blob: 0f90c20346644ec68bacc14572755b87223c13b1 [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <stdlib.h> // qsort()
#include "./vp10_rtcd.h"
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "./vpx_scale_rtcd.h"
#include "./vpx_config.h"
#include "aom_dsp/bitreader_buffer.h"
#include "av1/decoder/bitreader.h"
#include "aom_dsp/vpx_dsp_common.h"
#include "aom_mem/vpx_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/mem_ops.h"
#include "aom_scale/vpx_scale.h"
#include "aom_util/vpx_thread.h"
#include "av1/common/alloccommon.h"
#if CONFIG_CLPF
#include "av1/common/clpf.h"
#endif
#include "av1/common/common.h"
#if CONFIG_DERING
#include "av1/common/dering.h"
#endif // CONFIG_DERING
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/thread_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconintra.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/detokenize.h"
#include "av1/decoder/decodemv.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/dsubexp.h"
#define MAX_VPX_HEADER_SIZE 80
static int is_compound_reference_allowed(const VP10_COMMON *cm) {
int i;
if (frame_is_intra_only(cm)) return 0;
for (i = 1; i < INTER_REFS_PER_FRAME; ++i)
if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1;
return 0;
}
static void setup_compound_reference_mode(VP10_COMMON *cm) {
#if CONFIG_EXT_REFS
cm->comp_fwd_ref[0] = LAST_FRAME;
cm->comp_fwd_ref[1] = LAST2_FRAME;
cm->comp_fwd_ref[2] = LAST3_FRAME;
cm->comp_fwd_ref[3] = GOLDEN_FRAME;
cm->comp_bwd_ref[0] = BWDREF_FRAME;
cm->comp_bwd_ref[1] = ALTREF_FRAME;
#else
if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
} else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[ALTREF_FRAME]) {
cm->comp_fixed_ref = GOLDEN_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
} else {
cm->comp_fixed_ref = LAST_FRAME;
cm->comp_var_ref[0] = GOLDEN_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
}
#endif // CONFIG_EXT_REFS
}
static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
return len != 0 && len <= (size_t)(end - start);
}
static int decode_unsigned_max(struct vpx_read_bit_buffer *rb, int max) {
const int data = vpx_rb_read_literal(rb, get_unsigned_bits(max));
return data > max ? max : data;
}
static TX_MODE read_tx_mode(struct vpx_read_bit_buffer *rb) {
return vpx_rb_read_bit(rb) ? TX_MODE_SELECT : vpx_rb_read_literal(rb, 2);
}
static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vp10_reader *r) {
int i, j;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
vp10_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
}
static void read_inter_mode_probs(FRAME_CONTEXT *fc, vp10_reader *r) {
int i;
#if CONFIG_REF_MV
for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i)
vp10_diff_update_prob(r, &fc->newmv_prob[i]);
for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i)
vp10_diff_update_prob(r, &fc->zeromv_prob[i]);
for (i = 0; i < REFMV_MODE_CONTEXTS; ++i)
vp10_diff_update_prob(r, &fc->refmv_prob[i]);
for (i = 0; i < DRL_MODE_CONTEXTS; ++i)
vp10_diff_update_prob(r, &fc->drl_prob[i]);
#if CONFIG_EXT_INTER
vp10_diff_update_prob(r, &fc->new2mv_prob);
#endif // CONFIG_EXT_INTER
#else
int j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
for (j = 0; j < INTER_MODES - 1; ++j)
vp10_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
#endif
}
#if CONFIG_EXT_INTER
static void read_inter_compound_mode_probs(FRAME_CONTEXT *fc, vp10_reader *r) {
int i, j;
if (vp10_read(r, GROUP_DIFF_UPDATE_PROB)) {
for (j = 0; j < INTER_MODE_CONTEXTS; ++j) {
for (i = 0; i < INTER_COMPOUND_MODES - 1; ++i) {
vp10_diff_update_prob(r, &fc->inter_compound_mode_probs[j][i]);
}
}
}
}
#endif // CONFIG_EXT_INTER
static REFERENCE_MODE read_frame_reference_mode(
const VP10_COMMON *cm, struct vpx_read_bit_buffer *rb) {
if (is_compound_reference_allowed(cm)) {
return vpx_rb_read_bit(rb)
? REFERENCE_MODE_SELECT
: (vpx_rb_read_bit(rb) ? COMPOUND_REFERENCE : SINGLE_REFERENCE);
} else {
return SINGLE_REFERENCE;
}
}
static void read_frame_reference_mode_probs(VP10_COMMON *cm, vp10_reader *r) {
FRAME_CONTEXT *const fc = cm->fc;
int i, j;
if (cm->reference_mode == REFERENCE_MODE_SELECT)
for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
vp10_diff_update_prob(r, &fc->comp_inter_prob[i]);
if (cm->reference_mode != COMPOUND_REFERENCE) {
for (i = 0; i < REF_CONTEXTS; ++i) {
for (j = 0; j < (SINGLE_REFS - 1); ++j) {
vp10_diff_update_prob(r, &fc->single_ref_prob[i][j]);
}
}
}
if (cm->reference_mode != SINGLE_REFERENCE) {
for (i = 0; i < REF_CONTEXTS; ++i) {
#if CONFIG_EXT_REFS
for (j = 0; j < (FWD_REFS - 1); ++j)
vp10_diff_update_prob(r, &fc->comp_ref_prob[i][j]);
for (j = 0; j < (BWD_REFS - 1); ++j)
vp10_diff_update_prob(r, &fc->comp_bwdref_prob[i][j]);
#else
for (j = 0; j < (COMP_REFS - 1); ++j)
vp10_diff_update_prob(r, &fc->comp_ref_prob[i][j]);
#endif // CONFIG_EXT_REFS
}
}
}
static void update_mv_probs(vpx_prob *p, int n, vp10_reader *r) {
int i;
for (i = 0; i < n; ++i) vp10_diff_update_prob(r, &p[i]);
}
static void read_mv_probs(nmv_context *ctx, int allow_hp, vp10_reader *r) {
int i, j;
update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
#if CONFIG_REF_MV
vp10_diff_update_prob(r, &ctx->zero_rmv);
#endif
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
update_mv_probs(&comp_ctx->sign, 1, r);
update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
}
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
for (j = 0; j < CLASS0_SIZE; ++j)
update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
update_mv_probs(comp_ctx->fp, 3, r);
}
if (allow_hp) {
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
update_mv_probs(&comp_ctx->class0_hp, 1, r);
update_mv_probs(&comp_ctx->hp, 1, r);
}
}
}
static void inverse_transform_block(MACROBLOCKD *xd, int plane,
const TX_TYPE tx_type,
const TX_SIZE tx_size, uint8_t *dst,
int stride, int eob) {
struct macroblockd_plane *const pd = &xd->plane[plane];
if (eob > 0) {
tran_low_t *const dqcoeff = pd->dqcoeff;
INV_TXFM_PARAM inv_txfm_param;
inv_txfm_param.tx_type = tx_type;
inv_txfm_param.tx_size = tx_size;
inv_txfm_param.eob = eob;
inv_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
inv_txfm_param.bd = xd->bd;
highbd_inv_txfm_add(dqcoeff, dst, stride, &inv_txfm_param);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
inv_txfm_add(dqcoeff, dst, stride, &inv_txfm_param);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
if (eob == 1) {
dqcoeff[0] = 0;
} else {
if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
memset(dqcoeff, 0, 4 * 4 * num_4x4_blocks_wide_txsize_lookup[tx_size] *
sizeof(dqcoeff[0]));
#if CONFIG_EXT_TX
else
memset(dqcoeff, 0, get_tx2d_size(tx_size) * sizeof(dqcoeff[0]));
#else
else if (tx_size == TX_32X32 && eob <= 34)
memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
else
memset(dqcoeff, 0, get_tx2d_size(tx_size) * sizeof(dqcoeff[0]));
#endif
}
}
}
static void predict_and_reconstruct_intra_block(MACROBLOCKD *const xd,
#if CONFIG_ANS
struct AnsDecoder *const r,
#else
vp10_reader *r,
#endif // CONFIG_ANS
MB_MODE_INFO *const mbmi,
int plane, int row, int col,
TX_SIZE tx_size) {
struct macroblockd_plane *const pd = &xd->plane[plane];
PREDICTION_MODE mode = (plane == 0) ? mbmi->mode : mbmi->uv_mode;
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
uint8_t *dst;
int block_idx = (row << 1) + col;
dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
if (mbmi->sb_type < BLOCK_8X8)
if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
vp10_predict_intra_block(xd, pd->n4_wl, pd->n4_hl, tx_size, mode, dst,
pd->dst.stride, dst, pd->dst.stride, col, row,
plane);
if (!mbmi->skip) {
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
const scan_order *sc = get_scan(tx_size, tx_type, 0);
const int eob = vp10_decode_block_tokens(xd, plane, sc, col, row, tx_size,
tx_type, r, mbmi->segment_id);
inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride,
eob);
}
}
#if CONFIG_VAR_TX
static void decode_reconstruct_tx(MACROBLOCKD *const xd, vp10_reader *r,
MB_MODE_INFO *const mbmi, int plane,
BLOCK_SIZE plane_bsize, int block,
int blk_row, int blk_col, TX_SIZE tx_size,
int *eob_total) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
const TX_SIZE plane_tx_size =
plane ? get_uv_tx_size_impl(mbmi->inter_tx_size[tx_row][tx_col], bsize, 0,
0)
: mbmi->inter_tx_size[tx_row][tx_col];
int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize];
int max_blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize];
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y);
if (xd->mb_to_right_edge < 0)
max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size) {
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, plane_tx_size);
const scan_order *sc = get_scan(plane_tx_size, tx_type, 1);
const int eob =
vp10_decode_block_tokens(xd, plane, sc, blk_col, blk_row, plane_tx_size,
tx_type, r, mbmi->segment_id);
inverse_transform_block(
xd, plane, tx_type, plane_tx_size,
&pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col],
pd->dst.stride, eob);
*eob_total += eob;
} else {
int bsl = b_width_log2_lookup[bsize];
int i;
assert(bsl > 0);
--bsl;
for (i = 0; i < 4; ++i) {
const int offsetr = blk_row + ((i >> 1) << bsl);
const int offsetc = blk_col + ((i & 0x01) << bsl);
int step = num_4x4_blocks_txsize_lookup[tx_size - 1];
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
decode_reconstruct_tx(xd, r, mbmi, plane, plane_bsize, block + i * step,
offsetr, offsetc, tx_size - 1, eob_total);
}
}
}
#endif // CONFIG_VAR_TX
#if !CONFIG_VAR_TX || CONFIG_SUPERTX || (CONFIG_EXT_TX && CONFIG_RECT_TX)
static int reconstruct_inter_block(MACROBLOCKD *const xd,
#if CONFIG_ANS
struct AnsDecoder *const r,
#else
vp10_reader *r,
#endif
int segment_id, int plane, int row, int col,
TX_SIZE tx_size) {
struct macroblockd_plane *const pd = &xd->plane[plane];
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
int block_idx = (row << 1) + col;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
const scan_order *sc = get_scan(tx_size, tx_type, 1);
const int eob = vp10_decode_block_tokens(xd, plane, sc, col, row, tx_size,
tx_type, r, segment_id);
inverse_transform_block(xd, plane, tx_type, tx_size,
&pd->dst.buf[4 * row * pd->dst.stride + 4 * col],
pd->dst.stride, eob);
return eob;
}
#endif // !CONFIG_VAR_TX || CONFIG_SUPER_TX
static INLINE TX_SIZE dec_get_uv_tx_size(const MB_MODE_INFO *mbmi, int n4_wl,
int n4_hl) {
// get minimum log2 num4x4s dimension
const int x = VPXMIN(n4_wl, n4_hl);
return VPXMIN(txsize_sqr_map[mbmi->tx_size], x);
}
static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
struct macroblockd_plane *const pd = &xd->plane[i];
memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w);
memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h);
}
}
static void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl,
int bhl) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x;
xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y;
xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x;
xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y;
}
}
static MB_MODE_INFO *set_offsets(VP10_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int bw, int bh, int x_mis, int y_mis, int bwl,
int bhl) {
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
const TileInfo *const tile = &xd->tile;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
// TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of
// passing bsize from decode_partition().
