blob: 796fcedc1cecdb26960a9476b4730f44a762839e [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "./av1_rtcd.h"
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "aom_ports/system_state.h"
#if CONFIG_HIGHBITDEPTH
#include "aom_dsp/aom_dsp_common.h"
#endif // CONFIG_HIGHBITDEPTH
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_once.h"
#include "av1/common/reconintra.h"
#include "av1/common/onyxc_int.h"
#if CONFIG_CFL
#include "av1/common/cfl.h"
#endif
enum {
NEED_LEFT = 1 << 1,
NEED_ABOVE = 1 << 2,
NEED_ABOVERIGHT = 1 << 3,
NEED_ABOVELEFT = 1 << 4,
NEED_BOTTOMLEFT = 1 << 5,
};
#if CONFIG_INTRA_EDGE
#define INTRA_EDGE_FILT 3
#define INTRA_EDGE_TAPS 5
#if CONFIG_INTRA_EDGE_UPSAMPLE
#define MAX_UPSAMPLE_SZ 16
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
#endif // CONFIG_INTRA_EDGE
static const uint8_t extend_modes[INTRA_MODES] = {
NEED_ABOVE | NEED_LEFT, // DC
NEED_ABOVE, // V
NEED_LEFT, // H
NEED_ABOVE | NEED_ABOVERIGHT, // D45
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D135
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D117
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D153
NEED_LEFT | NEED_BOTTOMLEFT, // D207
NEED_ABOVE | NEED_ABOVERIGHT, // D63
NEED_LEFT | NEED_ABOVE, // SMOOTH
NEED_LEFT | NEED_ABOVE, // SMOOTH_V
NEED_LEFT | NEED_ABOVE, // SMOOTH_H
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // PAETH
};
static const uint16_t orders_128x128[1] = { 0 };
static const uint16_t orders_128x64[2] = { 0, 1 };
static const uint16_t orders_64x128[2] = { 0, 1 };
static const uint16_t orders_64x64[4] = { 0, 1, 2, 3 };
static const uint16_t orders_64x32[8] = { 0, 2, 1, 3, 4, 6, 5, 7 };
static const uint16_t orders_32x64[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
static const uint16_t orders_32x32[16] = { 0, 1, 4, 5, 2, 3, 6, 7,
8, 9, 12, 13, 10, 11, 14, 15 };
static const uint16_t orders_32x16[32] = { 0, 2, 8, 10, 1, 3, 9, 11,
4, 6, 12, 14, 5, 7, 13, 15,
16, 18, 24, 26, 17, 19, 25, 27,
20, 22, 28, 30, 21, 23, 29, 31 };
static const uint16_t orders_16x32[32] = { 0, 1, 2, 3, 8, 9, 10, 11,
4, 5, 6, 7, 12, 13, 14, 15,
16, 17, 18, 19, 24, 25, 26, 27,
20, 21, 22, 23, 28, 29, 30, 31 };
static const uint16_t orders_16x16[64] = {
0, 1, 4, 5, 16, 17, 20, 21, 2, 3, 6, 7, 18, 19, 22, 23,
8, 9, 12, 13, 24, 25, 28, 29, 10, 11, 14, 15, 26, 27, 30, 31,
32, 33, 36, 37, 48, 49, 52, 53, 34, 35, 38, 39, 50, 51, 54, 55,
40, 41, 44, 45, 56, 57, 60, 61, 42, 43, 46, 47, 58, 59, 62, 63
};
static const uint16_t orders_16x8[128] = {
0, 2, 8, 10, 32, 34, 40, 42, 1, 3, 9, 11, 33, 35, 41, 43,
4, 6, 12, 14, 36, 38, 44, 46, 5, 7, 13, 15, 37, 39, 45, 47,
16, 18, 24, 26, 48, 50, 56, 58, 17, 19, 25, 27, 49, 51, 57, 59,
20, 22, 28, 30, 52, 54, 60, 62, 21, 23, 29, 31, 53, 55, 61, 63,
64, 66, 72, 74, 96, 98, 104, 106, 65, 67, 73, 75, 97, 99, 105, 107,
68, 70, 76, 78, 100, 102, 108, 110, 69, 71, 77, 79, 101, 103, 109, 111,
80, 82, 88, 90, 112, 114, 120, 122, 81, 83, 89, 91, 113, 115, 121, 123,
84, 86, 92, 94, 116, 118, 124, 126, 85, 87, 93, 95, 117, 119, 125, 127
};
static const uint16_t orders_8x16[128] = {
0, 1, 2, 3, 8, 9, 10, 11, 32, 33, 34, 35, 40, 41, 42, 43,
4, 5, 6, 7, 12, 13, 14, 15, 36, 37, 38, 39, 44, 45, 46, 47,
16, 17, 18, 19, 24, 25, 26, 27, 48, 49, 50, 51, 56, 57, 58, 59,
20, 21, 22, 23, 28, 29, 30, 31, 52, 53, 54, 55, 60, 61, 62, 63,
64, 65, 66, 67, 72, 73, 74, 75, 96, 97, 98, 99, 104, 105, 106, 107,
68, 69, 70, 71, 76, 77, 78, 79, 100, 101, 102, 103, 108, 109, 110, 111,
80, 81, 82, 83, 88, 89, 90, 91, 112, 113, 114, 115, 120, 121, 122, 123,
84, 85, 86, 87, 92, 93, 94, 95, 116, 117, 118, 119, 124, 125, 126, 127
};
static const uint16_t orders_8x8[256] = {
0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84,
85, 2, 3, 6, 7, 18, 19, 22, 23, 66, 67, 70, 71, 82, 83,
86, 87, 8, 9, 12, 13, 24, 25, 28, 29, 72, 73, 76, 77, 88,
89, 92, 93, 10, 11, 14, 15, 26, 27, 30, 31, 74, 75, 78, 79,
90, 91, 94, 95, 32, 33, 36, 37, 48, 49, 52, 53, 96, 97, 100,
101, 112, 113, 116, 117, 34, 35, 38, 39, 50, 51, 54, 55, 98, 99,
102, 103, 114, 115, 118, 119, 40, 41, 44, 45, 56, 57, 60, 61, 104,
105, 108, 109, 120, 121, 124, 125, 42, 43, 46, 47, 58, 59, 62, 63,
106, 107, 110, 111, 122, 123, 126, 127, 128, 129, 132, 133, 144, 145, 148,
149, 192, 193, 196, 197, 208, 209, 212, 213, 130, 131, 134, 135, 146, 147,
150, 151, 194, 195, 198, 199, 210, 211, 214, 215, 136, 137, 140, 141, 152,
153, 156, 157, 200, 201, 204, 205, 216, 217, 220, 221, 138, 139, 142, 143,
154, 155, 158, 159, 202, 203, 206, 207, 218, 219, 222, 223, 160, 161, 164,
165, 176, 177, 180, 181, 224, 225, 228, 229, 240, 241, 244, 245, 162, 163,
166, 167, 178, 179, 182, 183, 226, 227, 230, 231, 242, 243, 246, 247, 168,
169, 172, 173, 184, 185, 188, 189, 232, 233, 236, 237, 248, 249, 252, 253,
170, 171, 174, 175, 186, 187, 190, 191, 234, 235, 238, 239, 250, 251, 254,
255
};
#if CONFIG_EXT_PARTITION
static const uint16_t orders_4x8[512] = {
0, 1, 2, 3, 8, 9, 10, 11, 32, 33, 34, 35, 40, 41, 42,
43, 128, 129, 130, 131, 136, 137, 138, 139, 160, 161, 162, 163, 168, 169,
170, 171, 4, 5, 6, 7, 12, 13, 14, 15, 36, 37, 38, 39, 44,
45, 46, 47, 132, 133, 134, 135, 140, 141, 142, 143, 164, 165, 166, 167,
172, 173, 174, 175, 16, 17, 18, 19, 24, 25, 26, 27, 48, 49, 50,
51, 56, 57, 58, 59, 144, 145, 146, 147, 152, 153, 154, 155, 176, 177,
178, 179, 184, 185, 186, 187, 20, 21, 22, 23, 28, 29, 30, 31, 52,
53, 54, 55, 60, 61, 62, 63, 148, 149, 150, 151, 156, 157, 158, 159,
180, 181, 182, 183, 188, 189, 190, 191, 64, 65, 66, 67, 72, 73, 74,
75, 96, 97, 98, 99, 104, 105, 106, 107, 192, 193, 194, 195, 200, 201,
202, 203, 224, 225, 226, 227, 232, 233, 234, 235, 68, 69, 70, 71, 76,
77, 78, 79, 100, 101, 102, 103, 108, 109, 110, 111, 196, 197, 198, 199,
204, 205, 206, 207, 228, 229, 230, 231, 236, 237, 238, 239, 80, 81, 82,
83, 88, 89, 90, 91, 112, 113, 114, 115, 120, 121, 122, 123, 208, 209,
210, 211, 216, 217, 218, 219, 240, 241, 242, 243, 248, 249, 250, 251, 84,
85, 86, 87, 92, 93, 94, 95, 116, 117, 118, 119, 124, 125, 126, 127,
212, 213, 214, 215, 220, 221, 222, 223, 244, 245, 246, 247, 252, 253, 254,
255, 256, 257, 258, 259, 264, 265, 266, 267, 288, 289, 290, 291, 296, 297,
298, 299, 384, 385, 386, 387, 392, 393, 394, 395, 416, 417, 418, 419, 424,
425, 426, 427, 260, 261, 262, 263, 268, 269, 270, 271, 292, 293, 294, 295,
300, 301, 302, 303, 388, 389, 390, 391, 396, 397, 398, 399, 420, 421, 422,
423, 428, 429, 430, 431, 272, 273, 274, 275, 280, 281, 282, 283, 304, 305,
306, 307, 312, 313, 314, 315, 400, 401, 402, 403, 408, 409, 410, 411, 432,
433, 434, 435, 440, 441, 442, 443, 276, 277, 278, 279, 284, 285, 286, 287,
308, 309, 310, 311, 316, 317, 318, 319, 404, 405, 406, 407, 412, 413, 414,
415, 436, 437, 438, 439, 444, 445, 446, 447, 320, 321, 322, 323, 328, 329,
330, 331, 352, 353, 354, 355, 360, 361, 362, 363, 448, 449, 450, 451, 456,
457, 458, 459, 480, 481, 482, 483, 488, 489, 490, 491, 324, 325, 326, 327,
332, 333, 334, 335, 356, 357, 358, 359, 364, 365, 366, 367, 452, 453, 454,
455, 460, 461, 462, 463, 484, 485, 486, 487, 492, 493, 494, 495, 336, 337,
338, 339, 344, 345, 346, 347, 368, 369, 370, 371, 376, 377, 378, 379, 464,
465, 466, 467, 472, 473, 474, 475, 496, 497, 498, 499, 504, 505, 506, 507,
340, 341, 342, 343, 348, 349, 350, 351, 372, 373, 374, 375, 380, 381, 382,
383, 468, 469, 470, 471, 476, 477, 478, 479, 500, 501, 502, 503, 508, 509,
510, 511
};
static const uint16_t orders_8x4[512] = {
0, 2, 8, 10, 32, 34, 40, 42, 128, 130, 136, 138, 160, 162, 168,
170, 1, 3, 9, 11, 33, 35, 41, 43, 129, 131, 137, 139, 161, 163,
169, 171, 4, 6, 12, 14, 36, 38, 44, 46, 132, 134, 140, 142, 164,
166, 172, 174, 5, 7, 13, 15, 37, 39, 45, 47, 133, 135, 141, 143,
165, 167, 173, 175, 16, 18, 24, 26, 48, 50, 56, 58, 144, 146, 152,
154, 176, 178, 184, 186, 17, 19, 25, 27, 49, 51, 57, 59, 145, 147,
153, 155, 177, 179, 185, 187, 20, 22, 28, 30, 52, 54, 60, 62, 148,
150, 156, 158, 180, 182, 188, 190, 21, 23, 29, 31, 53, 55, 61, 63,
149, 151, 157, 159, 181, 183, 189, 191, 64, 66, 72, 74, 96, 98, 104,
106, 192, 194, 200, 202, 224, 226, 232, 234, 65, 67, 73, 75, 97, 99,
105, 107, 193, 195, 201, 203, 225, 227, 233, 235, 68, 70, 76, 78, 100,
102, 108, 110, 196, 198, 204, 206, 228, 230, 236, 238, 69, 71, 77, 79,
101, 103, 109, 111, 197, 199, 205, 207, 229, 231, 237, 239, 80, 82, 88,
90, 112, 114, 120, 122, 208, 210, 216, 218, 240, 242, 248, 250, 81, 83,
89, 91, 113, 115, 121, 123, 209, 211, 217, 219, 241, 243, 249, 251, 84,
86, 92, 94, 116, 118, 124, 126, 212, 214, 220, 222, 244, 246, 252, 254,
85, 87, 93, 95, 117, 119, 125, 127, 213, 215, 221, 223, 245, 247, 253,
255, 256, 258, 264, 266, 288, 290, 296, 298, 384, 386, 392, 394, 416, 418,
424, 426, 257, 259, 265, 267, 289, 291, 297, 299, 385, 387, 393, 395, 417,
419, 425, 427, 260, 262, 268, 270, 292, 294, 300, 302, 388, 390, 396, 398,
420, 422, 428, 430, 261, 263, 269, 271, 293, 295, 301, 303, 389, 391, 397,
399, 421, 423, 429, 431, 272, 274, 280, 282, 304, 306, 312, 314, 400, 402,
408, 410, 432, 434, 440, 442, 273, 275, 281, 283, 305, 307, 313, 315, 401,
403, 409, 411, 433, 435, 441, 443, 276, 278, 284, 286, 308, 310, 316, 318,
404, 406, 412, 414, 436, 438, 444, 446, 277, 279, 285, 287, 309, 311, 317,
319, 405, 407, 413, 415, 437, 439, 445, 447, 320, 322, 328, 330, 352, 354,
360, 362, 448, 450, 456, 458, 480, 482, 488, 490, 321, 323, 329, 331, 353,
355, 361, 363, 449, 451, 457, 459, 481, 483, 489, 491, 324, 326, 332, 334,
356, 358, 364, 366, 452, 454, 460, 462, 484, 486, 492, 494, 325, 327, 333,
335, 357, 359, 365, 367, 453, 455, 461, 463, 485, 487, 493, 495, 336, 338,
344, 346, 368, 370, 376, 378, 464, 466, 472, 474, 496, 498, 504, 506, 337,
339, 345, 347, 369, 371, 377, 379, 465, 467, 473, 475, 497, 499, 505, 507,
340, 342, 348, 350, 372, 374, 380, 382, 468, 470, 476, 478, 500, 502, 508,
510, 341, 343, 349, 351, 373, 375, 381, 383, 469, 471, 477, 479, 501, 503,
509, 511
};
static const uint16_t orders_4x4[1024] = {
0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80,
81, 84, 85, 256, 257, 260, 261, 272, 273, 276, 277, 320, 321,
324, 325, 336, 337, 340, 341, 2, 3, 6, 7, 18, 19, 22,
23, 66, 67, 70, 71, 82, 83, 86, 87, 258, 259, 262, 263,
274, 275, 278, 279, 322, 323, 326, 327, 338, 339, 342, 343, 8,
9, 12, 13, 24, 25, 28, 29, 72, 73, 76, 77, 88, 89,
92, 93, 264, 265, 268, 269, 280, 281, 284, 285, 328, 329, 332,
333, 344, 345, 348, 349, 10, 11, 14, 15, 26, 27, 30, 31,
