]; |
| for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) { |
| for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { |
| if ((tx_size_wide[tx_size] == 64 || tx_size_high[tx_size] == 64) && |
| (tx_type != DCT_DCT && tx_type != IDTX && tx_type != V_DCT && |
| tx_type != H_DCT)) { |
| continue; |
| } |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(static_cast<TX_TYPE>(tx_type), |
| static_cast<TX_SIZE>(tx_size), &cfg); |
| int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; |
| int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; |
| av1_gen_fwd_stage_range(stage_range_col, stage_range_row, &cfg, bd); |
| libaom_test::txfm_stage_range_check(stage_range_col, cfg.stage_num_col, |
| cfg.cos_bit_col, low_range, |
| high_range); |
| libaom_test::txfm_stage_range_check(stage_range_row, cfg.stage_num_row, |
| cfg.cos_bit_row, low_range, |
| high_range); |
| } |
| } |
| } |
| } |
| |
| #if HAVE_SSE2 && defined(__SSE2__) |
| #include "av1/common/x86/av1_txfm_sse2.h" |
| FwdTxfm2dFunc fwd_func_sse2_list[TX_SIZES_ALL][2] = { |
| { av1_fwd_txfm2d_4x4_c, av1_lowbd_fwd_txfm2d_4x4_sse2 }, // TX_4X4 |
| { av1_fwd_txfm2d_8x8_c, av1_lowbd_fwd_txfm2d_8x8_sse2 }, // TX_8X8 |
| { av1_fwd_txfm2d_16x16_c, av1_lowbd_fwd_txfm2d_16x16_sse2 }, // TX_16X16 |
| { av1_fwd_txfm2d_32x32_c, av1_lowbd_fwd_txfm2d_32x32_sse2 }, // TX_32X32 |
| { av1_fwd_txfm2d_64x64_c, NULL }, // TX_64X64 |
| { av1_fwd_txfm2d_4x8_c, av1_lowbd_fwd_txfm2d_4x8_sse2 }, // TX_4X8 |
| { av1_fwd_txfm2d_8x4_c, av1_lowbd_fwd_txfm2d_8x4_sse2 }, // TX_8X4 |
| { av1_fwd_txfm2d_8x16_c, av1_lowbd_fwd_txfm2d_8x16_sse2 }, // TX_8X16 |
| { av1_fwd_txfm2d_16x8_c, av1_lowbd_fwd_txfm2d_16x8_sse2 }, // TX_16X8 |
| { av1_fwd_txfm2d_16x32_c, av1_lowbd_fwd_txfm2d_16x32_sse2 }, // TX_16X32 |
| { av1_fwd_txfm2d_32x16_c, av1_lowbd_fwd_txfm2d_32x16_sse2 }, // TX_32X16 |
| { NULL, NULL }, // TX_32X64 |
| { NULL, NULL }, // TX_64X32 |
| { av1_fwd_txfm2d_4x16_c, av1_lowbd_fwd_txfm2d_4x16_sse2 }, // TX_4X16 |
| { av1_fwd_txfm2d_16x4_c, av1_lowbd_fwd_txfm2d_16x4_sse2 }, // TX_16X4 |
| { av1_fwd_txfm2d_8x32_c, av1_lowbd_fwd_txfm2d_8x32_sse2 }, // TX_8X32 |
| { av1_fwd_txfm2d_32x8_c, av1_lowbd_fwd_txfm2d_32x8_sse2 }, // TX_32X8 |
| { av1_fwd_txfm2d_16x64_c, av1_lowbd_fwd_txfm2d_16x64_sse2 }, // TX_16X64 |
| { av1_fwd_txfm2d_64x16_c, av1_lowbd_fwd_txfm2d_64x16_sse2 }, // TX_64X16 |
| }; |
| |
| TEST(av1_fwd_txfm2d_sse2, match) { |
| const int bd = 8; |
| for (int tx_size = TX_4X4; tx_size < TX_SIZES_ALL; ++tx_size) { |
| const int rows = tx_size_high[tx_size]; |
| const int cols = tx_size_wide[tx_size]; |
| for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { |
| if ((rows >= 32 || cols >= 32) && tx_type != DCT_DCT && tx_type != IDTX && |
| tx_type != V_DCT && tx_type != H_DCT) { |
| // No ADST for large size transforms. |
| continue; |
| } |
| FwdTxfm2dFunc ref_func = fwd_func_sse2_list[tx_size][0]; |
| FwdTxfm2dFunc target_func = fwd_func_sse2_list[tx_size][1]; |
| if (ref_func != NULL && target_func != NULL) { |
| DECLARE_ALIGNED(16, int16_t, input[64 * 64]) = { 0 }; |
| DECLARE_ALIGNED(16, int32_t, output[64 * 64]); |
| DECLARE_ALIGNED(16, int32_t, ref_output[64 * 64]); |
| int input_stride = 64; |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| for (int cnt = 0; cnt < 500; ++cnt) { |
| if (cnt == 0) { |
| for (int r = 0; r < rows; ++r) { |
| for (int c = 0; c < cols; ++c) { |
| input[r * input_stride + c] = (1 << bd) - 1; |
| } |
| } |
| } else { |
| for (int r = 0; r < rows; ++r) { |
| for (int c = 0; c < cols; ++c) { |
| input[r * input_stride + c] = rnd.Rand16() % (1 << bd); |
| } |
| } |
| } |
| ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd); |
| target_func(input, output, input_stride, (TX_TYPE)tx_type, bd); |
| const int check_rows = rows / ((rows == 64 || cols == 64) ? 2 : 1); |
| for (int r = 0; r < check_rows; ++r) { |
| for (int c = 0; c < cols; ++c) { |
| ASSERT_EQ(ref_output[r * cols + c], output[r * cols + c]) |
| << "[" << r << "," << c << "]" |
| << " tx_size: " << tx_size << " tx_type: " << tx_type; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| #endif // HAVE_SSE2 |
| |
| } // namespace |