xd->mi[0]->mbmi.sb_type = bsize;
for (y = 0; y < y_mis; ++y)
for (x = !y; x < x_mis; ++x) {
xd->mi[y * cm->mi_stride + x] = xd->mi[0];
}
set_plane_n4(xd, bw, bh, bwl, bhl);
set_skip_context(xd, mi_row, mi_col);
#if CONFIG_VAR_TX
xd->max_tx_size = max_txsize_lookup[bsize];
#endif
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
vp10_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
return &xd->mi[0]->mbmi;
}
#if CONFIG_SUPERTX
static MB_MODE_INFO *set_offsets_extend(VP10_COMMON *const cm,
MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE bsize_pred, int mi_row_pred,
int mi_col_pred, int mi_row_ori,
int mi_col_ori) {
// Used in supertx
// (mi_row_ori, mi_col_ori): location for mv
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
const int bw = num_8x8_blocks_wide_lookup[bsize_pred];
const int bh = num_8x8_blocks_high_lookup[bsize_pred];
const int offset = mi_row_ori * cm->mi_stride + mi_col_ori;
const int bwl = b_width_log2_lookup[bsize_pred];
const int bhl = b_height_log2_lookup[bsize_pred];
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
set_mi_row_col(xd, tile, mi_row_pred, bh, mi_col_pred, bw, cm->mi_rows,
cm->mi_cols);
xd->up_available = (mi_row_ori > tile->mi_row_start);
xd->left_available = (mi_col_ori > tile->mi_col_start);
set_plane_n4(xd, bw, bh, bwl, bhl);
return &xd->mi[0]->mbmi;
}
static MB_MODE_INFO *set_mb_offsets(VP10_COMMON *const cm,
MACROBLOCKD *const xd, BLOCK_SIZE bsize,
int mi_row, int mi_col, int bw, int bh,
int x_mis, int y_mis) {
const int offset = mi_row * cm->mi_stride + mi_col;
const TileInfo *const tile = &xd->tile;
int x, y;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
xd->mi[0]->mbmi.sb_type = bsize;
for (y = 0; y < y_mis; ++y)
for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0];
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
return &xd->mi[0]->mbmi;
}
static void set_offsets_topblock(VP10_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int offset = mi_row * cm->mi_stride + mi_col;
const int bwl = b_width_log2_lookup[bsize];
const int bhl = b_height_log2_lookup[bsize];
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
set_plane_n4(xd, bw, bh, bwl, bhl);
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
vp10_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
}
static void set_param_topblock(VP10_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int txfm, int skip) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
for (y = 0; y < y_mis; ++y)
for (x = 0; x < x_mis; ++x) {
xd->mi[y * cm->mi_stride + x]->mbmi.skip = skip;
xd->mi[y * cm->mi_stride + x]->mbmi.tx_type = txfm;
}
#if CONFIG_VAR_TX
xd->above_txfm_context = cm->above_txfm_context + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
set_txfm_ctxs(xd->mi[0]->mbmi.tx_size, bw, bh, xd);
#endif
}
static void set_ref(VP10_COMMON *const cm, MACROBLOCKD *const xd, int idx,
int mi_row, int mi_col) {
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
RefBuffer *ref_buffer = &cm->frame_refs[mbmi->ref_frame[idx] - LAST_FRAME];
xd->block_refs[idx] = ref_buffer;
if (!vp10_is_valid_scale(&ref_buffer->sf))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid scale factors");
vp10_setup_pre_planes(xd, idx, ref_buffer->buf, mi_row, mi_col,
&ref_buffer->sf);
xd->corrupted |= ref_buffer->buf->corrupted;
}
static void dec_predict_b_extend(
VP10Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile,
int block, int mi_row_ori, int mi_col_ori, int mi_row_pred, int mi_col_pred,
int mi_row_top, int mi_col_top, uint8_t *dst_buf[3], int dst_stride[3],
BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred, int b_sub8x8, int bextend) {
// Used in supertx
// (mi_row_ori, mi_col_ori): location for mv
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
// (mi_row_top, mi_col_top, bsize_top): region of the top partition size
// block: sub location of sub8x8 blocks
// b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8
// bextend: 1: region to predict is an extension of ori; 0: not
int r = (mi_row_pred - mi_row_top) * MI_SIZE;
int c = (mi_col_pred - mi_col_top) * MI_SIZE;
const int mi_width_top = num_8x8_blocks_wide_lookup[bsize_top];
const int mi_height_top = num_8x8_blocks_high_lookup[bsize_top];
MB_MODE_INFO *mbmi;
VP10_COMMON *const cm = &pbi->common;
if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top ||
mi_row_pred >= mi_row_top + mi_height_top ||
mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows ||
mi_col_pred >= cm->mi_cols)
return;
mbmi = set_offsets_extend(cm, xd, tile, bsize_pred, mi_row_pred, mi_col_pred,
mi_row_ori, mi_col_ori);
set_ref(cm, xd, 0, mi_row_pred, mi_col_pred);
if (has_second_ref(&xd->mi[0]->mbmi))
set_ref(cm, xd, 1, mi_row_pred, mi_col_pred);
if (!bextend) {
mbmi->tx_size = b_width_log2_lookup[bsize_top];
}
xd->plane[0].dst.stride = dst_stride[0];
xd->plane[1].dst.stride = dst_stride[1];
xd->plane[2].dst.stride = dst_stride[2];
xd->plane[0].dst.buf = dst_buf[0] +
(r >> xd->plane[0].subsampling_y) * dst_stride[0] +
(c >> xd->plane[0].subsampling_x);
xd->plane[1].dst.buf = dst_buf[1] +
(r >> xd->plane[1].subsampling_y) * dst_stride[1] +
(c >> xd->plane[1].subsampling_x);
xd->plane[2].dst.buf = dst_buf[2] +
(r >> xd->plane[2].subsampling_y) * dst_stride[2] +
(c >> xd->plane[2].subsampling_x);
if (!b_sub8x8)
vp10_build_inter_predictors_sb_extend(xd,
#if CONFIG_EXT_INTER
mi_row_ori, mi_col_ori,
#endif // CONFIG_EXT_INTER
mi_row_pred, mi_col_pred, bsize_pred);
else
vp10_build_inter_predictors_sb_sub8x8_extend(xd,
#if CONFIG_EXT_INTER
mi_row_ori, mi_col_ori,
#endif // CONFIG_EXT_INTER
mi_row_pred, mi_col_pred,
bsize_pred, block);
}
static void dec_extend_dir(VP10Decoder *const pbi, MACROBLOCKD *const xd,
const TileInfo *const tile, int block,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row,
int mi_col, int mi_row_top, int mi_col_top,
uint8_t *dst_buf[3], int dst_stride[3], int dir) {
// dir: 0-lower, 1-upper, 2-left, 3-right
// 4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
int xss = xd->plane[1].subsampling_x;
int yss = xd->plane[1].subsampling_y;
int b_sub8x8 = (bsize < BLOCK_8X8) ? 1 : 0;
BLOCK_SIZE extend_bsize;
int unit, mi_row_pred, mi_col_pred;
if (dir == 0 || dir == 1) {
extend_bsize = (mi_width == 1 || bsize < BLOCK_8X8 || xss < yss)
? BLOCK_8X8
: BLOCK_16X8;
unit = num_8x8_blocks_wide_lookup[extend_bsize];
mi_row_pred = mi_row + ((dir == 0) ? mi_height : -1);
mi_col_pred = mi_col;
dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf,
dst_stride, top_bsize, extend_bsize, b_sub8x8, 1);
if (mi_width > unit) {
int i;
assert(!b_sub8x8);
for (i = 0; i < mi_width / unit - 1; i++) {
mi_col_pred += unit;
dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf,
dst_stride, top_bsize, extend_bsize, b_sub8x8, 1);
}
}
} else if (dir == 2 || dir == 3) {
extend_bsize = (mi_height == 1 || bsize < BLOCK_8X8 || yss < xss)
? BLOCK_8X8
: BLOCK_8X16;
unit = num_8x8_blocks_high_lookup[extend_bsize];
mi_row_pred = mi_row;
mi_col_pred = mi_col + ((dir == 3) ? mi_width : -1);
dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf,
dst_stride, top_bsize, extend_bsize, b_sub8x8, 1);
if (mi_height > unit) {
int i;
for (i = 0; i < mi_height / unit - 1; i++) {
mi_row_pred += unit;
dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf,
dst_stride, top_bsize, extend_bsize, b_sub8x8, 1);
}
}
} else {
extend_bsize = BLOCK_8X8;
mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height : -1);
mi_col_pred = mi_col + ((dir == 6 || dir == 7) ? mi_width : -1);
dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf,
dst_stride, top_bsize, extend_bsize, b_sub8x8, 1);
}
}
static void dec_extend_all(VP10Decoder *const pbi, MACROBLOCKD *const xd,
const TileInfo *const tile, int block,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row,
int mi_col, int mi_row_top, int mi_col_top,
uint8_t *dst_buf[3], int dst_stride[3]) {
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 0);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 1);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 2);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 3);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 4);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 5);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 6);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 7);
}
static void dec_predict_sb_complex(VP10Decoder *const pbi,
MACROBLOCKD *const xd,
const TileInfo *const tile, int mi_row,
int mi_col, int mi_row_top, int mi_col_top,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize,
uint8_t *dst_buf[3], int dst_stride[3]) {
const VP10_COMMON *const cm = &pbi->common;
const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
#if CONFIG_EXT_PARTITION_TYPES
const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
int i;
const int mi_offset = mi_row * cm->mi_stride + mi_col;
uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3];
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf3[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
int dst_stride1[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
int dst_stride2[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
int dst_stride3[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_TX_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_TX_SQUARE * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_TX_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_TX_SQUARE * len);
dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3);
dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAX_TX_SQUARE * len);
dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAX_TX_SQUARE * len);
} else {
#endif
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_TX_SQUARE;
dst_buf1[2] = tmp_buf1 + 2 * MAX_TX_SQUARE;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_TX_SQUARE;
dst_buf2[2] = tmp_buf2 + 2 * MAX_TX_SQUARE;
dst_buf3[0] = tmp_buf3;
dst_buf3[1] = tmp_buf3 + MAX_TX_SQUARE;
dst_buf3[2] = tmp_buf3 + 2 * MAX_TX_SQUARE;
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
xd->mi = cm->mi_grid_visible + mi_offset;
xd->mi[0] = cm->mi + mi_offset;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
}
switch (partition) {
case PARTITION_NONE:
assert(bsize < top_bsize);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, bsize, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
break;
case PARTITION_HORZ:
if (bsize == BLOCK_8X8) {
// For sub8x8, predict in 8x8 unit
// First half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, BLOCK_8X8, 1, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
// Second half
dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, 1, 1);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
// weighted average to smooth the boundary
xd->plane[0].dst.buf = dst_buf[0];
xd->plane[0].dst.stride = dst_stride[0];
vp10_build_masked_inter_predictor_complex(
xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
0);
} else {
// First half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 0);
if (mi_row + hbs < cm->mi_rows) {
// Second half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col,
mi_row + hbs, mi_col, mi_row_top, mi_col_top,
dst_buf1, dst_stride1, top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1,
dst_stride1);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, 1);
// weighted average to smooth the boundary
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp10_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
}
}
break;
case PARTITION_VERT:
if (bsize == BLOCK_8X8) {
// First half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, BLOCK_8X8, 1, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
// Second half
dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, 1, 1);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
// Smooth
xd->plane[0].dst.buf = dst_buf[0];
xd->plane[0].dst.stride = dst_stride[0];
vp10_build_masked_inter_predictor_complex(
xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
0);
} else {
// First half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 3);
// Second half
if (mi_col + hbs < cm->mi_cols) {
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, 2);
// Smooth
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp10_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
}
}
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, BLOCK_8X8, 1, 0);
dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, 1, 1);
dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf2, dst_stride2,
top_bsize, BLOCK_8X8, 1, 1);
dec_predict_b_extend(pbi, xd, tile, 3, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf3, dst_stride3,
top_bsize, BLOCK_8X8, 1, 1);
if (bsize < top_bsize) {
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf2, dst_stride2);
dec_extend_all(pbi, xd, tile, 3, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf3, dst_stride3);
}
} else {
dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row_top,
mi_col_top, subsize, top_bsize, dst_buf,
dst_stride);
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols)
dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, subsize, top_bsize,
dst_buf1, dst_stride1);
if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols)
dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, subsize, top_bsize,
dst_buf2, dst_stride2);
if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols)
dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col + hbs,
mi_row_top, mi_col_top, subsize, top_bsize,
dst_buf3, dst_stride3);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
if (bsize == BLOCK_8X8 && i != 0)
continue; // Skip <4x4 chroma smoothing
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
vp10_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
if (mi_row + hbs < cm->mi_rows) {
vp10_build_masked_inter_predictor_complex(
xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
vp10_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
} else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) {
vp10_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
}
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf2,
dst_stride2, top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2,
1);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp10_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
vp10_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
i);
}
break;
case PARTITION_VERT_A:
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2, top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2, 2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp10_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
vp10_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
i);
}
break;
case PARTITION_HORZ_B:
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 0);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs,
mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf1[i];
xd->plane[i].dst.stride = dst_stride1[i];
vp10_build_masked_inter_predictor_complex(
xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp10_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
i);
}
break;
case PARTITION_VERT_B:
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 3);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs,
mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf1[i];
xd->plane[i].dst.stride = dst_stride1[i];
vp10_build_masked_inter_predictor_complex(
xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp10_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
i);
}
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0);
}
}
static void set_segment_id_supertx(const VP10_COMMON *const cm,
const int mi_row, const int mi_col,
const BLOCK_SIZE bsize) {
const struct segmentation *seg = &cm->seg;
const int miw =
VPXMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col);
const int mih =
VPXMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row);
const int mi_offset = mi_row * cm->mi_stride + mi_col;
MODE_INFO **const mip = cm->mi_grid_visible + mi_offset;
int r, c;
int seg_id_supertx = MAX_SEGMENTS;
if (!seg->enabled) {
seg_id_supertx = 0;
} else {
// Find the minimum segment_id
for (r = 0; r < mih; r++)
for (c = 0; c < miw; c++)
seg_id_supertx =
VPXMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx);
assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS);
}
// Assign the the segment_id back to segment_id_supertx
for (r = 0; r < mih; r++)
for (c = 0; c < miw; c++)
mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx;
}
#endif // CONFIG_SUPERTX
static void decode_block(VP10Decoder *const pbi, MACROBLOCKD *const xd,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif // CONFIG_SUPERTX
int mi_row, int mi_col, vp10_reader *r,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_TYPE partition,
#endif // CONFIG_EXT_PARTITION_TYPES
BLOCK_SIZE bsize, int bwl, int bhl) {
VP10_COMMON *const cm = &pbi->common;
const int less8x8 = bsize < BLOCK_8X8;
const int bw = 1 << (bwl - 1);
const int bh = 1 << (bhl - 1);
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
#if CONFIG_SUPERTX
MB_MODE_INFO *mbmi;
if (supertx_enabled) {
mbmi = set_mb_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
} else {
mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, bwl,
bhl);
}
#if CONFIG_EXT_PARTITION_TYPES
xd->mi[0]->mbmi.partition = partition;
#endif
vp10_read_mode_info(pbi, xd, supertx_enabled, mi_row, mi_col, r, x_mis,
y_mis);
#else
MB_MODE_INFO *mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis,
y_mis, bwl, bhl);
#if CONFIG_EXT_PARTITION_TYPES
xd->mi[0]->mbmi.partition = partition;
#endif
vp10_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis);
#endif // CONFIG_SUPERTX
if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
const BLOCK_SIZE uv_subsize =
ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
if (uv_subsize == BLOCK_INVALID)
vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME,
"Invalid block size.");
}
#if CONFIG_SUPERTX
mbmi->segment_id_supertx = MAX_SEGMENTS;
if (supertx_enabled) {
xd->corrupted |= vp10_reader_has_error(r);
return;
}
#endif // CONFIG_SUPERTX
if (mbmi->skip) {
dec_reset_skip_context(xd);
}
if (!is_inter_block(mbmi)) {
int plane;
for (plane = 0; plane <= 1; ++plane) {
if (mbmi->palette_mode_info.palette_size[plane])
vp10_decode_palette_tokens(xd, plane, r);
}
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size =
plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl)
: mbmi->tx_size;
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
const int stepr = num_4x4_blocks_high_txsize_lookup[tx_size];
const int stepc = num_4x4_blocks_wide_txsize_lookup[tx_size];
int row, col;
const int max_blocks_wide =
num_4x4_w + (xd->mb_to_right_edge >= 0
? 0
: xd->mb_to_right_edge >> (5 + pd->subsampling_x));
const int max_blocks_high =
num_4x4_h + (xd->mb_to_bottom_edge >= 0
? 0
: xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
for (row = 0; row < max_blocks_high; row += stepr)
for (col = 0; col < max_blocks_wide; col += stepc)
predict_and_reconstruct_intra_block(xd, r, mbmi, plane, row, col,
tx_size);
}
} else {
// Prediction
vp10_build_inter_predictors_sb(xd, mi_row, mi_col,
VPXMAX(bsize, BLOCK_8X8));
#if CONFIG_OBMC
if (mbmi->motion_variation == OBMC_CAUSAL) {
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
#else
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]);
#endif // CONFIG_VP9_HIGHBITDEPTH
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
assert(mbmi->sb_type >= BLOCK_8X8);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE;
dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE;
dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2;
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
vp10_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1,
dst_width1, dst_height1,
dst_stride1);
vp10_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2,
dst_width2, dst_height2, dst_stride2);
vp10_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row,
mi_col);
vp10_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1,
dst_stride1, dst_buf2, dst_stride2);
}
#endif // CONFIG_OBMC
// Reconstruction
if (!mbmi->skip) {
int eobtotal = 0;
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
int row, col;
#if CONFIG_VAR_TX
// TODO(jingning): This can be simplified for decoder performance.