74, 75, 78, 79, 90, 91, 94, 95, 266, 267, 270, 271, 282,
283, 286, 287, 330, 331, 334, 335, 346, 347, 350, 351, 32, 33,
36, 37, 48, 49, 52, 53, 96, 97, 100, 101, 112, 113, 116,
117, 288, 289, 292, 293, 304, 305, 308, 309, 352, 353, 356, 357,
368, 369, 372, 373, 34, 35, 38, 39, 50, 51, 54, 55, 98,
99, 102, 103, 114, 115, 118, 119, 290, 291, 294, 295, 306, 307,
310, 311, 354, 355, 358, 359, 370, 371, 374, 375, 40, 41, 44,
45, 56, 57, 60, 61, 104, 105, 108, 109, 120, 121, 124, 125,
296, 297, 300, 301, 312, 313, 316, 317, 360, 361, 364, 365, 376,
377, 380, 381, 42, 43, 46, 47, 58, 59, 62, 63, 106, 107,
110, 111, 122, 123, 126, 127, 298, 299, 302, 303, 314, 315, 318,
319, 362, 363, 366, 367, 378, 379, 382, 383, 128, 129, 132, 133,
144, 145, 148, 149, 192, 193, 196, 197, 208, 209, 212, 213, 384,
385, 388, 389, 400, 401, 404, 405, 448, 449, 452, 453, 464, 465,
468, 469, 130, 131, 134, 135, 146, 147, 150, 151, 194, 195, 198,
199, 210, 211, 214, 215, 386, 387, 390, 391, 402, 403, 406, 407,
450, 451, 454, 455, 466, 467, 470, 471, 136, 137, 140, 141, 152,
153, 156, 157, 200, 201, 204, 205, 216, 217, 220, 221, 392, 393,
396, 397, 408, 409, 412, 413, 456, 457, 460, 461, 472, 473, 476,
477, 138, 139, 142, 143, 154, 155, 158, 159, 202, 203, 206, 207,
218, 219, 222, 223, 394, 395, 398, 399, 410, 411, 414, 415, 458,
459, 462, 463, 474, 475, 478, 479, 160, 161, 164, 165, 176, 177,
180, 181, 224, 225, 228, 229, 240, 241, 244, 245, 416, 417, 420,
421, 432, 433, 436, 437, 480, 481, 484, 485, 496, 497, 500, 501,
162, 163, 166, 167, 178, 179, 182, 183, 226, 227, 230, 231, 242,
243, 246, 247, 418, 419, 422, 423, 434, 435, 438, 439, 482, 483,
486, 487, 498, 499, 502, 503, 168, 169, 172, 173, 184, 185, 188,
189, 232, 233, 236, 237, 248, 249, 252, 253, 424, 425, 428, 429,
440, 441, 444, 445, 488, 489, 492, 493, 504, 505, 508, 509, 170,
171, 174, 175, 186, 187, 190, 191, 234, 235, 238, 239, 250, 251,
254, 255, 426, 427, 430, 431, 442, 443, 446, 447, 490, 491, 494,
495, 506, 507, 510, 511, 512, 513, 516, 517, 528, 529, 532, 533,
576, 577, 580, 581, 592, 593, 596, 597, 768, 769, 772, 773, 784,
785, 788, 789, 832, 833, 836, 837, 848, 849, 852, 853, 514, 515,
518, 519, 530, 531, 534, 535, 578, 579, 582, 583, 594, 595, 598,
599, 770, 771, 774, 775, 786, 787, 790, 791, 834, 835, 838, 839,
850, 851, 854, 855, 520, 521, 524, 525, 536, 537, 540, 541, 584,
585, 588, 589, 600, 601, 604, 605, 776, 777, 780, 781, 792, 793,
796, 797, 840, 841, 844, 845, 856, 857, 860, 861, 522, 523, 526,
527, 538, 539, 542, 543, 586, 587, 590, 591, 602, 603, 606, 607,
778, 779, 782, 783, 794, 795, 798, 799, 842, 843, 846, 847, 858,
859, 862, 863, 544, 545, 548, 549, 560, 561, 564, 565, 608, 609,
612, 613, 624, 625, 628, 629, 800, 801, 804, 805, 816, 817, 820,
821, 864, 865, 868, 869, 880, 881, 884, 885, 546, 547, 550, 551,
562, 563, 566, 567, 610, 611, 614, 615, 626, 627, 630, 631, 802,
803, 806, 807, 818, 819, 822, 823, 866, 867, 870, 871, 882, 883,
886, 887, 552, 553, 556, 557, 568, 569, 572, 573, 616, 617, 620,
621, 632, 633, 636, 637, 808, 809, 812, 813, 824, 825, 828, 829,
872, 873, 876, 877, 888, 889, 892, 893, 554, 555, 558, 559, 570,
571, 574, 575, 618, 619, 622, 623, 634, 635, 638, 639, 810, 811,
814, 815, 826, 827, 830, 831, 874, 875, 878, 879, 890, 891, 894,
895, 640, 641, 644, 645, 656, 657, 660, 661, 704, 705, 708, 709,
720, 721, 724, 725, 896, 897, 900, 901, 912, 913, 916, 917, 960,
961, 964, 965, 976, 977, 980, 981, 642, 643, 646, 647, 658, 659,
662, 663, 706, 707, 710, 711, 722, 723, 726, 727, 898, 899, 902,
903, 914, 915, 918, 919, 962, 963, 966, 967, 978, 979, 982, 983,
648, 649, 652, 653, 664, 665, 668, 669, 712, 713, 716, 717, 728,
729, 732, 733, 904, 905, 908, 909, 920, 921, 924, 925, 968, 969,
972, 973, 984, 985, 988, 989, 650, 651, 654, 655, 666, 667, 670,
671, 714, 715, 718, 719, 730, 731, 734, 735, 906, 907, 910, 911,
922, 923, 926, 927, 970, 971, 974, 975, 986, 987, 990, 991, 672,
673, 676, 677, 688, 689, 692, 693, 736, 737, 740, 741, 752, 753,
756, 757, 928, 929, 932, 933, 944, 945, 948, 949, 992, 993, 996,
997, 1008, 1009, 1012, 1013, 674, 675, 678, 679, 690, 691, 694, 695,
738, 739, 742, 743, 754, 755, 758, 759, 930, 931, 934, 935, 946,
947, 950, 951, 994, 995, 998, 999, 1010, 1011, 1014, 1015, 680, 681,
684, 685, 696, 697, 700, 701, 744, 745, 748, 749, 760, 761, 764,
765, 936, 937, 940, 941, 952, 953, 956, 957, 1000, 1001, 1004, 1005,
1016, 1017, 1020, 1021, 682, 683, 686, 687, 698, 699, 702, 703, 746,
747, 750, 751, 762, 763, 766, 767, 938, 939, 942, 943, 954, 955,
958, 959, 1002, 1003, 1006, 1007, 1018, 1019, 1022, 1023
};
#endif
#if CONFIG_EXT_PARTITION_TYPES
static const uint16_t orders_128x32[4] = { 0, 1, 2, 3 };
static const uint16_t orders_64x16[16] = { 0, 4, 1, 5, 2, 6, 3, 7,
8, 12, 9, 13, 10, 14, 11, 15 };
static const uint16_t orders_32x128[4] = { 0, 1, 2, 3 };
static const uint16_t orders_32x8[64] = {
0, 4, 16, 20, 1, 5, 17, 21, 2, 6, 18, 22, 3, 7, 19, 23,
8, 12, 24, 28, 9, 13, 25, 29, 10, 14, 26, 30, 11, 15, 27, 31,
32, 36, 48, 52, 33, 37, 49, 53, 34, 38, 50, 54, 35, 39, 51, 55,
40, 44, 56, 60, 41, 45, 57, 61, 42, 46, 58, 62, 43, 47, 59, 63
};
static const uint16_t orders_8x32[64] = {
0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23,
8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 48, 49, 50, 51, 52, 53, 54, 55,
40, 41, 42, 43, 44, 45, 46, 47, 56, 57, 58, 59, 60, 61, 62, 63
};
static const uint16_t orders_16x64[16] = { 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15 };
#if CONFIG_EXT_PARTITION
static const uint16_t orders_16x4[256] = {
0, 4, 16, 20, 64, 68, 80, 84, 1, 5, 17, 21, 65, 69, 81,
85, 2, 6, 18, 22, 66, 70, 82, 86, 3, 7, 19, 23, 67, 71,
83, 87, 8, 12, 24, 28, 72, 76, 88, 92, 9, 13, 25, 29, 73,
77, 89, 93, 10, 14, 26, 30, 74, 78, 90, 94, 11, 15, 27, 31,
75, 79, 91, 95, 32, 36, 48, 52, 96, 100, 112, 116, 33, 37, 49,
53, 97, 101, 113, 117, 34, 38, 50, 54, 98, 102, 114, 118, 35, 39,
51, 55, 99, 103, 115, 119, 40, 44, 56, 60, 104, 108, 120, 124, 41,
45, 57, 61, 105, 109, 121, 125, 42, 46, 58, 62, 106, 110, 122, 126,
43, 47, 59, 63, 107, 111, 123, 127, 128, 132, 144, 148, 192, 196, 208,
212, 129, 133, 145, 149, 193, 197, 209, 213, 130, 134, 146, 150, 194, 198,
210, 214, 131, 135, 147, 151, 195, 199, 211, 215, 136, 140, 152, 156, 200,
204, 216, 220, 137, 141, 153, 157, 201, 205, 217, 221, 138, 142, 154, 158,
202, 206, 218, 222, 139, 143, 155, 159, 203, 207, 219, 223, 160, 164, 176,
180, 224, 228, 240, 244, 161, 165, 177, 181, 225, 229, 241, 245, 162, 166,
178, 182, 226, 230, 242, 246, 163, 167, 179, 183, 227, 231, 243, 247, 168,
172, 184, 188, 232, 236, 248, 252, 169, 173, 185, 189, 233, 237, 249, 253,
170, 174, 186, 190, 234, 238, 250, 254, 171, 175, 187, 191, 235, 239, 251,
255
};
static const uint16_t orders_4x16[256] = {
0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22,
23, 64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85,
86, 87, 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28,
29, 30, 31, 72, 73, 74, 75, 76, 77, 78, 79, 88, 89, 90, 91,
92, 93, 94, 95, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, 50,
51, 52, 53, 54, 55, 96, 97, 98, 99, 100, 101, 102, 103, 112, 113,
114, 115, 116, 117, 118, 119, 40, 41, 42, 43, 44, 45, 46, 47, 56,
57, 58, 59, 60, 61, 62, 63, 104, 105, 106, 107, 108, 109, 110, 111,
120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
135, 144, 145, 146, 147, 148, 149, 150, 151, 192, 193, 194, 195, 196, 197,
198, 199, 208, 209, 210, 211, 212, 213, 214, 215, 136, 137, 138, 139, 140,
141, 142, 143, 152, 153, 154, 155, 156, 157, 158, 159, 200, 201, 202, 203,
204, 205, 206, 207, 216, 217, 218, 219, 220, 221, 222, 223, 160, 161, 162,
163, 164, 165, 166, 167, 176, 177, 178, 179, 180, 181, 182, 183, 224, 225,
226, 227, 228, 229, 230, 231, 240, 241, 242, 243, 244, 245, 246, 247, 168,
169, 170, 171, 172, 173, 174, 175, 184, 185, 186, 187, 188, 189, 190, 191,
232, 233, 234, 235, 236, 237, 238, 239, 248, 249, 250, 251, 252, 253, 254,
255
};
#endif // CONFIG_EXT_PARTITION
#endif // CONFIG_EXT_PARTITION_TYPES
#if CONFIG_EXT_PARTITION_TYPES
static const uint16_t orders_vert_128x128[1] = { 0 };
static const uint16_t orders_vert_64x64[4] = { 0, 2, 1, 3 };
static const uint16_t orders_vert_32x32[16] = { 0, 2, 4, 6, 1, 3, 5, 7,
8, 10, 12, 14, 9, 11, 13, 15 };
static const uint16_t orders_vert_16x16[64] = {
0, 2, 4, 6, 16, 18, 20, 22, 1, 3, 5, 7, 17, 19, 21, 23,
8, 10, 12, 14, 24, 26, 28, 30, 9, 11, 13, 15, 25, 27, 29, 31,
32, 34, 36, 38, 48, 50, 52, 54, 33, 35, 37, 39, 49, 51, 53, 55,
40, 42, 44, 46, 56, 58, 60, 62, 41, 43, 45, 47, 57, 59, 61, 63
};
#if CONFIG_EXT_PARTITION
static const uint16_t orders_vert_8x8[256] = {
0, 2, 4, 6, 16, 18, 20, 22, 64, 66, 68, 70, 80, 82, 84,
86, 1, 3, 5, 7, 17, 19, 21, 23, 65, 67, 69, 71, 81, 83,
85, 87, 8, 10, 12, 14, 24, 26, 28, 30, 72, 74, 76, 78, 88,
90, 92, 94, 9, 11, 13, 15, 25, 27, 29, 31, 73, 75, 77, 79,
89, 91, 93, 95, 32, 34, 36, 38, 48, 50, 52, 54, 96, 98, 100,
102, 112, 114, 116, 118, 33, 35, 37, 39, 49, 51, 53, 55, 97, 99,
101, 103, 113, 115, 117, 119, 40, 42, 44, 46, 56, 58, 60, 62, 104,
106, 108, 110, 120, 122, 124, 126, 41, 43, 45, 47, 57, 59, 61, 63,
105, 107, 109, 111, 121, 123, 125, 127, 128, 130, 132, 134, 144, 146, 148,
150, 192, 194, 196, 198, 208, 210, 212, 214, 129, 131, 133, 135, 145, 147,
149, 151, 193, 195, 197, 199, 209, 211, 213, 215, 136, 138, 140, 142, 152,
154, 156, 158, 200, 202, 204, 206, 216, 218, 220, 222, 137, 139, 141, 143,
153, 155, 157, 159, 201, 203, 205, 207, 217, 219, 221, 223, 160, 162, 164,
166, 176, 178, 180, 182, 224, 226, 228, 230, 240, 242, 244, 246, 161, 163,
165, 167, 177, 179, 181, 183, 225, 227, 229, 231, 241, 243, 245, 247, 168,
170, 172, 174, 184, 186, 188, 190, 232, 234, 236, 238, 248, 250, 252, 254,
169, 171, 173, 175, 185, 187, 189, 191, 233, 235, 237, 239, 249, 251, 253,
255
};
#endif // CONFIG_EXT_PARTITION
#endif // CONFIG_EXT_PARTITION_TYPES
// The orders_* tables encode the order in which we visit blocks of the given
// size. For example, orders_32x32 has (128/32)^2 = 4^2 = 16 entries that
// correspond to the 32x32 blocks in a 128x128 superblock (in raster order). If
// an entry at position i is less than the entry at position j, that means that
// the block at position i is visited before that at position j if the
// superblock is divided by repeated PARTITION_SPLITs down to 32x32 blocks.
