| /* |
| * This code implements the MD5 message-digest algorithm. |
| * The algorithm is due to Ron Rivest. This code was |
| * written by Colin Plumb in 1993, no copyright is claimed. |
| * This code is in the public domain; do with it what you wish. |
| * |
| * Equivalent code is available from RSA Data Security, Inc. |
| * This code has been tested against that, and is equivalent, |
| * except that you don't need to include two pages of legalese |
| * with every copy. |
| * |
| * To compute the message digest of a chunk of bytes, declare an |
| * MD5Context structure, pass it to MD5Init, call MD5Update as |
| * needed on buffers full of bytes, and then call MD5Final, which |
| * will fill a supplied 16-byte array with the digest. |
| * |
| * Changed so as no longer to depend on Colin Plumb's `usual.h' header |
| * definitions |
| * - Ian Jackson <ian@chiark.greenend.org.uk>. |
| * Still in the public domain. |
| */ |
| |
| #include <string.h> /* for memcpy() */ |
| |
| #include "md5_utils.h" |
| |
| static void |
| byteSwap(UWORD32 *buf, unsigned words) { |
| md5byte *p; |
| |
| /* Only swap bytes for big endian machines */ |
| int i = 1; |
| |
| if (*(char *)&i == 1) |
| return; |
| |
| p = (md5byte *)buf; |
| |
| do { |
| *buf++ = (UWORD32)((unsigned)p[3] << 8 | p[2]) << 16 | |
| ((unsigned)p[1] << 8 | p[0]); |
| p += 4; |
| } while (--words); |
| } |
| |
| /* |
| * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
| * initialization constants. |
| */ |
| void |
| MD5Init(struct MD5Context *ctx) { |
| ctx->buf[0] = 0x67452301; |
| ctx->buf[1] = 0xefcdab89; |
| ctx->buf[2] = 0x98badcfe; |
| ctx->buf[3] = 0x10325476; |
| |
| ctx->bytes[0] = 0; |
| ctx->bytes[1] = 0; |
| } |
| |
| /* |
| * Update context to reflect the concatenation of another buffer full |
| * of bytes. |
| */ |
| void |
| MD5Update(struct MD5Context *ctx, md5byte const *buf, unsigned len) { |
| UWORD32 t; |
| |
| /* Update byte count */ |
| |
| t = ctx->bytes[0]; |
| |
| if ((ctx->bytes[0] = t + len) < t) |
| ctx->bytes[1]++; /* Carry from low to high */ |
| |
| t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */ |
| |
| if (t > len) { |
| memcpy((md5byte *)ctx->in + 64 - t, buf, len); |
| return; |
| } |
| |
| /* First chunk is an odd size */ |
| memcpy((md5byte *)ctx->in + 64 - t, buf, t); |
| byteSwap(ctx->in, 16); |
| MD5Transform(ctx->buf, ctx->in); |
| buf += t; |
| len -= t; |
| |
| /* Process data in 64-byte chunks */ |
| while (len >= 64) { |
| memcpy(ctx->in, buf, 64); |
| byteSwap(ctx->in, 16); |
| MD5Transform(ctx->buf, ctx->in); |
| buf += 64; |
| len -= 64; |
| } |
| |
| /* Handle any remaining bytes of data. */ |
| memcpy(ctx->in, buf, len); |
| } |
| |
| /* |
| * Final wrapup - pad to 64-byte boundary with the bit pattern |
| * 1 0* (64-bit count of bits processed, MSB-first) |
| */ |
| void |
| MD5Final(md5byte digest[16], struct MD5Context *ctx) { |
| int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ |
| md5byte *p = (md5byte *)ctx->in + count; |
| |
| /* Set the first char of padding to 0x80. There is always room. */ |
| *p++ = 0x80; |
| |
| /* Bytes of padding needed to make 56 bytes (-8..55) */ |
| count = 56 - 1 - count; |
| |
| if (count < 0) { /* Padding forces an extra block */ |
| memset(p, 0, count + 8); |
| byteSwap(ctx->in, 16); |
| MD5Transform(ctx->buf, ctx->in); |
| p = (md5byte *)ctx->in; |
| count = 56; |
| } |
| |
| memset(p, 0, count); |
| byteSwap(ctx->in, 14); |
| |
| /* Append length in bits and transform */ |
| ctx->in[14] = ctx->bytes[0] << 3; |
| ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; |
| MD5Transform(ctx->buf, ctx->in); |
| |
| byteSwap(ctx->buf, 4); |
| memcpy(digest, ctx->buf, 16); |
| memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ |
| } |
| |
| #ifndef ASM_MD5 |
| |
| /* The four core functions - F1 is optimized somewhat */ |
| |
| /* #define F1(x, y, z) (x & y | ~x & z) */ |
| #define F1(x, y, z) (z ^ (x & (y ^ z))) |
| #define F2(x, y, z) F1(z, x, y) |
| #define F3(x, y, z) (x ^ y ^ z) |
| #define F4(x, y, z) (y ^ (x | ~z)) |
| |
| /* This is the central step in the MD5 algorithm. */ |
| #define MD5STEP(f,w,x,y,z,in,s) \ |
| (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x) |
| |
| /* |
| * The core of the MD5 algorithm, this alters an existing MD5 hash to |
| * reflect the addition of 16 longwords of new data. MD5Update blocks |
| * the data and converts bytes into longwords for this routine. |
| */ |
| void |
| MD5Transform(UWORD32 buf[4], UWORD32 const in[16]) { |
| register UWORD32 a, b, c, d; |
| |
| a = buf[0]; |
| b = buf[1]; |
| c = buf[2]; |
| d = buf[3]; |
| |
| MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); |
| MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); |
| MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); |
| MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); |
| MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); |
| MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); |
| MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); |
| MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); |
| MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); |
| MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); |
| MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
| MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
| MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
| MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
| MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
| MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
| |
| MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); |
| MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); |
| MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
| MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); |
| MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); |
| MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
| MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
| MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); |
| MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); |
| MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
| MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); |
| MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); |
| MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
| MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); |
| MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); |
| MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
| |
| MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); |
| MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); |
| MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
| MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
| MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); |
| MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); |
| MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); |
| MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
| MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
| MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); |
| MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); |
| MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); |
| MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); |
| MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
| MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
| MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); |
| |
| MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); |
| MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); |
| MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
| MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); |
| MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
| MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); |
| MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
| MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); |
| MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); |
| MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
| MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); |
| MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
| MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); |
| MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
| MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); |
| MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); |
| |
| buf[0] += a; |
| buf[1] += b; |
| buf[2] += c; |
| buf[3] += d; |
| } |
| |
| #endif |