const BLOCK_SIZE plane_bsize =
get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), pd);
const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize];
int bw = num_4x4_blocks_wide_txsize_lookup[max_tx_size];
int bh = num_4x4_blocks_high_txsize_lookup[max_tx_size];
const int step = num_4x4_blocks_txsize_lookup[max_tx_size];
int block = 0;
#if CONFIG_EXT_TX && CONFIG_RECT_TX
const TX_SIZE tx_size =
plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl)
: mbmi->tx_size;
if (tx_size >= TX_SIZES) { // rect txsize is used
const int stepr = num_4x4_blocks_high_txsize_lookup[tx_size];
const int stepc = num_4x4_blocks_wide_txsize_lookup[tx_size];
const int max_blocks_wide =
num_4x4_w +
(xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >>
(5 + pd->subsampling_x));
const int max_blocks_high =
num_4x4_h +
(xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >>
(5 + pd->subsampling_y));
for (row = 0; row < max_blocks_high; row += stepr)
for (col = 0; col < max_blocks_wide; col += stepc)
eobtotal += reconstruct_inter_block(xd, r, mbmi->segment_id,
plane, row, col, tx_size);
} else {
#endif
for (row = 0; row < num_4x4_h; row += bh) {
for (col = 0; col < num_4x4_w; col += bw) {
decode_reconstruct_tx(xd, r, mbmi, plane, plane_bsize, block, row,
col, max_tx_size, &eobtotal);
block += step;
}
}
#if CONFIG_EXT_TX && CONFIG_RECT_TX
}
#endif
#else
const TX_SIZE tx_size =
plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl)
: mbmi->tx_size;
const int stepr = num_4x4_blocks_high_txsize_lookup[tx_size];
const int stepc = num_4x4_blocks_wide_txsize_lookup[tx_size];
const int max_blocks_wide =
num_4x4_w + (xd->mb_to_right_edge >= 0
? 0
: xd->mb_to_right_edge >> (5 + pd->subsampling_x));
const int max_blocks_high =
num_4x4_h +
(xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >>
(5 + pd->subsampling_y));
for (row = 0; row < max_blocks_high; row += stepr)
for (col = 0; col < max_blocks_wide; col += stepc)
eobtotal += reconstruct_inter_block(xd, r, mbmi->segment_id, plane,
row, col, tx_size);
#endif
}
if (!less8x8 && eobtotal == 0)
mbmi->has_no_coeffs = 1; // skip loopfilter
}
}
xd->corrupted |= vp10_reader_has_error(r);
}
static INLINE int dec_partition_plane_context(const MACROBLOCKD *xd, int mi_row,
int mi_col, int bsl) {
const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
const PARTITION_CONTEXT *left_ctx =
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
// assert(bsl >= 0);
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
}
#if !CONFIG_EXT_PARTITION_TYPES
static INLINE void dec_update_partition_context(MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE subsize,
int bw) {
PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
PARTITION_CONTEXT *const left_ctx =
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
// update the partition context at the end notes. set partition bits
// of block sizes larger than the current one to be one, and partition
// bits of smaller block sizes to be zero.
memset(above_ctx, partition_context_lookup[subsize].above, bw);
memset(left_ctx, partition_context_lookup[subsize].left, bw);
}
#endif // !CONFIG_EXT_PARTITION_TYPES
static PARTITION_TYPE read_partition(VP10_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, vp10_reader *r,
int has_rows, int has_cols,
#if CONFIG_EXT_PARTITION_TYPES
BLOCK_SIZE bsize,
#endif
int bsl) {
const int ctx = dec_partition_plane_context(xd, mi_row, mi_col, bsl);
const vpx_prob *const probs = cm->fc->partition_prob[ctx];
FRAME_COUNTS *counts = xd->counts;
PARTITION_TYPE p;
if (has_rows && has_cols)
#if CONFIG_EXT_PARTITION_TYPES
if (bsize <= BLOCK_8X8)
p = (PARTITION_TYPE)vp10_read_tree(r, vp10_partition_tree, probs);
else
p = (PARTITION_TYPE)vp10_read_tree(r, vp10_ext_partition_tree, probs);
#else
p = (PARTITION_TYPE)vp10_read_tree(r, vp10_partition_tree, probs);
#endif // CONFIG_EXT_PARTITION_TYPES
else if (!has_rows && has_cols)
p = vp10_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ;
else if (has_rows && !has_cols)
p = vp10_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT;
else
p = PARTITION_SPLIT;
if (counts) ++counts->partition[ctx][p];
return p;
}
#if CONFIG_SUPERTX
static int read_skip(VP10_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
vp10_reader *r) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int ctx = vp10_get_skip_context(xd);
const int skip = vp10_read(r, cm->fc->skip_probs[ctx]);
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->skip[ctx][skip];
return skip;
}
}
#endif // CONFIG_SUPERTX
// TODO(slavarnway): eliminate bsize and subsize in future commits
static void decode_partition(VP10Decoder *const pbi, MACROBLOCKD *const xd,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col, vp10_reader *r,
BLOCK_SIZE bsize, int n4x4_l2) {
VP10_COMMON *const cm = &pbi->common;
const int n8x8_l2 = n4x4_l2 - 1;
const int num_8x8_wh = 1 << n8x8_l2;
const int hbs = num_8x8_wh >> 1;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
#if CONFIG_EXT_PARTITION_TYPES
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
#if CONFIG_SUPERTX
const int read_token = !supertx_enabled;
int skip = 0;
TX_SIZE supertx_size = b_width_log2_lookup[bsize];
const TileInfo *const tile = &xd->tile;
int txfm = DCT_DCT;
#endif // CONFIG_SUPERTX
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
partition = read_partition(cm, xd, mi_row, mi_col, r, has_rows, has_cols,
#if CONFIG_EXT_PARTITION_TYPES
bsize,
#endif
n8x8_l2);
subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition);
#if CONFIG_SUPERTX
if (!frame_is_intra_only(cm) && partition != PARTITION_NONE &&
bsize <= MAX_SUPERTX_BLOCK_SIZE && !supertx_enabled && !xd->lossless[0]) {
const int supertx_context = partition_supertx_context_lookup[partition];
supertx_enabled =
vp10_read(r, cm->fc->supertx_prob[supertx_context][supertx_size]);
if (xd->counts)
xd->counts->supertx[supertx_context][supertx_size][supertx_enabled]++;
#if CONFIG_VAR_TX
if (supertx_enabled) xd->supertx_size = supertx_size;
#endif
}
#endif // CONFIG_SUPERTX
if (!hbs) {
// calculate bmode block dimensions (log 2)
xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize, 1, 1);
} else {
switch (partition) {
case PARTITION_NONE:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize, n4x4_l2, n4x4_l2);
break;
case PARTITION_HORZ:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize, n4x4_l2, n8x8_l2);
if (has_rows)
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row + hbs, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize, n4x4_l2, n8x8_l2);
break;
case PARTITION_VERT:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize, n8x8_l2, n4x4_l2);
if (has_cols)
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col + hbs, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize, n8x8_l2, n4x4_l2);
break;
case PARTITION_SPLIT:
decode_partition(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r, subsize, n8x8_l2);
decode_partition(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col + hbs, r, subsize, n8x8_l2);
decode_partition(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row + hbs, mi_col, r, subsize, n8x8_l2);
decode_partition(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row + hbs, mi_col + hbs, r, subsize, n8x8_l2);
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, partition, bsize2, n8x8_l2, n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + hbs, r, partition, bsize2, n8x8_l2,
n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col, r, partition, subsize, n4x4_l2,
n8x8_l2);
break;
case PARTITION_HORZ_B:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, partition, subsize, n4x4_l2, n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col, r, partition, bsize2, n8x8_l2,
n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col + hbs, r, partition, bsize2, n8x8_l2,
n8x8_l2);
break;
case PARTITION_VERT_A:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, partition, bsize2, n8x8_l2, n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col, r, partition, bsize2, n8x8_l2,
n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + hbs, r, partition, subsize, n8x8_l2,
n4x4_l2);
break;
case PARTITION_VERT_B:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, partition, subsize, n8x8_l2, n4x4_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + hbs, r, partition, bsize2, n8x8_l2,
n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col + hbs, r, partition, bsize2, n8x8_l2,
n8x8_l2);
break;
#endif
default: assert(0 && "Invalid partition type");
}
}
#if CONFIG_SUPERTX
if (supertx_enabled && read_token) {
uint8_t *dst_buf[3];
int dst_stride[3], i;
int offset = mi_row * cm->mi_stride + mi_col;
set_segment_id_supertx(cm, mi_row, mi_col, bsize);
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[bsize], mi_col,
num_8x8_blocks_wide_lookup[bsize], cm->mi_rows, cm->mi_cols);
set_skip_context(xd, mi_row, mi_col);
skip = read_skip(cm, xd, xd->mi[0]->mbmi.segment_id_supertx, r);
if (skip) {
reset_skip_context(xd, bsize);
} else {
#if CONFIG_EXT_TX
if (get_ext_tx_types(supertx_size, bsize, 1) > 1) {
int eset = get_ext_tx_set(supertx_size, bsize, 1);
if (eset > 0) {
txfm = vp10_read_tree(r, vp10_ext_tx_inter_tree[eset],
cm->fc->inter_ext_tx_prob[eset][supertx_size]);
if (xd->counts) ++xd->counts->inter_ext_tx[eset][supertx_size][txfm];
}
}
#else
if (supertx_size < TX_32X32) {
txfm = vp10_read_tree(r, vp10_ext_tx_tree,
cm->fc->inter_ext_tx_prob[supertx_size]);
if (xd->counts) ++xd->counts->inter_ext_tx[supertx_size][txfm];
}
#endif // CONFIG_EXT_TX
}
vp10_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
for (i = 0; i < MAX_MB_PLANE; i++) {
dst_buf[i] = xd->plane[i].dst.buf;
dst_stride[i] = xd->plane[i].dst.stride;
}
dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row, mi_col, bsize,
bsize, dst_buf, dst_stride);
if (!skip) {
int eobtotal = 0;
MB_MODE_INFO *mbmi;
set_offsets_topblock(cm, xd, tile, bsize, mi_row, mi_col);
mbmi = &xd->mi[0]->mbmi;
mbmi->tx_type = txfm;
assert(mbmi->segment_id_supertx != MAX_SEGMENTS);
for (i = 0; i < MAX_MB_PLANE; ++i) {
const struct macroblockd_plane *const pd = &xd->plane[i];
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
int row, col;
const TX_SIZE tx_size =
i ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl) : mbmi->tx_size;
const int stepr = num_4x4_blocks_high_txsize_lookup[tx_size];
const int stepc = num_4x4_blocks_wide_txsize_lookup[tx_size];
const int max_blocks_wide =
num_4x4_w + (xd->mb_to_right_edge >= 0
? 0
: xd->mb_to_right_edge >> (5 + pd->subsampling_x));
const int max_blocks_high =
num_4x4_h +
(xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >>
(5 + pd->subsampling_y));
for (row = 0; row < max_blocks_high; row += stepr)
for (col = 0; col < max_blocks_wide; col += stepc)
eobtotal += reconstruct_inter_block(xd, r, mbmi->segment_id_supertx,
i, row, col, tx_size);
}
if (!(subsize < BLOCK_8X8) && eobtotal == 0) skip = 1;
}
set_param_topblock(cm, xd, bsize, mi_row, mi_col, txfm, skip);
}
#endif // CONFIG_SUPERTX
#if CONFIG_EXT_PARTITION_TYPES
if (bsize >= BLOCK_8X8) {
switch (partition) {
case PARTITION_SPLIT:
if (bsize > BLOCK_8X8) break;
case PARTITION_NONE:
case PARTITION_HORZ:
case PARTITION_VERT:
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
break;
case PARTITION_HORZ_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
break;
case PARTITION_HORZ_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
break;
case PARTITION_VERT_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