//
// The other tables are similar. Those for non-square block sizes assume that
// the superblock was partition with PARTITION_SPLIT until the square block size
// with the larger of their dimensions, then there was a horizontal or vertical
// partition to generate their size. For example, the orders_16x32 table assumes
// that the superblock was divided by PARTITION_SPLIT down to 32x32 blocks, then
// each was partitioned by a PARTITION_VERT into two 16x32 blocks.
//
// These tables can be used to calculate whether one block has been decoded
// before another. Since PARTITION_SPLIT is the only recursive partitioning
// operation, it doesn't actually matter whether the other block is the same
// size as the current one: comparing entries in the table will still correctly
// answer the question "has the other one been decode already?".
//
// Also note that this works correctly for the mixed horizontal partitions
// (PARTITION_HORZ_A and PARTITION_HORZ_B): if you look up the smaller square
// block size, the rectangle will be treated as two blocks that are decoded
// consecutively (before or after this block). If you look up the rectangle, the
// two squares will be treated as a single rectangle and, again, they were
// decoded together before or after this block.
#if CONFIG_EXT_PARTITION
/* clang-format off */
static const uint16_t *const orders[BLOCK_SIZES_ALL] = {
// 4X4
orders_4x4,
// 4X8, 8X4, 8X8
orders_4x8, orders_8x4, orders_8x8,
// 8X16, 16X8, 16X16
orders_8x16, orders_16x8, orders_16x16,
// 16X32, 32X16, 32X32
orders_16x32, orders_32x16, orders_32x32,
// 32X64, 64X32, 64X64
orders_32x64, orders_64x32, orders_64x64,
// 64x128, 128x64, 128x128
orders_64x128, orders_128x64, orders_128x128,
#if CONFIG_EXT_PARTITION_TYPES
// 4x16, 16x4, 8x32
orders_4x16, orders_16x4, orders_8x32,
// 32x8, 16x64, 64x16
orders_32x8, orders_16x64, orders_64x16,
// 32x128, 128x32
orders_32x128, orders_128x32
#else
// 4x16, 16x4, 8x32
NULL, NULL, NULL,
// 32x8, 16x64, 64x16
NULL, NULL, NULL,
// 32x128, 128x32
NULL, NULL
#endif
};
/* clang-format on */
#else
/* clang-format off */
static const uint16_t *const orders[BLOCK_SIZES_ALL] = {
// 4X4
orders_8x8,
// 4X8, 8X4, 8X8
orders_8x16, orders_16x8, orders_16x16,
// 8X16, 16X8, 16X16
orders_16x32, orders_32x16, orders_32x32,
// 16X32, 32X16, 32X32
orders_32x64, orders_64x32, orders_64x64,
// 32X64, 64X32, 64X64
orders_64x128, orders_128x64, orders_128x128,
#if CONFIG_EXT_PARTITION_TYPES
// 4x16, 16x4, 8x32
orders_8x32, orders_32x8, orders_16x64,
// 32x8, 16x64, 64x16
orders_64x16, orders_32x128, orders_128x32
#else
// 4x16, 16x4, 8x32
NULL, NULL, NULL,
// 32x8, 16x64, 64x16
NULL, NULL, NULL
#endif
};
/* clang-format on */
#endif // CONFIG_EXT_PARTITION
#if CONFIG_EXT_PARTITION_TYPES
// The orders_vert_* tables are like the orders_* tables above, but describe the
// order we visit square blocks when doing a PARTITION_VERT_A or
// PARTITION_VERT_B. This is the same order as normal except for on the last
// split where we go vertically (TL, BL, TR, BR). We treat the rectangular block
// as a pair of squares, which means that these tables work correctly for both
// mixed vertical partition types.
//
// There are tables for each of the square sizes. Vertical rectangles (like
// BLOCK_16X32) use their respective "non-vert" table
#if CONFIG_EXT_PARTITION
/* clang-format off */
static const uint16_t *const orders_vert[BLOCK_SIZES] = {
// 4X4
NULL,
// 4X8, 8X4, 8X8
NULL, NULL, orders_vert_8x8,
// 8X16, 16X8, 16X16
orders_8x16, NULL, orders_vert_16x16,
// 16X32, 32X16, 32X32
orders_16x32, NULL, orders_vert_32x32,
// 32X64, 64X32, 64X64
orders_32x64, NULL, orders_vert_64x64,
// 64x128, 128x64, 128x128
orders_64x128, NULL, orders_vert_128x128,
};
/* clang-format on */
#else
/* clang-format off */
static const uint16_t *const orders_vert[BLOCK_SIZES] = {
// 4X4
NULL,
// 4X8, 8X4, 8X8
NULL, NULL, orders_vert_16x16,
// 8X16, 16X8, 16X16
orders_16x32, NULL, orders_vert_32x32,
// 16X32, 32X16, 32X32
orders_32x64, NULL, orders_vert_64x64,
// 32X64, 64X32, 64X64
orders_64x128, NULL, orders_vert_128x128,
};
/* clang-format on */
#endif // CONFIG_EXT_PARTITION
#endif // CONFIG_EXT_PARTITION_TYPES
static const uint16_t *get_order_table(PARTITION_TYPE partition,
BLOCK_SIZE bsize) {
const uint16_t *ret = NULL;
#if CONFIG_EXT_PARTITION_TYPES
// If this is a mixed vertical partition, look up bsize in orders_vert.
if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) {
assert(bsize < BLOCK_SIZES);
ret = orders_vert[bsize];
} else {
ret = orders[bsize];
}
#else
(void)partition;
ret = orders[bsize];
#endif // CONFIG_EXT_PARTITION_TYPES
assert(ret);
return ret;
}
static int has_top_right(const AV1_COMMON *cm, BLOCK_SIZE bsize, int mi_row,
int mi_col, int top_available, int right_available,
PARTITION_TYPE partition, TX_SIZE txsz, int row_off,
int col_off, int ss_x) {
if (!top_available || !right_available) return 0;
const int bw_unit = block_size_wide[bsize] >> tx_size_wide_log2[0];
const int plane_bw_unit = AOMMAX(bw_unit >> ss_x, 1);
const int top_right_count_unit = tx_size_wide_unit[txsz];
if (row_off > 0) { // Just need to check if enough pixels on the right.
#if CONFIG_EXT_PARTITION
if (col_off + top_right_count_unit >=
(block_size_wide[BLOCK_64X64] >> (tx_size_wide_log2[0] + ss_x)))
return 0;
#endif
return col_off + top_right_count_unit < plane_bw_unit;
} else {
// All top-right pixels are in the block above, which is already available.
if (col_off + top_right_count_unit < plane_bw_unit) return 1;
const int bw_in_mi_log2 = mi_width_log2_lookup[bsize];
const int bh_in_mi_log2 = mi_height_log2_lookup[bsize];
const int sb_mi_size = mi_size_high[cm->sb_size];
const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2;
const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2;
// Top row of superblock: so top-right pixels are in the top and/or
// top-right superblocks, both of which are already available.
if (blk_row_in_sb == 0) return 1;
// Rightmost column of superblock (and not the top row): so top-right pixels
// fall in the right superblock, which is not available yet.
if (((blk_col_in_sb + 1) << bw_in_mi_log2) >= sb_mi_size) return 0;
// General case (neither top row nor rightmost column): check if the
// top-right block is coded before the current block.
const uint16_t *const order = get_order_table(partition, bsize);
const int this_blk_index =
((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
blk_col_in_sb + 0;
const uint16_t this_blk_order = order[this_blk_index];
const int tr_blk_index =
((blk_row_in_sb - 1) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
blk_col_in_sb + 1;
const uint16_t tr_blk_order = order[tr_blk_index];
return tr_blk_order < this_blk_order;
}
}
static int has_bottom_left(const AV1_COMMON *cm, BLOCK_SIZE bsize, int mi_row,
int mi_col, int bottom_available, int left_available,
PARTITION_TYPE partition, TX_SIZE txsz, int row_off,
int col_off, int ss_y) {
if (!bottom_available || !left_available) return 0;
if (col_off > 0) {
// Bottom-left pixels are in the bottom-left block, which is not available.
return 0;
} else {
const int bh_unit = block_size_high[bsize] >> tx_size_high_log2[0];
const int plane_bh_unit = AOMMAX(bh_unit >> ss_y, 1);
const int bottom_left_count_unit = tx_size_high_unit[txsz];
// All bottom-left pixels are in the left block, which is already available.
if (row_off + bottom_left_count_unit < plane_bh_unit) return 1;
const int bw_in_mi_log2 = mi_width_log2_lookup[bsize];
const int bh_in_mi_log2 = mi_height_log2_lookup[bsize];
const int sb_mi_size = mi_size_high[cm->sb_size];
const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2;
const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2;
// Leftmost column of superblock: so bottom-left pixels maybe in the left
// and/or bottom-left superblocks. But only the left superblock is
// available, so check if all required pixels fall in that superblock.
if (blk_col_in_sb == 0) {
const int blk_start_row_off = blk_row_in_sb
<< (bh_in_mi_log2 + MI_SIZE_LOG2 -
tx_size_wide_log2[0]) >>
ss_y;
const int row_off_in_sb = blk_start_row_off + row_off;
const int sb_height_unit =
sb_mi_size << (MI_SIZE_LOG2 - tx_size_wide_log2[0]) >> ss_y;
return row_off_in_sb + bottom_left_count_unit < sb_height_unit;
}
// Bottom row of superblock (and not the leftmost column): so bottom-left
// pixels fall in the bottom superblock, which is not available yet.
if (((blk_row_in_sb + 1) << bh_in_mi_log2) >= sb_mi_size) return 0;
// General case (neither leftmost column nor bottom row): check if the
// bottom-left block is coded before the current block.
const uint16_t *const order = get_order_table(partition, bsize);
const int this_blk_index =
((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
blk_col_in_sb + 0;
const uint16_t this_blk_order = order[this_blk_index];
const int bl_blk_index =
((blk_row_in_sb + 1) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
blk_col_in_sb - 1;
const uint16_t bl_blk_order = order[bl_blk_index];
return bl_blk_order < this_blk_order;
}
}
typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left);
static intra_pred_fn pred[INTRA_MODES][TX_SIZES_ALL];
static intra_pred_fn dc_pred[2][2][TX_SIZES_ALL];
#if CONFIG_HIGHBITDEPTH
typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd);
static intra_high_pred_fn pred_high[INTRA_MODES][TX_SIZES_ALL];
static intra_high_pred_fn dc_pred_high[2][2][TX_SIZES_ALL];
#endif // CONFIG_HIGHBITDEPTH
static void av1_init_intra_predictors_internal(void) {
#if CONFIG_EXT_INTRA
assert(NELEMENTS(mode_to_angle_map) == INTRA_MODES);
#endif // CONFIG_EXT_INTRA
#if CONFIG_TX64X64
#define INIT_RECTANGULAR(p, type) \
p[TX_4X8] = aom_##type##_predictor_4x8; \
p[TX_8X4] = aom_##type##_predictor_8x4; \
p[TX_8X16] = aom_##type##_predictor_8x16; \
p[TX_16X8] = aom_##type##_predictor_16x8; \
p[TX_16X32] = aom_##type##_predictor_16x32; \
p[TX_32X16] = aom_##type##_predictor_32x16; \
p[TX_32X64] = aom_##type##_predictor_32x64; \
p[TX_64X32] = aom_##type##_predictor_64x32; \
p[TX_4X16] = aom_##type##_predictor_4x16; \
p[TX_16X4] = aom_##type##_predictor_16x4; \
p[TX_8X32] = aom_##type##_predictor_8x32; \
p[TX_32X8] = aom_##type##_predictor_32x8; \
p[TX_16X64] = aom_##type##_predictor_16x64; \
p[TX_64X16] = aom_##type##_predictor_64x16;
#else
#define INIT_RECTANGULAR(p, type) \
p[TX_4X8] = aom_##type##_predictor_4x8; \
p[TX_8X4] = aom_##type##_predictor_8x4; \
p[TX_8X16] = aom_##type##_predictor_8x16; \
p[TX_16X8] = aom_##type##_predictor_16x8; \
p[TX_16X32] = aom_##type##_predictor_16x32; \
p[TX_32X16] = aom_##type##_predictor_32x16; \
p[TX_4X16] = aom_##type##_predictor_4x16; \
p[TX_16X4] = aom_##type##_predictor_16x4; \
p[TX_8X32] = aom_##type##_predictor_8x32; \
p[TX_32X8] = aom_##type##_predictor_32x8;
#endif // CONFIG_TX64X64
#if CONFIG_TX64X64
#define INIT_NO_4X4(p, type) \
p[TX_8X8] = aom_##type##_predictor_8x8; \
p[TX_16X16] = aom_##type##_predictor_16x16; \
p[TX_32X32] = aom_##type##_predictor_32x32; \
p[TX_64X64] = aom_##type##_predictor_64x64; \
INIT_RECTANGULAR(p, type)
#else
#define INIT_NO_4X4(p, type) \
p[TX_8X8] = aom_##type##_predictor_8x8; \
p[TX_16X16] = aom_##type##_predictor_16x16; \
p[TX_32X32] = aom_##type##_predictor_32x32; \
INIT_RECTANGULAR(p, type)
#endif // CONFIG_TX64X64
#define INIT_ALL_SIZES(p, type) \
p[TX_4X4] = aom_##type##_predictor_4x4; \
INIT_NO_4X4(p, type)
INIT_ALL_SIZES(pred[V_PRED], v);
INIT_ALL_SIZES(pred[H_PRED], h);
INIT_ALL_SIZES(pred[D207_PRED], d207e);
INIT_ALL_SIZES(pred[D45_PRED], d45e);
INIT_ALL_SIZES(pred[D63_PRED], d63e);
INIT_ALL_SIZES(pred[D117_PRED], d117);
INIT_ALL_SIZES(pred[D135_PRED], d135);
INIT_ALL_SIZES(pred[D153_PRED], d153);
INIT_ALL_SIZES(pred[PAETH_PRED], paeth);
INIT_ALL_SIZES(pred[SMOOTH_PRED], smooth);
INIT_ALL_SIZES(pred[SMOOTH_V_PRED], smooth_v);
INIT_ALL_SIZES(pred[SMOOTH_H_PRED], smooth_h);
INIT_ALL_SIZES(dc_pred[0][0], dc_128);
INIT_ALL_SIZES(dc_pred[0][1], dc_top);
INIT_ALL_SIZES(dc_pred[1][0], dc_left);
INIT_ALL_SIZES(dc_pred[1][1], dc);
#if CONFIG_HIGHBITDEPTH
INIT_ALL_SIZES(pred_high[V_PRED], highbd_v);
INIT_ALL_SIZES(pred_high[H_PRED], highbd_h);
INIT_ALL_SIZES(pred_high[D207_PRED], highbd_d207e);
INIT_ALL_SIZES(pred_high[D45_PRED], highbd_d45e);
INIT_ALL_SIZES(pred_high[D63_PRED], highbd_d63e);
INIT_ALL_SIZES(pred_high[D117_PRED], highbd_d117);
INIT_ALL_SIZES(pred_high[D135_PRED], highbd_d135);
INIT_ALL_SIZES(pred_high[D153_PRED], highbd_d153);
INIT_ALL_SIZES(pred_high[PAETH_PRED], highbd_paeth);
INIT_ALL_SIZES(pred_high[SMOOTH_PRED], highbd_smooth);
INIT_ALL_SIZES(pred_high[SMOOTH_V_PRED], highbd_smooth_v);
INIT_ALL_SIZES(pred_high[SMOOTH_H_PRED], highbd_smooth_h);
INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128);
INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top);
INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left);
INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc);
#endif // CONFIG_HIGHBITDEPTH
#undef intra_pred_allsizes
}
#if CONFIG_EXT_INTRA
// Directional prediction, zone 1: 0 < angle < 90
static void dr_prediction_z1(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
const uint8_t *above, const uint8_t *left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
int upsample_above,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
int dx, int dy) {
int r, c, x, base, shift, val;
(void)left;
(void)dy;
assert(dy == 1);
assert(dx > 0);
#if !CONFIG_INTRA_EDGE_UPSAMPLE
const int upsample_above = 0;
#endif // !CONFIG_INTRA_EDGE_UPSAMPLE
const int max_base_x = ((bw + bh) - 1) << upsample_above;
#if CONFIG_EXT_INTRA_MOD2
const int frac_bits = 6 - upsample_above;
#else
const int frac_bits = 8 - upsample_above;
#endif
const int base_inc = 1 << upsample_above;
x = dx;
for (r = 0; r < bh; ++r, dst += stride, x += dx) {
base = x >> frac_bits;
#if CONFIG_EXT_INTRA_MOD2
shift = ((x << upsample_above) & 0x3F) >> 1;
#else
shift = (x << upsample_above) & 0xFF;
#endif
if (base >= max_base_x) {
for (int i = r; i < bh; ++i) {
memset(dst, above[max_base_x], bw * sizeof(dst[0]));
dst += stride;
}
return;
}
for (c = 0; c < bw; ++c, base += base_inc) {
if (base < max_base_x) {
#if CONFIG_EXT_INTRA_MOD2
val = above[base] * (32 - shift) + above[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 5);
#else
val = above[base] * (256 - shift) + above[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 8);
#endif
dst[c] = clip_pixel(val);
} else {
dst[c] = above[max_base_x];
}
}
}
}
// Directional prediction, zone 2: 90 < angle < 180
static void dr_prediction_z2(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
const uint8_t *above, const uint8_t *left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
int upsample_above, int upsample_left,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
int dx, int dy) {
int r, c, x, y, shift1, shift2, val, base1, base2;
assert(dx > 0);
assert(dy > 0);
#if !CONFIG_INTRA_EDGE_UPSAMPLE
const int upsample_above = 0;
const int upsample_left = 0;
#endif // !CONFIG_INTRA_EDGE_UPSAMPLE
const int min_base_x = -(1 << upsample_above);
#if CONFIG_EXT_INTRA_MOD2
const int frac_bits_x = 6 - upsample_above;
const int frac_bits_y = 6 - upsample_left;
#else
const int frac_bits_x = 8 - upsample_above;
const int frac_bits_y = 8 - upsample_left;
#endif
const int base_inc_x = 1 << upsample_above;
x = -dx;
for (r = 0; r < bh; ++r, x -= dx, dst += stride) {
base1 = x >> frac_bits_x;
#if CONFIG_EXT_INTRA_MOD2
y = (r << 6) - dy;
#else
y = (r << 8) - dy;
#endif
for (c = 0; c < bw; ++c, base1 += base_inc_x, y -= dy) {
if (base1 >= min_base_x) {
#if CONFIG_EXT_INTRA_MOD2
shift1 = ((x * (1 << upsample_above)) & 0x3F) >> 1;
val = above[base1] * (32 - shift1) + above[base1 + 1] * shift1;
val = ROUND_POWER_OF_TWO(val, 5);
#else
shift1 = (x * (1 << upsample_above)) & 0xFF;
val = above[base1] * (256 - shift1) + above[base1 + 1] * shift1;
val = ROUND_POWER_OF_TWO(val, 8);
#endif
} else {
base2 = y >> frac_bits_y;
assert(base2 >= -(1 << upsample_left));
#if CONFIG_EXT_INTRA_MOD2
shift2 = ((y * (1 << upsample_left)) & 0x3F) >> 1;
val = left[base2] * (32 - shift2) + left[base2 + 1] * shift2;
val = ROUND_POWER_OF_TWO(val, 5);
#else
shift2 = (y * (1 << upsample_left)) & 0xFF;
val = left[base2] * (256 - shift2) + left[base2 + 1] * shift2;
val = ROUND_POWER_OF_TWO(val, 8);
#endif
}
dst[c] = clip_pixel(val);
}
}
}
// Directional prediction, zone 3: 180 < angle < 270
static void dr_prediction_z3(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
const uint8_t *above, const uint8_t *left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
int upsample_left,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
int dx, int dy) {
int r, c, y, base, shift, val;
(void)above;
(void)dx;
assert(dx == 1);
assert(dy > 0);
#if !CONFIG_INTRA_EDGE_UPSAMPLE
const int upsample_left = 0;
#endif // !CONFIG_INTRA_EDGE_UPSAMPLE
const int max_base_y = (bw + bh - 1) << upsample_left;
#if CONFIG_EXT_INTRA_MOD2
const int frac_bits = 6 - upsample_left;
#else
const int frac_bits = 8 - upsample_left;
#endif
const int base_inc = 1 << upsample_left;
y = dy;
for (c = 0; c < bw; ++c, y += dy) {
base = y >> frac_bits;
#if CONFIG_EXT_INTRA_MOD2
shift = ((y << upsample_left) & 0x3F) >> 1;
#else
shift = (y << upsample_left) & 0xFF;
#endif
for (r = 0; r < bh; ++r, base += base_inc) {
if (base < max_base_y) {
#if CONFIG_EXT_INTRA_MOD2
val = left[base] * (32 - shift) + left[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 5);
#else
val = left[base] * (256 - shift) + left[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 8);
#endif
dst[r * stride + c] = clip_pixel(val);
} else {
for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
break;
}
}
}
}
// Get the shift (up-scaled by 256) in X w.r.t a unit change in Y.
// If angle > 0 && angle < 90, dx = -((int)(256 / t));
// If angle > 90 && angle < 180, dx = (int)(256 / t);
// If angle > 180 && angle < 270, dx = 1;
static INLINE int get_dx(int angle) {
if (angle > 0 && angle < 90) {
return dr_intra_derivative[angle];
} else if (angle > 90 && angle < 180) {
return dr_intra_derivative[180 - angle];
} else {
// In this case, we are not really going to use dx. We may return any value.
return 1;
}
}
// Get the shift (up-scaled by 256) in Y w.r.t a unit change in X.