break;
case PARTITION_VERT_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
break;
default: assert(0 && "Invalid partition type");
}
}
#else
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
dec_update_partition_context(xd, mi_row, mi_col, subsize, num_8x8_wh);
#if DERING_REFINEMENT
if (bsize == BLOCK_64X64) {
if (cm->dering_level != 0 && !sb_all_skip(cm, mi_row, mi_col)) {
cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain =
vpx_read_literal(r, DERING_REFINEMENT_BITS);
} else {
cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain =
0;
}
}
#endif // DERGING_REFINEMENT
#endif // CONFIG_EXT_PARTITION_TYPES
}
#if !CONFIG_ANS
static void setup_bool_decoder(const uint8_t *data, const uint8_t *data_end,
const size_t read_size,
struct vpx_internal_error_info *error_info,
vp10_reader *r, vpx_decrypt_cb decrypt_cb,
void *decrypt_state) {
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, read_size, data_end))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (vpx_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
#else
static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end,
const size_t read_size,
struct vpx_internal_error_info *error_info,
struct AnsDecoder *const ans,
vpx_decrypt_cb decrypt_cb,
void *decrypt_state) {
(void)decrypt_cb;
(void)decrypt_state;
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, read_size, data_end))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (read_size > INT_MAX || ans_read_init(ans, data, (int)read_size))
vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR,
"Failed to allocate token decoder %d", 1);
}
#endif
static void read_coef_probs_common(vp10_coeff_probs_model *coef_probs,
vp10_reader *r) {
int i, j, k, l, m;
if (vp10_read_bit(r))
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
vp10_diff_update_prob(r, &coef_probs[i][j][k][l][m]);
}
static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode,
vp10_reader *r) {
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
TX_SIZE tx_size;
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
read_coef_probs_common(fc->coef_probs[tx_size], r);
#if CONFIG_ANS
vp10_coef_pareto_cdfs(fc);
#endif // CONFIG_ANS
}
static void setup_segmentation(VP10_COMMON *const cm,
struct vpx_read_bit_buffer *rb) {
struct segmentation *const seg = &cm->seg;
int i, j;
seg->update_map = 0;
seg->update_data = 0;
seg->enabled = vpx_rb_read_bit(rb);
if (!seg->enabled) return;
// Segmentation map update
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
seg->update_map = 1;
} else {
seg->update_map = vpx_rb_read_bit(rb);
}
if (seg->update_map) {
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
seg->temporal_update = 0;
} else {
seg->temporal_update = vpx_rb_read_bit(rb);
}
}
// Segmentation data update
seg->update_data = vpx_rb_read_bit(rb);
if (seg->update_data) {
seg->abs_delta = vpx_rb_read_bit(rb);
vp10_clearall_segfeatures(seg);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = vpx_rb_read_bit(rb);
if (feature_enabled) {
vp10_enable_segfeature(seg, i, j);
data = decode_unsigned_max(rb, vp10_seg_feature_data_max(j));
if (vp10_is_segfeature_signed(j))
data = vpx_rb_read_bit(rb) ? -data : data;
}
vp10_set_segdata(seg, i, j, data);
}
}
}
}
#if CONFIG_LOOP_RESTORATION
static void setup_restoration(VP10_COMMON *cm, struct vpx_read_bit_buffer *rb) {
int i;
RestorationInfo *rsi = &cm->rst_info;
int ntiles;
if (vpx_rb_read_bit(rb)) {
if (vpx_rb_read_bit(rb)) {
rsi->restoration_type = RESTORE_BILATERAL;
ntiles = vp10_get_restoration_ntiles(BILATERAL_TILESIZE, cm->width,
cm->height);
rsi->bilateral_level = (int *)vpx_realloc(
rsi->bilateral_level, sizeof(*rsi->bilateral_level) * ntiles);
assert(rsi->bilateral_level != NULL);
for (i = 0; i < ntiles; ++i) {
if (vpx_rb_read_bit(rb)) {
rsi->bilateral_level[i] =
vpx_rb_read_literal(rb, vp10_bilateral_level_bits(cm));
} else {
rsi->bilateral_level[i] = -1;
}
}
} else {
rsi->restoration_type = RESTORE_WIENER;
ntiles =
vp10_get_restoration_ntiles(WIENER_TILESIZE, cm->width, cm->height);
rsi->wiener_level = (int *)vpx_realloc(
rsi->wiener_level, sizeof(*rsi->wiener_level) * ntiles);
assert(rsi->wiener_level != NULL);
rsi->vfilter = (int(*)[RESTORATION_HALFWIN])vpx_realloc(
rsi->vfilter, sizeof(*rsi->vfilter) * ntiles);
assert(rsi->vfilter != NULL);
rsi->hfilter = (int(*)[RESTORATION_HALFWIN])vpx_realloc(
rsi->hfilter, sizeof(*rsi->hfilter) * ntiles);
assert(rsi->hfilter != NULL);
for (i = 0; i < ntiles; ++i) {
rsi->wiener_level[i] = vpx_rb_read_bit(rb);
if (rsi->wiener_level[i]) {
rsi->vfilter[i][0] = vpx_rb_read_literal(rb, WIENER_FILT_TAP0_BITS) +
WIENER_FILT_TAP0_MINV;
rsi->vfilter[i][1] = vpx_rb_read_literal(rb, WIENER_FILT_TAP1_BITS) +
WIENER_FILT_TAP1_MINV;
rsi->vfilter[i][2] = vpx_rb_read_literal(rb, WIENER_FILT_TAP2_BITS) +
WIENER_FILT_TAP2_MINV;
rsi->hfilter[i][0] = vpx_rb_read_literal(rb, WIENER_FILT_TAP0_BITS) +
WIENER_FILT_TAP0_MINV;
rsi->hfilter[i][1] = vpx_rb_read_literal(rb, WIENER_FILT_TAP1_BITS) +
WIENER_FILT_TAP1_MINV;
rsi->hfilter[i][2] = vpx_rb_read_literal(rb, WIENER_FILT_TAP2_BITS) +
WIENER_FILT_TAP2_MINV;
} else {
rsi->vfilter[i][0] = rsi->vfilter[i][1] = rsi->vfilter[i][2] = 0;
rsi->hfilter[i][0] = rsi->hfilter[i][1] = rsi->hfilter[i][2] = 0;
}
}
}
} else {
rsi->restoration_type = RESTORE_NONE;
}
}
#endif // CONFIG_LOOP_RESTORATION
static void setup_loopfilter(VP10_COMMON *cm, struct vpx_read_bit_buffer *rb) {
struct loopfilter *lf = &cm->lf;
lf->filter_level = vpx_rb_read_literal(rb, 6);
lf->sharpness_level = vpx_rb_read_literal(rb, 3);
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
lf->mode_ref_delta_update = 0;
lf->mode_ref_delta_enabled = vpx_rb_read_bit(rb);
if (lf->mode_ref_delta_enabled) {
lf->mode_ref_delta_update = vpx_rb_read_bit(rb);
if (lf->mode_ref_delta_update) {
int i;
for (i = 0; i < TOTAL_REFS_PER_FRAME; i++)
if (vpx_rb_read_bit(rb))
lf->ref_deltas[i] = vpx_rb_read_inv_signed_literal(rb, 6);
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
if (vpx_rb_read_bit(rb))
lf->mode_deltas[i] = vpx_rb_read_inv_signed_literal(rb, 6);
}
}
}
#if CONFIG_CLPF
static void setup_clpf(VP10_COMMON *cm, struct vpx_read_bit_buffer *rb) {
cm->clpf = vpx_rb_read_literal(rb, 1);
}
#endif
#if CONFIG_DERING
static void setup_dering(VP10_COMMON *cm, struct vpx_read_bit_buffer *rb) {
cm->dering_level = vpx_rb_read_literal(rb, DERING_LEVEL_BITS);
}
#endif // CONFIG_DERING
static INLINE int read_delta_q(struct vpx_read_bit_buffer *rb) {
return vpx_rb_read_bit(rb) ? vpx_rb_read_inv_signed_literal(rb, 6) : 0;
}
static void setup_quantization(VP10_COMMON *const cm,
struct vpx_read_bit_buffer *rb) {
cm->base_qindex = vpx_rb_read_literal(rb, QINDEX_BITS);
cm->y_dc_delta_q = read_delta_q(rb);
cm->uv_dc_delta_q = read_delta_q(rb);
cm->uv_ac_delta_q = read_delta_q(rb);
cm->dequant_bit_depth = cm->bit_depth;
#if CONFIG_AOM_QM
cm->using_qmatrix = vpx_rb_read_bit(rb);
if (cm->using_qmatrix) {
cm->min_qmlevel = vpx_rb_read_literal(rb, QM_LEVEL_BITS);
cm->max_qmlevel = vpx_rb_read_literal(rb, QM_LEVEL_BITS);
} else {
cm->min_qmlevel = 0;
cm->max_qmlevel = 0;
}
#endif
}
static void setup_segmentation_dequant(VP10_COMMON *const cm) {
// Build y/uv dequant values based on segmentation.
int i = 0;
#if CONFIG_AOM_QM
int lossless;
int j = 0;
int qmlevel;
int using_qm = cm->using_qmatrix;
int minqm = cm->min_qmlevel;
int maxqm = cm->max_qmlevel;
#endif
#if CONFIG_NEW_QUANT
int b;
int dq;
#endif // CONFIG_NEW_QUANT
if (cm->seg.enabled) {
for (i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = vp10_get_qindex(&cm->seg, i, cm->base_qindex);
cm->y_dequant[i][0] =
vp10_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
cm->y_dequant[i][1] = vp10_ac_quant(qindex, 0, cm->bit_depth);
cm->uv_dequant[i][0] =
vp10_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
cm->uv_dequant[i][1] =
vp10_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
#if CONFIG_AOM_QM
lossless = qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
// NB: depends on base index so there is only 1 set per frame
// No quant weighting when lossless or signalled not using QM
qmlevel = (lossless || using_qm == 0)
? NUM_QM_LEVELS - 1
: aom_get_qmlevel(cm->base_qindex, minqm, maxqm);
for (j = 0; j < TX_SIZES; ++j) {
cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1);
cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0);
cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1);
cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0);
}
#endif // CONFIG_AOM_QM
#if CONFIG_NEW_QUANT
for (dq = 0; dq < QUANT_PROFILES; dq++) {
for (b = 0; b < COEF_BANDS; ++b) {
vp10_get_dequant_val_nuq(cm->y_dequant[i][b != 0], qindex, b,
cm->y_dequant_nuq[i][dq][b], NULL, dq);
vp10_get_dequant_val_nuq(cm->uv_dequant[i][b != 0], qindex, b,
cm->uv_dequant_nuq[i][dq][b], NULL, dq);
}
}
#endif // CONFIG_NEW_QUANT
}
} else {
const int qindex = cm->base_qindex;
// When segmentation is disabled, only the first value is used. The
// remaining are don't cares.
cm->y_dequant[0][0] =
vp10_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
cm->y_dequant[0][1] = vp10_ac_quant(qindex, 0, cm->bit_depth);
cm->uv_dequant[0][0] =
vp10_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
cm->uv_dequant[0][1] =
vp10_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
#if CONFIG_AOM_QM
lossless = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 &&
cm->uv_ac_delta_q == 0;
// No quant weighting when lossless or signalled not using QM
qmlevel = (lossless || using_qm == 0)
? NUM_QM_LEVELS - 1
: aom_get_qmlevel(cm->base_qindex, minqm, maxqm);
for (j = 0; j < TX_SIZES; ++j) {
cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1);
cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0);
cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1);
cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0);
}
#endif
#if CONFIG_NEW_QUANT
for (dq = 0; dq < QUANT_PROFILES; dq++) {
for (b = 0; b < COEF_BANDS; ++b) {
vp10_get_dequant_val_nuq(cm->y_dequant[0][b != 0], qindex, b,
cm->y_dequant_nuq[0][dq][b], NULL, dq);
vp10_get_dequant_val_nuq(cm->uv_dequant[0][b != 0], qindex, b,
cm->uv_dequant_nuq[0][dq][b], NULL, dq);
}
}
#endif // CONFIG_NEW_QUANT
}
}
static INTERP_FILTER read_interp_filter(struct vpx_read_bit_buffer *rb) {
return vpx_rb_read_bit(rb) ? SWITCHABLE
: vpx_rb_read_literal(rb, 2 + CONFIG_EXT_INTERP);
}
static void setup_render_size(VP10_COMMON *cm, struct vpx_read_bit_buffer *rb) {
cm->render_width = cm->width;
cm->render_height = cm->height;
if (vpx_rb_read_bit(rb))
vp10_read_frame_size(rb, &cm->render_width, &cm->render_height);
}
static void resize_mv_buffer(VP10_COMMON *cm) {
vpx_free(cm->cur_frame->mvs);
cm->cur_frame->mi_rows = cm->mi_rows;
cm->cur_frame->mi_cols = cm->mi_cols;
CHECK_MEM_ERROR(cm, cm->cur_frame->mvs,
(MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
sizeof(*cm->cur_frame->mvs)));
}
static void resize_context_buffers(VP10_COMMON *cm, int width, int height) {
#if CONFIG_SIZE_LIMIT
if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Dimensions of %dx%d beyond allowed size of %dx%d.",
width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
#endif
if (cm->width != width || cm->height != height) {
const int new_mi_rows =
ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
const int new_mi_cols =
ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
// Allocations in vp10_alloc_context_buffers() depend on individual
// dimensions as well as the overall size.