// If angle > 0 && angle < 90, dy = 1;
// If angle > 90 && angle < 180, dy = (int)(256 * t);
// If angle > 180 && angle < 270, dy = -((int)(256 * t));
static INLINE int get_dy(int angle) {
if (angle > 90 && angle < 180) {
return dr_intra_derivative[angle - 90];
} else if (angle > 180 && angle < 270) {
return dr_intra_derivative[270 - angle];
} else {
// In this case, we are not really going to use dy. We may return any value.
return 1;
}
}
static void dr_predictor(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size,
const uint8_t *above, const uint8_t *left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
int upsample_above, int upsample_left,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
int angle) {
const int dx = get_dx(angle);
const int dy = get_dy(angle);
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
assert(angle > 0 && angle < 270);
if (angle > 0 && angle < 90) {
dr_prediction_z1(dst, stride, bw, bh, above, left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
upsample_above,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
dx, dy);
} else if (angle > 90 && angle < 180) {
dr_prediction_z2(dst, stride, bw, bh, above, left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
upsample_above, upsample_left,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
dx, dy);
} else if (angle > 180 && angle < 270) {
dr_prediction_z3(dst, stride, bw, bh, above, left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
upsample_left,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
dx, dy);
} else if (angle == 90) {
pred[V_PRED][tx_size](dst, stride, above, left);
} else if (angle == 180) {
pred[H_PRED][tx_size](dst, stride, above, left);
}
}
#if CONFIG_HIGHBITDEPTH
// Directional prediction, zone 1: 0 < angle < 90
static void highbd_dr_prediction_z1(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
int upsample_above,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
int dx, int dy, int bd) {
int r, c, x, base, shift, val;
(void)left;
(void)dy;
assert(dy == 1);
assert(dx > 0);
#if !CONFIG_INTRA_EDGE_UPSAMPLE
const int upsample_above = 0;
#endif // !CONFIG_INTRA_EDGE_UPSAMPLE
const int max_base_x = ((bw + bh) - 1) << upsample_above;
#if CONFIG_EXT_INTRA_MOD2
const int frac_bits = 6 - upsample_above;
#else
const int frac_bits = 8 - upsample_above;
#endif
const int base_inc = 1 << upsample_above;
x = dx;
for (r = 0; r < bh; ++r, dst += stride, x += dx) {
base = x >> frac_bits;
#if CONFIG_EXT_INTRA_MOD2
shift = ((x << upsample_above) & 0x3F) >> 1;
#else
shift = (x << upsample_above) & 0xFF;
#endif
if (base >= max_base_x) {
for (int i = r; i < bh; ++i) {
aom_memset16(dst, above[max_base_x], bw);
dst += stride;
}
return;
}
for (c = 0; c < bw; ++c, base += base_inc) {
if (base < max_base_x) {
#if CONFIG_EXT_INTRA_MOD2
val = above[base] * (32 - shift) + above[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 5);
#else
val = above[base] * (256 - shift) + above[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 8);
#endif
dst[c] = clip_pixel_highbd(val, bd);
} else {
dst[c] = above[max_base_x];
}
}
}
}
// Directional prediction, zone 2: 90 < angle < 180
static void highbd_dr_prediction_z2(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
int upsample_above, int upsample_left,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
int dx, int dy, int bd) {
int r, c, x, y, shift, val, base;
assert(dx > 0);
assert(dy > 0);
#if !CONFIG_INTRA_EDGE_UPSAMPLE
const int upsample_above = 0;
const int upsample_left = 0;
#endif // !CONFIG_INTRA_EDGE_UPSAMPLE
const int min_base_x = -(1 << upsample_above);
#if CONFIG_EXT_INTRA_MOD2
const int frac_bits_x = 6 - upsample_above;
const int frac_bits_y = 6 - upsample_left;
#else
const int frac_bits_x = 8 - upsample_above;
const int frac_bits_y = 8 - upsample_left;
#endif
for (r = 0; r < bh; ++r) {
for (c = 0; c < bw; ++c) {
y = r + 1;
#if CONFIG_EXT_INTRA_MOD2
x = (c << 6) - y * dx;
#else
x = (c << 8) - y * dx;
#endif
base = x >> frac_bits_x;
if (base >= min_base_x) {
#if CONFIG_EXT_INTRA_MOD2
shift = ((x * (1 << upsample_above)) & 0x3F) >> 1;
val = above[base] * (32 - shift) + above[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 5);
#else
shift = (x * (1 << upsample_above)) & 0xFF;
val = above[base] * (256 - shift) + above[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 8);
#endif
} else {
x = c + 1;
#if CONFIG_EXT_INTRA_MOD2
y = (r << 6) - x * dy;
#else
y = (r << 8) - x * dy;
#endif
base = y >> frac_bits_y;
#if CONFIG_EXT_INTRA_MOD2
shift = ((y * (1 << upsample_left)) & 0x3F) >> 1;
val = left[base] * (32 - shift) + left[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 5);
#else
shift = (y * (1 << upsample_left)) & 0xFF;
val = left[base] * (256 - shift) + left[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 8);
#endif
}
dst[c] = clip_pixel_highbd(val, bd);
}
dst += stride;
}
}
// Directional prediction, zone 3: 180 < angle < 270
static void highbd_dr_prediction_z3(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
int upsample_left,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
int dx, int dy, int bd) {
int r, c, y, base, shift, val;
(void)above;
(void)dx;
assert(dx == 1);
assert(dy > 0);
#if !CONFIG_INTRA_EDGE_UPSAMPLE
const int upsample_left = 0;
#endif // !CONFIG_INTRA_EDGE_UPSAMPLE
const int max_base_y = (bw + bh - 1) << upsample_left;
#if CONFIG_EXT_INTRA_MOD2
const int frac_bits = 6 - upsample_left;
#else
const int frac_bits = 8 - upsample_left;
#endif
const int base_inc = 1 << upsample_left;
y = dy;
for (c = 0; c < bw; ++c, y += dy) {
base = y >> frac_bits;
#if CONFIG_EXT_INTRA_MOD2
shift = ((y << upsample_left) & 0x3F) >> 1;
#else
shift = (y << upsample_left) & 0xFF;
#endif
for (r = 0; r < bh; ++r, base += base_inc) {
if (base < max_base_y) {
#if CONFIG_EXT_INTRA_MOD2
val = left[base] * (32 - shift) + left[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 5);
#else
val = left[base] * (256 - shift) + left[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 8);
#endif
dst[r * stride + c] = clip_pixel_highbd(val, bd);
} else {
for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
break;
}
}
}
}
static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint16_t *above,
const uint16_t *left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
int upsample_above, int upsample_left,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
int angle, int bd) {
const int dx = get_dx(angle);
const int dy = get_dy(angle);
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
assert(angle > 0 && angle < 270);
if (angle > 0 && angle < 90) {
highbd_dr_prediction_z1(dst, stride, bw, bh, above, left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
upsample_above,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
dx, dy, bd);
} else if (angle > 90 && angle < 180) {
highbd_dr_prediction_z2(dst, stride, bw, bh, above, left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
upsample_above, upsample_left,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
dx, dy, bd);
} else if (angle > 180 && angle < 270) {
highbd_dr_prediction_z3(dst, stride, bw, bh, above, left,
#if CONFIG_INTRA_EDGE_UPSAMPLE
upsample_left,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
dx, dy, bd);
} else if (angle == 90) {
pred_high[V_PRED][tx_size](dst, stride, above, left, bd);
} else if (angle == 180) {
pred_high[H_PRED][tx_size](dst, stride, above, left, bd);
}
}
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
static int filter_intra_taps_4x2procunit[FILTER_INTRA_MODES][8][7] = {
{
{ -6, 10, 0, 0, 0, 12, 0 },
{ -5, 2, 10, 0, 0, 9, 0 },
{ -3, 1, 1, 10, 0, 7, 0 },
{ -3, 1, 1, 2, 10, 5, 0 },
{ -4, 6, 0, 0, 0, 2, 12 },
{ -3, 2, 6, 0, 0, 2, 9 },
{ -3, 2, 2, 6, 0, 2, 7 },
{ -3, 1, 2, 2, 6, 3, 5 },
},
{
{ -10, 16, 0, 0, 0, 10, 0 },
{ -6, 0, 16, 0, 0, 6, 0 },
{ -4, 0, 0, 16, 0, 4, 0 },
{ -2, 0, 0, 0, 16, 2, 0 },
{ -10, 16, 0, 0, 0, 0, 10 },
{ -6, 0, 16, 0, 0, 0, 6 },
{ -4, 0, 0, 16, 0, 0, 4 },
{ -2, 0, 0, 0, 16, 0, 2 },
},
{
{ -8, 8, 0, 0, 0, 16, 0 },
{ -8, 0, 8, 0, 0, 16, 0 },
{ -8, 0, 0, 8, 0, 16, 0 },
{ -8, 0, 0, 0, 8, 16, 0 },
{ -4, 4, 0, 0, 0, 0, 16 },
{ -4, 0, 4, 0, 0, 0, 16 },
{ -4, 0, 0, 4, 0, 0, 16 },
{ -4, 0, 0, 0, 4, 0, 16 },
},
{
{ -2, 8, 0, 0, 0, 10, 0 },
{ -1, 3, 8, 0, 0, 6, 0 },
{ -1, 2, 3, 8, 0, 4, 0 },
{ 0, 1, 2, 3, 8, 2, 0 },
{ -1, 4, 0, 0, 0, 3, 10 },
{ -1, 3, 4, 0, 0, 4, 6 },
{ -1, 2, 3, 4, 0, 4, 4 },
{ -1, 2, 2, 3, 4, 3, 3 },
},
{
{ -12, 14, 0, 0, 0, 14, 0 },
{ -10, 0, 14, 0, 0, 12, 0 },
{ -9, 0, 0, 14, 0, 11, 0 },
{ -8, 0, 0, 0, 14, 10, 0 },
{ -10, 12, 0, 0, 0, 0, 14 },
{ -9, 1, 12, 0, 0, 0, 12 },
{ -8, 0, 0, 12, 0, 1, 11 },
{ -7, 0, 0, 1, 12, 1, 9 },
},
};
static void filter_intra_predictor(uint8_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint8_t *above,
const uint8_t *left, int mode) {
int r, c;
int buffer[33][33];
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
assert(bw <= 32 && bh <= 32);
// The initialization is just for silencing Jenkins static analysis warnings
for (r = 0; r < bh + 1; ++r)
memset(buffer[r], 0, (bw + 1) * sizeof(buffer[0][0]));
for (r = 0; r < bh; ++r) buffer[r + 1][0] = (int)left[r];
for (c = 0; c < bw + 1; ++c) buffer[0][c] = (int)above[c - 1];
for (r = 1; r < bh + 1; r += 2)
for (c = 1; c < bw + 1; c += 4) {
const int p0 = buffer[r - 1][c - 1];
const int p1 = buffer[r - 1][c];
const int p2 = buffer[r - 1][c + 1];
const int p3 = buffer[r - 1][c + 2];
const int p4 = buffer[r - 1][c + 3];
const int p5 = buffer[r][c - 1];
const int p6 = buffer[r + 1][c - 1];
for (int k = 0; k < 8; ++k) {
int r_offset = k >> 2;
int c_offset = k & 0x03;
buffer[r + r_offset][c + c_offset] =
filter_intra_taps_4x2procunit[mode][k][0] * p0 +
filter_intra_taps_4x2procunit[mode][k][1] * p1 +
filter_intra_taps_4x2procunit[mode][k][2] * p2 +
filter_intra_taps_4x2procunit[mode][k][3] * p3 +
filter_intra_taps_4x2procunit[mode][k][4] * p4 +
filter_intra_taps_4x2procunit[mode][k][5] * p5 +
filter_intra_taps_4x2procunit[mode][k][6] * p6;
buffer[r + r_offset][c + c_offset] =
clip_pixel(ROUND_POWER_OF_TWO_SIGNED(
buffer[r + r_offset][c + c_offset], FILTER_INTRA_SCALE_BITS));
}
}
for (r = 0; r < bh; ++r) {
for (c = 0; c < bw; ++c) {
dst[c] = buffer[r + 1][c + 1];
}
dst += stride;
}
}
void av1_dc_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size,
const uint8_t *above, const uint8_t *left) {
filter_intra_predictor(dst, stride, tx_size, above, left, FILTER_DC_PRED);
}
void av1_v_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size,
const uint8_t *above, const uint8_t *left) {
filter_intra_predictor(dst, stride, tx_size, above, left, FILTER_V_PRED);
}
void av1_h_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size,
const uint8_t *above, const uint8_t *left) {
filter_intra_predictor(dst, stride, tx_size, above, left, FILTER_H_PRED);
}
void av1_d153_filter_predictor_c(uint8_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint8_t *above,
const uint8_t *left) {
filter_intra_predictor(dst, stride, tx_size, above, left, FILTER_D153_PRED);
}
void av1_paeth_filter_predictor_c(uint8_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint8_t *above,
const uint8_t *left) {
filter_intra_predictor(dst, stride, tx_size, above, left, FILTER_PAETH_PRED);
}
static void filter_intra_predictors(FILTER_INTRA_MODE mode, uint8_t *dst,
ptrdiff_t stride, TX_SIZE tx_size,
const uint8_t *above, const uint8_t *left) {
switch (mode) {
case FILTER_DC_PRED:
av1_dc_filter_predictor(dst, stride, tx_size, above, left);
break;
case FILTER_V_PRED:
av1_v_filter_predictor(dst, stride, tx_size, above, left);
break;
case FILTER_H_PRED:
av1_h_filter_predictor(dst, stride, tx_size, above, left);
break;
case FILTER_D153_PRED:
av1_d153_filter_predictor(dst, stride, tx_size, above, left);
break;
case FILTER_PAETH_PRED:
av1_paeth_filter_predictor(dst, stride, tx_size, above, left);
break;
default: assert(0);
}
}
#if CONFIG_HIGHBITDEPTH
static void highbd_filter_intra_predictor(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size,
const uint16_t *above,
const uint16_t *left, int mode,
int bd) {
int r, c;
int buffer[33][33];
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
assert(bw <= 32 && bh <= 32);
// The initialization is just for silencing Jenkins static analysis warnings
for (r = 0; r < bh + 1; ++r)
memset(buffer[r], 0, (bw + 1) * sizeof(buffer[0][0]));
for (r = 0; r < bh; ++r) buffer[r + 1][0] = (int)left[r];
for (c = 0; c < bw + 1; ++c) buffer[0][c] = (int)above[c - 1];
for (r = 1; r < bh + 1; r += 2)
for (c = 1; c < bw + 1; c += 4) {
const int p0 = buffer[r - 1][c - 1];
const int p1 = buffer[r - 1][c];
const int p2 = buffer[r - 1][c + 1];
const int p3 = buffer[r - 1][c + 2];
const int p4 = buffer[r - 1][c + 3];
const int p5 = buffer[r][c - 1];
const int p6 = buffer[r + 1][c - 1];
for (int k = 0; k < 8; ++k) {
int r_offset = k >> 2;
int c_offset = k & 0x03;
buffer[r + r_offset][c + c_offset] =
filter_intra_taps_4x2procunit[mode][k][0] * p0 +
filter_intra_taps_4x2procunit[mode][k][1] * p1 +
filter_intra_taps_4x2procunit[mode][k][2] * p2 +
filter_intra_taps_4x2procunit[mode][k][3] * p3 +
filter_intra_taps_4x2procunit[mode][k][4] * p4 +
filter_intra_taps_4x2procunit[mode][k][5] * p5 +
filter_intra_taps_4x2procunit[mode][k][6] * p6;
buffer[r + r_offset][c + c_offset] = clip_pixel_highbd(
ROUND_POWER_OF_TWO_SIGNED(buffer[r + r_offset][c + c_offset],
FILTER_INTRA_SCALE_BITS),
bd);
}
}
for (r = 0; r < bh; ++r) {
for (c = 0; c < bw; ++c) {
dst[c] = buffer[r + 1][c + 1];
}
dst += stride;
}
}
void av1_highbd_dc_filter_predictor_c(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictor(dst, stride, tx_size, above, left,
FILTER_DC_PRED, bd);
}
void av1_highbd_v_filter_predictor_c(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictor(dst, stride, tx_size, above, left,
FILTER_V_PRED, bd);
}
void av1_highbd_h_filter_predictor_c(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictor(dst, stride, tx_size, above, left,
FILTER_H_PRED, bd);
}
void av1_highbd_d153_filter_predictor_c(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictor(dst, stride, tx_size, above, left,
FILTER_D153_PRED, bd);
}
void av1_highbd_paeth_filter_predictor_c(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictor(dst, stride, tx_size, above, left,
FILTER_PAETH_PRED, bd);
}
static void highbd_filter_intra_predictors(FILTER_INTRA_MODE mode,
uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size,
const uint16_t *above,
const uint16_t *left, int bd) {
switch (mode) {
case FILTER_DC_PRED:
av1_highbd_dc_filter_predictor(dst, stride, tx_size, above, left, bd);
break;
case FILTER_V_PRED:
av1_highbd_v_filter_predictor(dst, stride, tx_size, above, left, bd);
break;
case FILTER_H_PRED:
av1_highbd_h_filter_predictor(dst, stride, tx_size, above, left, bd);
break;
case FILTER_D153_PRED:
av1_highbd_d153_filter_predictor(dst, stride, tx_size, above, left, bd);
break;
case FILTER_PAETH_PRED:
av1_highbd_paeth_filter_predictor(dst, stride, tx_size, above, left, bd);
break;
default: assert(0);
}
}
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_FILTER_INTRA
#if CONFIG_INTRA_EDGE
static int is_smooth(MB_MODE_INFO *mbmi) {
return (mbmi->mode == SMOOTH_PRED || mbmi->mode == SMOOTH_V_PRED ||
mbmi->mode == SMOOTH_H_PRED);
}
static int get_filt_type(const MACROBLOCKD *xd) {
MB_MODE_INFO *ab = xd->up_available ? &xd->mi[-xd->mi_stride]->mbmi : 0;
MB_MODE_INFO *le = xd->left_available ? &xd->mi[-1]->mbmi : 0;
const int ab_sm = ab ? is_smooth(ab) : 0;
const int le_sm = le ? is_smooth(le) : 0;
return (ab_sm || le_sm) ? 1 : 0;
}
static int intra_edge_filter_strength(int bs0, int bs1, int delta, int type) {
const int d = abs(delta);
int strength = 0;
#if CONFIG_EXT_INTRA_MOD
const int blk_wh = bs0 + bs1;
if (type == 0) {
if (blk_wh <= 8) {
if (d >= 56) strength = 1;
} else if (blk_wh <= 12) {
if (d >= 40) strength = 1;
} else if (blk_wh <= 16) {
if (d >= 40) strength = 1;
} else if (blk_wh <= 24) {
if (d >= 8) strength = 1;
if (d >= 16) strength = 2;
if (d >= 32) strength = 3;
} else if (blk_wh <= 32) {
if (d >= 1) strength = 1;
if (d >= 4) strength = 2;
if (d >= 32) strength = 3;
} else {
if (d >= 1) strength = 3;
}
} else {
if (blk_wh <= 8) {
if (d >= 40) strength = 1;
if (d >= 64) strength = 2;
} else if (blk_wh <= 16) {
if (d >= 20) strength = 1;
if (d >= 48) strength = 2;
} else if (blk_wh <= 24) {
if (d >= 4) strength = 3;
} else {
if (d >= 1) strength = 3;
}
}
#else
(void)type;
(void)bs1;
switch (bs0) {
case 4:
if (d < 56) {
strength = 0;
} else if (d < 90) {
strength = 1;
}
break;
case 8:
if (d < 8) {
strength = 0;
} else if (d < 32) {
strength = 1;
} else if (d < 90) {
strength = 3;
}
break;
case 16:
if (d < 4) {
strength = 0;
} else if (d < 16) {
strength = 1;
} else if (d < 90) {
strength = 3;
}
break;
case 32:
if (d < 16) {
strength = 2;
} else if (d < 90) {
strength = 3;
}
break;
default: strength = 0; break;
}
#endif // CONFIG_EXT_INTRA_MOD
return strength;
}
void av1_filter_intra_edge_c(uint8_t *p, int sz, int strength) {
if (!strength) return;
const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = {
{ 0, 4, 8, 4, 0 }, { 0, 5, 6, 5, 0 }, { 2, 4, 4, 4, 2 }
};
const int filt = strength - 1;
uint8_t edge[129];
memcpy(edge, p, sz * sizeof(*p));
for (int i = 1; i < sz - 1; i++) {
int s = 0;
for (int j = 0; j < INTRA_EDGE_TAPS; j++) {
int k = i - 2 + j;
k = (k < 0) ? 0 : k;
k = (k > sz - 1) ? sz - 1 : k;
s += edge[k] * kernel[filt][j];
}
s = (s + 8) >> 4;
p[i] = s;
}
}
#if CONFIG_EXT_INTRA_MOD
static void av1_filter_intra_edge_corner(uint8_t *p_above, uint8_t *p_left) {
const int kernel[3] = { 5, 6, 5 };
int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) +
(p_above[0] * kernel[2]);
s = (s + 8) >> 4;
p_above[-1] = s;
p_left[-1] = s;
}
#endif // CONFIG_EXT_INTRA_MOD
#if CONFIG_HIGHBITDEPTH
void av1_filter_intra_edge_high_c(uint16_t *p, int sz, int strength) {
if (!strength) return;
const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = {
{ 0, 4, 8, 4, 0 }, { 0, 5, 6, 5, 0 }, { 2, 4, 4, 4, 2 }
};
const int filt = strength - 1;
uint16_t edge[129];
memcpy(edge, p, sz * sizeof(*p));
for (int i = 1; i < sz - 1; i++) {
int s = 0;
for (int j = 0; j < INTRA_EDGE_TAPS; j++) {
int k = i - 2 + j;
k = (k < 0) ? 0 : k;
k = (k > sz - 1) ? sz - 1 : k;
s += edge[k] * kernel[filt][j];
}
s = (s + 8) >> 4;
p[i] = s;
}
}
#if CONFIG_EXT_INTRA_MOD
static void av1_filter_intra_edge_corner_high(uint16_t *p_above,
uint16_t *p_left) {
const int kernel[3] = { 5, 6, 5 };
int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) +
(p_above[0] * kernel[2]);
s = (s + 8) >> 4;
p_above[-1] = s;
p_left[-1] = s;
}
#endif // CONFIG_EXT_INTRA_MOD
#endif // CONFIG_HIGHBITDEPTH
#if CONFIG_INTRA_EDGE_UPSAMPLE
static int use_intra_edge_upsample(int bs0, int bs1, int delta, int type) {
const int d = abs(delta);
#if CONFIG_EXT_INTRA_MOD
const int blk_wh = bs0 + bs1;
if (d <= 0 || d >= 40) return 0;
return type ? (blk_wh <= 8) : (blk_wh <= 16);
#else
(void)type;
(void)bs1;
return (bs0 == 4 && d > 0 && d < 56);
#endif // CONFIG_EXT_INTRA_MOD
}
void av1_upsample_intra_edge_c(uint8_t *p, int sz) {
// interpolate half-sample positions
assert(sz <= MAX_UPSAMPLE_SZ);
uint8_t in[MAX_UPSAMPLE_SZ + 3];
// copy p[-1..(sz-1)] and extend first and last samples
in[0] = p[-1];
in[1] = p[-1];
for (int i = 0; i < sz; i++) {
in[i + 2] = p[i];
}
in[sz + 2] = p[sz - 1];
// interpolate half-sample edge positions
p[-2] = in[0];
for (int i = 0; i < sz; i++) {
int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3];
s = clip_pixel((s + 8) >> 4);
p[2 * i - 1] = s;
p[2 * i] = in[i + 2];
}
}
#if CONFIG_HIGHBITDEPTH
void av1_upsample_intra_edge_high_c(uint16_t *p, int sz, int bd) {
// interpolate half-sample positions
assert(sz <= MAX_UPSAMPLE_SZ);
uint16_t in[MAX_UPSAMPLE_SZ + 3];
// copy p[-1..(sz-1)] and extend first and last samples
in[0] = p[-1];
in[1] = p[-1];
for (int i = 0; i < sz; i++) {
in[i + 2] = p[i];
}
in[sz + 2] = p[sz - 1];
// interpolate half-sample edge positions
p[-2] = in[0];
for (int i = 0; i < sz; i++) {
int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3];
s = (s + 8) >> 4;
s = clip_pixel_highbd(s, bd);
p[2 * i - 1] = s;
p[2 * i] = in[i + 2];
}
}
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
#endif // CONFIG_INTRA_EDGE
#if CONFIG_HIGHBITDEPTH
static void build_intra_predictors_high(
const MACROBLOCKD *xd, const uint8_t *ref8, int ref_stride, uint8_t *dst8,
int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int n_top_px,
int n_topright_px, int n_left_px, int n_bottomleft_px, int plane) {
int i;
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
DECLARE_ALIGNED(16, uint16_t, left_data[MAX_TX_SIZE * 2 + 32]);
DECLARE_ALIGNED(16, uint16_t, above_data[MAX_TX_SIZE * 2 + 32]);
uint16_t *const above_row = above_data + 16;
uint16_t *const left_col = left_data + 16;
const int txwpx = tx_size_wide[tx_size];
const int txhpx = tx_size_high[tx_size];
int need_left = extend_modes[mode] & NEED_LEFT;
int need_above = extend_modes[mode] & NEED_ABOVE;
int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
const uint16_t *above_ref = ref - ref_stride;
const uint16_t *left_ref = ref - 1;
#if CONFIG_EXT_INTRA
int p_angle = 0;
const int is_dr_mode = av1_is_directional_mode(mode, xd->mi[0]->mbmi.sb_type);
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
const int use_filter_intra =
plane > 0 ? 0 : xd->mi[0]->mbmi.filter_intra_mode_info.use_filter_intra;
const FILTER_INTRA_MODE filter_intra_mode =
xd->mi[0]->mbmi.filter_intra_mode_info.filter_intra_mode;
#endif // CONFIG_FILTER_INTRA
int base = 128 << (xd->bd - 8);
// base-1 base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1
// base+1 A B .. Y Z
// base+1 C D .. W X
// base+1 E F .. U V
// base+1 G H .. S T T T T T
aom_memset16(left_data, base + 1, sizeof(left_data) / sizeof(*left_data));
#if CONFIG_EXT_INTRA
if (is_dr_mode) {
p_angle = mode_to_angle_map[mode] +
xd->mi[0]->mbmi.angle_delta[plane != 0] * ANGLE_STEP;
if (p_angle <= 90)
need_above = 1, need_left = 0, need_above_left = 1;
else if (p_angle < 180)
need_above = 1, need_left = 1, need_above_left = 1;
else
need_above = 0, need_left = 1, need_above_left = 1;
}
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
if (use_filter_intra) need_left = need_above = need_above_left = 1;
#endif // CONFIG_FILTER_INTRA
(void)plane;
assert(n_top_px >= 0);
assert(n_topright_px >= 0);
assert(n_left_px >= 0);
assert(n_bottomleft_px >= 0);
if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
#if CONFIG_INTRA_EDGE
int val;
if (need_left) {
val = (n_top_px > 0) ? above_ref[0] : base + 1;
} else {
val = (n_left_px > 0) ? left_ref[0] : base - 1;
}
#else
const int val = need_left ? base + 1 : base - 1;
#endif // CONFIG_INTRA_EDGE
for (i = 0; i < txhpx; ++i) {
aom_memset16(dst, val, txwpx);
dst += dst_stride;
}
return;
}
// NEED_LEFT
if (need_left) {
#if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA
int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT);
#if CONFIG_FILTER_INTRA
if (use_filter_intra) need_bottom = 0;
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
if (is_dr_mode) need_bottom = p_angle > 180;
#endif // CONFIG_EXT_INTRA
#else
const int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT);
#endif // CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA
const int num_left_pixels_needed = txhpx + (need_bottom ? txwpx : 0);
i = 0;
if (n_left_px > 0) {
for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
if (need_bottom && n_bottomleft_px > 0) {
assert(i == txhpx);
for (; i < txhpx + n_bottomleft_px; i++)
left_col[i] = left_ref[i * ref_stride];
}
if (i < num_left_pixels_needed)
aom_memset16(&left_col[i], left_col[i - 1], num_left_pixels_needed - i);
} else {
#if CONFIG_INTRA_EDGE
if (n_top_px > 0) {
aom_memset16(left_col, above_ref[0], num_left_pixels_needed);
} else {
#endif // CONFIG_INTRA_EDGE
aom_memset16(left_col, base + 1, num_left_pixels_needed);
#if CONFIG_INTRA_EDGE
}
#endif // CONFIG_INTRA_EDGE
}
}
// NEED_ABOVE
if (need_above) {
#if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA
int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT);
#if CONFIG_FILTER_INTRA
if (use_filter_intra) need_right = 0;
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
if (is_dr_mode) need_right = p_angle < 90;
#endif // CONFIG_EXT_INTRA
#else
const int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT);
#endif // CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA
const int num_top_pixels_needed = txwpx + (need_right ? txhpx : 0);