if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
if (vp10_alloc_context_buffers(cm, width, height))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate context buffers");
} else {
vp10_set_mb_mi(cm, width, height);
}
vp10_init_context_buffers(cm);
cm->width = width;
cm->height = height;
}
if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows ||
cm->mi_cols > cm->cur_frame->mi_cols) {
resize_mv_buffer(cm);
}
}
static void setup_frame_size(VP10_COMMON *cm, struct vpx_read_bit_buffer *rb) {
int width, height;
BufferPool *const pool = cm->buffer_pool;
vp10_read_frame_size(rb, &width, &height);
resize_context_buffers(cm, width, height);
setup_render_size(cm, rb);
lock_buffer_pool(pool);
if (vpx_realloc_frame_buffer(
get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VPX_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
&pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
pool->cb_priv)) {
unlock_buffer_pool(pool);
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
}
static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth,
int ref_xss, int ref_yss,
vpx_bit_depth_t this_bit_depth,
int this_xss, int this_yss) {
return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
ref_yss == this_yss;
}
static void setup_frame_size_with_refs(VP10_COMMON *cm,
struct vpx_read_bit_buffer *rb) {
int width, height;
int found = 0, i;
int has_valid_ref_frame = 0;
BufferPool *const pool = cm->buffer_pool;
for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
if (vpx_rb_read_bit(rb)) {
YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
width = buf->y_crop_width;
height = buf->y_crop_height;
cm->render_width = buf->render_width;
cm->render_height = buf->render_height;
found = 1;
break;
}
}
if (!found) {
vp10_read_frame_size(rb, &width, &height);
setup_render_size(cm, rb);
}
if (width <= 0 || height <= 0)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame size");
// Check to make sure at least one of frames that this frame references
// has valid dimensions.
for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
RefBuffer *const ref_frame = &cm->frame_refs[i];
has_valid_ref_frame |=
valid_ref_frame_size(ref_frame->buf->y_crop_width,
ref_frame->buf->y_crop_height, width, height);
}
if (!has_valid_ref_frame)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Referenced frame has invalid size");
for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
RefBuffer *const ref_frame = &cm->frame_refs[i];
if (!valid_ref_frame_img_fmt(ref_frame->buf->bit_depth,
ref_frame->buf->subsampling_x,
ref_frame->buf->subsampling_y, cm->bit_depth,
cm->subsampling_x, cm->subsampling_y))
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Referenced frame has incompatible color format");
}
resize_context_buffers(cm, width, height);
lock_buffer_pool(pool);
if (vpx_realloc_frame_buffer(
get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VPX_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
&pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
pool->cb_priv)) {
unlock_buffer_pool(pool);
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
}
static void read_tile_info(VP10Decoder *const pbi,
struct vpx_read_bit_buffer *const rb) {
VP10_COMMON *const cm = &pbi->common;
#if CONFIG_EXT_TILE
// Read the tile width/height
#if CONFIG_EXT_PARTITION
if (cm->sb_size == BLOCK_128X128) {
cm->tile_width = vpx_rb_read_literal(rb, 5) + 1;
cm->tile_height = vpx_rb_read_literal(rb, 5) + 1;
} else
#endif // CONFIG_EXT_PARTITION
{
cm->tile_width = vpx_rb_read_literal(rb, 6) + 1;
cm->tile_height = vpx_rb_read_literal(rb, 6) + 1;
}
cm->tile_width <<= cm->mib_size_log2;
cm->tile_height <<= cm->mib_size_log2;
cm->tile_width = VPXMIN(cm->tile_width, cm->mi_cols);
cm->tile_height = VPXMIN(cm->tile_height, cm->mi_rows);
// Get the number of tiles
cm->tile_cols = 1;
while (cm->tile_cols * cm->tile_width < cm->mi_cols) ++cm->tile_cols;
cm->tile_rows = 1;
while (cm->tile_rows * cm->tile_height < cm->mi_rows) ++cm->tile_rows;
if (cm->tile_cols * cm->tile_rows > 1) {
// Read the number of bytes used to store tile size
pbi->tile_col_size_bytes = vpx_rb_read_literal(rb, 2) + 1;
pbi->tile_size_bytes = vpx_rb_read_literal(rb, 2) + 1;
}
#else
int min_log2_tile_cols, max_log2_tile_cols, max_ones;
vp10_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
// columns
max_ones = max_log2_tile_cols - min_log2_tile_cols;
cm->log2_tile_cols = min_log2_tile_cols;
while (max_ones-- && vpx_rb_read_bit(rb)) cm->log2_tile_cols++;
if (cm->log2_tile_cols > 6)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid number of tile columns");
// rows
cm->log2_tile_rows = vpx_rb_read_bit(rb);
if (cm->log2_tile_rows) cm->log2_tile_rows += vpx_rb_read_bit(rb);
cm->tile_cols = 1 << cm->log2_tile_cols;
cm->tile_rows = 1 << cm->log2_tile_rows;
cm->tile_width = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
cm->tile_width >>= cm->log2_tile_cols;
cm->tile_height = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2);
cm->tile_height >>= cm->log2_tile_rows;
// round to integer multiples of superblock size
cm->tile_width = ALIGN_POWER_OF_TWO(cm->tile_width, MAX_MIB_SIZE_LOG2);
cm->tile_height = ALIGN_POWER_OF_TWO(cm->tile_height, MAX_MIB_SIZE_LOG2);
// tile size magnitude
if (cm->tile_rows > 1 || cm->tile_cols > 1) {
pbi->tile_size_bytes = vpx_rb_read_literal(rb, 2) + 1;
}
#endif // CONFIG_EXT_TILE
}
static int mem_get_varsize(const uint8_t *src, const int sz) {
switch (sz) {
case 1: return src[0];
case 2: return mem_get_le16(src);
case 3: return mem_get_le24(src);
case 4: return mem_get_le32(src);
default: assert("Invalid size" && 0); return -1;
}
}
#if CONFIG_EXT_TILE
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'.
static void get_tile_buffer(const uint8_t *const data_end,
struct vpx_internal_error_info *error_info,
const uint8_t **data, vpx_decrypt_cb decrypt_cb,
void *decrypt_state,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS],
int tile_size_bytes, int col, int row) {
size_t size;
size_t copy_size = 0;
const uint8_t *copy_data = NULL;
if (!read_is_valid(*data, tile_size_bytes, data_end))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (decrypt_cb) {
uint8_t be_data[4];
decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes);
// Only read number of bytes in cm->tile_size_bytes.
size = mem_get_varsize(be_data, tile_size_bytes);
} else {
size = mem_get_varsize(*data, tile_size_bytes);
}
// The top bit indicates copy mode
if ((size >> (tile_size_bytes * 8 - 1)) == 1) {
// The remaining bits in the top byte signal the row offset
int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f;
// Currently, only use tiles in same column as reference tiles.
copy_data = tile_buffers[row - offset][col].data;
copy_size = tile_buffers[row - offset][col].size;
size = 0;
}
*data += tile_size_bytes;
if (size > (size_t)(data_end - *data))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile size");
if (size > 0) {
tile_buffers[row][col].data = *data;
tile_buffers[row][col].size = size;
} else {
tile_buffers[row][col].data = copy_data;
tile_buffers[row][col].size = copy_size;
}
*data += size;
tile_buffers[row][col].raw_data_end = *data;
}
static void get_tile_buffers(
VP10Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
VP10_COMMON *const cm = &pbi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
const int have_tiles = tile_cols * tile_rows > 1;
if (!have_tiles) {
const uint32_t tile_size = data_end - data;
tile_buffers[0][0].data = data;
tile_buffers[0][0].size = tile_size;
tile_buffers[0][0].raw_data_end = NULL;
} else {
// We locate only the tile buffers that are required, which are the ones
// specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always
// need the last (bottom right) tile buffer, as we need to know where the
// end of the compressed frame buffer is for proper superframe decoding.
const uint8_t *tile_col_data_end[MAX_TILE_COLS];
const uint8_t *const data_start = data;
const int dec_tile_row = VPXMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int tile_rows_start = single_row ? dec_tile_row : 0;
const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows;
const int dec_tile_col = VPXMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
const int tile_cols_start = single_col ? dec_tile_col : 0;
const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
const int tile_col_size_bytes = pbi->tile_col_size_bytes;
const int tile_size_bytes = pbi->tile_size_bytes;
size_t tile_col_size;
int r, c;
// Read tile column sizes for all columns (we need the last tile buffer)
for (c = 0; c < tile_cols; ++c) {
const int is_last = c == tile_cols - 1;
if (!is_last) {
tile_col_size = mem_get_varsize(data, tile_col_size_bytes);
data += tile_col_size_bytes;
tile_col_data_end[c] = data + tile_col_size;
} else {
tile_col_size = data_end - data;
tile_col_data_end[c] = data_end;
}
data += tile_col_size;
}
data = data_start;
// Read the required tile sizes.
for (c = tile_cols_start; c < tile_cols_end; ++c) {
const int is_last = c == tile_cols - 1;
if (c > 0) data = tile_col_data_end[c - 1];
if (!is_last) data += tile_col_size_bytes;
// Get the whole of the last column, otherwise stop at the required tile.
for (r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) {
tile_buffers[r][c].col = c;
get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data,
pbi->decrypt_cb, pbi->decrypt_state, tile_buffers,
tile_size_bytes, c, r);
}
}
// If we have not read the last column, then read it to get the last tile.
if (tile_cols_end != tile_cols) {
c = tile_cols - 1;
data = tile_col_data_end[c - 1];
for (r = 0; r < tile_rows; ++r) {
tile_buffers[r][c].col = c;
get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data,
pbi->decrypt_cb, pbi->decrypt_state, tile_buffers,
tile_size_bytes, c, r);
}
}
}
}
#else
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'.
static void get_tile_buffer(const uint8_t *const data_end,
const int tile_size_bytes, int is_last,
struct vpx_internal_error_info *error_info,
const uint8_t **data, vpx_decrypt_cb decrypt_cb,
void *decrypt_state, TileBufferDec *const buf) {
size_t size;
if (!is_last) {
if (!read_is_valid(*data, 4, data_end))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (decrypt_cb) {
uint8_t be_data[4];
decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes);
size = mem_get_varsize(be_data, tile_size_bytes);
} else {
size = mem_get_varsize(*data, tile_size_bytes);
}
*data += tile_size_bytes;
if (size > (size_t)(data_end - *data))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile size");
} else {
size = data_end - *data;
}
buf->data = *data;
buf->size = size;
*data += size;
}
static void get_tile_buffers(
VP10Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
VP10_COMMON *const cm = &pbi->common;
int r, c;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
for (r = 0; r < tile_rows; ++r) {
for (c = 0; c < tile_cols; ++c) {
const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
TileBufferDec *const buf = &tile_buffers[r][c];
buf->col = c;
get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, &cm->error,
&data, pbi->decrypt_cb, pbi->decrypt_state, buf);
}
}
}
#endif // CONFIG_EXT_TILE
static const uint8_t *decode_tiles(VP10Decoder *pbi, const uint8_t *data,
const uint8_t *data_end) {
VP10_COMMON *const cm = &pbi->common;
const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
const int n_tiles = tile_cols * tile_rows;
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
#if CONFIG_EXT_TILE
const int dec_tile_row = VPXMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int tile_rows_start = single_row ? dec_tile_row : 0;
const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
const int dec_tile_col = VPXMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
const int tile_cols_start = single_col ? dec_tile_col : 0;
const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
const int inv_col_order = pbi->inv_tile_order && !single_col;
const int inv_row_order = pbi->inv_tile_order && !single_row;
#else
const int tile_rows_start = 0;
const int tile_rows_end = tile_rows;
const int tile_cols_start = 0;
const int tile_cols_end = tile_cols;
const int inv_col_order = pbi->inv_tile_order;
const int inv_row_order = pbi->inv_tile_order;
#endif // CONFIG_EXT_TILE
int tile_row, tile_col;
#if CONFIG_ENTROPY
cm->do_subframe_update = n_tiles == 1;
#endif // CONFIG_ENTROPY
if (cm->lf.filter_level && !cm->skip_loop_filter &&
pbi->lf_worker.data1 == NULL) {
CHECK_MEM_ERROR(cm, pbi->lf_worker.data1,
vpx_memalign(32, sizeof(LFWorkerData)));
pbi->lf_worker.hook = (VPxWorkerHook)vp10_loop_filter_worker;
if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) {
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
"Loop filter thread creation failed");
}
}
if (cm->lf.filter_level && !cm->skip_loop_filter) {
LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
// Be sure to sync as we might be resuming after a failed frame decode.
winterface->sync(&pbi->lf_worker);
vp10_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm,
pbi->mb.plane);
}
assert(tile_rows <= MAX_TILE_ROWS);
assert(tile_cols <= MAX_TILE_COLS);
get_tile_buffers(pbi, data, data_end, tile_buffers);
if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
vpx_free(pbi->tile_data);
CHECK_MEM_ERROR(cm, pbi->tile_data,
vpx_memalign(32, n_tiles * (sizeof(*pbi->tile_data))));
pbi->allocated_tiles = n_tiles;
}
// Load all tile information into tile_data.