if (n_top_px > 0) {
memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0]));
i = n_top_px;
if (need_right && n_topright_px > 0) {
assert(n_top_px == txwpx);
memcpy(above_row + txwpx, above_ref + txwpx,
n_topright_px * sizeof(above_ref[0]));
i += n_topright_px;
}
if (i < num_top_pixels_needed)
aom_memset16(&above_row[i], above_row[i - 1],
num_top_pixels_needed - i);
} else {
#if CONFIG_INTRA_EDGE
if (n_left_px > 0) {
aom_memset16(above_row, left_ref[0], num_top_pixels_needed);
} else {
#endif // CONFIG_INTRA_EDGE
aom_memset16(above_row, base - 1, num_top_pixels_needed);
#if CONFIG_INTRA_EDGE
}
#endif // CONFIG_INTRA_EDGE
}
}
if (need_above_left) {
#if CONFIG_INTRA_EDGE
if (n_top_px > 0 && n_left_px > 0) {
above_row[-1] = above_ref[-1];
} else if (n_top_px > 0) {
above_row[-1] = above_ref[0];
} else if (n_left_px > 0) {
above_row[-1] = left_ref[0];
} else {
above_row[-1] = base;
}
#else
above_row[-1] =
n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : base + 1) : base - 1;
#endif // CONFIG_INTRA_EDGE
left_col[-1] = above_row[-1];
}
#if CONFIG_FILTER_INTRA
if (use_filter_intra) {
highbd_filter_intra_predictors(filter_intra_mode, dst, dst_stride, tx_size,
above_row, left_col, xd->bd);
return;
}
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
if (is_dr_mode) {
#if CONFIG_INTRA_EDGE
const int need_right = p_angle < 90;
const int need_bottom = p_angle > 180;
const int filt_type = get_filt_type(xd);
if (p_angle != 90 && p_angle != 180) {
const int ab_le = need_above_left ? 1 : 0;
#if CONFIG_EXT_INTRA_MOD
if (need_above && need_left && (txwpx + txhpx >= 24)) {
av1_filter_intra_edge_corner_high(above_row, left_col);
}
#endif // CONFIG_EXT_INTRA_MOD
if (need_above && n_top_px > 0) {
const int strength =
intra_edge_filter_strength(txwpx, txhpx, p_angle - 90, filt_type);
const int n_px = n_top_px + ab_le + (need_right ? n_topright_px : 0);
av1_filter_intra_edge_high(above_row - ab_le, n_px, strength);
}
if (need_left && n_left_px > 0) {
const int strength =
intra_edge_filter_strength(txhpx, txwpx, p_angle - 180, filt_type);
const int n_px =
n_left_px + ab_le + (need_bottom ? n_bottomleft_px : 0);
av1_filter_intra_edge_high(left_col - ab_le, n_px, strength);
}
}
#if CONFIG_INTRA_EDGE_UPSAMPLE
const int upsample_above =
use_intra_edge_upsample(txwpx, txhpx, p_angle - 90, filt_type);
if (need_above && upsample_above) {
const int n_px = txwpx + (need_right ? txhpx : 0);
av1_upsample_intra_edge_high(above_row, n_px, xd->bd);
}
const int upsample_left =
use_intra_edge_upsample(txhpx, txwpx, p_angle - 180, filt_type);
if (need_left && upsample_left) {
const int n_px = txhpx + (need_bottom ? txwpx : 0);
av1_upsample_intra_edge_high(left_col, n_px, xd->bd);
}
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
#endif // CONFIG_INTRA_EDGE
highbd_dr_predictor(dst, dst_stride, tx_size, above_row, left_col,
#if CONFIG_INTRA_EDGE_UPSAMPLE
upsample_above, upsample_left,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
p_angle, xd->bd);
return;
}
#endif // CONFIG_EXT_INTRA
// predict
if (mode == DC_PRED) {
dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size](
dst, dst_stride, above_row, left_col, xd->bd);
} else {
pred_high[mode][tx_size](dst, dst_stride, above_row, left_col, xd->bd);
}
}
#endif // CONFIG_HIGHBITDEPTH
static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref,
int ref_stride, uint8_t *dst, int dst_stride,
PREDICTION_MODE mode, TX_SIZE tx_size,
int n_top_px, int n_topright_px,
int n_left_px, int n_bottomleft_px,
int plane) {
int i;
const uint8_t *above_ref = ref - ref_stride;
const uint8_t *left_ref = ref - 1;
DECLARE_ALIGNED(16, uint8_t, left_data[MAX_TX_SIZE * 2 + 32]);
DECLARE_ALIGNED(16, uint8_t, above_data[MAX_TX_SIZE * 2 + 32]);
uint8_t *const above_row = above_data + 16;
uint8_t *const left_col = left_data + 16;
const int txwpx = tx_size_wide[tx_size];
const int txhpx = tx_size_high[tx_size];
int need_left = extend_modes[mode] & NEED_LEFT;
int need_above = extend_modes[mode] & NEED_ABOVE;
int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
#if CONFIG_EXT_INTRA
int p_angle = 0;
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const int is_dr_mode = av1_is_directional_mode(mode, mbmi->sb_type);
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
const int use_filter_intra =
plane > 0 ? 0 : xd->mi[0]->mbmi.filter_intra_mode_info.use_filter_intra;
const FILTER_INTRA_MODE filter_intra_mode =
xd->mi[0]->mbmi.filter_intra_mode_info.filter_intra_mode;
#endif // CONFIG_FILTER_INTRA
// 127 127 127 .. 127 127 127 127 127 127
// 129 A B .. Y Z
// 129 C D .. W X
// 129 E F .. U V
// 129 G H .. S T T T T T
// ..
memset(left_data, 129, sizeof(left_data));
#if CONFIG_EXT_INTRA
if (is_dr_mode) {
p_angle = mode_to_angle_map[mode] +
xd->mi[0]->mbmi.angle_delta[plane != 0] * ANGLE_STEP;
if (p_angle <= 90)
need_above = 1, need_left = 0, need_above_left = 1;
else if (p_angle < 180)
need_above = 1, need_left = 1, need_above_left = 1;
else
need_above = 0, need_left = 1, need_above_left = 1;
}
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
if (use_filter_intra) need_left = need_above = need_above_left = 1;
#endif // CONFIG_FILTER_INTRA
(void)xd;
(void)plane;
assert(n_top_px >= 0);
assert(n_topright_px >= 0);
assert(n_left_px >= 0);
assert(n_bottomleft_px >= 0);
if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
#if CONFIG_INTRA_EDGE
int val;
if (need_left) {
val = (n_top_px > 0) ? above_ref[0] : 129;
} else {
val = (n_left_px > 0) ? left_ref[0] : 127;
}
#else
const int val = need_left ? 129 : 127;
#endif // CONFIG_INTRA_EDGE
for (i = 0; i < txhpx; ++i) {
memset(dst, val, txwpx);
dst += dst_stride;
}
return;
}
// NEED_LEFT
if (need_left) {
#if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA
int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT);
#if CONFIG_FILTER_INTRA
if (use_filter_intra) need_bottom = 0;
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
if (is_dr_mode) need_bottom = p_angle > 180;
#endif // CONFIG_EXT_INTRA
#else
const int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT);
#endif // CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA
const int num_left_pixels_needed = txhpx + (need_bottom ? txwpx : 0);
i = 0;
if (n_left_px > 0) {
for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
if (need_bottom && n_bottomleft_px > 0) {
assert(i == txhpx);
for (; i < txhpx + n_bottomleft_px; i++)
left_col[i] = left_ref[i * ref_stride];
}
if (i < num_left_pixels_needed)
memset(&left_col[i], left_col[i - 1], num_left_pixels_needed - i);
} else {
#if CONFIG_INTRA_EDGE
if (n_top_px > 0) {
memset(left_col, above_ref[0], num_left_pixels_needed);
} else {
#endif // CONFIG_INTRA_EDGE
memset(left_col, 129, num_left_pixels_needed);
#if CONFIG_INTRA_EDGE
}
#endif // CONFIG_INTRA_EDGE
}
}
// NEED_ABOVE
if (need_above) {
#if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA
int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT);
#if CONFIG_FILTER_INTRA
if (use_filter_intra) need_right = 0;
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
if (is_dr_mode) need_right = p_angle < 90;
#endif // CONFIG_EXT_INTRA
#else
const int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT);
#endif // CONFIG_EXT_INTRA || CONFIG_FITLER_INTRA
const int num_top_pixels_needed = txwpx + (need_right ? txhpx : 0);
if (n_top_px > 0) {
memcpy(above_row, above_ref, n_top_px);
i = n_top_px;
if (need_right && n_topright_px > 0) {
assert(n_top_px == txwpx);
memcpy(above_row + txwpx, above_ref + txwpx, n_topright_px);
i += n_topright_px;
}
if (i < num_top_pixels_needed)
memset(&above_row[i], above_row[i - 1], num_top_pixels_needed - i);
} else {
#if CONFIG_INTRA_EDGE
if (n_left_px > 0) {
memset(above_row, left_ref[0], num_top_pixels_needed);
} else {
#endif // CONFIG_INTRA_EDGE
memset(above_row, 127, num_top_pixels_needed);
#if CONFIG_INTRA_EDGE
}
#endif // CONFIG_INTRA_EDGE
}
}
if (need_above_left) {
#if CONFIG_INTRA_EDGE
if (n_top_px > 0 && n_left_px > 0) {
above_row[-1] = above_ref[-1];
} else if (n_top_px > 0) {
above_row[-1] = above_ref[0];
} else if (n_left_px > 0) {
above_row[-1] = left_ref[0];
} else {
above_row[-1] = 128;
}
#else
above_row[-1] = n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : 129) : 127;
#endif // CONFIG_INTRA_EDGE
left_col[-1] = above_row[-1];
}
#if CONFIG_FILTER_INTRA
if (use_filter_intra) {
filter_intra_predictors(filter_intra_mode, dst, dst_stride, tx_size,
above_row, left_col);
return;
}
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
if (is_dr_mode) {
#if CONFIG_INTRA_EDGE
const int need_right = p_angle < 90;
const int need_bottom = p_angle > 180;
const int filt_type = get_filt_type(xd);
if (p_angle != 90 && p_angle != 180) {
const int ab_le = need_above_left ? 1 : 0;
#if CONFIG_EXT_INTRA_MOD
if (need_above && need_left && (txwpx + txhpx >= 24)) {
av1_filter_intra_edge_corner(above_row, left_col);
}
#endif // CONFIG_EXT_INTRA_MOD
if (need_above && n_top_px > 0) {
const int strength =
intra_edge_filter_strength(txwpx, txhpx, p_angle - 90, filt_type);
const int n_px = n_top_px + ab_le + (need_right ? n_topright_px : 0);
av1_filter_intra_edge(above_row - ab_le, n_px, strength);
}
if (need_left && n_left_px > 0) {
const int strength =
intra_edge_filter_strength(txhpx, txwpx, p_angle - 180, filt_type);
const int n_px =
n_left_px + ab_le + (need_bottom ? n_bottomleft_px : 0);
av1_filter_intra_edge(left_col - ab_le, n_px, strength);
}
}
#if CONFIG_INTRA_EDGE_UPSAMPLE
const int upsample_above =
use_intra_edge_upsample(txwpx, txhpx, p_angle - 90, filt_type);
if (need_above && upsample_above) {
const int n_px = txwpx + (need_right ? txhpx : 0);
av1_upsample_intra_edge(above_row, n_px);
}
const int upsample_left =
use_intra_edge_upsample(txhpx, txwpx, p_angle - 180, filt_type);
if (need_left && upsample_left) {
const int n_px = txhpx + (need_bottom ? txwpx : 0);
av1_upsample_intra_edge(left_col, n_px);
}
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
#endif // CONFIG_INTRA_EDGE
dr_predictor(dst, dst_stride, tx_size, above_row, left_col,
#if CONFIG_INTRA_EDGE_UPSAMPLE
upsample_above, upsample_left,
#endif // CONFIG_INTRA_EDGE_UPSAMPLE
p_angle);
return;
}
#endif // CONFIG_EXT_INTRA
// predict
if (mode == DC_PRED) {
dc_pred[n_left_px > 0][n_top_px > 0][tx_size](dst, dst_stride, above_row,
left_col);
} else {
pred[mode][tx_size](dst, dst_stride, above_row, left_col);
}
}
static void predict_intra_block_helper(const AV1_COMMON *cm,
const MACROBLOCKD *xd, int wpx, int hpx,
TX_SIZE tx_size, PREDICTION_MODE mode,
const uint8_t *ref, int ref_stride,
uint8_t *dst, int dst_stride,
int col_off, int row_off, int plane) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
BLOCK_SIZE bsize = mbmi->sb_type;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int txw = tx_size_wide_unit[tx_size];
const int txh = tx_size_high_unit[tx_size];
const int have_top = row_off || (pd->subsampling_y ? xd->chroma_up_available
: xd->up_available);
const int have_left =
col_off ||
(pd->subsampling_x ? xd->chroma_left_available : xd->left_available);
const int x = col_off << tx_size_wide_log2[0];
const int y = row_off << tx_size_high_log2[0];
const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
const int txwpx = tx_size_wide[tx_size];
const int txhpx = tx_size_high[tx_size];
const int xr_chr_offset = 0;
const int yd_chr_offset = 0;
// Distance between the right edge of this prediction block to
// the frame right edge
const int xr = (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) +
(wpx - x - txwpx) - xr_chr_offset;
// Distance between the bottom edge of this prediction block to
// the frame bottom edge
const int yd = (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) +
(hpx - y - txhpx) - yd_chr_offset;
const int right_available = mi_col + ((col_off + txw) << pd->subsampling_x >>
(MI_SIZE_LOG2 - tx_size_wide_log2[0])) <
xd->tile.mi_col_end;
const int bottom_available =
(yd > 0) && (mi_row + (((row_off + txh) << pd->subsampling_y) >>
(MI_SIZE_LOG2 - tx_size_high_log2[0])) <
xd->tile.mi_row_end);
#if CONFIG_EXT_PARTITION_TYPES
const PARTITION_TYPE partition = mbmi->partition;
#else
const PARTITION_TYPE partition = PARTITION_NONE;
#endif
// force 4x4 chroma component block size.