for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
const TileBufferDec *const buf = &tile_buffers[tile_row][tile_col];
TileData *const td = pbi->tile_data + tile_cols * tile_row + tile_col;
td->cm = cm;
td->xd = pbi->mb;
td->xd.corrupted = 0;
td->xd.counts =
cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD
? &cm->counts
: NULL;
vp10_zero(td->dqcoeff);
vp10_tile_init(&td->xd.tile, td->cm, tile_row, tile_col);
#if !CONFIG_ANS
setup_bool_decoder(buf->data, data_end, buf->size, &cm->error,
&td->bit_reader, pbi->decrypt_cb, pbi->decrypt_state);
#else
setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
&td->bit_reader, pbi->decrypt_cb, pbi->decrypt_state);
#endif
vp10_init_macroblockd(cm, &td->xd, td->dqcoeff);
td->xd.plane[0].color_index_map = td->color_index_map[0];
td->xd.plane[1].color_index_map = td->color_index_map[1];
}
}
for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row;
int mi_row = 0;
TileInfo tile_info;
vp10_tile_set_row(&tile_info, cm, row);
for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col;
TileData *const td = pbi->tile_data + tile_cols * row + col;
vp10_tile_set_col(&tile_info, cm, col);
vp10_zero_above_context(cm, tile_info.mi_col_start, tile_info.mi_col_end);
for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
mi_row += cm->mib_size) {
int mi_col;
vp10_zero_left_context(&td->xd);
for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
mi_col += cm->mib_size) {
decode_partition(pbi, &td->xd,
#if CONFIG_SUPERTX
0,
#endif // CONFIG_SUPERTX
mi_row, mi_col, &td->bit_reader, cm->sb_size,
b_width_log2_lookup[cm->sb_size]);
}
pbi->mb.corrupted |= td->xd.corrupted;
if (pbi->mb.corrupted)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Failed to decode tile data");
#if CONFIG_ENTROPY
if (cm->do_subframe_update &&
cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
if ((mi_row + MI_SIZE) %
(MI_SIZE *
VPXMAX(cm->mi_rows / MI_SIZE / COEF_PROBS_BUFS, 1)) ==
0 &&
mi_row + MI_SIZE < cm->mi_rows &&
cm->coef_probs_update_idx < COEF_PROBS_BUFS - 1) {
vp10_partial_adapt_probs(cm, mi_row, mi_col);
++cm->coef_probs_update_idx;
}
}
#endif // CONFIG_ENTROPY
}
}
assert(mi_row > 0);
#if !CONFIG_VAR_TX
// Loopfilter one tile row.
if (cm->lf.filter_level && !cm->skip_loop_filter) {
LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
const int lf_start = VPXMAX(0, tile_info.mi_row_start - cm->mib_size);
const int lf_end = tile_info.mi_row_end - cm->mib_size;
// Delay the loopfilter if the first tile row is only
// a single superblock high.
if (lf_end <= 0) continue;
// Decoding has completed. Finish up the loop filter in this thread.
if (tile_info.mi_row_end >= cm->mi_rows) continue;
winterface->sync(&pbi->lf_worker);
lf_data->start = lf_start;
lf_data->stop = lf_end;
if (pbi->max_threads > 1) {
winterface->launch(&pbi->lf_worker);
} else {
winterface->execute(&pbi->lf_worker);
}
}
// After loopfiltering, the last 7 row pixels in each superblock row may
// still be changed by the longest loopfilter of the next superblock row.
if (cm->frame_parallel_decode)
vp10_frameworker_broadcast(pbi->cur_buf, mi_row << cm->mib_size_log2);
#endif // !CONFIG_VAR_TX
}
#if CONFIG_VAR_TX
// Loopfilter the whole frame.
vp10_loop_filter_frame(get_frame_new_buffer(cm), cm, &pbi->mb,
cm->lf.filter_level, 0, 0);
#else
// Loopfilter remaining rows in the frame.
if (cm->lf.filter_level && !cm->skip_loop_filter) {
LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
winterface->sync(&pbi->lf_worker);
lf_data->start = lf_data->stop;
lf_data->stop = cm->mi_rows;
winterface->execute(&pbi->lf_worker);
}
#endif // CONFIG_VAR_TX
#if CONFIG_CLPF
if (cm->clpf && !cm->skip_loop_filter)
vp10_clpf_frame(&pbi->cur_buf->buf, cm, &pbi->mb);
#endif
#if CONFIG_DERING
if (cm->dering_level && !cm->skip_loop_filter) {
vp10_dering_frame(&pbi->cur_buf->buf, cm, &pbi->mb, cm->dering_level);
}
#endif // CONFIG_DERING
if (cm->frame_parallel_decode)
vp10_frameworker_broadcast(pbi->cur_buf, INT_MAX);
#if CONFIG_EXT_TILE
if (n_tiles == 1) {
#if CONFIG_ANS
return data_end;
#else
// Find the end of the single tile buffer
return vpx_reader_find_end(&pbi->tile_data->bit_reader);
#endif // CONFIG_ANS
} else {
// Return the end of the last tile buffer
return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end;
}
#else
#if CONFIG_ANS
return data_end;
#else
{
// Get last tile data.
TileData *const td = pbi->tile_data + tile_cols * tile_rows - 1;
return vpx_reader_find_end(&td->bit_reader);
}
#endif // CONFIG_ANS
#endif // CONFIG_EXT_TILE
}
static int tile_worker_hook(TileWorkerData *const tile_data,
const TileInfo *const tile) {
VP10Decoder *const pbi = tile_data->pbi;
const VP10_COMMON *const cm = &pbi->common;
int mi_row, mi_col;
if (setjmp(tile_data->error_info.jmp)) {
tile_data->error_info.setjmp = 0;
tile_data->xd.corrupted = 1;
return 0;
}
tile_data->error_info.setjmp = 1;
tile_data->xd.error_info = &tile_data->error_info;
vp10_zero_above_context(&pbi->common, tile->mi_col_start, tile->mi_col_end);
for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
mi_row += cm->mib_size) {
vp10_zero_left_context(&tile_data->xd);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += cm->mib_size) {
decode_partition(pbi, &tile_data->xd,
#if CONFIG_SUPERTX
0,
#endif
mi_row, mi_col, &tile_data->bit_reader, cm->sb_size,
b_width_log2_lookup[cm->sb_size]);
}
}
return !tile_data->xd.corrupted;
}
// sorts in descending order
static int compare_tile_buffers(const void *a, const void *b) {
const TileBufferDec *const buf1 = (const TileBufferDec *)a;
const TileBufferDec *const buf2 = (const TileBufferDec *)b;
return (int)(buf2->size - buf1->size);
}
static const uint8_t *decode_tiles_mt(VP10Decoder *pbi, const uint8_t *data,
const uint8_t *data_end) {
VP10_COMMON *const cm = &pbi->common;
const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
const int num_workers = VPXMIN(pbi->max_threads & ~1, tile_cols);
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
#if CONFIG_EXT_TILE
const int dec_tile_row = VPXMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int tile_rows_start = single_row ? dec_tile_row : 0;
const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
const int dec_tile_col = VPXMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
const int tile_cols_start = single_col ? dec_tile_col : 0;
const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
#else
const int tile_rows_start = 0;
const int tile_rows_end = tile_rows;
const int tile_cols_start = 0;
const int tile_cols_end = tile_cols;
#endif // CONFIG_EXT_TILE
int tile_row, tile_col;
int i;
#if !(CONFIG_ANS || CONFIG_EXT_TILE)
int final_worker = -1;
#endif // !(CONFIG_ANS || CONFIG_EXT_TILE)
assert(tile_rows <= MAX_TILE_ROWS);
assert(tile_cols <= MAX_TILE_COLS);
assert(tile_cols * tile_rows > 1);
#if CONFIG_ANS
// TODO(any): This might just work now. Needs to be tested.
abort(); // FIXME: Tile parsing broken
#endif // CONFIG_ANS
// TODO(jzern): See if we can remove the restriction of passing in max
// threads to the decoder.
if (pbi->num_tile_workers == 0) {
const int num_threads = pbi->max_threads & ~1;
CHECK_MEM_ERROR(cm, pbi->tile_workers,
vpx_malloc(num_threads * sizeof(*pbi->tile_workers)));
// Ensure tile data offsets will be properly aligned. This may fail on
// platforms without DECLARE_ALIGNED().
assert((sizeof(*pbi->tile_worker_data) % 16) == 0);
CHECK_MEM_ERROR(
cm, pbi->tile_worker_data,
vpx_memalign(32, num_threads * sizeof(*pbi->tile_worker_data)));
CHECK_MEM_ERROR(cm, pbi->tile_worker_info,
vpx_malloc(num_threads * sizeof(*pbi->tile_worker_info)));
for (i = 0; i < num_threads; ++i) {
VPxWorker *const worker = &pbi->tile_workers[i];
++pbi->num_tile_workers;
winterface->init(worker);
if (i < num_threads - 1 && !winterface->reset(worker)) {
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
"Tile decoder thread creation failed");
}
}
}
// Reset tile decoding hook
for (i = 0; i < num_workers; ++i) {
VPxWorker *const worker = &pbi->tile_workers[i];
winterface->sync(worker);
worker->hook = (VPxWorkerHook)tile_worker_hook;
worker->data1 = &pbi->tile_worker_data[i];
worker->data2 = &pbi->tile_worker_info[i];
}
// Initialize thread frame counts.
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
for (i = 0; i < num_workers; ++i) {
TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1;
vp10_zero(twd->counts);
}
}
// Load tile data into tile_buffers
get_tile_buffers(pbi, data, data_end, tile_buffers);
for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
// Sort the buffers in this tile row based on size in descending order.
qsort(&tile_buffers[tile_row][tile_cols_start],
tile_cols_end - tile_cols_start, sizeof(tile_buffers[0][0]),
compare_tile_buffers);
// Rearrange the tile buffers in this tile row such that per-tile group
// the largest, and presumably the most difficult tile will be decoded in
// the main thread. This should help minimize the number of instances
// where the main thread is waiting for a worker to complete.
{
int group_start;
for (group_start = tile_cols_start; group_start < tile_cols_end;
group_start += num_workers) {
const int group_end = VPXMIN(group_start + num_workers, tile_cols);
const TileBufferDec largest = tile_buffers[tile_row][group_start];
memmove(&tile_buffers[tile_row][group_start],
&tile_buffers[tile_row][group_start + 1],
(group_end - group_start - 1) * sizeof(tile_buffers[0][0]));
tile_buffers[tile_row][group_end - 1] = largest;
}
}
for (tile_col = tile_cols_start; tile_col < tile_cols_end;) {
// Launch workers for individual columns
for (i = 0; i < num_workers && tile_col < tile_cols_end;
++i, ++tile_col) {
TileBufferDec *const buf = &tile_buffers[tile_row][tile_col];
VPxWorker *const worker = &pbi->tile_workers[i];
TileWorkerData *const twd = (TileWorkerData *)worker->data1;
TileInfo *const tile_info = (TileInfo *)worker->data2;
twd->pbi = pbi;
twd->xd = pbi->mb;
twd->xd.corrupted = 0;
twd->xd.counts =
cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD
? &twd->counts
: NULL;
vp10_zero(twd->dqcoeff);
vp10_tile_init(tile_info, cm, tile_row, buf->col);
vp10_tile_init(&twd->xd.tile, cm, tile_row, buf->col);
#if !CONFIG_ANS
setup_bool_decoder(buf->data, data_end, buf->size, &cm->error,
&twd->bit_reader, pbi->decrypt_cb,
pbi->decrypt_state);
#else
setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
&twd->bit_reader, pbi->decrypt_cb,
pbi->decrypt_state);
#endif // CONFIG_ANS
vp10_init_macroblockd(cm, &twd->xd, twd->dqcoeff);
twd->xd.plane[0].color_index_map = twd->color_index_map[0];
twd->xd.plane[1].color_index_map = twd->color_index_map[1];
worker->had_error = 0;
if (i == num_workers - 1 || tile_col == tile_cols_end - 1) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
#if !(CONFIG_ANS || CONFIG_EXT_TILE)
if (tile_row == tile_rows - 1 && buf->col == tile_cols - 1) {
final_worker = i;
}
#endif // !(CONFIG_ANS || CONFIG_EXT_TILE)
}
// Sync all workers
for (; i > 0; --i) {
VPxWorker *const worker = &pbi->tile_workers[i - 1];
// TODO(jzern): The tile may have specific error data associated with
// its vpx_internal_error_info which could be propagated to the main
// info in cm. Additionally once the threads have been synced and an
// error is detected, there's no point in continuing to decode tiles.
pbi->mb.corrupted |= !winterface->sync(worker);
}
}
}
// Accumulate thread frame counts.
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
for (i = 0; i < num_workers; ++i) {
TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1;
vp10_accumulate_frame_counts(cm, &twd->counts);
}
}
#if CONFIG_EXT_TILE
// Return the end of the last tile buffer
return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end;
#else
#if CONFIG_ANS
return data_end;
#else
assert(final_worker != -1);
{
TileWorkerData *const twd =
(TileWorkerData *)pbi->tile_workers[final_worker].data1;
return vpx_reader_find_end(&twd->bit_reader);
}
#endif // CONFIG_ANS
#endif // CONFIG_EXT_TILE
}
static void error_handler(void *data) {
VP10_COMMON *const cm = (VP10_COMMON *)data;
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
}
static void read_bitdepth_colorspace_sampling(VP10_COMMON *cm,
struct vpx_read_bit_buffer *rb) {
if (cm->profile >= PROFILE_2) {
cm->bit_depth = vpx_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10;
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth = 1;
#endif
} else {
cm->bit_depth = VPX_BITS_8;
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth = 0;
#endif
}
cm->color_space = vpx_rb_read_literal(rb, 3);
if (cm->color_space != VPX_CS_SRGB) {
// [16,235] (including xvycc) vs [0,255] range
cm->color_range = vpx_rb_read_bit(rb);
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
cm->subsampling_x = vpx_rb_read_bit(rb);
cm->subsampling_y = vpx_rb_read_bit(rb);
if (cm->subsampling_x == 1 && cm->subsampling_y == 1)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"4:2:0 color not supported in profile 1 or 3");
if (vpx_rb_read_bit(rb))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Reserved bit set");
} else {
cm->subsampling_y = cm->subsampling_x = 1;
}
} else {
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
// Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed.