bsize = scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y);
const int have_top_right =
has_top_right(cm, bsize, mi_row, mi_col, have_top, right_available,
partition, tx_size, row_off, col_off, pd->subsampling_x);
const int have_bottom_left =
has_bottom_left(cm, bsize, mi_row, mi_col, bottom_available, have_left,
partition, tx_size, row_off, col_off, pd->subsampling_y);
if (mbmi->palette_mode_info.palette_size[plane != 0] > 0) {
const int stride = wpx;
int r, c;
const uint8_t *const map = xd->plane[plane != 0].color_index_map;
const uint16_t *const palette =
mbmi->palette_mode_info.palette_colors + plane * PALETTE_MAX_SIZE;
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
for (r = 0; r < txhpx; ++r) {
for (c = 0; c < txwpx; ++c) {
dst16[r * dst_stride + c] = palette[map[(r + y) * stride + c + x]];
}
}
} else {
#endif // CONFIG_HIGHBITDEPTH
for (r = 0; r < txhpx; ++r) {
for (c = 0; c < txwpx; ++c) {
dst[r * dst_stride + c] =
(uint8_t)palette[map[(r + y) * stride + c + x]];
}
}
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
return;
}
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
build_intra_predictors_high(
xd, ref, ref_stride, dst, dst_stride, mode, tx_size,
have_top ? AOMMIN(txwpx, xr + txwpx) : 0,
have_top_right ? AOMMIN(txwpx, xr) : 0,
have_left ? AOMMIN(txhpx, yd + txhpx) : 0,
have_bottom_left ? AOMMIN(txhpx, yd) : 0, plane);
return;
}
#endif
build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size,
have_top ? AOMMIN(txwpx, xr + txwpx) : 0,
have_top_right ? AOMMIN(txwpx, xr) : 0,
have_left ? AOMMIN(txhpx, yd + txhpx) : 0,
have_bottom_left ? AOMMIN(txhpx, yd) : 0, plane);
}
void av1_predict_intra_block_facade(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, int blk_col, int blk_row,
TX_SIZE tx_size) {
const MODE_INFO *mi = xd->mi[0];
const MB_MODE_INFO *const mbmi = &mi->mbmi;
struct macroblockd_plane *const pd = &xd->plane[plane];
const int dst_stride = pd->dst.stride;
uint8_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
const PREDICTION_MODE mode =
(plane == AOM_PLANE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
#if CONFIG_CFL
if (plane != AOM_PLANE_Y && mbmi->uv_mode == UV_CFL_PRED) {
#if CONFIG_DEBUG
assert(blk_col == 0);
assert(blk_row == 0);
assert(is_cfl_allowed(mbmi));
const BLOCK_SIZE plane_bsize = get_plane_block_size(mbmi->sb_type, pd);
assert(plane_bsize < BLOCK_SIZES_ALL);
assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]);
assert(block_size_high[plane_bsize] == tx_size_high[tx_size]);
#endif
CFL_CTX *const cfl = &xd->cfl;
CFL_PRED_TYPE pred_plane = get_cfl_pred_type(plane);
if (cfl->dc_pred_is_cached[pred_plane] == 0) {
av1_predict_intra_block(cm, xd, pd->width, pd->height,
txsize_to_bsize[tx_size], mode, dst, dst_stride,
dst, dst_stride, blk_col, blk_row, plane);
if (cfl->use_dc_pred_cache) {
cfl_store_dc_pred(xd, dst, pred_plane, tx_size_wide[tx_size]);
cfl->dc_pred_is_cached[pred_plane] = 1;
}
} else {
cfl_load_dc_pred(xd, dst, dst_stride, tx_size, pred_plane);
}
cfl_predict_block(xd, dst, dst_stride, tx_size, plane);
return;
}
#endif
av1_predict_intra_block(cm, xd, pd->width, pd->height,
txsize_to_bsize[tx_size], mode, dst, dst_stride, dst,
dst_stride, blk_col, blk_row, plane);
}
// Copy the given row of dst into the equivalent row of ref, saving
// the overwritten data to tmp. Returns zero if no copy happened (so
// no restore is needed)
//
// Note that ref_row and dst_row follow the usual hibd convention
// where you convert to a uint16_t* with CONVERT_TO_SHORTPTR(). tmp
// does not follow that convention: it's a genuine pointer which is
// correctly aligned and sized for either 8 or 16 bit data.
//
// matching_strides is a boolean flag which should be nonzero if ref
// and dst have the same stride.
static int overwrite_ref_row(int matching_strides, int buf_flags,
int block_width, const uint8_t *dst_row,
uint8_t *ref_row, uint8_t *tmp_row) {
if (ref_row == dst_row && matching_strides) return 0;
int row_bytes = block_width;
#if CONFIG_HIGHBITDEPTH
if (buf_flags & YV12_FLAG_HIGHBITDEPTH) {
row_bytes *= 2;
ref_row = (uint8_t *)CONVERT_TO_SHORTPTR(ref_row);
dst_row = (const uint8_t *)CONVERT_TO_SHORTPTR(dst_row);
}
#else
(void)buf_flags;
#endif // CONFIG_HIGHBITDEPTH
memcpy(tmp_row, ref_row, row_bytes);
memcpy(ref_row, dst_row, row_bytes);
return 1;
}
static void restore_ref_row(int buf_flags, int block_width,
const uint8_t *tmp_row, uint8_t *ref_row) {
int row_bytes = block_width;
#if CONFIG_HIGHBITDEPTH
if (buf_flags & YV12_FLAG_HIGHBITDEPTH) {
row_bytes *= 2;
ref_row = (uint8_t *)CONVERT_TO_SHORTPTR(ref_row);
}
#else
(void)buf_flags;
#endif // CONFIG_HIGHBITDEPTH
memcpy(ref_row, tmp_row, row_bytes);
}
// The column equivalent of overwrite_ref_row. ref_row and dst_row
// point at the relevant column of the first row of the block.
static int overwrite_ref_col(int buf_flags, int block_height,
const uint8_t *dst_row, int dst_stride,
uint8_t *ref_row, int ref_stride,
uint8_t *tmp_row) {
if (ref_row == dst_row && ref_stride == dst_stride) return 0;
#if CONFIG_HIGHBITDEPTH
if (buf_flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *tmp_16 = (uint16_t *)tmp_row;
uint16_t *ref_16 = CONVERT_TO_SHORTPTR(ref_row);
const uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst_row);
for (int i = 0; i < block_height; ++i) {
tmp_16[i] = ref_16[i * ref_stride];
ref_16[i * ref_stride] = dst_16[i * dst_stride];
}
} else {
#endif // CONFIG_HIGHBITDEPTH
for (int i = 0; i < block_height; ++i) {
tmp_row[i] = ref_row[i * ref_stride];
ref_row[i * ref_stride] = dst_row[i * dst_stride];
}
#if CONFIG_HIGHBITDEPTH
}
#else
(void)buf_flags;
#endif // CONFIG_HIGHBITDEPTH
return 1;
}
static void restore_ref_col(int buf_flags, int block_height,
const uint8_t *tmp_row, uint8_t *ref_row,
int ref_stride) {
#if CONFIG_HIGHBITDEPTH
if (buf_flags & YV12_FLAG_HIGHBITDEPTH) {
const uint16_t *tmp_16 = (const uint16_t *)tmp_row;
uint16_t *ref_16 = CONVERT_TO_SHORTPTR(ref_row);
for (int i = 0; i < block_height; ++i) {
ref_16[i * ref_stride] = tmp_16[i];
}
} else {
#endif // CONFIG_HIGHBITDEPTH
for (int i = 0; i < block_height; ++i) {
ref_row[i * ref_stride] = tmp_row[i];
}
#if CONFIG_HIGHBITDEPTH
}
#else
(void)buf_flags;
#endif // CONFIG_HIGHBITDEPTH
}
void av1_predict_intra_block(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int wpx, int hpx, BLOCK_SIZE bsize,
PREDICTION_MODE mode, const uint8_t *ref,
int ref_stride, uint8_t *dst, int dst_stride,
int col_off, int row_off, int plane) {
const int block_width = block_size_wide[bsize];
const int block_height = block_size_high[bsize];
const TX_SIZE tx_size = get_max_rect_tx_size(bsize, 0);
assert(tx_size < TX_SIZES_ALL);
// Start by running the helper to predict either the entire block
// (if the block is square or the same size as tx_size) or the top
// or left of the block if it's tall and thin or short and wide.
predict_intra_block_helper(cm, xd, wpx, hpx, tx_size, mode, ref, ref_stride,
dst, dst_stride, col_off, row_off, plane);
// If the block is square, we're done.
if (block_width == block_height) return;
if (block_width == tx_size_wide[tx_size] &&
block_height == tx_size_high[tx_size])
return;
// A block should only fail to have a matching transform if it's
// large and rectangular (such large transform sizes aren't
// available).
assert((block_width == wpx && block_height == hpx) ||
(block_width == (wpx >> 1) && block_height == hpx) ||
(block_width == wpx && block_height == (hpx >> 1)));
// The tmp buffer needs to be big enough to hold MAX_SB_SIZE samples
// from the image. If CONFIG_HIGHBITDEPTH is enabled, it also needs
// to be big enough and correctly aligned to hold 16-bit entries.
#if CONFIG_HIGHBITDEPTH
uint16_t tmp_buf[MAX_SB_SIZE];
#else
uint8_t tmp_buf[MAX_SB_SIZE];
#endif // CONFIG_HIGHBITDEPTH
uint8_t *tmp = (uint8_t *)tmp_buf;
if (block_width < block_height) {
// The block is tall and thin. We've already done the top part,
// and need to repeat the prediction down the rest of the block.
const int tx_height = tx_size_high[tx_size];
const int tx_height_off = tx_height >> tx_size_wide_log2[0];
assert(tx_height_off << tx_size_wide_log2[0] == tx_height);
int next_row_off = row_off + tx_height_off;
int next_row_idx = tx_height;
while (next_row_idx < block_height) {
const int last_row_idx = next_row_idx - 1;
// Cast away the const to make a mutable pointer to the last
// row of ref. This will be snapshotted and restored later.
uint8_t *last_ref_row = (uint8_t *)ref + last_row_idx * ref_stride;
uint8_t *last_dst_row = dst + last_row_idx * dst_stride;
const int needs_restore =
overwrite_ref_row(ref_stride == dst_stride, xd->cur_buf->flags,
block_width, last_dst_row, last_ref_row, tmp);
const uint8_t *next_ref_row = ref + next_row_idx * ref_stride;
uint8_t *next_dst_row = dst + next_row_idx * dst_stride;
predict_intra_block_helper(cm, xd, wpx, hpx, tx_size, mode, next_ref_row,
ref_stride, next_dst_row, dst_stride, col_off,
next_row_off, plane);
if (needs_restore)
restore_ref_row(xd->cur_buf->flags, block_width, tmp, last_ref_row);
next_row_idx += tx_height;
next_row_off += tx_height_off;
}
} else {
// The block is short and wide. We've already done the left part,
// and need to repeat the prediction to the right.
const int tx_width = tx_size_wide[tx_size];
const int tx_width_off = tx_width >> tx_size_wide_log2[0];
assert(tx_width_off << tx_size_wide_log2[0] == tx_width);
int next_col_off = col_off + tx_width_off;
int next_col_idx = tx_width;
while (next_col_idx < block_width) {
const int last_col_idx = next_col_idx - 1;
// Cast away the const to make a mutable pointer to ref,
// starting at the last column written. This will be
// snapshotted and restored later.
uint8_t *last_ref_col = (uint8_t *)ref + last_col_idx;
uint8_t *last_dst_col = dst + last_col_idx;
const int needs_restore =
overwrite_ref_col(xd->cur_buf->flags, block_height, last_dst_col,
dst_stride, last_ref_col, ref_stride, tmp);
const uint8_t *next_ref_col = ref + next_col_idx;
uint8_t *next_dst_col = dst + next_col_idx;
predict_intra_block_helper(cm, xd, wpx, hpx, tx_size, mode, next_ref_col,
ref_stride, next_dst_col, dst_stride,
next_col_off, row_off, plane);
if (needs_restore)
restore_ref_col(xd->cur_buf->flags, block_height, tmp, last_ref_col,
ref_stride);
next_col_idx += tx_width;
next_col_off += tx_width_off;
}
}
}
void av1_init_intra_predictors(void) {
once(av1_init_intra_predictors_internal);
}