// 4:2:2 or 4:4:0 chroma sampling is not allowed.
cm->subsampling_y = cm->subsampling_x = 0;
if (vpx_rb_read_bit(rb))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Reserved bit set");
} else {
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"4:4:4 color not supported in profile 0 or 2");
}
}
}
static size_t read_uncompressed_header(VP10Decoder *pbi,
struct vpx_read_bit_buffer *rb) {
VP10_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
BufferPool *const pool = cm->buffer_pool;
RefCntBuffer *const frame_bufs = pool->frame_bufs;
int i, mask, ref_index = 0;
size_t sz;
#if CONFIG_EXT_REFS
cm->last3_frame_type = cm->last2_frame_type;
cm->last2_frame_type = cm->last_frame_type;
#endif // CONFIG_EXT_REFS
cm->last_frame_type = cm->frame_type;
cm->last_intra_only = cm->intra_only;
#if CONFIG_EXT_REFS
// NOTE: By default all coded frames to be used as a reference
cm->is_reference_frame = 1;
#endif // CONFIG_EXT_REFS
if (vpx_rb_read_literal(rb, 2) != VPX_FRAME_MARKER)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame marker");
cm->profile = vp10_read_profile(rb);
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->profile >= MAX_PROFILES)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Unsupported bitstream profile");
#else
if (cm->profile >= PROFILE_2)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Unsupported bitstream profile");
#endif
cm->show_existing_frame = vpx_rb_read_bit(rb);
if (cm->show_existing_frame) {
// Show an existing frame directly.
const int frame_to_show = cm->ref_frame_map[vpx_rb_read_literal(rb, 3)];
lock_buffer_pool(pool);
if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
unlock_buffer_pool(pool);
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Buffer %d does not contain a decoded frame",
frame_to_show);
}
ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
unlock_buffer_pool(pool);
cm->lf.filter_level = 0;
cm->show_frame = 1;
pbi->refresh_frame_flags = 0;
if (cm->frame_parallel_decode) {
for (i = 0; i < REF_FRAMES; ++i)
cm->next_ref_frame_map[i] = cm->ref_frame_map[i];
}
return 0;
}
cm->frame_type = (FRAME_TYPE)vpx_rb_read_bit(rb);
cm->show_frame = vpx_rb_read_bit(rb);
cm->error_resilient_mode = vpx_rb_read_bit(rb);
if (cm->frame_type == KEY_FRAME) {
if (!vp10_read_sync_code(rb))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
read_bitdepth_colorspace_sampling(cm, rb);
pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
cm->frame_refs[i].idx = INVALID_IDX;
cm->frame_refs[i].buf = NULL;
}
setup_frame_size(cm, rb);
if (pbi->need_resync) {
memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
pbi->need_resync = 0;
}
if (frame_is_intra_only(cm))
cm->allow_screen_content_tools = vpx_rb_read_bit(rb);
} else {
cm->intra_only = cm->show_frame ? 0 : vpx_rb_read_bit(rb);
if (cm->error_resilient_mode) {
cm->reset_frame_context = RESET_FRAME_CONTEXT_ALL;
} else {
if (cm->intra_only) {
cm->reset_frame_context = vpx_rb_read_bit(rb)
? RESET_FRAME_CONTEXT_ALL
: RESET_FRAME_CONTEXT_CURRENT;
} else {
cm->reset_frame_context = vpx_rb_read_bit(rb)
? RESET_FRAME_CONTEXT_CURRENT
: RESET_FRAME_CONTEXT_NONE;
if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT)
cm->reset_frame_context = vpx_rb_read_bit(rb)
? RESET_FRAME_CONTEXT_ALL
: RESET_FRAME_CONTEXT_CURRENT;
}
}
if (cm->intra_only) {
if (!vp10_read_sync_code(rb))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
read_bitdepth_colorspace_sampling(cm, rb);
pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
setup_frame_size(cm, rb);
if (pbi->need_resync) {
memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
pbi->need_resync = 0;
}
} else if (pbi->need_resync != 1) { /* Skip if need resync */
pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
#if CONFIG_EXT_REFS
if (!pbi->refresh_frame_flags) {
// NOTE: "pbi->refresh_frame_flags == 0" indicates that the coded frame
// will not be used as a reference
cm->is_reference_frame = 0;
}
#endif // CONFIG_EXT_REFS
for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
const int ref = vpx_rb_read_literal(rb, REF_FRAMES_LOG2);
const int idx = cm->ref_frame_map[ref];
RefBuffer *const ref_frame = &cm->frame_refs[i];
ref_frame->idx = idx;
ref_frame->buf = &frame_bufs[idx].buf;
cm->ref_frame_sign_bias[LAST_FRAME + i] = vpx_rb_read_bit(rb);
}
setup_frame_size_with_refs(cm, rb);
cm->allow_high_precision_mv = vpx_rb_read_bit(rb);
cm->interp_filter = read_interp_filter(rb);
for (i = 0; i < INTER_REFS_PER_FRAME; ++i) {
RefBuffer *const ref_buf = &cm->frame_refs[i];
#if CONFIG_VP9_HIGHBITDEPTH
vp10_setup_scale_factors_for_frame(
&ref_buf->sf, ref_buf->buf->y_crop_width,
ref_buf->buf->y_crop_height, cm->width, cm->height,
cm->use_highbitdepth);
#else
vp10_setup_scale_factors_for_frame(
&ref_buf->sf, ref_buf->buf->y_crop_width,
ref_buf->buf->y_crop_height, cm->width, cm->height);
#endif
}
}
}
#if CONFIG_VP9_HIGHBITDEPTH
get_frame_new_buffer(cm)->bit_depth = cm->bit_depth;
#endif
get_frame_new_buffer(cm)->color_space = cm->color_space;
get_frame_new_buffer(cm)->color_range = cm->color_range;
get_frame_new_buffer(cm)->render_width = cm->render_width;
get_frame_new_buffer(cm)->render_height = cm->render_height;
if (pbi->need_resync) {
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Keyframe / intra-only frame required to reset decoder"
" state");
}
if (!cm->error_resilient_mode) {
cm->refresh_frame_context = vpx_rb_read_bit(rb)
? REFRESH_FRAME_CONTEXT_FORWARD
: REFRESH_FRAME_CONTEXT_BACKWARD;
} else {
cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_FORWARD;
}
// This flag will be overridden by the call to vp10_setup_past_independence
// below, forcing the use of context 0 for those frame types.
cm->frame_context_idx = vpx_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
// Generate next_ref_frame_map.
lock_buffer_pool(pool);
for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
if (mask & 1) {
cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
++frame_bufs[cm->new_fb_idx].ref_count;
} else {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
}
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
++ref_index;
}
for (; ref_index < REF_FRAMES; ++ref_index) {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
}
unlock_buffer_pool(pool);
pbi->hold_ref_buf = 1;
if (frame_is_intra_only(cm) || cm->error_resilient_mode)
vp10_setup_past_independence(cm);
#if CONFIG_EXT_PARTITION
set_sb_size(cm, vpx_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64);
#else
set_sb_size(cm, BLOCK_64X64);
#endif // CONFIG_EXT_PARTITION
setup_loopfilter(cm, rb);
#if CONFIG_CLPF
setup_clpf(cm, rb);
#endif
#if CONFIG_DERING
setup_dering(cm, rb);
#endif
#if CONFIG_LOOP_RESTORATION
setup_restoration(cm, rb);
#endif // CONFIG_LOOP_RESTORATION
setup_quantization(cm, rb);
#if CONFIG_VP9_HIGHBITDEPTH
xd->bd = (int)cm->bit_depth;
#endif
#if CONFIG_ENTROPY
vp10_default_coef_probs(cm);
if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode ||
cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL) {
for (i = 0; i < FRAME_CONTEXTS; ++i) cm->frame_contexts[i] = *cm->fc;
} else if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) {
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
}
#endif // CONFIG_ENTROPY
setup_segmentation(cm, rb);
{
int i;
for (i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = cm->seg.enabled
? vp10_get_qindex(&cm->seg, i, cm->base_qindex)
: cm->base_qindex;
xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
}
}
setup_segmentation_dequant(cm);
cm->tx_mode =
(!cm->seg.enabled && xd->lossless[0]) ? ONLY_4X4 : read_tx_mode(rb);
cm->reference_mode = read_frame_reference_mode(cm, rb);
read_tile_info(pbi, rb);
sz = vpx_rb_read_literal(rb, 16);
if (sz == 0)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid header size");
return sz;
}
#if CONFIG_EXT_TX
static void read_ext_tx_probs(FRAME_CONTEXT *fc, vp10_reader *r) {
int i, j, k;
int s;
for (s = 1; s < EXT_TX_SETS_INTER; ++s) {
if (vp10_read(r, GROUP_DIFF_UPDATE_PROB)) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
if (!use_inter_ext_tx_for_txsize[s][i]) continue;
for (j = 0; j < num_ext_tx_set_inter[s] - 1; ++j)
vp10_diff_update_prob(r, &fc->inter_ext_tx_prob[s][i][j]);
}
}
}
for (s = 1; s < EXT_TX_SETS_INTRA; ++s) {
if (vp10_read(r, GROUP_DIFF_UPDATE_PROB)) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
if (!use_intra_ext_tx_for_txsize[s][i]) continue;
for (j = 0; j < INTRA_MODES; ++j)
for (k = 0; k < num_ext_tx_set_intra[s] - 1; ++k)
vp10_diff_update_prob(r, &fc->intra_ext_tx_prob[s][i][j][k]);
}
}
}
}
#else
static void read_ext_tx_probs(FRAME_CONTEXT *fc, vp10_reader *r) {
int i, j, k;
if (vp10_read(r, GROUP_DIFF_UPDATE_PROB)) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (j = 0; j < TX_TYPES; ++j)
for (k = 0; k < TX_TYPES - 1; ++k)
vp10_diff_update_prob(r, &fc->intra_ext_tx_prob[i][j][k]);
}
}
if (vp10_read(r, GROUP_DIFF_UPDATE_PROB)) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (k = 0; k < TX_TYPES - 1; ++k)
vp10_diff_update_prob(r, &fc->inter_ext_tx_prob[i][k]);
}
}
}
#endif // CONFIG_EXT_TX
#if CONFIG_SUPERTX
static void read_supertx_probs(FRAME_CONTEXT *fc, vp10_reader *r) {
int i, j;
if (vp10_read(r, GROUP_DIFF_UPDATE_PROB)) {
for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) {
for (j = 1; j < TX_SIZES; ++j) {
vp10_diff_update_prob(r, &fc->supertx_prob[i][j]);
}
}
}
}
#endif // CONFIG_SUPERTX
#if CONFIG_GLOBAL_MOTION
static void read_global_motion_params(Global_Motion_Params *params,
vpx_prob *probs, vp10_reader *r) {
GLOBAL_MOTION_TYPE gmtype =
vp10_read_tree(r, vp10_global_motion_types_tree, probs);
params->gmtype = gmtype;
params->motion_params.wmtype = gm_to_trans_type(gmtype);
switch (gmtype) {
case GLOBAL_ZERO: break;
case GLOBAL_AFFINE:
params->motion_params.wmmat[4] =
(vp10_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) *
GM_ALPHA_DECODE_FACTOR);
params->motion_params.wmmat[5] =
vp10_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) *
GM_ALPHA_DECODE_FACTOR +
(1 << WARPEDMODEL_PREC_BITS);
// fallthrough intended
case GLOBAL_ROTZOOM:
params->motion_params.wmmat[2] =
(vp10_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) *
GM_ALPHA_DECODE_FACTOR) +
(1 << WARPEDMODEL_PREC_BITS);
params->motion_params.wmmat[3] =
vp10_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) *
GM_ALPHA_DECODE_FACTOR;
// fallthrough intended
case GLOBAL_TRANSLATION:
params->motion_params.wmmat[0] =
vp10_read_primitive_symmetric(r, GM_ABS_TRANS_BITS) *
GM_TRANS_DECODE_FACTOR;
params->motion_params.wmmat[1] =
vp10_read_primitive_symmetric(r, GM_ABS_TRANS_BITS) *
GM_TRANS_DECODE_FACTOR;
break;
default: assert(0);
}
}
static void read_global_motion(VP10_COMMON *cm, vp10_reader *r) {
int frame;
memset(cm->global_motion, 0, sizeof(cm->global_motion));
for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
read_global_motion_params(&cm->global_motion[frame],
cm->fc->global_motion_types_prob, r);
}
}
#endif // CONFIG_GLOBAL_MOTION
static int read_compressed_header(VP10Decoder *pbi, const uint8_t *data,
size_t partition_size) {
VP10_COMMON *const cm = &pbi->common;
#if CONFIG_SUPERTX
MACROBLOCKD *const xd = &pbi->mb;
#endif
FRAME_CONTEXT *const fc = cm->fc;
vp10_reader r;
int k, i, j;
#if !CONFIG_ANS
if (vpx_reader_init(&r, data, partition_size, pbi->decrypt_cb,
pbi->decrypt_state))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
#else
if (ans_read_init(&r, data, partition_size))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate compressed header ANS decoder");
#endif // !CONFIG_ANS
if (cm->tx_mode == TX_MODE_SELECT) {
for (i = 0; i < TX_SIZES - 1; ++i)
for (j = 0; j < TX_SIZE_CONTEXTS; ++j)
for (k = 0; k < i + 1; ++k)
vp10_diff_update_prob(&r, &fc->tx_size_probs[i][j][k]);
}
read_coef_probs(fc, cm->tx_mode, &r);
#if CONFIG_VAR_TX
for (k = 0; k < TXFM_PARTITION_CONTEXTS; ++k)
vp10_diff_update_prob(&r, &fc->txfm_partition_prob[k]);
#endif
for (k = 0; k < SKIP_CONTEXTS; ++k)
vp10_diff_update_prob(&r, &fc->skip_probs[k]);
if (cm->seg.enabled && cm->seg.update_map) {
if (cm->seg.temporal_update) {
for (k = 0; k < PREDICTION_PROBS; k++)
vp10_diff_update_prob(&r, &cm->fc->seg.pred_probs[k]);
}
for (k = 0; k < MAX_SEGMENTS - 1; k++)
vp10_diff_update_prob(&r, &cm->fc->seg.tree_probs[k]);
}
for (j = 0; j < INTRA_MODES; j++)
for (i = 0; i < INTRA_MODES - 1; ++i)
vp10_diff_update_prob(&r, &fc->uv_mode_prob[j][i]);
#if CONFIG_EXT_PARTITION_TYPES
for (i = 0; i < PARTITION_TYPES - 1; ++i)
vp10_diff_update_prob(&r, &fc->partition_prob[0][i]);
for (j = 1; j < PARTITION_CONTEXTS; ++j)
for (i = 0; i < EXT_PARTITION_TYPES - 1; ++i)
vp10_diff_update_prob(&r, &fc->partition_prob[j][i]);
#else
for (j = 0; j < PARTITION_CONTEXTS; ++j)
for (i = 0; i < PARTITION_TYPES - 1; ++i)
vp10_diff_update_prob(&r, &fc->partition_prob[j][i]);
#endif // CONFIG_EXT_PARTITION_TYPES
#if CONFIG_EXT_INTRA
for (i = 0; i < INTRA_FILTERS + 1; ++i)
for (j = 0; j < INTRA_FILTERS - 1; ++j)
vp10_diff_update_prob(&r, &fc->intra_filter_probs[i][j]);
#endif // CONFIG_EXT_INTRA
if (frame_is_intra_only(cm)) {
vp10_copy(cm->kf_y_prob, vp10_kf_y_mode_prob);
for (k = 0; k < INTRA_MODES; k++)
for (j = 0; j < INTRA_MODES; j++)
for (i = 0; i < INTRA_MODES - 1; ++i)
vp10_diff_update_prob(&r, &cm->kf_y_prob[k][j][i]);
} else {
#if !CONFIG_REF_MV
nmv_context *const nmvc = &fc->nmvc;
#endif
read_inter_mode_probs(fc, &r);
#if CONFIG_EXT_INTER
read_inter_compound_mode_probs(fc, &r);
if (cm->reference_mode != COMPOUND_REFERENCE) {
for (i = 0; i < BLOCK_SIZE_GROUPS; i++) {
if (is_interintra_allowed_bsize_group(i)) {
vp10_diff_update_prob(&r, &fc->interintra_prob[i]);
}
}
for (i = 0; i < BLOCK_SIZE_GROUPS; i++) {
for (j = 0; j < INTERINTRA_MODES - 1; j++)
vp10_diff_update_prob(&r, &fc->interintra_mode_prob[i][j]);
}
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed_bsize(i) && is_interintra_wedge_used(i)) {
vp10_diff_update_prob(&r, &fc->wedge_interintra_prob[i]);
}
}
}
if (cm->reference_mode != SINGLE_REFERENCE) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interinter_wedge_used(i)) {
vp10_diff_update_prob(&r, &fc->wedge_interinter_prob[i]);
}
}
}
#endif // CONFIG_EXT_INTER
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
for (i = BLOCK_8X8; i < BLOCK_SIZES; ++i) {
for (j = 0; j < MOTION_VARIATIONS - 1; ++j)
vp10_diff_update_prob(&r, &fc->motvar_prob[i][j]);
}
#endif // CONFIG_OBMC || CONFIG_WARPED_MOTION
if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r);
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
vp10_diff_update_prob(&r, &fc->intra_inter_prob[i]);
if (cm->reference_mode != SINGLE_REFERENCE)
setup_compound_reference_mode(cm);
read_frame_reference_mode_probs(cm, &r);
for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
for (i = 0; i < INTRA_MODES - 1; ++i)
vp10_diff_update_prob(&r, &fc->y_mode_prob[j][i]);
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i)
read_mv_probs(&fc->nmvc[i], cm->allow_high_precision_mv, &r);
#else
read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
#endif
read_ext_tx_probs(fc, &r);
#if CONFIG_SUPERTX
if (!xd->lossless[0]) read_supertx_probs(fc, &r);
#endif
#if CONFIG_GLOBAL_MOTION
read_global_motion(cm, &r);
#endif // CONFIG_GLOBAL_MOTION
}
return vp10_reader_has_error(&r);
}
#ifdef NDEBUG
#define debug_check_frame_counts(cm) (void)0
#else // !NDEBUG
// Counts should only be incremented when frame_parallel_decoding_mode and
// error_resilient_mode are disabled.
static void debug_check_frame_counts(const VP10_COMMON *const cm) {
FRAME_COUNTS zero_counts;
vp10_zero(zero_counts);
assert(cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD ||
cm->error_resilient_mode);
assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode,
sizeof(cm->counts.y_mode)));
assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode,
sizeof(cm->counts.uv_mode)));
assert(!memcmp(cm->counts.partition, zero_counts.partition,
sizeof(cm->counts.partition)));
assert(!memcmp(cm->counts.coef, zero_counts.coef, sizeof(cm->counts.coef)));
assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch,
sizeof(cm->counts.eob_branch)));
assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp,
sizeof(cm->counts.switchable_interp)));
assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode,
sizeof(cm->counts.inter_mode)));
#if CONFIG_EXT_INTER
assert(!memcmp(cm->counts.inter_compound_mode,
zero_counts.inter_compound_mode,
sizeof(cm->counts.inter_compound_mode)));
assert(!memcmp(cm->counts.interintra, zero_counts.interintra,
sizeof(cm->counts.interintra)));
assert(!memcmp(cm->counts.wedge_interintra, zero_counts.wedge_interintra,
sizeof(cm->counts.wedge_interintra)));
assert(!memcmp(cm->counts.wedge_interinter, zero_counts.wedge_interinter,
sizeof(cm->counts.wedge_interinter)));
#endif // CONFIG_EXT_INTER
#if CONFIG_OBMC || CONFIG_WARPED_MOTION
assert(!memcmp(cm->counts.motvar, zero_counts.motvar,
sizeof(cm->counts.motvar)));
#endif // CONFIG_OBMC || CONFIG_WARPED_MOTION
assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter,
sizeof(cm->counts.intra_inter)));
assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter,
sizeof(cm->counts.comp_inter)));
assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref,
sizeof(cm->counts.single_ref)));
assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref,
sizeof(cm->counts.comp_ref)));
#if CONFIG_EXT_REFS
assert(!memcmp(cm->counts.comp_bwdref, zero_counts.comp_bwdref,
sizeof(cm->counts.comp_bwdref)));
#endif // CONFIG_EXT_REFS
assert(!memcmp(&cm->counts.tx_size, &zero_counts.tx_size,
sizeof(cm->counts.tx_size)));
assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip)));
#if CONFIG_REF_MV
assert(
!memcmp(&cm->counts.mv[0], &zero_counts.mv[0], sizeof(cm->counts.mv[0])));
assert(
!memcmp(&cm->counts.mv[1], &zero_counts.mv[1], sizeof(cm->counts.mv[0])));
#else
assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv)));
#endif
assert(!memcmp(cm->counts.inter_ext_tx, zero_counts.inter_ext_tx,
sizeof(cm->counts.inter_ext_tx)));
assert(!memcmp(cm->counts.intra_ext_tx, zero_counts.intra_ext_tx,
sizeof(cm->counts.intra_ext_tx)));
}
#endif // NDEBUG
static struct vpx_read_bit_buffer *init_read_bit_buffer(
VP10Decoder *pbi, struct vpx_read_bit_buffer *rb, const uint8_t *data,
const uint8_t *data_end, uint8_t clear_data[MAX_VPX_HEADER_SIZE]) {
rb->bit_offset = 0;
rb->error_handler = error_handler;
rb->error_handler_data = &pbi->common;
if (pbi->decrypt_cb) {
const int n = (int)VPXMIN(MAX_VPX_HEADER_SIZE, data_end - data);
pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
rb->bit_buffer = clear_data;
rb->bit_buffer_end = clear_data + n;
} else {
rb->bit_buffer = data;
rb->bit_buffer_end = data_end;
}
return rb;
}
//------------------------------------------------------------------------------
int vp10_read_sync_code(struct vpx_read_bit_buffer *const rb) {
return vpx_rb_read_literal(rb, 8) == VP10_SYNC_CODE_0 &&
vpx_rb_read_literal(rb, 8) == VP10_SYNC_CODE_1 &&
vpx_rb_read_literal(rb, 8) == VP10_SYNC_CODE_2;
}
void vp10_read_frame_size(struct vpx_read_bit_buffer *rb, int *width,
int *height) {
*width = vpx_rb_read_literal(rb, 16) + 1;
*height = vpx_rb_read_literal(rb, 16) + 1;
}
BITSTREAM_PROFILE vp10_read_profile(struct vpx_read_bit_buffer *rb) {
int profile = vpx_rb_read_bit(rb);
profile |= vpx_rb_read_bit(rb) << 1;
if (profile > 2) profile += vpx_rb_read_bit(rb);
return (BITSTREAM_PROFILE)profile;
}
void vp10_decode_frame(VP10Decoder *pbi, const uint8_t *data,
const uint8_t *data_end, const uint8_t **p_data_end) {
VP10_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
struct vpx_read_bit_buffer rb;
int context_updated = 0;
uint8_t clear_data[MAX_VPX_HEADER_SIZE];
const size_t first_partition_size = read_uncompressed_header(
pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data));
YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
xd->cur_buf = new_fb;
#if CONFIG_GLOBAL_MOTION
xd->global_motion = cm->global_motion;
#endif // CONFIG_GLOBAL_MOTION
if (!first_partition_size) {
// showing a frame directly
#if CONFIG_EXT_REFS
if (cm->show_existing_frame)
*p_data_end = data + vpx_rb_bytes_read(&rb);
else
#endif // CONFIG_EXT_REFS
*p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2);
return;
}
data += vpx_rb_bytes_read(&rb);
if (!read_is_valid(data, first_partition_size, data_end))
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt header length");
cm->use_prev_frame_mvs =
!cm->error_resilient_mode && cm->width == cm->last_width &&
cm->height == cm->last_height && !cm->last_intra_only &&
cm->last_show_frame && (cm->last_frame_type != KEY_FRAME);
#if CONFIG_EXT_REFS
// NOTE(zoeliu): As cm->prev_frame can take neither a frame of
// show_exisiting_frame=1, nor can it take a frame not used as
// a reference, it is probable that by the time it is being
// referred to, the frame buffer it originally points to may
// already get expired and have been reassigned to the current
// newly coded frame. Hence, we need to check whether this is
// the case, and if yes, we have 2 choices:
// (1) Simply disable the use of previous frame mvs; or
// (2) Have cm->prev_frame point to one reference frame buffer,
// e.g. LAST_FRAME.
if (cm->use_prev_frame_mvs && !dec_is_ref_frame_buf(pbi, cm->prev_frame)) {
// Reassign the LAST_FRAME buffer to cm->prev_frame.
RefBuffer *last_fb_ref_buf = &cm->frame_refs[LAST_FRAME - LAST_FRAME];
cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_ref_buf->idx];
}
#endif // CONFIG_EXT_REFS
vp10_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
*cm->fc = cm->frame_contexts[cm->frame_context_idx];
if (!cm->fc->initialized)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Uninitialized entropy context.");
vp10_zero(cm->counts);
xd->corrupted = 0;
new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
if (new_fb->corrupted)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data header is corrupted.");
if (cm->lf.filter_level && !cm->skip_loop_filter) {
vp10_loop_filter_frame_init(cm, cm->lf.filter_level);
}
// If encoded in frame parallel mode, frame context is ready after decoding
// the frame header.
if (cm->frame_parallel_decode &&
cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD) {
VPxWorker *const worker = pbi->frame_worker_owner;
FrameWorkerData *const frame_worker_data = worker->data1;
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD) {
context_updated = 1;
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
}
vp10_frameworker_lock_stats(worker);
pbi->cur_buf->row = -1;
pbi->cur_buf->col = -1;
frame_worker_data->frame_context_ready = 1;
// Signal the main thread that context is ready.
vp10_frameworker_signal_stats(worker);
vp10_frameworker_unlock_stats(worker);
}
#if CONFIG_ENTROPY
vp10_copy(cm->starting_coef_probs, cm->fc->coef_probs);
cm->coef_probs_update_idx = 0;
#endif // CONFIG_ENTROPY
if (pbi->max_threads > 1
#if CONFIG_EXT_TILE
&& pbi->dec_tile_col < 0 // Decoding all columns
#endif // CONFIG_EXT_TILE
&& cm->tile_cols > 1) {
// Multi-threaded tile decoder
*p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
if (!xd->corrupted) {
if (!cm->skip_loop_filter) {
// If multiple threads are used to decode tiles, then we use those
// threads to do parallel loopfiltering.
vp10_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane,
cm->lf.filter_level, 0, 0, pbi->tile_workers,
pbi->num_tile_workers, &pbi->lf_row_sync);
}
} else {
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data is corrupted.");
}
} else {
*p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
}
#if CONFIG_LOOP_RESTORATION
if (cm->rst_info.restoration_type != RESTORE_NONE) {
vp10_loop_restoration_init(&cm->rst_internal, &cm->rst_info,
cm->frame_type == KEY_FRAME, cm->width,
cm->height);
vp10_loop_restoration_rows(new_fb, cm, 0, cm->mi_rows, 0);
}
#endif // CONFIG_LOOP_RESTORATION
if (!xd->corrupted) {
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
#if CONFIG_ENTROPY
cm->partial_prob_update = 0;
#endif // CONFIG_ENTROPY
vp10_adapt_coef_probs(cm);
vp10_adapt_intra_frame_probs(cm);
if (!frame_is_intra_only(cm)) {
vp10_adapt_inter_frame_probs(cm);
vp10_adapt_mv_probs(cm, cm->allow_high_precision_mv);
}
} else {
debug_check_frame_counts(cm);
}
} else {
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data is corrupted.");
}
// Non frame parallel update frame context here.
if (!cm->error_resilient_mode && !context_updated)
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
}